Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad
This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compress...
Saved in:
Published in | Journal of biomechanics Vol. 80; pp. 144 - 150 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
26.10.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2018.09.003 |
Cover
Abstract | This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force – deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue’s hyperelastic material coefficients and its stress – strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young’s modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue’s nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue’s nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. |
---|---|
AbstractList | This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography.This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. |
Author | Allan, David Behforootan, Sara Chatzistergos, Panagiotis E. Chockalingam, Nachiappan Naemi, Roozbeh |
Author_xml | – sequence: 1 givenname: Panagiotis E. surname: Chatzistergos fullname: Chatzistergos, Panagiotis E. email: Panagiotis.chatzistergos@staffs.ac.uk organization: Staffordshire University, School of Life Science and Education, Stoke-on-Trent, UK – sequence: 2 givenname: Sara surname: Behforootan fullname: Behforootan, Sara organization: Imperial College London, Department of Surgery and Cancer, London SW7 2AZ, UK – sequence: 3 givenname: David surname: Allan fullname: Allan, David organization: Staffordshire University, School of Life Science and Education, Stoke-on-Trent, UK – sequence: 4 givenname: Roozbeh surname: Naemi fullname: Naemi, Roozbeh organization: Staffordshire University, School of Life Science and Education, Stoke-on-Trent, UK – sequence: 5 givenname: Nachiappan surname: Chockalingam fullname: Chockalingam, Nachiappan organization: Staffordshire University, School of Life Science and Education, Stoke-on-Trent, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30241799$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFv1BZ4sIl6dj5tIQQVcWXVIkDIHGzJs6EOGTjxc4G7b_H0bY97KX4MpfnfT2a54KdTW4ixq4EpAJEeT2kQ2PdlkyfShB1CioFyJ6xjairLJFZDWdsAyBFoqSCc3YRwgAAVV6pF-w8A5mLSqkN-_mtJ_T8Ly7EacQwu18ed_2BG5w4hkAh8LknbqdksYvjcY3RTmtk_Rsna3DkDfW4WOe563hPNCY7bF-y5x2OgV7dz0v24-OH77efk7uvn77c3twlJi_EnBjsyqyAQgoqKtEWVV1Dqdq6QNFS2eS16XKQmJnKlEaIXChscoOSOpStUJRdsjfH3p13f_YUZr21wdA44kRuH7QU8RVQCxXR1yfo4PZ-itutVJ2V8V5FpK7uqX2zpVbvvN2iP-iHm0WgPALGuxA8dY-IAL3K0YN-kKNXORqUjnJi8O1J0NgZZ-um2aMdn46_P8YpnnOx5HUwliZDrfVkZt06-3TFu5MKE22uDn_T4X8K_gE-K8OO |
CitedBy_id | crossref_primary_10_3390_cells13131106 crossref_primary_10_1016_j_ultrasmedbio_2021_12_016 crossref_primary_10_3389_fbioe_2020_00979 crossref_primary_10_1016_j_jbiomech_2018_11_032 crossref_primary_10_1088_1361_6579_abc66d crossref_primary_10_1016_j_jmbbm_2024_106572 crossref_primary_10_3390_s22010302 crossref_primary_10_3390_jcm11082150 crossref_primary_10_1016_j_ijmecsci_2022_107547 crossref_primary_10_1016_j_ultrasmedbio_2021_09_011 crossref_primary_10_3389_fendo_2024_1332032 crossref_primary_10_1016_j_jbiomech_2019_109370 crossref_primary_10_1016_j_jmbbm_2023_105708 crossref_primary_10_1016_j_jbiomech_2023_111558 |
Cites_doi | 10.2214/AJR.14.13076 10.1109/TUFFC.2017.2781654 10.7150/thno.18650 10.1111/j.1469-7580.2011.01420.x 10.1016/j.jbiomech.2010.02.021 10.1016/j.medengphy.2016.10.011 10.1109/TUFFC.2015.2503601 10.1121/1.2793605 10.1016/j.clinbiomech.2010.04.003 10.1016/j.medengphy.2015.03.009 10.1016/j.jbiomech.2005.03.007 10.1007/s00330-012-2476-4 10.1152/japplphysiol.01137.2006 10.1016/j.jbiomech.2011.10.021 10.1097/PHM.0000000000000655 10.1016/S0268-0033(01)00081-X 10.1088/0031-9155/59/22/6923 10.1007/s10237-017-0978-3 10.1016/j.jmbbm.2017.02.011 10.1177/0954411917695849 10.1016/j.jbiomech.2013.07.033 10.1007/s10439-017-1918-1 10.1016/j.ultrasmedbio.2015.07.004 10.1088/0031-9155/60/8/3151 10.1109/TUFFC.2004.1295425 10.1109/TUFFC.2012.2262 10.1055/s-0033-1335375 10.1016/j.jbiomech.2017.01.004 10.1016/j.diabres.2017.02.002 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Oct 26, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Oct 26, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2018.09.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 150 |
ExternalDocumentID | 30241799 10_1016_j_jbiomech_2018_09_003 S0021929018307243 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-caf6350521e571d5788069d85a1de6b48cf402a3c7c6c11419ab4ca2efa2d19e3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Sep 04 23:39:49 EDT 2025 Wed Aug 13 06:26:25 EDT 2025 Wed Feb 19 02:36:41 EST 2025 Tue Jul 01 00:44:12 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:28:48 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Validation Acoustoelasticity Soft tissue Mechanical testing Ultrasound Finite element |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-caf6350521e571d5788069d85a1de6b48cf402a3c7c6c11419ab4ca2efa2d19e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30241799 |
PQID | 2118360025 |
PQPubID | 1226346 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2111150819 proquest_journals_2118360025 pubmed_primary_30241799 crossref_primary_10_1016_j_jbiomech_2018_09_003 crossref_citationtrail_10_1016_j_jbiomech_2018_09_003 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_09_003 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-26 |
PublicationDateYYYYMMDD | 2018-10-26 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Pai, Ledoux (b0130) 2010; 43 Kelikian, A.S., Sarrafian, S.K., 2011. Functional anatomy of the foot and ankle, in: Sarrafian’s Anatomy of the Foot and Ankle : Descriptive, Topographical, Functional. Wolters Kluwer Health/Lippincott Williams & Wilkins, p. 633. Latorre-Ossa, Gennisson, De Brosses, Tanter (b0100) 2012; 59 Bernal, Chamming’s, Couade, Bercoff, Tanter, Gennisson (b0040) 2016; 63 Chatzistergos, Naemi, Chockalingam (b0060) 2015; 37 Ateş, Andrade, Freitas, Hug, Lacourpaille, Gross, Yucesoy, Nordez (b0015) 2018 Bercoff, Tanter, Fink (b0035) 2004; 51 Lin, Wu, Özçakar (b0110) 2017; 96 Cosgrove, Piscaglia, Bamber, Bojunga, Correas, Gilja, Klauser, Sporea, Calliada, Cantisani, D’Onofrio, Drakonaki, Fink, Friedrich-Rust, Fromageau, Havre, Jenssen, Ohlinger, Săftoiu, Schaefer, Dietrich (b0065) 2013; 34 Carlsen, Pedersen, Ewertsen, Sãftoiu, Lönn, Rafaelsen, Nielsen (b0050) 2015; 204 Sigrist, Liau, Kaffas, Chammas, Willmann (b0140) 2017; 7 Chatelin, Bernal, Deffieux, Papadacci, Flaud, Nahas, Boccara, Gennisson, Tanter, Pernot (b0055) 2014; 59 Aristizabal, Amador, Nenadic, Greenleaf, Urban (b0010) 2017; 65 Behforootan, Chatzistergos, Naemi, Chockalingam (b0020) 2017; 39 Erdemir, Viveiros, Ulbrecht, Cavanagh (b0075) 2006; 39 Wu, Lin, Hsiao, Cheng, Chen, Wang (b0160) 2017; 4–9 Kwan, Zheng, Cheing, Kwan, Zheng, Cheing (b0095) 2010; 25 Behforootan, Chatzistergos, Chockalingam, Naemi (b0025) 2017; 68 Campanelli, Fantini, Faccioli, Cangemi, Pozzo, Sbarbati (b0045) 2011; 219 . Naemi, Chatzistergos, Suresh, Sundar, Chockalingam, Ramachandran (b0120) 2017; 126 Rome, Webb, Unsworth, Haslock (b0135) 2001; 16 Hsu, C.-C., Tsai, W.-C., Wang, C.-L., Pao, S.-H., Shau, Y.-W., Chuan, Y.-S., 2007. Microchambers and macrochambers in heel pads: are they functionally different? 102. Widman, Maksuti, Larsson, Urban, Bjällmark, Larsson (b0150) 2015; 60 Lin, Chen, Shau, Tai, Wang (b0115) 2017; 53 Behforootan, Chatzistergos, Chockalingam, Naemi (b0030) 2017; 45 Gennisson, Rénier, Catheline, Barrière, Bercoff, Tanter, Fink (b0080) 2007; 122 Eby, Song, Chen, Chen, Greenleaf, An (b0070) 2013; 46 Syversveen, Midtvedt, Berstad, Brabrand, Strøm, Abildgaard (b0145) 2012; 22 Pai, Ledoux (b0125) 2012; 45 Akrami, Qian, Zou, Howard, Nester, Ren (b0005) 2018; 17 Williams, Stebbins, Cavanagh, Haynor, Chu, Fassbind, Isvilanonda, Ledoux (b0155) 2017; 231 Lin, Lin, Chou, Chen, Wang (b0105) 2015; 41 10.1016/j.jbiomech.2018.09.003_b0090 Chatzistergos (10.1016/j.jbiomech.2018.09.003_b0060) 2015; 37 Bernal (10.1016/j.jbiomech.2018.09.003_b0040) 2016; 63 Cosgrove (10.1016/j.jbiomech.2018.09.003_b0065) 2013; 34 Ateş (10.1016/j.jbiomech.2018.09.003_b0015) 2018 Kwan (10.1016/j.jbiomech.2018.09.003_b0095) 2010; 25 Syversveen (10.1016/j.jbiomech.2018.09.003_b0145) 2012; 22 Widman (10.1016/j.jbiomech.2018.09.003_b0150) 2015; 60 10.1016/j.jbiomech.2018.09.003_b0085 Behforootan (10.1016/j.jbiomech.2018.09.003_b0030) 2017; 45 Pai (10.1016/j.jbiomech.2018.09.003_b0125) 2012; 45 Akrami (10.1016/j.jbiomech.2018.09.003_b0005) 2018; 17 Pai (10.1016/j.jbiomech.2018.09.003_b0130) 2010; 43 Carlsen (10.1016/j.jbiomech.2018.09.003_b0050) 2015; 204 Williams (10.1016/j.jbiomech.2018.09.003_b0155) 2017; 231 Eby (10.1016/j.jbiomech.2018.09.003_b0070) 2013; 46 Wu (10.1016/j.jbiomech.2018.09.003_b0160) 2017; 4–9 Behforootan (10.1016/j.jbiomech.2018.09.003_b0025) 2017; 68 Gennisson (10.1016/j.jbiomech.2018.09.003_b0080) 2007; 122 Erdemir (10.1016/j.jbiomech.2018.09.003_b0075) 2006; 39 Lin (10.1016/j.jbiomech.2018.09.003_b0105) 2015; 41 Sigrist (10.1016/j.jbiomech.2018.09.003_b0140) 2017; 7 Behforootan (10.1016/j.jbiomech.2018.09.003_b0020) 2017; 39 Campanelli (10.1016/j.jbiomech.2018.09.003_b0045) 2011; 219 Lin (10.1016/j.jbiomech.2018.09.003_b0110) 2017; 96 Rome (10.1016/j.jbiomech.2018.09.003_b0135) 2001; 16 Naemi (10.1016/j.jbiomech.2018.09.003_b0120) 2017; 126 Chatelin (10.1016/j.jbiomech.2018.09.003_b0055) 2014; 59 Lin (10.1016/j.jbiomech.2018.09.003_b0115) 2017; 53 Aristizabal (10.1016/j.jbiomech.2018.09.003_b0010) 2017; 65 Latorre-Ossa (10.1016/j.jbiomech.2018.09.003_b0100) 2012; 59 Bercoff (10.1016/j.jbiomech.2018.09.003_b0035) 2004; 51 |
References_xml | – volume: 59 start-page: 6923 year: 2014 end-page: 6940 ident: b0055 article-title: Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization publication-title: Phys. Med. Biol. – volume: 122 start-page: 3211 year: 2007 end-page: 3219 ident: b0080 article-title: Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force publication-title: J. Acoust. Soc. Am. – volume: 65 start-page: 188 year: 2017 end-page: 200 ident: b0010 article-title: Application of acoustoelasticity to evaluate nonlinear modulus in ex vivo kidneys publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 16 start-page: 901 year: 2001 end-page: 905 ident: b0135 article-title: Heel pad stiffness in runners with plantar heel pain publication-title: Clin. Biomech. (Bristol, Avon) – volume: 17 start-page: 559 year: 2018 end-page: 576 ident: b0005 article-title: Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions publication-title: Biomech. Model. Mechanobiol. – volume: 63 start-page: 101 year: 2016 end-page: 109 ident: b0040 article-title: In vivo quantification of the nonlinear shear modulus in breast lesions: feasibility study publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 204 start-page: W236 year: 2015 end-page: W242 ident: b0050 article-title: A comparative study of strain and shear-wave elastography in an elasticity phantom publication-title: Am. J. Roentgenol. – volume: 39 start-page: 1 year: 2017 end-page: 11 ident: b0020 article-title: Finite element modelling of the foot for clinical applications: a systematic review publication-title: Med. Eng. Phys. – volume: 45 start-page: 2750 year: 2017 end-page: 2761 ident: b0030 article-title: A simulation of the viscoelastic behaviour of heel pad during weight-bearing activities of daily living publication-title: Ann. Biomed. Eng. – volume: 60 start-page: 3151 year: 2015 end-page: 3174 ident: b0150 article-title: Shear wave elastography plaque characterization with mechanical testing validation: a phantom study publication-title: Phys. Med. Biol. – volume: 231 start-page: 625 year: 2017 end-page: 633 ident: b0155 article-title: A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. – volume: 51 start-page: 396 year: 2004 end-page: 409 ident: b0035 article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – reference: Hsu, C.-C., Tsai, W.-C., Wang, C.-L., Pao, S.-H., Shau, Y.-W., Chuan, Y.-S., 2007. Microchambers and macrochambers in heel pads: are they functionally different? 102. – volume: 126 start-page: 182 year: 2017 end-page: 191 ident: b0120 article-title: Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer? publication-title: Diabetes Res. Clin. Pract. – volume: 43 start-page: 1754 year: 2010 end-page: 1760 ident: b0130 article-title: The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue publication-title: J. Biomech. – volume: 96 start-page: e96 year: 2017 ident: b0110 article-title: Restoration of heel pad elasticity in heel pad syndrome evaluated by shear wave elastography publication-title: Am. J. Phys. Med. Amp. – volume: 4–9 year: 2017 ident: b0160 article-title: Altered stiffness of microchamber and macrochamber layers in the aged heel pad: shear wave ultrasound elastography evaluation publication-title: J. Formos. Med. Assoc. – volume: 219 start-page: 622 year: 2011 end-page: 631 ident: b0045 article-title: Three-dimensional morphology of heel fat pad: an in vivo computed tomography study publication-title: J. Anat. – volume: 45 start-page: 364 year: 2012 end-page: 370 ident: b0125 article-title: The shear mechanical properties of diabetic and non-diabetic plantar soft tissue publication-title: J. Biomech. – volume: 39 start-page: 1279 year: 2006 end-page: 1286 ident: b0075 article-title: An inverse finite-element model of heel-pad indentation publication-title: J. Biomech. – volume: 68 start-page: 287 year: 2017 end-page: 295 ident: b0025 article-title: A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma publication-title: J. Mech. Behav. Biomed. Mater. – volume: 7 start-page: 1303 year: 2017 end-page: 1329 ident: b0140 article-title: Ultrasound elastography: review of techniques and clinical applications publication-title: Theranostics – reference: Kelikian, A.S., Sarrafian, S.K., 2011. Functional anatomy of the foot and ankle, in: Sarrafian’s Anatomy of the Foot and Ankle : Descriptive, Topographical, Functional. Wolters Kluwer Health/Lippincott Williams & Wilkins, p. 633. – start-page: 1 year: 2018 end-page: 9 ident: b0015 article-title: Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle publication-title: Eur. J. Appl. Physiol. – reference: . – volume: 34 start-page: 238 year: 2013 end-page: 253 ident: b0065 article-title: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications publication-title: Ultraschall der Medizin – Eur. J. Ultrasound – volume: 37 start-page: 531 year: 2015 end-page: 538 ident: b0060 article-title: A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear publication-title: Med. Eng. Phys. – volume: 41 start-page: 2890 year: 2015 end-page: 2898 ident: b0105 article-title: Heel pad stiffness in plantar heel pain by shear wave elastography publication-title: Ultrasound Med. Biol. – volume: 53 start-page: 191 year: 2017 end-page: 195 ident: b0115 article-title: Spatial-dependent mechanical properties of the heel pad by shear wave elastography publication-title: J. Biomech. – volume: 59 start-page: 833 year: 2012 end-page: 839 ident: b0100 article-title: Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 22 start-page: 2130 year: 2012 end-page: 2137 ident: b0145 article-title: Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients publication-title: Eur. Radiol. – volume: 46 start-page: 2381 year: 2013 end-page: 2387 ident: b0070 article-title: Validation of shear wave elastography in skeletal muscle publication-title: J. Biomech. – volume: 25 start-page: 601 year: 2010 end-page: 605 ident: b0095 article-title: The effect of aging on the biomechanical properties of plantar soft tissues publication-title: Clin. Biomech. (Bristol, Avon) – volume: 204 start-page: W236 year: 2015 ident: 10.1016/j.jbiomech.2018.09.003_b0050 article-title: A comparative study of strain and shear-wave elastography in an elasticity phantom publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.14.13076 – volume: 65 start-page: 188 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0010 article-title: Application of acoustoelasticity to evaluate nonlinear modulus in ex vivo kidneys publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2017.2781654 – volume: 7 start-page: 1303 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0140 article-title: Ultrasound elastography: review of techniques and clinical applications publication-title: Theranostics doi: 10.7150/thno.18650 – volume: 219 start-page: 622 year: 2011 ident: 10.1016/j.jbiomech.2018.09.003_b0045 article-title: Three-dimensional morphology of heel fat pad: an in vivo computed tomography study publication-title: J. Anat. doi: 10.1111/j.1469-7580.2011.01420.x – volume: 43 start-page: 1754 year: 2010 ident: 10.1016/j.jbiomech.2018.09.003_b0130 article-title: The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.02.021 – volume: 39 start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0020 article-title: Finite element modelling of the foot for clinical applications: a systematic review publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.10.011 – volume: 63 start-page: 101 year: 2016 ident: 10.1016/j.jbiomech.2018.09.003_b0040 article-title: In vivo quantification of the nonlinear shear modulus in breast lesions: feasibility study publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2015.2503601 – volume: 4–9 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0160 article-title: Altered stiffness of microchamber and macrochamber layers in the aged heel pad: shear wave ultrasound elastography evaluation publication-title: J. Formos. Med. Assoc. – volume: 122 start-page: 3211 year: 2007 ident: 10.1016/j.jbiomech.2018.09.003_b0080 article-title: Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2793605 – start-page: 1 year: 2018 ident: 10.1016/j.jbiomech.2018.09.003_b0015 article-title: Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle publication-title: Eur. J. Appl. Physiol. – volume: 25 start-page: 601 year: 2010 ident: 10.1016/j.jbiomech.2018.09.003_b0095 article-title: The effect of aging on the biomechanical properties of plantar soft tissues publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2010.04.003 – volume: 37 start-page: 531 year: 2015 ident: 10.1016/j.jbiomech.2018.09.003_b0060 article-title: A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.03.009 – volume: 39 start-page: 1279 year: 2006 ident: 10.1016/j.jbiomech.2018.09.003_b0075 article-title: An inverse finite-element model of heel-pad indentation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.03.007 – ident: 10.1016/j.jbiomech.2018.09.003_b0090 – volume: 22 start-page: 2130 year: 2012 ident: 10.1016/j.jbiomech.2018.09.003_b0145 article-title: Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients publication-title: Eur. Radiol. doi: 10.1007/s00330-012-2476-4 – ident: 10.1016/j.jbiomech.2018.09.003_b0085 doi: 10.1152/japplphysiol.01137.2006 – volume: 45 start-page: 364 year: 2012 ident: 10.1016/j.jbiomech.2018.09.003_b0125 article-title: The shear mechanical properties of diabetic and non-diabetic plantar soft tissue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.10.021 – volume: 96 start-page: e96 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0110 article-title: Restoration of heel pad elasticity in heel pad syndrome evaluated by shear wave elastography publication-title: Am. J. Phys. Med. Amp. doi: 10.1097/PHM.0000000000000655 – volume: 16 start-page: 901 year: 2001 ident: 10.1016/j.jbiomech.2018.09.003_b0135 article-title: Heel pad stiffness in runners with plantar heel pain publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/S0268-0033(01)00081-X – volume: 59 start-page: 6923 year: 2014 ident: 10.1016/j.jbiomech.2018.09.003_b0055 article-title: Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/22/6923 – volume: 17 start-page: 559 year: 2018 ident: 10.1016/j.jbiomech.2018.09.003_b0005 article-title: Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0978-3 – volume: 68 start-page: 287 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0025 article-title: A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.02.011 – volume: 231 start-page: 625 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0155 article-title: A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411917695849 – volume: 46 start-page: 2381 year: 2013 ident: 10.1016/j.jbiomech.2018.09.003_b0070 article-title: Validation of shear wave elastography in skeletal muscle publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.033 – volume: 45 start-page: 2750 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0030 article-title: A simulation of the viscoelastic behaviour of heel pad during weight-bearing activities of daily living publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-017-1918-1 – volume: 41 start-page: 2890 year: 2015 ident: 10.1016/j.jbiomech.2018.09.003_b0105 article-title: Heel pad stiffness in plantar heel pain by shear wave elastography publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2015.07.004 – volume: 60 start-page: 3151 year: 2015 ident: 10.1016/j.jbiomech.2018.09.003_b0150 article-title: Shear wave elastography plaque characterization with mechanical testing validation: a phantom study publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/8/3151 – volume: 51 start-page: 396 year: 2004 ident: 10.1016/j.jbiomech.2018.09.003_b0035 article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2004.1295425 – volume: 59 start-page: 833 year: 2012 ident: 10.1016/j.jbiomech.2018.09.003_b0100 article-title: Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2262 – volume: 34 start-page: 238 year: 2013 ident: 10.1016/j.jbiomech.2018.09.003_b0065 article-title: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications publication-title: Ultraschall der Medizin – Eur. J. Ultrasound doi: 10.1055/s-0033-1335375 – volume: 53 start-page: 191 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0115 article-title: Spatial-dependent mechanical properties of the heel pad by shear wave elastography publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.004 – volume: 126 start-page: 182 year: 2017 ident: 10.1016/j.jbiomech.2018.09.003_b0120 article-title: Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer? publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2017.02.002 |
SSID | ssj0007479 |
Score | 2.3977416 |
Snippet | This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144 |
SubjectTerms | Acoustoelasticity Adult Biomechanics Compression Compression tests Correlation analysis Deformation Design engineering Diabetes Diagnostic systems Elastic Modulus Elasticity Imaging Techniques - methods Finite element Finite Element Analysis Finite element method Foot diseases Hardness tests Heel - diagnostic imaging Heel - physiology Humans Indentation Load cells Mathematical models Mechanical properties Mechanical testing Mechanical tests Modulus of elasticity Pressure Propagation Reliability analysis Reproducibility of Results S waves Shear modulus Soft tissue Statistical analysis Stiffness Stress, Mechanical Ultrasonic imaging Ultrasonography Ultrasound Validation |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oBdGDaN3qRgTxFtvMks4ciyhV0ZNCbyGTyWBLnRatFf-9L5lkUEQUPM7yIMtbvuTlewE4USzgQSG7lGN0oFHBOZUY5mkUZirNkwIRh9nQv73j_YfoehAPFuDcc2HMsUrn-yufbr21e9N2o9meDoeG44vWZtKACeppEIWLsBSEKY8bsNS7uunf1Q4ZEbM76cGoEfhEFB6djSzN3eYlWGJLnvr7s77HqJ8wqI1Fl-uw5kAk6VXt3IAFXTZhs1fiAvrpnZwSe6zT7pc3YfVTxcEmLN-6XPomDOxl1uRNzjXRiKFnrng1wcEm0uaCCaJDMizpfDifkLIqqoEipiPS8imJZ_mTSUEetR7Tqcy34OHy4v68T909C1RFMZtRJQuEHYbFq-Muy9GGkw7HiYolyzXPokQVuMqUoeoqrnD9xFKZRUoGupBBzlIdbkMD26B3gXQ0C2SkslAjbCiyFOGXTW6HKkOsoJMWxH5khXJFyM1dGGPhT5uNhJ8RYWZEdFJTvrQF7VpuWpXh-FWi6ydOeJIpukWBkeJXybSW_KKKf5I98DoinDN4EbjGNlQZRJctOK4_oxmb3Iws9eTV_mOwOeKzFuxUulV3NEQcZQr37f2jYfuwYp5M1A34ATRmz6_6EOHULDty5vIB_fUcdQ priority: 102 providerName: Elsevier |
Title | Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018307243 https://dx.doi.org/10.1016/j.jbiomech.2018.09.003 https://www.ncbi.nlm.nih.gov/pubmed/30241799 https://www.proquest.com/docview/2118360025 https://www.proquest.com/docview/2111150819 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BkdD2gKB8rFtXedLEm6HOh5M8TQWBChPVNA2pb5bjOIIK0gKlEy_87ZwdOyBNwJ7ykFxk-2zf73y-3wF8VyzgQSkTytE60KjknEo08zQKc5UVaYmIwxzon4348Dw6Hcdjd-B2565V-j3RbtTFVJkz8n10VEy-AZroH7MbaqpGmeiqK6GxDCuWugznczJuHC7DDe-ueDCKMKD_IkN4sjex-e02IMFSy3XqC2f9a5xeA5_WCB2vw5pDj2RQq3sDlnTVhs1BhZ7z9QPZJfY-pz0ob8PHF1SDbVg9c0H0TRjbKtbkr1xoohE8zx1rNcFRJtIGgQnCQnJZ0cXlYkqqmk0DRUxHpE2kJD69n0xLcqH1FZ3JYgvOj4_-HA6pK7BAVRSzOVWyRLxh0nd1nLACF2_a56ihWLJC8zxKVYnupQxVorhCx4llMo-UDHQpg4JlOtyGFrZBfwLS1yyQkcpDjXihzDPEXTaqHaocQYJOOxD7kRXKsY-bIhhXwl8zmwivEWE0IvqZ4S3twH4jN6v5N96VSLzihM8uxf1QoIl4VzJrJB3-qHHFf8l2_RwRbhe4E89ztgPfmte4fk1QRlZ6em-_MaAcgVkHduq51XQ0RABlGPs-v_3zL_DBtMRY1IB3oTW_vddfESrN8x4s7z2ynl0VPVgZnPwcjvB5cDT69fsJKDAUtQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVOJxQJACDRQwEnAzjffh7B4QKtAqpU2EUCvlZrxer2jUbgJNU_VP8RuZ8dpLJQTl0nMyK-_OeOYbj-cbgJdGRDKq9IBLjA48qaTkGsM8T-LC5GVWIeKgA_3RWA4Pk0-TdLICP0MvDF2rDD7ROepyZuiMfBMTFeo3wBD9bv6d09Qoqq6GERqNWezZi3NM2U7f7n5E_b6Kop3tgw9D7qcKcJOkYsGNrjDIUs-qTQeiRIvN-hKXlWpRWlkkmakwp9KxGRhpMFsQuS4SoyNb6agUuY3xuTdgNaGO1g6svt8ef_7S-n4E5_5SieAIPPqXepKnb6auo96VQETm2FXDqK4_w-Hf4K4Lezv34K7Hq2yrMbD7sGLrLqxt1Zirn1yw18zdIHVH8124c4ncsAs3R75svwYTNzebneulZRbh-sLzZDPUK9Ou7MwQiLKjmi-PljNWN_wdKEIvol3rJguEAmxWsW_WHvO5Lh_A4bV8_IfQwTXYdWB9KyKdmCK2iFCqIkek5-rosSkQltisB2n4ssp4vnMau3GswsW2qQoaUaQR1c-JKbUHm63cvGH8uFJiEBSnQj8remCFQelKybyV9IinQTL_JbsRbER5v3Oqfu-SHrxof0aPQWUgXdvZmfsPpQEIBXvwqLGt9kVjhGzEEfj43w9_DreGB6N9tb873nsCt2lVFM8juQGdxY8z-xSB2qJ45ncHg6_XvSF_ARrATuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJkQejB6KJ6g1Ud_qXfeju_tgDBEvIEJ8kOTearfbjVxg74DjCP8af50z3XYlMYovPO9O092Zzvym8wXwxohIRrXOuETrwJNaSq7RzPMkLk1R5TUiDrrQ3z-QO4fJl3E6XoLrUAtDaZVBJzpFXU0N3ZEP0FGhegM00YPap0V82x59nJ1ymiBFkdYwTqMVkT17dYnu2_mH3W3k9dsoGn3-_mmH-wkD3CSpmHOjazS4VL9q00xUKL35UOIWUy0qK8skNzX6Vzo2mZEGPQdR6DIxOrK1jipR2BjXvQf3M1yDHL9s3Dl71Jfep5cIjhBkeKM6efJ-4mrrXTBE5K7Pahja9adh_BvwdQZw9AgeeuTKtlpRewxLtunB2laDXvvJFXvHXC6pu6TvweqNNoc9WNn3Afw1GLsJ2uxSLyyzCNznvmM2Qw4z7QLQDCEpO2r44mgxZU3byQNJ6EO0K-JkobUAm9bsp7XHfKarJ3B4J7_-KSzjHuwzYEMrIp2YMraIVeqyQMznIuqxKRGg2LwPafizyvjO5zSA41iFFLeJChxRxBE1LKhnah8GHd2s7f1xK0UWGKdCZSvqYoXm6VbKoqP02KfFNP9FuxlkRHkNdK5-n5c-vO4eo-6ggJBu7PTCvUMOAYLCPqy3stV9aIzgjboFPv_34q9gBY-h-rp7sLcBD2hTZNgjuQnL87ML-wIR27x86Y4Ggx93fRZ_AeWSUa0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+wave+elastography+can+assess+the+in-vivo+nonlinear+mechanical+behavior+of+heel-pad&rft.jtitle=Journal+of+biomechanics&rft.au=Chatzistergos%2C+Panagiotis+E&rft.au=Behforootan%2C+Sara&rft.au=Allan%2C+David&rft.au=Naemi%2C+Roozbeh&rft.date=2018-10-26&rft.eissn=1873-2380&rft.volume=80&rft.spage=144&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.09.003&rft_id=info%3Apmid%2F30241799&rft.externalDocID=30241799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |