A patient-specific cerebral blood flow model

In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 98; p. 109445
Main Authors Helthuis, Jasper H.G., van Doormaal, Tristan P.C., Amin-Hanjani, Sepideh, Du, XinJian, Charbel, Fady T., Hillen, Berend, van der Zwan, Albert
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 02.01.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2019.109445

Cover

Loading…
Abstract In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of −3% (interquartile range −36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.
AbstractList In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of −3% (interquartile range −36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.
In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.
In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.
ArticleNumber 109445
Author van Doormaal, Tristan P.C.
Amin-Hanjani, Sepideh
Charbel, Fady T.
Hillen, Berend
Helthuis, Jasper H.G.
van der Zwan, Albert
Du, XinJian
Author_xml – sequence: 1
  givenname: Jasper H.G.
  orcidid: 0000-0002-8382-5432
  surname: Helthuis
  fullname: Helthuis, Jasper H.G.
  email: j.h.g.helthuis-2@umcutrecht.nl
  organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
– sequence: 2
  givenname: Tristan P.C.
  surname: van Doormaal
  fullname: van Doormaal, Tristan P.C.
  organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
– sequence: 3
  givenname: Sepideh
  surname: Amin-Hanjani
  fullname: Amin-Hanjani, Sepideh
  organization: Department of Neurosurgery, University of Illinois, Chicago, USA
– sequence: 4
  givenname: XinJian
  surname: Du
  fullname: Du, XinJian
  organization: Department of Neurosurgery, University of Illinois, Chicago, USA
– sequence: 5
  givenname: Fady T.
  surname: Charbel
  fullname: Charbel, Fady T.
  organization: Department of Neurosurgery, University of Illinois, Chicago, USA
– sequence: 6
  givenname: Berend
  surname: Hillen
  fullname: Hillen, Berend
  organization: Department of Anatomy, University Medical Center Nijmegen, Nijmegen, the Netherlands
– sequence: 7
  givenname: Albert
  surname: van der Zwan
  fullname: van der Zwan, Albert
  organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31708241$$D View this record in MEDLINE/PubMed
BookMark eNqNkctqHDEQRUWwicdOfsE0eOOFe6JXPwQhxJi8wOBNshZSqZqoo26NpR4H_71lxrOZjb0SFOfeEqdOydEcZyTknNE1o6z9NK5H6-OE8HfNKVNlqKRs3pEV6ztRc9HTI7KilLNacUVPyGnOI6W0k516T04E62jPJVuRq-tqYxaP81LnDYIfPFSACW0yobIhRlcNIf6vpugwfCDHgwkZP768Z-TP92-_b37Wt3c_ft1c39YgG7bU0EnHqQXFeotOsMbCQE1jut42vDHgGMhBKOEYGoUgjeO8oWZwSljXKxBn5HLXu0nxfot50ZPPgCGYGeM2ay6YaJtetW1BLw7QMW7TXH5XKK645IqJQp2_UFs7odOb5CeTHvXeQwE-7wBIMeeEgwa_FC9xXpLxQTOqn7XrUe-162fteqe9xNuD-H7Dq8GvuyAWnQ8ek85QjgHofEJYtIv-9YovBxUQ_OzBhH_4-JaCJxjLs5U
CitedBy_id crossref_primary_10_1186_s12938_021_00880_w
crossref_primary_10_1007_s12553_021_00530_0
crossref_primary_10_3390_jcm13092487
crossref_primary_10_1016_j_cmpb_2023_107956
crossref_primary_10_1080_21681163_2022_2074545
crossref_primary_10_3340_jkns_2023_0125
crossref_primary_10_1111_jon_13198
crossref_primary_10_3389_fneur_2023_1230402
crossref_primary_10_3390_jpm12061008
crossref_primary_10_1080_21681163_2022_2040054
crossref_primary_10_1115_1_4053943
crossref_primary_10_1142_S0218127421501352
crossref_primary_10_1016_j_compbiomed_2021_105040
crossref_primary_10_1007_s00701_022_05455_9
crossref_primary_10_3389_fbioe_2022_1031600
crossref_primary_10_3389_fbioe_2022_835347
Cites_doi 10.1016/0021-9290(86)90151-X
10.1016/j.csda.2009.09.020
10.3389/fphys.2018.00681
10.1016/j.jcp.2012.04.038
10.1093/bioinformatics/btr390
10.1161/01.STR.24.12.1951
10.1136/heartjnl-2015-308044
10.1146/annurev.fl.25.010193.000245
10.1016/S0022-5193(05)80706-4
10.1085/jgp.72.6.837
10.1038/s41598-018-32427-w
10.3174/ajnr.A3558
10.1002/jmri.1880080608
10.1007/s00348-010-0985-y
10.3171/jns.2004.101.6.0977
10.1161/01.STR.24.3.371
10.1161/01.HYP.36.5.801
10.1227/NEU.0000000000001083
10.1016/S0730-725X(00)00157-0
10.1016/j.brainres.2006.08.021
10.1038/jcbfm.2014.203
10.1186/1475-925X-10-84
10.1161/01.RES.38.6.572
10.3174/ajnr.A0582
10.1002/cnm.1481
10.1111/j.1440-1681.2008.05010.x
10.1161/STROKEAHA.110.594168
10.1002/ar.23994
10.3174/ajnr.A2655
10.1161/01.CIR.0000144472.08647.40
10.1161/01.STR.0000166201.79222.4d
10.1137/07070231X
10.1007/s10439-010-0132-1
10.3389/fphys.2018.00721
10.1016/S0090-3019(97)00416-3
10.1002/cnm.1373
10.1097/00004424-199001000-00016
10.1161/01.STR.22.8.1078
10.1016/S0092-8240(77)80054-2
10.1016/j.brainres.2009.12.007
10.1085/jgp.9.6.835
10.1093/cvr/24.6.478
10.1016/j.jcm.2016.02.012
10.1016/j.crhy.2013.04.002
10.1007/s11548-009-0379-x
10.3174/ajnr.A2546
10.1016/0021-9150(80)90144-6
10.3171/jns.2007.106.2.291
10.1080/10739680500383407
10.1186/1471-2105-7-123
10.1152/japplphysiol.90900.2008
ContentType Journal Article
Copyright 2020
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright Elsevier Limited Jan 2, 2020
Copyright_xml – notice: 2020
– notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2, 2020
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2019.109445
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest research library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 31708241
10_1016_j_jbiomech_2019_109445
S002192901930692X
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-c74d20bc918bed315bcf0a5a78b525acd1c4f393d1ea9ec4ad2250afd93bd89c3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 14:05:54 EDT 2025
Wed Aug 13 04:33:47 EDT 2025
Wed Feb 19 02:32:17 EST 2025
Tue Jul 01 00:44:15 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 23 02:47:00 EST 2024
Tue Aug 26 17:09:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Structured tree
Modelling
Hemodynamics
Patient-specific
Cerebral blood flow
Language English
License Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-c74d20bc918bed315bcf0a5a78b525acd1c4f393d1ea9ec4ad2250afd93bd89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8382-5432
PMID 31708241
PQID 2329242913
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2313658966
proquest_journals_2329242913
pubmed_primary_31708241
crossref_citationtrail_10_1016_j_jbiomech_2019_109445
crossref_primary_10_1016_j_jbiomech_2019_109445
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109445
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109445
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Meng, Tutino, Xiang, Siddiqui (b0160) 2014; 35
Cassot, Lauwers, Fouard, Prohaska, Lauwers-Cances (b0035) 2006; 13
Ho, Mithraratne, Schmid, Sands, Hunter (b0120) 2010; 5
Secomb, Pries (b0220) 2013; 14
Immink, van den Born, van Montfrans, Koopmans, Karemaker, van Lieshout (b0135) 2004; 110
Cassot, Lauwers, Lorthois, Puwanarajah, Cances-Lauwers, Duvernoy (b0040) 2010; 1313
Amin-Hanjani, Du, Pandey, Thulborn, Charbel (b0005) 2015; 35
Brosig, Kowarschik, Maday, Katouzian, Demirci, Navab (b0020) 2014
Amin-Hanjani, Shin, Zhao, Du, Charbel (b0010) 2007; 106
Papageorgiou, Jones, Redding, Hudson (b0185) 1990; 24
Sforza, Putman, Cebral (b0235) 2012
Cousins, Gremaud (b0060) 2012; 231
Can, Du (b0030) 2016; 78
Seo, Eslami, Caplan, Tamargo, Mittal (b0225) 2018; 9
Zhao, Charbel, Alperin, Loth, Clark (b0275) 2000; 18
DeVault, Gremaud, Novak, Olufsen, Vernières, Zhao (b0065) 2008; 7
Grinberg, Cheever, Anor, Madsen, Karniadakis (b0090) 2011; 39
Aries, Elting, De Keyser, Kremer, Vroomen (b0015) 2010; 41
Grinberg, Anor, Madsen, Yakhot, Karniadakis (b0085) 2009; 36
Calderon-Arnulphi, Amin-Hanjani, Alaraj, Zhao, Du, Ruland, Zhou, Thulborn, Charbel (b0025) 2011; 32
Longair, Baker, Armstrong (b0155) 2011; 27
Uylings (b0250) 1977; 39
Sesso, Stampfer, Rosner, Hennekens, Gaziano, Manson, Glynn (b0230) 2000; 36
Zhao, Amin-Hanjani, Ruland, Curcio, Ostergren, Charbel (b0270) 2007; 28
Cebral, Mut, Sforza, Löhner, Scrivano, Lylyk, Putman (b0045) 2011; 27
Sutera, Skalak (b0240) 1993; 25
Hoogeveen, Bakker, Viergever (b0125) 1998; 8
Qian, Takao, Umezu, Murayama (b0205) 2011; 32
Charbel, F.T., Zhao, M., Amin-Hanjani, S., Hoffman, W., Du, X., Clark, M.E., 2004. A patient-specific computer model to predict outcomes of the balloon occlusion test., Journal of neurosurgery. S. Amin-Hanjani, Neuropsychiatric Institute, Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, United States. https://doi.org/10.3171/jns.2004.101.6.0977.
Garcia (b0080) 2010; 54
Roessler, Reith, Siegel (b0210) 2006; 1118
Kailasnath, Dickey, Gahbauer, Nunes, Beckman, Chaloupka (b0140) 1998; 50
Hutchins, Miner, Boitnott (b0130) 1976; 38
van der Zwan, Hillen, Tulleken, Dujovny (b0260) 1993; 24
Rossitti, Löfgren (b0215) 1993; 24
Helthuis, J.H.G., van Doormaal, T.P.C., Hillen, B., Bleys, R.L.A.W., Harteveld, A.A., Hendrikse, J., van der Toorn, A., Brozici, M., Zwanenburg, J.J.M., van der Zwan, A., 2018b. Branching Pattern of the Cerebral Arterial Tree. Anat. Rec. https://doi.org/10.1002/ar.23994
Morris, Narracott, von Tengg-Kobligk, Silva Soto, Hsiao, Lungu, Evans, Bressloff, Lawford, Hose, Gunn (b0165) 2016; 102
Olufsen (b0180) 1999; 276
Groen, Richardson, Coy, Schiller, Chandrashekar, Robertson, Coveney (b0095) 2018; 9
Urbano, Roux, Schindler, Mohsenin (b0245) 2008; 105
Murray (b0175) 1926; 9
Cebral, Vazquez, Sforza, Houzeaux, Tateshima, Scrivano, Bleise, Lylyk, Putman (b0050) 2015; 1–7
Paulson, Strandgaard, Edvinsson (b0190) 1990; 2
Hillen, Hoogstraten, Post (b0115) 1986; 19
van der Zwan, Hillen (b0255) 1991; 22
Motulsky, Brown (b0170) 2006; 7
Fanucci, Orlacchio, Pocek, Magrini, Salomoni (b0070) 1990; 25
Hardy-Stashin, Meyer, Kauffman (b0100) 1980; 37
Koo, Li (b0145) 2016; 15
Helthuis, van der Zwan, van Doormaal, Bleys, Harteveld, van der Toorn, Brozici, Hendrikse, Zwanenburg (b0105) 2018; 8
Garcia (b0075) 2011; 50
Liang, Fukasaku, Liu, Takagi (b0150) 2011; 10
Paultre, Mosca (b0195) 2005; 36
Pollanen (b0200) 1992; 159
Zamir (b0265) 1978; 72
Olufsen (10.1016/j.jbiomech.2019.109445_b0180) 1999; 276
Sutera (10.1016/j.jbiomech.2019.109445_b0240) 1993; 25
Helthuis (10.1016/j.jbiomech.2019.109445_b0105) 2018; 8
Paulson (10.1016/j.jbiomech.2019.109445_b0190) 1990; 2
Grinberg (10.1016/j.jbiomech.2019.109445_b0090) 2011; 39
Calderon-Arnulphi (10.1016/j.jbiomech.2019.109445_b0025) 2011; 32
Hillen (10.1016/j.jbiomech.2019.109445_b0115) 1986; 19
Garcia (10.1016/j.jbiomech.2019.109445_b0075) 2011; 50
Pollanen (10.1016/j.jbiomech.2019.109445_b0200) 1992; 159
van der Zwan (10.1016/j.jbiomech.2019.109445_b0260) 1993; 24
Motulsky (10.1016/j.jbiomech.2019.109445_b0170) 2006; 7
10.1016/j.jbiomech.2019.109445_b0055
Garcia (10.1016/j.jbiomech.2019.109445_b0080) 2010; 54
Cebral (10.1016/j.jbiomech.2019.109445_b0050) 2015; 1–7
Longair (10.1016/j.jbiomech.2019.109445_b0155) 2011; 27
Secomb (10.1016/j.jbiomech.2019.109445_b0220) 2013; 14
Amin-Hanjani (10.1016/j.jbiomech.2019.109445_b0005) 2015; 35
Zamir (10.1016/j.jbiomech.2019.109445_b0265) 1978; 72
Uylings (10.1016/j.jbiomech.2019.109445_b0250) 1977; 39
Sforza (10.1016/j.jbiomech.2019.109445_b0235) 2012
Zhao (10.1016/j.jbiomech.2019.109445_b0275) 2000; 18
Qian (10.1016/j.jbiomech.2019.109445_b0205) 2011; 32
Seo (10.1016/j.jbiomech.2019.109445_b0225) 2018; 9
Groen (10.1016/j.jbiomech.2019.109445_b0095) 2018; 9
Can (10.1016/j.jbiomech.2019.109445_b0030) 2016; 78
Urbano (10.1016/j.jbiomech.2019.109445_b0245) 2008; 105
Paultre (10.1016/j.jbiomech.2019.109445_b0195) 2005; 36
Hutchins (10.1016/j.jbiomech.2019.109445_b0130) 1976; 38
Hardy-Stashin (10.1016/j.jbiomech.2019.109445_b0100) 1980; 37
van der Zwan (10.1016/j.jbiomech.2019.109445_b0255) 1991; 22
Amin-Hanjani (10.1016/j.jbiomech.2019.109445_b0010) 2007; 106
Cassot (10.1016/j.jbiomech.2019.109445_b0040) 2010; 1313
Meng (10.1016/j.jbiomech.2019.109445_b0160) 2014; 35
Rossitti (10.1016/j.jbiomech.2019.109445_b0215) 1993; 24
Sesso (10.1016/j.jbiomech.2019.109445_b0230) 2000; 36
Cassot (10.1016/j.jbiomech.2019.109445_b0035) 2006; 13
10.1016/j.jbiomech.2019.109445_b0110
Ho (10.1016/j.jbiomech.2019.109445_b0120) 2010; 5
Zhao (10.1016/j.jbiomech.2019.109445_b0270) 2007; 28
Morris (10.1016/j.jbiomech.2019.109445_b0165) 2016; 102
Murray (10.1016/j.jbiomech.2019.109445_b0175) 1926; 9
Fanucci (10.1016/j.jbiomech.2019.109445_b0070) 1990; 25
Kailasnath (10.1016/j.jbiomech.2019.109445_b0140) 1998; 50
Papageorgiou (10.1016/j.jbiomech.2019.109445_b0185) 1990; 24
Brosig (10.1016/j.jbiomech.2019.109445_b0020) 2014
Koo (10.1016/j.jbiomech.2019.109445_b0145) 2016; 15
Grinberg (10.1016/j.jbiomech.2019.109445_b0085) 2009; 36
Hoogeveen (10.1016/j.jbiomech.2019.109445_b0125) 1998; 8
Cousins (10.1016/j.jbiomech.2019.109445_b0060) 2012; 231
Immink (10.1016/j.jbiomech.2019.109445_b0135) 2004; 110
DeVault (10.1016/j.jbiomech.2019.109445_b0065) 2008; 7
Liang (10.1016/j.jbiomech.2019.109445_b0150) 2011; 10
Aries (10.1016/j.jbiomech.2019.109445_b0015) 2010; 41
Roessler (10.1016/j.jbiomech.2019.109445_b0210) 2006; 1118
Cebral (10.1016/j.jbiomech.2019.109445_b0045) 2011; 27
References_xml – volume: 9
  start-page: 721
  year: 2018
  ident: b0095
  article-title: Validation of patient-specific cerebral blood flow simulation using transcranial doppler measurements
  publication-title: Front. Physiol.
– volume: 24
  start-page: 371
  year: 1993
  end-page: 377
  ident: b0215
  article-title: Vascular dimensions of the cerebral arteries follow the principle of minimum work
  publication-title: Stroke
– volume: 35
  start-page: 1254
  year: 2014
  end-page: 1262
  ident: b0160
  article-title: High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis
  publication-title: AJNR. Am. J. Neuroradiol.
– volume: 276
  start-page: H257
  year: 1999
  end-page: H268
  ident: b0180
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Am. J. Physiol.
– year: 2012
  ident: b0235
  article-title: Computational fluid dynamics in brain aneurysms
  publication-title: Int. J. Numer. Method. Biomed. Eng.
– volume: 7
  start-page: 888
  year: 2008
  end-page: 909
  ident: b0065
  article-title: blood flow in the circle of willis: modeling and calibration
  publication-title: Multiscale Model. Simul.
– volume: 24
  start-page: 1951
  year: 1993
  end-page: 1959
  ident: b0260
  article-title: A quantitative investigation of the variability of the major cerebral arterial territories
  publication-title: Stroke
– volume: 41
  start-page: 2697
  year: 2010
  end-page: 2704
  ident: b0015
  article-title: Cerebral autoregulation in stroke: a review of transcranial doppler studies
  publication-title: Stroke
– reference: Charbel, F.T., Zhao, M., Amin-Hanjani, S., Hoffman, W., Du, X., Clark, M.E., 2004. A patient-specific computer model to predict outcomes of the balloon occlusion test., Journal of neurosurgery. S. Amin-Hanjani, Neuropsychiatric Institute, Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, United States. https://doi.org/10.3171/jns.2004.101.6.0977.
– volume: 110
  start-page: 2241
  year: 2004
  end-page: 2245
  ident: b0135
  article-title: Impaired cerebral autoregulation in patients with malignant hypertension
  publication-title: Circulation
– volume: 27
  start-page: 977
  year: 2011
  end-page: 992
  ident: b0045
  article-title: Clinical application of image-based CFD for cerebral aneurysms
  publication-title: Int. J. Numer. Method. Biomed. Eng.
– volume: 25
  start-page: 1
  year: 1993
  end-page: 20
  ident: b0240
  article-title: The history of Poiseuille’s law
  publication-title: Annu. Rev. Fluid Mech.
– volume: 1–7
  year: 2015
  ident: b0050
  article-title: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture
  publication-title: J. Neurointerv. Surg.
– volume: 10
  start-page: 84
  year: 2011
  ident: b0150
  article-title: A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery
  publication-title: Biomed. Eng. Online
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  ident: b0145
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
– volume: 18
  start-page: 697
  year: 2000
  end-page: 706
  ident: b0275
  article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization
  publication-title: Magn. Reson. Imag.
– volume: 7
  start-page: 123
  year: 2006
  ident: b0170
  article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate
  publication-title: BMC Bioinf.
– start-page: 90342R
  year: 2014
  ident: b0020
  article-title: Blood flow quantification using 1D CFD parameter identification
  publication-title: MEDICAL IMAGING 2014: IMAGE PROCESSING, Proceedings of SPIE
– volume: 32
  start-page: 1552
  year: 2011
  end-page: 1559
  ident: b0025
  article-title: In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model
  publication-title: Am. J. Neuroradiol.
– volume: 38
  start-page: 572
  year: 1976
  end-page: 576
  ident: b0130
  article-title: Vessel caliber and branch-angle of human coronary artery branch-points
  publication-title: Circ. Res.
– volume: 2
  start-page: 161
  year: 1990
  end-page: 192
  ident: b0190
  article-title: Cerebral autoregulation
  publication-title: Cerebrovasc. Brain Metab. Rev.
– volume: 1118
  start-page: 183
  year: 2006
  end-page: 191
  ident: b0210
  article-title: Simulation of cerebral hemodynamics for preoperative risk assessment
  publication-title: Brain Res.
– volume: 19
  start-page: 187
  year: 1986
  end-page: 194
  ident: b0115
  article-title: A mathematical model of the flow in the circle of Willis
  publication-title: J. Biomech.
– volume: 105
  start-page: 1852
  year: 2008
  end-page: 1857
  ident: b0245
  article-title: Impaired cerebral autoregulation in obstructive sleep apnea
  publication-title: J. Appl. Physiol.
– volume: 54
  start-page: 1167
  year: 2010
  end-page: 1178
  ident: b0080
  article-title: Robust smoothing of gridded data in one and higher dimensions with missing values
  publication-title: Comput. Stat. Data Anal.
– volume: 78
  start-page: 510
  year: 2016
  end-page: 520
  ident: b0030
  article-title: Association of hemodynamic factors with intracranial aneurysm formation and rupture
  publication-title: Neurosurgery
– volume: 32
  start-page: 1948
  year: 2011
  end-page: 1955
  ident: b0205
  article-title: Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results
  publication-title: AJNR. Am. J. Neuroradiol.
– volume: 22
  start-page: 1078
  year: 1991
  end-page: 1084
  ident: b0255
  article-title: Review of the variability of the territories of the major cerebral arteries
  publication-title: Stroke
– volume: 102
  start-page: 18
  year: 2016
  end-page: 28
  ident: b0165
  article-title: Computational fluid dynamics modelling in cardiovascular medicine
  publication-title: Heart
– volume: 9
  start-page: 681
  year: 2018
  ident: b0225
  article-title: A highly automated computational method for modeling of intracranial aneurysm hemodynamics
  publication-title: Front. Physiol.
– reference: Helthuis, J.H.G., van Doormaal, T.P.C., Hillen, B., Bleys, R.L.A.W., Harteveld, A.A., Hendrikse, J., van der Toorn, A., Brozici, M., Zwanenburg, J.J.M., van der Zwan, A., 2018b. Branching Pattern of the Cerebral Arterial Tree. Anat. Rec. https://doi.org/10.1002/ar.23994
– volume: 231
  start-page: 6086
  year: 2012
  end-page: 6096
  ident: b0060
  article-title: Boundary conditions for hemodynamics: the structured tree revisited
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 801
  year: 2000
  end-page: 807
  ident: b0230
  article-title: Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men
  publication-title: Hypertension
– volume: 14
  start-page: 470
  year: 2013
  end-page: 478
  ident: b0220
  article-title: Blood viscosity in microvessels: experiment and theory
  publication-title: Comptes Rendus. Phys.
– volume: 159
  start-page: 267
  year: 1992
  end-page: 270
  ident: b0200
  article-title: Dimensional optimization at different levels of the arterial hierarchy
  publication-title: J. Theor. Biol.
– volume: 50
  start-page: 1247
  year: 2011
  end-page: 1259
  ident: b0075
  article-title: A fast all-in-one method for automated post-processing of PIV data
  publication-title: Exp. Fluids
– volume: 72
  start-page: 837
  year: 1978
  end-page: 845
  ident: b0265
  article-title: Nonsymmetrical bifurcations in arterial branching
  publication-title: J. Gen. Physiol.
– volume: 25
  start-page: 62
  year: 1990
  end-page: 66
  ident: b0070
  article-title: Optimal branching of human arterial bifurcations
  publication-title: Invest. Radiol.
– volume: 27
  start-page: 2453
  year: 2011
  end-page: 2454
  ident: b0155
  article-title: Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes
  publication-title: Bioinformatics
– volume: 13
  start-page: 1
  year: 2006
  end-page: 18
  ident: b0035
  article-title: A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex
  publication-title: Microcirculation
– volume: 37
  start-page: 399
  year: 1980
  end-page: 402
  ident: b0100
  article-title: Branching coefficient (“area ratio”) of the human aortic bifurcation determined in distended specimens
  publication-title: Atherosclerosis
– volume: 39
  start-page: 509
  year: 1977
  end-page: 520
  ident: b0250
  article-title: Optimization of diameters and bifurcation angles in lung and vascular tree structures
  publication-title: Bull. Math. Biol.
– volume: 8
  year: 2018
  ident: b0105
  article-title: High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1228
  year: 1998
  end-page: 1235
  ident: b0125
  article-title: Limits to the accuracy of vessel diameter measurement in MR angiography
  publication-title: J. Magn. Reson. Imag.
– volume: 1313
  start-page: 62
  year: 2010
  end-page: 78
  ident: b0040
  article-title: Branching patterns for arterioles and venules of the human cerebral cortex
  publication-title: Brain Res.
– volume: 5
  start-page: 29
  year: 2010
  end-page: 37
  ident: b0120
  article-title: Computer simulation of vertebral artery occlusion in endovascular procedures
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 36
  start-page: 194
  year: 2009
  end-page: 205
  ident: b0085
  article-title: Large-scale simulation of the human arterial tree
  publication-title: Clin. Exp. Pharmacol. Physiol.
– volume: 36
  start-page: 1288
  year: 2005
  end-page: 1290
  ident: b0195
  article-title: Association of blood pressure indices and stroke mortality in isolated systolic hypertension
  publication-title: Stroke
– volume: 106
  start-page: 291
  year: 2007
  end-page: 298
  ident: b0010
  article-title: Evaluation of extracranial–intracranial bypass using quantitative magnetic resonance angiography
  publication-title: J. Neurosurg.
– volume: 50
  start-page: 257
  year: 1998
  end-page: 263
  ident: b0140
  article-title: Intracarotid pressure measurements in the evaluation of a computer model of the cerebral circulation
  publication-title: Surg. Neurol.
– volume: 35
  start-page: 312
  year: 2015
  end-page: 318
  ident: b0005
  article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 39
  start-page: 297
  year: 2011
  end-page: 309
  ident: b0090
  article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study
  publication-title: Ann. Biomed. Eng.
– volume: 9
  start-page: 835
  year: 1926
  end-page: 841
  ident: b0175
  article-title: The physiological principle of minimum work applied to the angle of branching of arteries
  publication-title: J. Gen. Physiol.
– volume: 28
  start-page: 1470
  year: 2007
  end-page: 1473
  ident: b0270
  article-title: Regional cerebral blood flow using quantitative MR angiography
  publication-title: Am. J. Neuroradiol.
– volume: 24
  start-page: 478
  year: 1990
  end-page: 484
  ident: b0185
  article-title: The areas ratio of normal arterial junctions and its implications in pulse wave reflections
  publication-title: Cardiovasc. Res.
– start-page: 90342R
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109445_b0020
  article-title: Blood flow quantification using 1D CFD parameter identification
– volume: 19
  start-page: 187
  year: 1986
  ident: 10.1016/j.jbiomech.2019.109445_b0115
  article-title: A mathematical model of the flow in the circle of Willis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(86)90151-X
– volume: 54
  start-page: 1167
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109445_b0080
  article-title: Robust smoothing of gridded data in one and higher dimensions with missing values
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.09.020
– volume: 9
  start-page: 681
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109445_b0225
  article-title: A highly automated computational method for modeling of intracranial aneurysm hemodynamics
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00681
– volume: 231
  start-page: 6086
  year: 2012
  ident: 10.1016/j.jbiomech.2019.109445_b0060
  article-title: Boundary conditions for hemodynamics: the structured tree revisited
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.038
– volume: 27
  start-page: 2453
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0155
  article-title: Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr390
– volume: 24
  start-page: 1951
  year: 1993
  ident: 10.1016/j.jbiomech.2019.109445_b0260
  article-title: A quantitative investigation of the variability of the major cerebral arterial territories
  publication-title: Stroke
  doi: 10.1161/01.STR.24.12.1951
– volume: 102
  start-page: 18
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109445_b0165
  article-title: Computational fluid dynamics modelling in cardiovascular medicine
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-308044
– volume: 25
  start-page: 1
  year: 1993
  ident: 10.1016/j.jbiomech.2019.109445_b0240
  article-title: The history of Poiseuille’s law
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.000245
– volume: 159
  start-page: 267
  year: 1992
  ident: 10.1016/j.jbiomech.2019.109445_b0200
  article-title: Dimensional optimization at different levels of the arterial hierarchy
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(05)80706-4
– volume: 72
  start-page: 837
  year: 1978
  ident: 10.1016/j.jbiomech.2019.109445_b0265
  article-title: Nonsymmetrical bifurcations in arterial branching
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.72.6.837
– volume: 8
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109445_b0105
  article-title: High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32427-w
– volume: 35
  start-page: 1254
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109445_b0160
  article-title: High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis
  publication-title: AJNR. Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3558
– volume: 8
  start-page: 1228
  year: 1998
  ident: 10.1016/j.jbiomech.2019.109445_b0125
  article-title: Limits to the accuracy of vessel diameter measurement in MR angiography
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.1880080608
– volume: 50
  start-page: 1247
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0075
  article-title: A fast all-in-one method for automated post-processing of PIV data
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-010-0985-y
– ident: 10.1016/j.jbiomech.2019.109445_b0055
  doi: 10.3171/jns.2004.101.6.0977
– volume: 24
  start-page: 371
  year: 1993
  ident: 10.1016/j.jbiomech.2019.109445_b0215
  article-title: Vascular dimensions of the cerebral arteries follow the principle of minimum work
  publication-title: Stroke
  doi: 10.1161/01.STR.24.3.371
– volume: 36
  start-page: 801
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109445_b0230
  article-title: Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men
  publication-title: Hypertension
  doi: 10.1161/01.HYP.36.5.801
– volume: 78
  start-page: 510
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109445_b0030
  article-title: Association of hemodynamic factors with intracranial aneurysm formation and rupture
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000001083
– volume: 18
  start-page: 697
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109445_b0275
  article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/S0730-725X(00)00157-0
– volume: 1118
  start-page: 183
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109445_b0210
  article-title: Simulation of cerebral hemodynamics for preoperative risk assessment
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.08.021
– volume: 35
  start-page: 312
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109445_b0005
  article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.203
– volume: 10
  start-page: 84
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0150
  article-title: A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-10-84
– volume: 38
  start-page: 572
  year: 1976
  ident: 10.1016/j.jbiomech.2019.109445_b0130
  article-title: Vessel caliber and branch-angle of human coronary artery branch-points
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.38.6.572
– volume: 28
  start-page: 1470
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109445_b0270
  article-title: Regional cerebral blood flow using quantitative MR angiography
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A0582
– year: 2012
  ident: 10.1016/j.jbiomech.2019.109445_b0235
  article-title: Computational fluid dynamics in brain aneurysms
  publication-title: Int. J. Numer. Method. Biomed. Eng.
  doi: 10.1002/cnm.1481
– volume: 36
  start-page: 194
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109445_b0085
  article-title: Large-scale simulation of the human arterial tree
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.2008.05010.x
– volume: 41
  start-page: 2697
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109445_b0015
  article-title: Cerebral autoregulation in stroke: a review of transcranial doppler studies
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.594168
– ident: 10.1016/j.jbiomech.2019.109445_b0110
  doi: 10.1002/ar.23994
– volume: 32
  start-page: 1948
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0205
  article-title: Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results
  publication-title: AJNR. Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2655
– volume: 110
  start-page: 2241
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109445_b0135
  article-title: Impaired cerebral autoregulation in patients with malignant hypertension
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000144472.08647.40
– volume: 36
  start-page: 1288
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109445_b0195
  article-title: Association of blood pressure indices and stroke mortality in isolated systolic hypertension
  publication-title: Stroke
  doi: 10.1161/01.STR.0000166201.79222.4d
– volume: 2
  start-page: 161
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109445_b0190
  article-title: Cerebral autoregulation
  publication-title: Cerebrovasc. Brain Metab. Rev.
– volume: 1–7
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109445_b0050
  article-title: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture
  publication-title: J. Neurointerv. Surg.
– volume: 7
  start-page: 888
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109445_b0065
  article-title: blood flow in the circle of willis: modeling and calibration
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/07070231X
– volume: 39
  start-page: 297
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0090
  article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0132-1
– volume: 9
  start-page: 721
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109445_b0095
  article-title: Validation of patient-specific cerebral blood flow simulation using transcranial doppler measurements
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00721
– volume: 50
  start-page: 257
  year: 1998
  ident: 10.1016/j.jbiomech.2019.109445_b0140
  article-title: Intracarotid pressure measurements in the evaluation of a computer model of the cerebral circulation
  publication-title: Surg. Neurol.
  doi: 10.1016/S0090-3019(97)00416-3
– volume: 27
  start-page: 977
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0045
  article-title: Clinical application of image-based CFD for cerebral aneurysms
  publication-title: Int. J. Numer. Method. Biomed. Eng.
  doi: 10.1002/cnm.1373
– volume: 25
  start-page: 62
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109445_b0070
  article-title: Optimal branching of human arterial bifurcations
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-199001000-00016
– volume: 22
  start-page: 1078
  year: 1991
  ident: 10.1016/j.jbiomech.2019.109445_b0255
  article-title: Review of the variability of the territories of the major cerebral arteries
  publication-title: Stroke
  doi: 10.1161/01.STR.22.8.1078
– volume: 39
  start-page: 509
  year: 1977
  ident: 10.1016/j.jbiomech.2019.109445_b0250
  article-title: Optimization of diameters and bifurcation angles in lung and vascular tree structures
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(77)80054-2
– volume: 1313
  start-page: 62
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109445_b0040
  article-title: Branching patterns for arterioles and venules of the human cerebral cortex
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.12.007
– volume: 9
  start-page: 835
  year: 1926
  ident: 10.1016/j.jbiomech.2019.109445_b0175
  article-title: The physiological principle of minimum work applied to the angle of branching of arteries
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.9.6.835
– volume: 24
  start-page: 478
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109445_b0185
  article-title: The areas ratio of normal arterial junctions and its implications in pulse wave reflections
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/24.6.478
– volume: 276
  start-page: H257
  year: 1999
  ident: 10.1016/j.jbiomech.2019.109445_b0180
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Am. J. Physiol.
– volume: 15
  start-page: 155
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109445_b0145
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
– volume: 14
  start-page: 470
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109445_b0220
  article-title: Blood viscosity in microvessels: experiment and theory
  publication-title: Comptes Rendus. Phys.
  doi: 10.1016/j.crhy.2013.04.002
– volume: 5
  start-page: 29
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109445_b0120
  article-title: Computer simulation of vertebral artery occlusion in endovascular procedures
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-009-0379-x
– volume: 32
  start-page: 1552
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109445_b0025
  article-title: In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2546
– volume: 37
  start-page: 399
  year: 1980
  ident: 10.1016/j.jbiomech.2019.109445_b0100
  article-title: Branching coefficient (“area ratio”) of the human aortic bifurcation determined in distended specimens
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(80)90144-6
– volume: 106
  start-page: 291
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109445_b0010
  article-title: Evaluation of extracranial–intracranial bypass using quantitative magnetic resonance angiography
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2007.106.2.291
– volume: 13
  start-page: 1
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109445_b0035
  article-title: A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex
  publication-title: Microcirculation
  doi: 10.1080/10739680500383407
– volume: 7
  start-page: 123
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109445_b0170
  article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-123
– volume: 105
  start-page: 1852
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109445_b0245
  article-title: Impaired cerebral autoregulation in obstructive sleep apnea
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.90900.2008
SSID ssj0007479
Score 2.3968492
Snippet In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109445
SubjectTerms Aneurysms
Arteries
Asymmetry
Blood flow
Blood pressure
Blood vessels
Boundary conditions
Cerebral blood flow
Cerebrovascular diseases
Hemodynamics
Magnetic resonance imaging
Mathematical models
Mathematical morphology
Model accuracy
Modelling
Morphology
Patient-specific
Patients
Regression analysis
Software
Structured tree
Vascular diseases
Veins & arteries
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB7EB7l7OHT17tYfR4TDJ-s2bZo2j4soy4E-nbBvIUlTcNnrirdy-OLf7kyarnugeHCvbYam085kJvN9E4Dvypai8TJNqgbNTRgpExOYXGWZi0JJxS0lilfXcnIjfkyL6Qac91wYglVG39_59OCt45VR1Obo7vaWOL5obVQGVBj2qmxKDHZREqzv7OkF5oHhcoR58IRGr7GEZ2ezwHEPRQmuqLOSIFrT6wvUWwFoWIgut-FTjCDZuJvkDmz4dgC74xaz51-P7IQFTGfYLB_Ax7V2gwPYuoqF9F04HbPYUTUhriXhhZjz91RFnrMAZmfNfPGHhYNy9uDm8uLn-SSJByckThR8mbhS1FlqneKV9XXOC-ua1BSmrGyRFcbV3IkmV3nNvVHeCVOjVaemqVVu60q5_DNstovWfwXWSNnw3OMqXnoha2WFdKlVdGw6PsG6IRS9trSLXcXpcIu57uFjM91rWZOWdaflIYxWcnddX413Jcr-Y-ieNYp-TqPrf1dSrST_-rf-Sfaw_-46WvdvjVEopq2Z4vkQjle30S6p2GJav3igMQQgrDCbHMKX7n9ZvSjGbBh5Cb7_HxM7gA8Zpf60G5Qdwuby_sEfYXy0tN-CATwDe8wLHA
  priority: 102
  providerName: Elsevier
Title A patient-specific cerebral blood flow model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002192901930692X
https://dx.doi.org/10.1016/j.jbiomech.2019.109445
https://www.ncbi.nlm.nih.gov/pubmed/31708241
https://www.proquest.com/docview/2329242913
https://www.proquest.com/docview/2313658966
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8RSIwcDCwqq7gZE-LJQqedTjsnshDIqmFDiCR7m8xXD5u1i7DEePFvd950WjmgcOqhfW36Zt6b3_sG2Be6ZLXjaVLVXtyY4jxRoZKrLHNWCC6oRkPxfMonV-zLrJhFh9ttTKvsdGJQ1HZp0Ed-6E9-bypkguZH1z8SnBqF0dU4QmMNNrB1GRpf5aw3uLA3fEzxoImHAem9CuH5wTzUt4eABBXYVYlhSdPDh9O_wGc4hM624GVEj2TcLvc2PHPNAHbGjbecv_8iH0nI5wyO8gFs3ms1OIDn5zGIvgOfxiR2U02wzhJzhYhxNxhBXpCQyE7qxfInCUNyXsHV2em3k0kShyYkhhV0lZiS2SzVRtBKO5vTQps6VYUqK11khTKWGlbnIrfUKeEMU9ZLdKpqK3JtK2Hy17DeLBu3C6TmvKa58yd46Ri3QjNuUi1wZLr_gjZDKDpuSRM7iuNgi4XsUsfmsuOyRC7LlstDOOzprtueGo9SlN1iyK5i1Os46dX-o5Sip4yYosUKT6Ld69ZdRsm-lX_34RA-9Le9TGKgRTVueYfPYPJg5S3JIbxp90v_ox6vedTF6Nv_v_wdvMjQskdnT7YH66ubO_few5-VHsHawW86Cjt9BBvjz18nU389Pp1eXP4B5FMEwA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIkE5VLCFdqGAkYAToXHiOPGhQiug2tJuT620NxM7zmG1zZZ2q6ovxTMy48ShB6Bcek7GUcbjmW88fwBvlclF7WQcFTUeN1FKGZW-kivPU5EpqbghR3FyJMcn4ts0m67Az1ALQ2mVQSd6RV0tLN2R76DlR1chUTz9dPYjoqlRFF0NIzRasThw11fosl3s7n_B_X2XJHtfjz-Po26qQGRFxpeRzUWVxMYqXhhXpTwzto7LrMwLkyVZaStuRZ2qtOKuVM6KskKRj8u6UqmpCmVTXPce3EfDG1MKYT7tHTzqRd-llPAIYUd8oyJ59nHm6-l9AIQr6uIkqITqz8bwb2DXG729x7DeoVU2asXrCay4ZgAbowY99dNr9p75_FF_MT-ARzdaGw7gwaQL2m_AhxHrurdGVNdJuUnMunOKWM-ZT5xn9XxxxfxQnqdwcifsfAarzaJxW8BqKWueOkQMuROyUkZIGxtFI9rxC8YOIQvc0rbrYE6DNOY6pKrNdOCyJi7rlstD2OnpztoeHrdS5GEzdKhQRZ2q0czcSql6yg7DtNjkv2i3w77rTpNc6N9yP4Q3_WPUARTYKRu3uKR3KFmxQM91CJutvPQ_ivgQUZ7gz_-9-Gt4OD6eHOrD_aODF7CW0K0CXTQl27C6PL90LxF6Lc0rL-8Mvt_1AfsF644_rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlX0gMoW6EIBIwEnwsax8_ABoRVl1VJacaDS3kzsOIfVNtvHVlX_Gr-uM04cegDKpefsZJXxPL7xvADeKJPL2mVxVNSobrLMsqj0nVx5LmSqMsUNBYoHh9nukfw6Tacr8Cv0wlBZZbCJ3lBXC0t35CP0_BgqJIqLUd2VRXzfmXw6OY1ogxRlWsM6jVZE9t3VJYZv5x_3dvCs3ybJ5MuPz7tRt2EgsjLly8jmskpiYxUvjKsET42t4zIt88KkSVrailtZCyUq7krlrCwrFP-4rCslTFUoK_C99-B-LtBtoi7l0z7Yo7n0XXkJjxCCxDe6k2cfZr633idDuKKJTpLaqf7sGP8GfL0DnGzAww65snErao9gxTUD2Bw3GLUfX7F3zNeS-kv6AazfGHM4gLWDLoG_Ce_HrJvkGlGPJ9UpMevOKHs9Z76IntXzxSXzC3oew9GdsPMJrDaLxm0Bq7Os5sIhesidzCplZGZjo2hdO_6DsUNIA7e07aaZ01KNuQ5lazMduKyJy7rl8hBGPd1JO8_jVoo8HIYO3apoXzW6nFspVU_Z4ZkWp_wX7XY4d91ZlXP9WweG8Lp_jPaAkjxl4xYX9BsqXCwwih3C01Ze-g9FrIiIT_Jn_375K1hD1dLf9g73n8ODhC4Y6M4p2YbV5dmFe4EobGleenFn8POu9esaw1VD5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patient-specific+cerebral+blood+flow+model&rft.jtitle=Journal+of+biomechanics&rft.au=Jasper+HG+Helthuis&rft.au=Tristan+PC+van+Doormaal&rft.au=Amin-Hanjani%2C+Sepideh&rft.au=Du%2C+XinJian&rft.date=2020-01-02&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=98&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109445&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon