Improved YOLOv8 and SAHI Model for the Collaborative Detection of Small Targets at the Micro Scale: A Case Study of Pest Detection in Tea
Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing th...
Saved in:
Published in | Agronomy (Basel) Vol. 14; no. 5; p. 1034 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing the recognition performance of tea pests by introducing a lightweight pest image recognition model based on the improved YOLOv8 architecture. First, slicing-aided fine-tuning and slicing-aided hyper inference (SAHI) are proposed to partition input images for enhanced model performance on low-resolution images and small-target detection. Then, based on an ELAN, a generalized efficient layer aggregation network (GELAN) is designed to replace the C2f module in the backbone network, enhance its feature extraction ability, and construct a lightweight model. Additionally, the MS structure is integrated into the neck network of YOLOv8 for feature fusion, enhancing the extraction of fine-grained and coarse-grained semantic information. Furthermore, the BiFormer attention mechanism, based on the Transformer architecture, is introduced to amplify target characteristics of tea pests. Finally, the inner-MPDIoU, based on auxiliary borders, is utilized as a replacement for the original loss function to enhance its learning capacity for complex pest samples. Our experimental results demonstrate that the enhanced YOLOv8 model achieves a precision of 96.32% and a recall of 97.95%, surpassing those of the original YOLOv8 model. Moreover, it attains an mAP@50 score of 98.17%. Compared to Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8, its average accuracy is 17.04, 11.23, 5.78, 3.75, and 2.71 percentage points higher, respectively. The overall performance of YOLOv8 outperforms that of current mainstream detection models, with a detection speed of 95 FPS. This model effectively balances lightweight design with high accuracy and speed in detecting small targets such as tea pests. It can serve as a valuable reference for the identification and classification of various insect pests in tea gardens within complex production environments, effectively addressing practical application needs and offering guidance for the future monitoring and scientific control of tea insect pests. |
---|---|
AbstractList | Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing the recognition performance of tea pests by introducing a lightweight pest image recognition model based on the improved YOLOv8 architecture. First, slicing-aided fine-tuning and slicing-aided hyper inference (SAHI) are proposed to partition input images for enhanced model performance on low-resolution images and small-target detection. Then, based on an ELAN, a generalized efficient layer aggregation network (GELAN) is designed to replace the C2f module in the backbone network, enhance its feature extraction ability, and construct a lightweight model. Additionally, the MS structure is integrated into the neck network of YOLOv8 for feature fusion, enhancing the extraction of fine-grained and coarse-grained semantic information. Furthermore, the BiFormer attention mechanism, based on the Transformer architecture, is introduced to amplify target characteristics of tea pests. Finally, the inner-MPDIoU, based on auxiliary borders, is utilized as a replacement for the original loss function to enhance its learning capacity for complex pest samples. Our experimental results demonstrate that the enhanced YOLOv8 model achieves a precision of 96.32% and a recall of 97.95%, surpassing those of the original YOLOv8 model. Moreover, it attains an mAP@50 score of 98.17%. Compared to Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8, its average accuracy is 17.04, 11.23, 5.78, 3.75, and 2.71 percentage points higher, respectively. The overall performance of YOLOv8 outperforms that of current mainstream detection models, with a detection speed of 95 FPS. This model effectively balances lightweight design with high accuracy and speed in detecting small targets such as tea pests. It can serve as a valuable reference for the identification and classification of various insect pests in tea gardens within complex production environments, effectively addressing practical application needs and offering guidance for the future monitoring and scientific control of tea insect pests. |
Audience | Academic |
Author | Li, Tong Qian, Ye Ye, Rong Gao, Quan Sun, Jihong |
Author_xml | – sequence: 1 givenname: Rong surname: Ye fullname: Ye, Rong – sequence: 2 givenname: Quan surname: Gao fullname: Gao, Quan – sequence: 3 givenname: Ye surname: Qian fullname: Qian, Ye – sequence: 4 givenname: Jihong surname: Sun fullname: Sun, Jihong – sequence: 5 givenname: Tong surname: Li fullname: Li, Tong |
BookMark | eNp1kk1rGzEQhpeSQtM09x4FvfTiVJ-7q96M-xGDgwt2Dz2JWWnkyqxXqVY2-Cf0X1eOWwiGSgcNw_u8MK_mdXU1xAGr6i2jd0Jo-gE2KQ5xd2SSKkaFfFFdc9qIiRRaXT2rX1W347il5WgmWtpcV7_nu8cUD-jIj-VieWgJDI6spvdz8hAd9sTHRPJPJLPY99DFBDkckHzCjDaHOJDoyWoHfU_WkDaYRwL5Sf8QbIpkZaHHj2RKZjAiWeW9O56IbzjmZx5hIGuEN9VLD_2It3_fm-r7l8_r2f1ksfw6n00XEysVyxPb0pYBMCtqpzoum7aWXjivO9-BZV430lHtWc14ZxlHzbnmmjJnHarWcXFTzc--LsLWPKawg3Q0EYJ5asS0MZBysD2azjkE3iqvdCsdww5aB4gC664BqkTxen_2Khn-2pepzC6MFktUA8b9aARTQtWScVqk7y6k27hPQ5nUCKo0l7JpTqq7s2pTgjNh8DEnsOU63AVbPt2H0p82WomWyaYuQH0GStzjmNAbGzKcYi1g6A2j5rQh5nJDCkgvwH9R_Bf5A7oCwPs |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3462725 crossref_primary_10_1016_j_mlwa_2024_100596 crossref_primary_10_3390_electronics13153008 crossref_primary_10_1016_j_atech_2024_100720 crossref_primary_10_3390_fractalfract8110649 crossref_primary_10_3389_fpls_2024_1411689 crossref_primary_10_1016_j_enbuild_2025_115566 crossref_primary_10_3390_agronomy14091940 crossref_primary_10_3390_wevj15090382 crossref_primary_10_3390_agronomy14091895 crossref_primary_10_3390_drones9040230 crossref_primary_10_3390_info16010010 crossref_primary_10_3390_pr12112591 crossref_primary_10_1038_s41598_024_62451_y crossref_primary_10_1109_LGRS_2024_3508462 crossref_primary_10_3390_agronomy15030693 crossref_primary_10_3390_agronomy14081640 crossref_primary_10_3390_agronomy14122887 crossref_primary_10_3390_agronomy14061197 |
Cites_doi | 10.3390/agriculture14040560 10.1109/TPAMI.2016.2577031 10.1016/j.compag.2018.03.032 10.1109/CVPR52729.2023.00721 10.1109/ACCESS.2021.3066510 10.34133/2020/8954085 10.1109/ICAIIC51459.2021.9415217 10.1038/d41586-019-00395-4 10.1126/science.1127647 10.1145/2964284.2967274 10.1007/s13369-022-06874-7 10.3390/agronomy13051277 10.3390/agronomy13071764 10.1007/978-3-030-58452-8_13 10.1109/CVPR.2019.00075 10.3390/s17092022 10.1145/3448250 10.7717/peerj-cs.432 10.1007/978-3-030-01261-8_13 10.1109/TPAMI.2019.2938758 10.1016/j.artmed.2021.102196 10.3390/agriculture13112110 10.3390/agriculture14030485 10.3389/fpls.2020.577063 10.3390/agriculture13071285 10.1109/ACCESS.2020.3014910 10.20944/preprints202308.0292.v1 10.1007/s11831-019-09344-w 10.1609/aaai.v34i07.6999 10.3390/insects14010054 10.1109/CVPR46437.2021.01008 10.1038/s41598-023-33270-4 10.3390/agriculture14020303 10.1109/CVPRW50498.2020.00203 10.3390/agronomy13082139 10.3390/agronomy13082012 10.1109/CVPR42600.2020.01261 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy14051034 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_bddea285f5984d1eba8daee3e6b7a053 A795381476 10_3390_agronomy14051034 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY PMFND 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c451t-c8081aa1c36d5b247864f3df9bfbac1f974d09f1612bc12e92292901dcde58d23 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Fri Jul 11 06:14:42 EDT 2025 Mon Jun 30 11:22:25 EDT 2025 Tue Jun 10 21:08:31 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 Tue Jul 01 02:31:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-c8081aa1c36d5b247864f3df9bfbac1f974d09f1612bc12e92292901dcde58d23 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3059244770?pq-origsite=%requestingapplication% |
PQID | 3059244770 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bddea285f5984d1eba8daee3e6b7a053 proquest_miscellaneous_3153564120 proquest_journals_3059244770 gale_infotracacademiconefile_A795381476 crossref_citationtrail_10_3390_agronomy14051034 crossref_primary_10_3390_agronomy14051034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Too (ref_7) 2019; 161 Bengio (ref_5) 2021; 64 Shaopeng (ref_8) 2019; 50 Ren (ref_19) 2017; 39 ref_14 ref_58 ref_57 ref_55 ref_10 ref_53 Lin (ref_26) 2023; 54 Li (ref_27) 2023; 52 ref_52 ref_51 Chen (ref_37) 2023; 48 Conrad (ref_12) 2020; 2020 ref_18 ref_17 ref_16 ref_15 Lyu (ref_60) 2021; 9 Gao (ref_54) 2021; 43 Wang (ref_44) 2023; 39 Drew (ref_2) 2019; 566 Liu (ref_36) 2020; 8 Hinton (ref_4) 2006; 313 Faisal (ref_22) 2021; 2 ref_63 Ganatra (ref_13) 2020; 11 ref_62 ref_29 ref_28 Sarasaen (ref_40) 2021; 121 Liu (ref_23) 2022; 11 Singh (ref_3) 2017; 4 Fu (ref_1) 2023; 3 Deng (ref_21) 2020; 56 ref_35 ref_34 Bari (ref_59) 2021; 7 ref_33 Hong (ref_24) 2020; 53 ref_32 ref_31 He (ref_56) 2021; 34 ref_39 ref_38 Jubayer (ref_30) 2023; 13 Liu (ref_25) 2020; 11 Kundur (ref_20) 2022; 13 ref_47 ref_46 ref_45 ref_43 ref_42 ref_41 (ref_61) 2021; 14 Dargan (ref_6) 2020; 27 ref_49 ref_48 ref_9 Feng (ref_11) 2020; 11 |
References_xml | – ident: ref_9 doi: 10.3390/agriculture14040560 – volume: 39 start-page: 1137 year: 2017 ident: ref_19 article-title: Faster R-CNN: To-wards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 161 start-page: 272 year: 2019 ident: ref_7 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 – ident: ref_51 – volume: 52 start-page: 162 year: 2023 ident: ref_27 article-title: Research and Application of Lightweight Yolov7-TSA Network in Tea Disease Detection and Identification publication-title: J. Henan Agric. Sci. – ident: ref_52 doi: 10.1109/CVPR52729.2023.00721 – volume: 9 start-page: 43202 year: 2021 ident: ref_60 article-title: Small Object Recognition Algorithm of Grain Pests Based on SSD Feature Fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3066510 – volume: 11 start-page: 1082 year: 2020 ident: ref_13 article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques publication-title: Int. J. Emerg. Technol. – volume: 2020 start-page: 1 year: 2020 ident: ref_12 article-title: Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles publication-title: Plant Phenomics doi: 10.34133/2020/8954085 – ident: ref_35 doi: 10.1109/ICAIIC51459.2021.9415217 – ident: ref_42 – volume: 566 start-page: S2 year: 2019 ident: ref_2 article-title: The growth of tea publication-title: Nature doi: 10.1038/d41586-019-00395-4 – volume: 313 start-page: 504 year: 2006 ident: ref_4 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref_58 – ident: ref_38 doi: 10.1145/2964284.2967274 – volume: 34 start-page: 20230 year: 2021 ident: ref_56 article-title: Alpha-IoU: A family of power intersection over union losses for bounding box regression publication-title: Adv. Neural Inf. Process. Syst. – volume: 48 start-page: 1427 year: 2023 ident: ref_37 article-title: DW-yolo: An efficient object detector for drones and self-driving vehicles publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06874-7 – ident: ref_16 doi: 10.3390/agronomy13051277 – ident: ref_48 – volume: 53 start-page: 77 year: 2020 ident: ref_24 article-title: Tobacco insect recognition in cigarette factory using YOLOV3 model publication-title: Tob. Sci. Technol. – ident: ref_18 doi: 10.3390/agronomy13071764 – ident: ref_47 doi: 10.1007/978-3-030-58452-8_13 – volume: 50 start-page: 313 year: 2019 ident: ref_8 article-title: Research progress on image recognition technology of crop pests and diseases on deep learning publication-title: Trans. Chin. Soc. Agric. Mach. – ident: ref_41 – volume: 54 start-page: 304 year: 2023 ident: ref_26 article-title: Real-time detection method of dendrolimus superans-infested larix gmelinii trees based on improved YOLO v4 publication-title: Trans. Chin. Soc. Agric. Mach. – ident: ref_45 – ident: ref_39 doi: 10.1109/CVPR.2019.00075 – ident: ref_28 doi: 10.3390/s17092022 – ident: ref_53 – volume: 64 start-page: 58 year: 2021 ident: ref_5 article-title: Deep Learning for AI publication-title: Commun. ACM doi: 10.1145/3448250 – volume: 2 start-page: 1023 year: 2021 ident: ref_22 article-title: A pest monitoring system for agriculture using deep learning publication-title: Res. Prog. Mech. Manuf. Eng. – volume: 7 start-page: e432 year: 2021 ident: ref_59 article-title: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.432 – ident: ref_33 doi: 10.1007/978-3-030-01261-8_13 – volume: 11 start-page: 236 year: 2022 ident: ref_23 article-title: Farmland Pest Detection Based on YOLO-V5l and ResNet50 publication-title: Artif. Intell. Robot. Res. – volume: 39 start-page: 975 year: 2023 ident: ref_44 article-title: Designing network design strategies through gradient path analysis publication-title: J. Inf. Sci. Eng. JISE – volume: 43 start-page: 652 year: 2021 ident: ref_54 article-title: Res2net: A new multi-scale backbone architecture publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2938758 – volume: 121 start-page: 102196 year: 2021 ident: ref_40 article-title: Finetuning deep learning model parameters for improved superresolution of dynamic MRI with prior-knowledge publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102196 – ident: ref_17 doi: 10.3390/agriculture13112110 – ident: ref_10 doi: 10.3390/agriculture14030485 – volume: 11 start-page: 577063 year: 2020 ident: ref_11 article-title: Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.577063 – volume: 56 start-page: 214 year: 2020 ident: ref_21 article-title: Research on Granary Pest Detection Based on SSD publication-title: J. Comput. Eng. Appl. – ident: ref_62 doi: 10.3390/agriculture13071285 – volume: 8 start-page: 145740 year: 2020 ident: ref_36 article-title: Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014910 – volume: 4 start-page: 41 year: 2017 ident: ref_3 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Inf. Process. Agric. – ident: ref_14 doi: 10.20944/preprints202308.0292.v1 – ident: ref_50 – volume: 27 start-page: 1071 year: 2020 ident: ref_6 article-title: A survey of deep learning and its applications: A new paradigm to machine learning publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09344-w – ident: ref_55 doi: 10.1609/aaai.v34i07.6999 – volume: 3 start-page: 89 year: 2023 ident: ref_1 article-title: The current situation, problems and countermeasures of the cultivation of tea geographical indication products cultivation in Yunnan Province publication-title: Qual. Saf. Agro-Prod. – ident: ref_29 doi: 10.3390/insects14010054 – ident: ref_46 – volume: 14 start-page: 232 year: 2021 ident: ref_61 article-title: Real time pest detection using YOLOv5 publication-title: Int. J. Agric. Nat. Sci. – ident: ref_34 doi: 10.1109/CVPR46437.2021.01008 – volume: 13 start-page: 411 year: 2022 ident: ref_20 article-title: Insect Pest Image Detection and Classification using Deep Learning publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA – volume: 13 start-page: 6078 year: 2023 ident: ref_30 article-title: Tea leaf disease detection and identification based on YOLOv7 (YOLO-T) publication-title: Sci. Rep. doi: 10.1038/s41598-023-33270-4 – ident: ref_15 doi: 10.3390/agriculture14020303 – ident: ref_49 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_31 doi: 10.3390/agronomy13082139 – ident: ref_43 – ident: ref_63 doi: 10.3390/agronomy13082012 – volume: 11 start-page: 521544 year: 2020 ident: ref_25 article-title: Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network publication-title: Front. Plant Sci. – ident: ref_57 – ident: ref_32 doi: 10.1109/CVPR42600.2020.01261 |
SSID | ssj0000913807 |
Score | 2.4352312 |
Snippet | Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1034 |
SubjectTerms | Accuracy Agricultural production Agriculture agronomy Algorithms BiFormer Case studies Computational linguistics Crop diseases Deep learning Feature extraction GELAN Image enhancement Image resolution Insects Language processing lighting Machine learning model validation Natural language interfaces neck Pests SAHI Semantics small object detection Target detection Target recognition Tea tea pest damage YOLOv8 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kp3oQrYrRWkYQxEPYzGQmyXhLty2rWCvsFuopvPkqwpqVbVrwT_C_9r0kXVdBvXjNzISXed-ZN7_H2MsMfCmM86kw4FKlgkghGp1GdPfeR4fDdHf49EMxO1fvLvTFVqsvqgkb4IGHjZtY1D-QlY7aVMqLYKHyEEIeClsCShBZX_R5W8lUb4ONICT14Vwyx7x-Apfr_pYAJhQEIqd-8UM9XP-fjHLvaU7us3tjiMjrgbQH7E5o99jd-nI9wmSEh-z78C8geP7p7P3ZTcWh9Xxez95y6m225BiJcozs-PQnl28CPwpdX3jV8lXk8y-wXPJFXwh-xaHr559SeR6fI9_CG17zKbo4TpWG32jFR6R16x2fW74I8IidnxwvprN0bKqQOqVFlzpqtQEgXF54baUqq0LF3EdjowUnIuYXPjMRA0FpnZDBSGnorNU7H3TlZf6Y7bSrNjxhHFwGSvvcUqlbFZAxsqpcxIw7Wu2iTdjkdosbNyKOU-OLZYOZBzGl-Z0pCXu9WfF1QNv4y9xD4tpmHuFk9w9QeppRepp_SU_CXhHPG9JmJM3BeCkBP5BwsZq6NOgRhCqLhO3fikUzqvlVg8YS81dVllnCXmyGUUHp1AXasLrGOehTdKGEzJ7-D4qfsV2JcdVQc7nPdrr1dXiOcVFnD3oV-AFlwA85 priority: 102 providerName: Directory of Open Access Journals |
Title | Improved YOLOv8 and SAHI Model for the Collaborative Detection of Small Targets at the Micro Scale: A Case Study of Pest Detection in Tea |
URI | https://www.proquest.com/docview/3059244770 https://www.proquest.com/docview/3153564120 https://doaj.org/article/bddea285f5984d1eba8daee3e6b7a053 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3batRAdND2RR_EK8bWMoIgPoTNJDPJpC-Sri2r2AvuFupTmOtSWJO6mxb8BP_ac5LZrQr2NXMmTHLulzmHkLeJsgUrjY1ZqUzMuWOx8qWIPah7a72BZbw7fHyST8755wtxEQJuq1BWuZaJvaC2rcEY-QjoElwFXhTJh6sfMU6NwuxqGKFxn2yDCJbgfG0fHJ6cfd1EWbDrpUyKIT-ZgX8_UvNlf1sAHAtsJsf_0kd92_7_Cede4xw9Jo-CqUirAbdPyD3XPCUPq_kytMtwz8ivISbgLP12-uX0RlLVWDqtJp8ozjhbULBIKVh4dHyL7RtHP7quL8BqaOvp9LtaLOisLwhfUdX18MdYpkengD-3Tys6BlVHseLwJ-44g7P-8Y7Lhs6cek7Ojw5n40kchivEhgvWxQZHbijFTJZboVNeyJz7zPpSe60M8-Bn2KT0YBCm2rDUlWlaYs7VGuuEtGn2gmw1beNeEqpMoriwmcaSN-kUrEppPHjeXgvjdURG619cm9B5HAdgLGrwQBAp9b9Iicj7zY6roevGHbAHiLUNHPbL7h-0y3kd2K_WIMVVKoUXpeSWOQ2HVM5lLteFAjkUkXeI8xq5Go5mVLicAB-I_bHqqihBMzBe5BHZXZNFHdh9Vd8SZ0TebJaBUTH7ohrXXgMM6BaRc5Ymr-5-xQ55kILlNFRV7pKtbnntXoPl0-m9QN57feTgN-lTBxc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMx0KrSB-ABcYqlBYwEQjyssof3QkJom7ZKaJJWJJXaJ-MzQkp3S5IW9RP4Gb6RmT1SQKJvfV2PLa9nPIfnIuSNJ3TiZ0q7fiaUy5jxXWGzyLUg7rW2CoYxd3g0jvvH7PNJdLJBfrW5MBhW2fLEilHrUuEbeRfoEkwFliTep_PvLnaNQu9q20KjJosDc_UDTLblx8Eu4PdtEOzvTXt9t-kq4CoW-StXYa8JIXwVxjqSAUvSmNlQ20xaKZRvQcHWXmZBEwqk8gOTBUGGzkattIlSjYUOgOVvshBMmQ7Z3NkbH31Zv-pglc3US2p_aBhmXlfMFlV2AhgyWLyO_SX_qjYB_xMGlYTbf0DuN6opzWtaekg2TPGI3Mtni6Y8h3lMftZvEEbT08Ph4WVKRaHpJO8PKPZUm1PQgClolLR3TV2Xhu6aVRXwVdDS0smZmM_ptApAX1KxquBHGBZIJ0Av5gPNaQ9EK8UIxyuccQR7_WONbwWdGvGEHN_KsT8lnaIszDNChfIEi3QoMcQuNQJG01RZsPStjJSVDum2R8xVU-kcG27MOVg8iBT-L1Ic8n4947yu8nED7A5ibQ2H9bmrD-VixpvrziVIDRGkkY2ylGnfSNikMCY0sUwE8D2HvEOcc-QisDUlmmQI-EGsx8XzJANJ5LMkdsh2Sxa8YS9Lfn0ZHPJ6PQyMAb09ojDlBcCALIti5gfe85uXeEXu9KejIR8Oxgdb5G4AWlsd0blNOqvFhXkBWtdKvmxInZKvt327fgP_TUMZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ZaxNBeCgpiD6IJ65WHUERH5bsMXsJImnSkNg2DSaF9mmcMwhxtybbSn-Cf8lf5_ftkapg3_q6czA73z3fRchrT-jEz5R2_UwolzHju8JmkWtB3GttFQxj7vDhJB4ds08n0ckW-dXmwmBYZcsTK0atC4Vv5F3ASzAVWJJ4XduERUwHw49n313sIIWe1radRo0i--byB5hv6w_jAcD6TRAM9-b9kdt0GHAVi_zSVdh3QghfhbGOZMCSNGY21DaTVgrlW1C2tZdZ0IoCqfzAZEGQoeNRK22iVGPRA2D_2wlYRV6HbO_uTaafNy88WHEz9ZLaNxqGmdcVi1WVqQBGDRayY3_JwqplwP8EQyXthvfI3UZNpb0ar-6TLZM_IHd6i1VTqsM8JD_r9wij6enRwdFFSkWu6aw3GlPsr7akoA1T0C5p_wrTLgwdmLIK_sppYensm1gu6bwKRl9TUVbzDzFEkM4Ad8x72qN9ELMUox0vccUUzvrHHl9zOjfiETm-kWt_TDp5kZsnhArlCRbpUGK4XWoEjKapsmD1WxkpKx3Sba-Yq6bqOTbfWHKwfhAo_F-gOOTdZsVZXfHjmrm7CLXNPKzVXX0oVgvekD6XIEFEkEY2ylKmfSPhkMKY0MQyEcADHfIWYc6Ro8DRlGgSI-AHsTYX7yUZSCWfJbFDdlq04A2rWfMrwnDIq80wMAn0_IjcFOcwB-RaFDM_8J5ev8VLcguoih-MJ_vPyO0AFLg6uHOHdMrVuXkOClgpXzSYTsmXmyau39bkR04 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+YOLOv8+and+SAHI+Model+for+the+Collaborative+Detection+of+Small+Targets+at+the+Micro+Scale%3A+A+Case+Study+of+Pest+Detection+in+Tea&rft.jtitle=Agronomy+%28Basel%29&rft.au=Ye%2C+Rong&rft.au=Gao%2C+Quan&rft.au=Ye+Qian&rft.au=Sun%2C+Jihong&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=14&rft.issue=5&rft.spage=1034&rft_id=info:doi/10.3390%2Fagronomy14051034&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |