Improved YOLOv8 and SAHI Model for the Collaborative Detection of Small Targets at the Micro Scale: A Case Study of Pest Detection in Tea

Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing th...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 14; no. 5; p. 1034
Main Authors Ye, Rong, Gao, Quan, Qian, Ye, Sun, Jihong, Li, Tong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing the recognition performance of tea pests by introducing a lightweight pest image recognition model based on the improved YOLOv8 architecture. First, slicing-aided fine-tuning and slicing-aided hyper inference (SAHI) are proposed to partition input images for enhanced model performance on low-resolution images and small-target detection. Then, based on an ELAN, a generalized efficient layer aggregation network (GELAN) is designed to replace the C2f module in the backbone network, enhance its feature extraction ability, and construct a lightweight model. Additionally, the MS structure is integrated into the neck network of YOLOv8 for feature fusion, enhancing the extraction of fine-grained and coarse-grained semantic information. Furthermore, the BiFormer attention mechanism, based on the Transformer architecture, is introduced to amplify target characteristics of tea pests. Finally, the inner-MPDIoU, based on auxiliary borders, is utilized as a replacement for the original loss function to enhance its learning capacity for complex pest samples. Our experimental results demonstrate that the enhanced YOLOv8 model achieves a precision of 96.32% and a recall of 97.95%, surpassing those of the original YOLOv8 model. Moreover, it attains an mAP@50 score of 98.17%. Compared to Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8, its average accuracy is 17.04, 11.23, 5.78, 3.75, and 2.71 percentage points higher, respectively. The overall performance of YOLOv8 outperforms that of current mainstream detection models, with a detection speed of 95 FPS. This model effectively balances lightweight design with high accuracy and speed in detecting small targets such as tea pests. It can serve as a valuable reference for the identification and classification of various insect pests in tea gardens within complex production environments, effectively addressing practical application needs and offering guidance for the future monitoring and scientific control of tea insect pests.
AbstractList Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests. Additionally, changeable environmental lighting and complex backgrounds further complicate the detection process. This study focuses on enhancing the recognition performance of tea pests by introducing a lightweight pest image recognition model based on the improved YOLOv8 architecture. First, slicing-aided fine-tuning and slicing-aided hyper inference (SAHI) are proposed to partition input images for enhanced model performance on low-resolution images and small-target detection. Then, based on an ELAN, a generalized efficient layer aggregation network (GELAN) is designed to replace the C2f module in the backbone network, enhance its feature extraction ability, and construct a lightweight model. Additionally, the MS structure is integrated into the neck network of YOLOv8 for feature fusion, enhancing the extraction of fine-grained and coarse-grained semantic information. Furthermore, the BiFormer attention mechanism, based on the Transformer architecture, is introduced to amplify target characteristics of tea pests. Finally, the inner-MPDIoU, based on auxiliary borders, is utilized as a replacement for the original loss function to enhance its learning capacity for complex pest samples. Our experimental results demonstrate that the enhanced YOLOv8 model achieves a precision of 96.32% and a recall of 97.95%, surpassing those of the original YOLOv8 model. Moreover, it attains an mAP@50 score of 98.17%. Compared to Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8, its average accuracy is 17.04, 11.23, 5.78, 3.75, and 2.71 percentage points higher, respectively. The overall performance of YOLOv8 outperforms that of current mainstream detection models, with a detection speed of 95 FPS. This model effectively balances lightweight design with high accuracy and speed in detecting small targets such as tea pests. It can serve as a valuable reference for the identification and classification of various insect pests in tea gardens within complex production environments, effectively addressing practical application needs and offering guidance for the future monitoring and scientific control of tea insect pests.
Audience Academic
Author Li, Tong
Qian, Ye
Ye, Rong
Gao, Quan
Sun, Jihong
Author_xml – sequence: 1
  givenname: Rong
  surname: Ye
  fullname: Ye, Rong
– sequence: 2
  givenname: Quan
  surname: Gao
  fullname: Gao, Quan
– sequence: 3
  givenname: Ye
  surname: Qian
  fullname: Qian, Ye
– sequence: 4
  givenname: Jihong
  surname: Sun
  fullname: Sun, Jihong
– sequence: 5
  givenname: Tong
  surname: Li
  fullname: Li, Tong
BookMark eNp1kk1rGzEQhpeSQtM09x4FvfTiVJ-7q96M-xGDgwt2Dz2JWWnkyqxXqVY2-Cf0X1eOWwiGSgcNw_u8MK_mdXU1xAGr6i2jd0Jo-gE2KQ5xd2SSKkaFfFFdc9qIiRRaXT2rX1W347il5WgmWtpcV7_nu8cUD-jIj-VieWgJDI6spvdz8hAd9sTHRPJPJLPY99DFBDkckHzCjDaHOJDoyWoHfU_WkDaYRwL5Sf8QbIpkZaHHj2RKZjAiWeW9O56IbzjmZx5hIGuEN9VLD_2It3_fm-r7l8_r2f1ksfw6n00XEysVyxPb0pYBMCtqpzoum7aWXjivO9-BZV430lHtWc14ZxlHzbnmmjJnHarWcXFTzc--LsLWPKawg3Q0EYJ5asS0MZBysD2azjkE3iqvdCsdww5aB4gC664BqkTxen_2Khn-2pepzC6MFktUA8b9aARTQtWScVqk7y6k27hPQ5nUCKo0l7JpTqq7s2pTgjNh8DEnsOU63AVbPt2H0p82WomWyaYuQH0GStzjmNAbGzKcYi1g6A2j5rQh5nJDCkgvwH9R_Bf5A7oCwPs
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3462725
crossref_primary_10_1016_j_mlwa_2024_100596
crossref_primary_10_3390_electronics13153008
crossref_primary_10_1016_j_atech_2024_100720
crossref_primary_10_3390_fractalfract8110649
crossref_primary_10_3389_fpls_2024_1411689
crossref_primary_10_1016_j_enbuild_2025_115566
crossref_primary_10_3390_agronomy14091940
crossref_primary_10_3390_wevj15090382
crossref_primary_10_3390_agronomy14091895
crossref_primary_10_3390_drones9040230
crossref_primary_10_3390_info16010010
crossref_primary_10_3390_pr12112591
crossref_primary_10_1038_s41598_024_62451_y
crossref_primary_10_1109_LGRS_2024_3508462
crossref_primary_10_3390_agronomy15030693
crossref_primary_10_3390_agronomy14081640
crossref_primary_10_3390_agronomy14122887
crossref_primary_10_3390_agronomy14061197
Cites_doi 10.3390/agriculture14040560
10.1109/TPAMI.2016.2577031
10.1016/j.compag.2018.03.032
10.1109/CVPR52729.2023.00721
10.1109/ACCESS.2021.3066510
10.34133/2020/8954085
10.1109/ICAIIC51459.2021.9415217
10.1038/d41586-019-00395-4
10.1126/science.1127647
10.1145/2964284.2967274
10.1007/s13369-022-06874-7
10.3390/agronomy13051277
10.3390/agronomy13071764
10.1007/978-3-030-58452-8_13
10.1109/CVPR.2019.00075
10.3390/s17092022
10.1145/3448250
10.7717/peerj-cs.432
10.1007/978-3-030-01261-8_13
10.1109/TPAMI.2019.2938758
10.1016/j.artmed.2021.102196
10.3390/agriculture13112110
10.3390/agriculture14030485
10.3389/fpls.2020.577063
10.3390/agriculture13071285
10.1109/ACCESS.2020.3014910
10.20944/preprints202308.0292.v1
10.1007/s11831-019-09344-w
10.1609/aaai.v34i07.6999
10.3390/insects14010054
10.1109/CVPR46437.2021.01008
10.1038/s41598-023-33270-4
10.3390/agriculture14020303
10.1109/CVPRW50498.2020.00203
10.3390/agronomy13082139
10.3390/agronomy13082012
10.1109/CVPR42600.2020.01261
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy14051034
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Agricultural Science Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_bddea285f5984d1eba8daee3e6b7a053
A795381476
10_3390_agronomy14051034
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
PMFND
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c451t-c8081aa1c36d5b247864f3df9bfbac1f974d09f1612bc12e92292901dcde58d23
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:31:43 EDT 2025
Fri Jul 11 06:14:42 EDT 2025
Mon Jun 30 11:22:25 EDT 2025
Tue Jun 10 21:08:31 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
Tue Jul 01 02:31:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-c8081aa1c36d5b247864f3df9bfbac1f974d09f1612bc12e92292901dcde58d23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/3059244770?pq-origsite=%requestingapplication%
PQID 3059244770
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_bddea285f5984d1eba8daee3e6b7a053
proquest_miscellaneous_3153564120
proquest_journals_3059244770
gale_infotracacademiconefile_A795381476
crossref_citationtrail_10_3390_agronomy14051034
crossref_primary_10_3390_agronomy14051034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Too (ref_7) 2019; 161
Bengio (ref_5) 2021; 64
Shaopeng (ref_8) 2019; 50
Ren (ref_19) 2017; 39
ref_14
ref_58
ref_57
ref_55
ref_10
ref_53
Lin (ref_26) 2023; 54
Li (ref_27) 2023; 52
ref_52
ref_51
Chen (ref_37) 2023; 48
Conrad (ref_12) 2020; 2020
ref_18
ref_17
ref_16
ref_15
Lyu (ref_60) 2021; 9
Gao (ref_54) 2021; 43
Wang (ref_44) 2023; 39
Drew (ref_2) 2019; 566
Liu (ref_36) 2020; 8
Hinton (ref_4) 2006; 313
Faisal (ref_22) 2021; 2
ref_63
Ganatra (ref_13) 2020; 11
ref_62
ref_29
ref_28
Sarasaen (ref_40) 2021; 121
Liu (ref_23) 2022; 11
Singh (ref_3) 2017; 4
Fu (ref_1) 2023; 3
Deng (ref_21) 2020; 56
ref_35
ref_34
Bari (ref_59) 2021; 7
ref_33
Hong (ref_24) 2020; 53
ref_32
ref_31
He (ref_56) 2021; 34
ref_39
ref_38
Jubayer (ref_30) 2023; 13
Liu (ref_25) 2020; 11
Kundur (ref_20) 2022; 13
ref_47
ref_46
ref_45
ref_43
ref_42
ref_41
(ref_61) 2021; 14
Dargan (ref_6) 2020; 27
ref_49
ref_48
ref_9
Feng (ref_11) 2020; 11
References_xml – ident: ref_9
  doi: 10.3390/agriculture14040560
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_19
  article-title: Faster R-CNN: To-wards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 161
  start-page: 272
  year: 2019
  ident: ref_7
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
– ident: ref_51
– volume: 52
  start-page: 162
  year: 2023
  ident: ref_27
  article-title: Research and Application of Lightweight Yolov7-TSA Network in Tea Disease Detection and Identification
  publication-title: J. Henan Agric. Sci.
– ident: ref_52
  doi: 10.1109/CVPR52729.2023.00721
– volume: 9
  start-page: 43202
  year: 2021
  ident: ref_60
  article-title: Small Object Recognition Algorithm of Grain Pests Based on SSD Feature Fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066510
– volume: 11
  start-page: 1082
  year: 2020
  ident: ref_13
  article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques
  publication-title: Int. J. Emerg. Technol.
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_12
  article-title: Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles
  publication-title: Plant Phenomics
  doi: 10.34133/2020/8954085
– ident: ref_35
  doi: 10.1109/ICAIIC51459.2021.9415217
– ident: ref_42
– volume: 566
  start-page: S2
  year: 2019
  ident: ref_2
  article-title: The growth of tea
  publication-title: Nature
  doi: 10.1038/d41586-019-00395-4
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_4
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref_58
– ident: ref_38
  doi: 10.1145/2964284.2967274
– volume: 34
  start-page: 20230
  year: 2021
  ident: ref_56
  article-title: Alpha-IoU: A family of power intersection over union losses for bounding box regression
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 48
  start-page: 1427
  year: 2023
  ident: ref_37
  article-title: DW-yolo: An efficient object detector for drones and self-driving vehicles
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06874-7
– ident: ref_16
  doi: 10.3390/agronomy13051277
– ident: ref_48
– volume: 53
  start-page: 77
  year: 2020
  ident: ref_24
  article-title: Tobacco insect recognition in cigarette factory using YOLOV3 model
  publication-title: Tob. Sci. Technol.
– ident: ref_18
  doi: 10.3390/agronomy13071764
– ident: ref_47
  doi: 10.1007/978-3-030-58452-8_13
– volume: 50
  start-page: 313
  year: 2019
  ident: ref_8
  article-title: Research progress on image recognition technology of crop pests and diseases on deep learning
  publication-title: Trans. Chin. Soc. Agric. Mach.
– ident: ref_41
– volume: 54
  start-page: 304
  year: 2023
  ident: ref_26
  article-title: Real-time detection method of dendrolimus superans-infested larix gmelinii trees based on improved YOLO v4
  publication-title: Trans. Chin. Soc. Agric. Mach.
– ident: ref_45
– ident: ref_39
  doi: 10.1109/CVPR.2019.00075
– ident: ref_28
  doi: 10.3390/s17092022
– ident: ref_53
– volume: 64
  start-page: 58
  year: 2021
  ident: ref_5
  article-title: Deep Learning for AI
  publication-title: Commun. ACM
  doi: 10.1145/3448250
– volume: 2
  start-page: 1023
  year: 2021
  ident: ref_22
  article-title: A pest monitoring system for agriculture using deep learning
  publication-title: Res. Prog. Mech. Manuf. Eng.
– volume: 7
  start-page: e432
  year: 2021
  ident: ref_59
  article-title: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.432
– ident: ref_33
  doi: 10.1007/978-3-030-01261-8_13
– volume: 11
  start-page: 236
  year: 2022
  ident: ref_23
  article-title: Farmland Pest Detection Based on YOLO-V5l and ResNet50
  publication-title: Artif. Intell. Robot. Res.
– volume: 39
  start-page: 975
  year: 2023
  ident: ref_44
  article-title: Designing network design strategies through gradient path analysis
  publication-title: J. Inf. Sci. Eng. JISE
– volume: 43
  start-page: 652
  year: 2021
  ident: ref_54
  article-title: Res2net: A new multi-scale backbone architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– volume: 121
  start-page: 102196
  year: 2021
  ident: ref_40
  article-title: Finetuning deep learning model parameters for improved superresolution of dynamic MRI with prior-knowledge
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102196
– ident: ref_17
  doi: 10.3390/agriculture13112110
– ident: ref_10
  doi: 10.3390/agriculture14030485
– volume: 11
  start-page: 577063
  year: 2020
  ident: ref_11
  article-title: Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.577063
– volume: 56
  start-page: 214
  year: 2020
  ident: ref_21
  article-title: Research on Granary Pest Detection Based on SSD
  publication-title: J. Comput. Eng. Appl.
– ident: ref_62
  doi: 10.3390/agriculture13071285
– volume: 8
  start-page: 145740
  year: 2020
  ident: ref_36
  article-title: Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014910
– volume: 4
  start-page: 41
  year: 2017
  ident: ref_3
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf. Process. Agric.
– ident: ref_14
  doi: 10.20944/preprints202308.0292.v1
– ident: ref_50
– volume: 27
  start-page: 1071
  year: 2020
  ident: ref_6
  article-title: A survey of deep learning and its applications: A new paradigm to machine learning
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– ident: ref_55
  doi: 10.1609/aaai.v34i07.6999
– volume: 3
  start-page: 89
  year: 2023
  ident: ref_1
  article-title: The current situation, problems and countermeasures of the cultivation of tea geographical indication products cultivation in Yunnan Province
  publication-title: Qual. Saf. Agro-Prod.
– ident: ref_29
  doi: 10.3390/insects14010054
– ident: ref_46
– volume: 14
  start-page: 232
  year: 2021
  ident: ref_61
  article-title: Real time pest detection using YOLOv5
  publication-title: Int. J. Agric. Nat. Sci.
– ident: ref_34
  doi: 10.1109/CVPR46437.2021.01008
– volume: 13
  start-page: 411
  year: 2022
  ident: ref_20
  article-title: Insect Pest Image Detection and Classification using Deep Learning
  publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA
– volume: 13
  start-page: 6078
  year: 2023
  ident: ref_30
  article-title: Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-33270-4
– ident: ref_15
  doi: 10.3390/agriculture14020303
– ident: ref_49
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_31
  doi: 10.3390/agronomy13082139
– ident: ref_43
– ident: ref_63
  doi: 10.3390/agronomy13082012
– volume: 11
  start-page: 521544
  year: 2020
  ident: ref_25
  article-title: Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
  publication-title: Front. Plant Sci.
– ident: ref_57
– ident: ref_32
  doi: 10.1109/CVPR42600.2020.01261
SSID ssj0000913807
Score 2.4352312
Snippet Pest target identification in agricultural production environments is challenging due to the dense distribution, small size, and high density of pests....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1034
SubjectTerms Accuracy
Agricultural production
Agriculture
agronomy
Algorithms
BiFormer
Case studies
Computational linguistics
Crop diseases
Deep learning
Feature extraction
GELAN
Image enhancement
Image resolution
Insects
Language processing
lighting
Machine learning
model validation
Natural language interfaces
neck
Pests
SAHI
Semantics
small object detection
Target detection
Target recognition
Tea
tea pest damage
YOLOv8
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kp3oQrYrRWkYQxEPYzGQmyXhLty2rWCvsFuopvPkqwpqVbVrwT_C_9r0kXVdBvXjNzISXed-ZN7_H2MsMfCmM86kw4FKlgkghGp1GdPfeR4fDdHf49EMxO1fvLvTFVqsvqgkb4IGHjZtY1D-QlY7aVMqLYKHyEEIeClsCShBZX_R5W8lUb4ONICT14Vwyx7x-Apfr_pYAJhQEIqd-8UM9XP-fjHLvaU7us3tjiMjrgbQH7E5o99jd-nI9wmSEh-z78C8geP7p7P3ZTcWh9Xxez95y6m225BiJcozs-PQnl28CPwpdX3jV8lXk8y-wXPJFXwh-xaHr559SeR6fI9_CG17zKbo4TpWG32jFR6R16x2fW74I8IidnxwvprN0bKqQOqVFlzpqtQEgXF54baUqq0LF3EdjowUnIuYXPjMRA0FpnZDBSGnorNU7H3TlZf6Y7bSrNjxhHFwGSvvcUqlbFZAxsqpcxIw7Wu2iTdjkdosbNyKOU-OLZYOZBzGl-Z0pCXu9WfF1QNv4y9xD4tpmHuFk9w9QeppRepp_SU_CXhHPG9JmJM3BeCkBP5BwsZq6NOgRhCqLhO3fikUzqvlVg8YS81dVllnCXmyGUUHp1AXasLrGOehTdKGEzJ7-D4qfsV2JcdVQc7nPdrr1dXiOcVFnD3oV-AFlwA85
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved YOLOv8 and SAHI Model for the Collaborative Detection of Small Targets at the Micro Scale: A Case Study of Pest Detection in Tea
URI https://www.proquest.com/docview/3059244770
https://www.proquest.com/docview/3153564120
https://doaj.org/article/bddea285f5984d1eba8daee3e6b7a053
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3batRAdND2RR_EK8bWMoIgPoTNJDPJpC-Sri2r2AvuFupTmOtSWJO6mxb8BP_ac5LZrQr2NXMmTHLulzmHkLeJsgUrjY1ZqUzMuWOx8qWIPah7a72BZbw7fHyST8755wtxEQJuq1BWuZaJvaC2rcEY-QjoElwFXhTJh6sfMU6NwuxqGKFxn2yDCJbgfG0fHJ6cfd1EWbDrpUyKIT-ZgX8_UvNlf1sAHAtsJsf_0kd92_7_Cede4xw9Jo-CqUirAbdPyD3XPCUPq_kytMtwz8ivISbgLP12-uX0RlLVWDqtJp8ozjhbULBIKVh4dHyL7RtHP7quL8BqaOvp9LtaLOisLwhfUdX18MdYpkengD-3Tys6BlVHseLwJ-44g7P-8Y7Lhs6cek7Ojw5n40kchivEhgvWxQZHbijFTJZboVNeyJz7zPpSe60M8-Bn2KT0YBCm2rDUlWlaYs7VGuuEtGn2gmw1beNeEqpMoriwmcaSN-kUrEppPHjeXgvjdURG619cm9B5HAdgLGrwQBAp9b9Iicj7zY6roevGHbAHiLUNHPbL7h-0y3kd2K_WIMVVKoUXpeSWOQ2HVM5lLteFAjkUkXeI8xq5Go5mVLicAB-I_bHqqihBMzBe5BHZXZNFHdh9Vd8SZ0TebJaBUTH7ohrXXgMM6BaRc5Ymr-5-xQ55kILlNFRV7pKtbnntXoPl0-m9QN57feTgN-lTBxc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMx0KrSB-ABcYqlBYwEQjyssof3QkJom7ZKaJJWJJXaJ-MzQkp3S5IW9RP4Gb6RmT1SQKJvfV2PLa9nPIfnIuSNJ3TiZ0q7fiaUy5jxXWGzyLUg7rW2CoYxd3g0jvvH7PNJdLJBfrW5MBhW2fLEilHrUuEbeRfoEkwFliTep_PvLnaNQu9q20KjJosDc_UDTLblx8Eu4PdtEOzvTXt9t-kq4CoW-StXYa8JIXwVxjqSAUvSmNlQ20xaKZRvQcHWXmZBEwqk8gOTBUGGzkattIlSjYUOgOVvshBMmQ7Z3NkbH31Zv-pglc3US2p_aBhmXlfMFlV2AhgyWLyO_SX_qjYB_xMGlYTbf0DuN6opzWtaekg2TPGI3Mtni6Y8h3lMftZvEEbT08Ph4WVKRaHpJO8PKPZUm1PQgClolLR3TV2Xhu6aVRXwVdDS0smZmM_ptApAX1KxquBHGBZIJ0Av5gPNaQ9EK8UIxyuccQR7_WONbwWdGvGEHN_KsT8lnaIszDNChfIEi3QoMcQuNQJG01RZsPStjJSVDum2R8xVU-kcG27MOVg8iBT-L1Ic8n4947yu8nED7A5ibQ2H9bmrD-VixpvrziVIDRGkkY2ylGnfSNikMCY0sUwE8D2HvEOcc-QisDUlmmQI-EGsx8XzJANJ5LMkdsh2Sxa8YS9Lfn0ZHPJ6PQyMAb09ojDlBcCALIti5gfe85uXeEXu9KejIR8Oxgdb5G4AWlsd0blNOqvFhXkBWtdKvmxInZKvt327fgP_TUMZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ZaxNBeCgpiD6IJ65WHUERH5bsMXsJImnSkNg2DSaF9mmcMwhxtybbSn-Cf8lf5_ftkapg3_q6czA73z3fRchrT-jEz5R2_UwolzHju8JmkWtB3GttFQxj7vDhJB4ds08n0ckW-dXmwmBYZcsTK0atC4Vv5F3ASzAVWJJ4XduERUwHw49n313sIIWe1radRo0i--byB5hv6w_jAcD6TRAM9-b9kdt0GHAVi_zSVdh3QghfhbGOZMCSNGY21DaTVgrlW1C2tZdZ0IoCqfzAZEGQoeNRK22iVGPRA2D_2wlYRV6HbO_uTaafNy88WHEz9ZLaNxqGmdcVi1WVqQBGDRayY3_JwqplwP8EQyXthvfI3UZNpb0ar-6TLZM_IHd6i1VTqsM8JD_r9wij6enRwdFFSkWu6aw3GlPsr7akoA1T0C5p_wrTLgwdmLIK_sppYensm1gu6bwKRl9TUVbzDzFEkM4Ad8x72qN9ELMUox0vccUUzvrHHl9zOjfiETm-kWt_TDp5kZsnhArlCRbpUGK4XWoEjKapsmD1WxkpKx3Sba-Yq6bqOTbfWHKwfhAo_F-gOOTdZsVZXfHjmrm7CLXNPKzVXX0oVgvekD6XIEFEkEY2ylKmfSPhkMKY0MQyEcADHfIWYc6Ro8DRlGgSI-AHsTYX7yUZSCWfJbFDdlq04A2rWfMrwnDIq80wMAn0_IjcFOcwB-RaFDM_8J5ev8VLcguoih-MJ_vPyO0AFLg6uHOHdMrVuXkOClgpXzSYTsmXmyau39bkR04
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+YOLOv8+and+SAHI+Model+for+the+Collaborative+Detection+of+Small+Targets+at+the+Micro+Scale%3A+A+Case+Study+of+Pest+Detection+in+Tea&rft.jtitle=Agronomy+%28Basel%29&rft.au=Ye%2C+Rong&rft.au=Gao%2C+Quan&rft.au=Ye+Qian&rft.au=Sun%2C+Jihong&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=14&rft.issue=5&rft.spage=1034&rft_id=info:doi/10.3390%2Fagronomy14051034&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon