A patient-specific cerebral blood flow model
In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to...
Saved in:
Published in | Journal of biomechanics Vol. 98; p. 109445 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
02.01.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2019.109445 |
Cover
Loading…
Abstract | In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of −3% (interquartile range −36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed. |
---|---|
AbstractList | In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of −3% (interquartile range −36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed. In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed.In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R2 values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed. In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could aid these decisions. For certain cases, less accuracy is required and more simplistic models might be feasible. The current study is aiming to validate a patient-specific simplistic blood flow model in 20 healthy subjects. All subjects underwent MRI and Noninvasive Optimal Vessel Analysis (NOVA) to obtain patient-specific vascular morphology and flow measurements of all major cerebral arteries for validation. The mathematical model used was based on the Hagen-Poiseuille equations. Proximal boundary conditions were patient-specific blood pressure cuff measurements. For distal boundary conditions, a structured tree and a simple autoregulatory model were applied. Autoregulatory parameters were optimized based on the data of 10 additional healthy subjects. A median percentual flow difference of -3% (interquartile range -36% to 17%) was found. Regression analysis to an identity line resulted in R values of 0.71 for absolute flow values. Bland-Altman plots showed a bias (levels of agreement) of 5% (-70 to 80%) for absolute flow. Based on these results the model proved to be accurate within a range that might be feasible for use in clinic. Major limitations to the model arise from the simplifications made compared to the actual physiological situation and limitations in the validation method. As the model is validated in healthy subjects only, further validation in actual patients is needed. |
ArticleNumber | 109445 |
Author | van Doormaal, Tristan P.C. Amin-Hanjani, Sepideh Charbel, Fady T. Hillen, Berend Helthuis, Jasper H.G. van der Zwan, Albert Du, XinJian |
Author_xml | – sequence: 1 givenname: Jasper H.G. orcidid: 0000-0002-8382-5432 surname: Helthuis fullname: Helthuis, Jasper H.G. email: j.h.g.helthuis-2@umcutrecht.nl organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands – sequence: 2 givenname: Tristan P.C. surname: van Doormaal fullname: van Doormaal, Tristan P.C. organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands – sequence: 3 givenname: Sepideh surname: Amin-Hanjani fullname: Amin-Hanjani, Sepideh organization: Department of Neurosurgery, University of Illinois, Chicago, USA – sequence: 4 givenname: XinJian surname: Du fullname: Du, XinJian organization: Department of Neurosurgery, University of Illinois, Chicago, USA – sequence: 5 givenname: Fady T. surname: Charbel fullname: Charbel, Fady T. organization: Department of Neurosurgery, University of Illinois, Chicago, USA – sequence: 6 givenname: Berend surname: Hillen fullname: Hillen, Berend organization: Department of Anatomy, University Medical Center Nijmegen, Nijmegen, the Netherlands – sequence: 7 givenname: Albert surname: van der Zwan fullname: van der Zwan, Albert organization: Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31708241$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctqHDEQRUWwicdOfsE0eOOFe6JXPwQhxJi8wOBNshZSqZqoo26NpR4H_71lxrOZjb0SFOfeEqdOydEcZyTknNE1o6z9NK5H6-OE8HfNKVNlqKRs3pEV6ztRc9HTI7KilLNacUVPyGnOI6W0k516T04E62jPJVuRq-tqYxaP81LnDYIfPFSACW0yobIhRlcNIf6vpugwfCDHgwkZP768Z-TP92-_b37Wt3c_ft1c39YgG7bU0EnHqQXFeotOsMbCQE1jut42vDHgGMhBKOEYGoUgjeO8oWZwSljXKxBn5HLXu0nxfot50ZPPgCGYGeM2ay6YaJtetW1BLw7QMW7TXH5XKK645IqJQp2_UFs7odOb5CeTHvXeQwE-7wBIMeeEgwa_FC9xXpLxQTOqn7XrUe-162fteqe9xNuD-H7Dq8GvuyAWnQ8ek85QjgHofEJYtIv-9YovBxUQ_OzBhH_4-JaCJxjLs5U |
CitedBy_id | crossref_primary_10_1186_s12938_021_00880_w crossref_primary_10_1007_s12553_021_00530_0 crossref_primary_10_3390_jcm13092487 crossref_primary_10_1016_j_cmpb_2023_107956 crossref_primary_10_1080_21681163_2022_2074545 crossref_primary_10_3340_jkns_2023_0125 crossref_primary_10_1111_jon_13198 crossref_primary_10_3389_fneur_2023_1230402 crossref_primary_10_3390_jpm12061008 crossref_primary_10_1080_21681163_2022_2040054 crossref_primary_10_1115_1_4053943 crossref_primary_10_1142_S0218127421501352 crossref_primary_10_1016_j_compbiomed_2021_105040 crossref_primary_10_1007_s00701_022_05455_9 crossref_primary_10_3389_fbioe_2022_1031600 crossref_primary_10_3389_fbioe_2022_835347 |
Cites_doi | 10.1016/0021-9290(86)90151-X 10.1016/j.csda.2009.09.020 10.3389/fphys.2018.00681 10.1016/j.jcp.2012.04.038 10.1093/bioinformatics/btr390 10.1161/01.STR.24.12.1951 10.1136/heartjnl-2015-308044 10.1146/annurev.fl.25.010193.000245 10.1016/S0022-5193(05)80706-4 10.1085/jgp.72.6.837 10.1038/s41598-018-32427-w 10.3174/ajnr.A3558 10.1002/jmri.1880080608 10.1007/s00348-010-0985-y 10.3171/jns.2004.101.6.0977 10.1161/01.STR.24.3.371 10.1161/01.HYP.36.5.801 10.1227/NEU.0000000000001083 10.1016/S0730-725X(00)00157-0 10.1016/j.brainres.2006.08.021 10.1038/jcbfm.2014.203 10.1186/1475-925X-10-84 10.1161/01.RES.38.6.572 10.3174/ajnr.A0582 10.1002/cnm.1481 10.1111/j.1440-1681.2008.05010.x 10.1161/STROKEAHA.110.594168 10.1002/ar.23994 10.3174/ajnr.A2655 10.1161/01.CIR.0000144472.08647.40 10.1161/01.STR.0000166201.79222.4d 10.1137/07070231X 10.1007/s10439-010-0132-1 10.3389/fphys.2018.00721 10.1016/S0090-3019(97)00416-3 10.1002/cnm.1373 10.1097/00004424-199001000-00016 10.1161/01.STR.22.8.1078 10.1016/S0092-8240(77)80054-2 10.1016/j.brainres.2009.12.007 10.1085/jgp.9.6.835 10.1093/cvr/24.6.478 10.1016/j.jcm.2016.02.012 10.1016/j.crhy.2013.04.002 10.1007/s11548-009-0379-x 10.3174/ajnr.A2546 10.1016/0021-9150(80)90144-6 10.3171/jns.2007.106.2.291 10.1080/10739680500383407 10.1186/1471-2105-7-123 10.1152/japplphysiol.90900.2008 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. Copyright Elsevier Limited Jan 2, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: Copyright Elsevier Limited Jan 2, 2020 |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2019.109445 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest research library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 31708241 10_1016_j_jbiomech_2019_109445 S002192901930692X |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-c74d20bc918bed315bcf0a5a78b525acd1c4f393d1ea9ec4ad2250afd93bd89c3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 14:05:54 EDT 2025 Wed Aug 13 04:33:47 EDT 2025 Wed Feb 19 02:32:17 EST 2025 Tue Jul 01 00:44:15 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 23 02:47:00 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structured tree Modelling Hemodynamics Patient-specific Cerebral blood flow |
Language | English |
License | Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-c74d20bc918bed315bcf0a5a78b525acd1c4f393d1ea9ec4ad2250afd93bd89c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8382-5432 |
PMID | 31708241 |
PQID | 2329242913 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2313658966 proquest_journals_2329242913 pubmed_primary_31708241 crossref_citationtrail_10_1016_j_jbiomech_2019_109445 crossref_primary_10_1016_j_jbiomech_2019_109445 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109445 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Meng, Tutino, Xiang, Siddiqui (b0160) 2014; 35 Cassot, Lauwers, Fouard, Prohaska, Lauwers-Cances (b0035) 2006; 13 Ho, Mithraratne, Schmid, Sands, Hunter (b0120) 2010; 5 Secomb, Pries (b0220) 2013; 14 Immink, van den Born, van Montfrans, Koopmans, Karemaker, van Lieshout (b0135) 2004; 110 Cassot, Lauwers, Lorthois, Puwanarajah, Cances-Lauwers, Duvernoy (b0040) 2010; 1313 Amin-Hanjani, Du, Pandey, Thulborn, Charbel (b0005) 2015; 35 Brosig, Kowarschik, Maday, Katouzian, Demirci, Navab (b0020) 2014 Amin-Hanjani, Shin, Zhao, Du, Charbel (b0010) 2007; 106 Papageorgiou, Jones, Redding, Hudson (b0185) 1990; 24 Sforza, Putman, Cebral (b0235) 2012 Cousins, Gremaud (b0060) 2012; 231 Can, Du (b0030) 2016; 78 Seo, Eslami, Caplan, Tamargo, Mittal (b0225) 2018; 9 Zhao, Charbel, Alperin, Loth, Clark (b0275) 2000; 18 DeVault, Gremaud, Novak, Olufsen, Vernières, Zhao (b0065) 2008; 7 Grinberg, Cheever, Anor, Madsen, Karniadakis (b0090) 2011; 39 Aries, Elting, De Keyser, Kremer, Vroomen (b0015) 2010; 41 Grinberg, Anor, Madsen, Yakhot, Karniadakis (b0085) 2009; 36 Calderon-Arnulphi, Amin-Hanjani, Alaraj, Zhao, Du, Ruland, Zhou, Thulborn, Charbel (b0025) 2011; 32 Longair, Baker, Armstrong (b0155) 2011; 27 Uylings (b0250) 1977; 39 Sesso, Stampfer, Rosner, Hennekens, Gaziano, Manson, Glynn (b0230) 2000; 36 Zhao, Amin-Hanjani, Ruland, Curcio, Ostergren, Charbel (b0270) 2007; 28 Cebral, Mut, Sforza, Löhner, Scrivano, Lylyk, Putman (b0045) 2011; 27 Sutera, Skalak (b0240) 1993; 25 Hoogeveen, Bakker, Viergever (b0125) 1998; 8 Qian, Takao, Umezu, Murayama (b0205) 2011; 32 Charbel, F.T., Zhao, M., Amin-Hanjani, S., Hoffman, W., Du, X., Clark, M.E., 2004. A patient-specific computer model to predict outcomes of the balloon occlusion test., Journal of neurosurgery. S. Amin-Hanjani, Neuropsychiatric Institute, Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, United States. https://doi.org/10.3171/jns.2004.101.6.0977. Garcia (b0080) 2010; 54 Roessler, Reith, Siegel (b0210) 2006; 1118 Kailasnath, Dickey, Gahbauer, Nunes, Beckman, Chaloupka (b0140) 1998; 50 Hutchins, Miner, Boitnott (b0130) 1976; 38 van der Zwan, Hillen, Tulleken, Dujovny (b0260) 1993; 24 Rossitti, Löfgren (b0215) 1993; 24 Helthuis, J.H.G., van Doormaal, T.P.C., Hillen, B., Bleys, R.L.A.W., Harteveld, A.A., Hendrikse, J., van der Toorn, A., Brozici, M., Zwanenburg, J.J.M., van der Zwan, A., 2018b. Branching Pattern of the Cerebral Arterial Tree. Anat. Rec. https://doi.org/10.1002/ar.23994 Morris, Narracott, von Tengg-Kobligk, Silva Soto, Hsiao, Lungu, Evans, Bressloff, Lawford, Hose, Gunn (b0165) 2016; 102 Olufsen (b0180) 1999; 276 Groen, Richardson, Coy, Schiller, Chandrashekar, Robertson, Coveney (b0095) 2018; 9 Urbano, Roux, Schindler, Mohsenin (b0245) 2008; 105 Murray (b0175) 1926; 9 Cebral, Vazquez, Sforza, Houzeaux, Tateshima, Scrivano, Bleise, Lylyk, Putman (b0050) 2015; 1–7 Paulson, Strandgaard, Edvinsson (b0190) 1990; 2 Hillen, Hoogstraten, Post (b0115) 1986; 19 van der Zwan, Hillen (b0255) 1991; 22 Motulsky, Brown (b0170) 2006; 7 Fanucci, Orlacchio, Pocek, Magrini, Salomoni (b0070) 1990; 25 Hardy-Stashin, Meyer, Kauffman (b0100) 1980; 37 Koo, Li (b0145) 2016; 15 Helthuis, van der Zwan, van Doormaal, Bleys, Harteveld, van der Toorn, Brozici, Hendrikse, Zwanenburg (b0105) 2018; 8 Garcia (b0075) 2011; 50 Liang, Fukasaku, Liu, Takagi (b0150) 2011; 10 Paultre, Mosca (b0195) 2005; 36 Pollanen (b0200) 1992; 159 Zamir (b0265) 1978; 72 Olufsen (10.1016/j.jbiomech.2019.109445_b0180) 1999; 276 Sutera (10.1016/j.jbiomech.2019.109445_b0240) 1993; 25 Helthuis (10.1016/j.jbiomech.2019.109445_b0105) 2018; 8 Paulson (10.1016/j.jbiomech.2019.109445_b0190) 1990; 2 Grinberg (10.1016/j.jbiomech.2019.109445_b0090) 2011; 39 Calderon-Arnulphi (10.1016/j.jbiomech.2019.109445_b0025) 2011; 32 Hillen (10.1016/j.jbiomech.2019.109445_b0115) 1986; 19 Garcia (10.1016/j.jbiomech.2019.109445_b0075) 2011; 50 Pollanen (10.1016/j.jbiomech.2019.109445_b0200) 1992; 159 van der Zwan (10.1016/j.jbiomech.2019.109445_b0260) 1993; 24 Motulsky (10.1016/j.jbiomech.2019.109445_b0170) 2006; 7 10.1016/j.jbiomech.2019.109445_b0055 Garcia (10.1016/j.jbiomech.2019.109445_b0080) 2010; 54 Cebral (10.1016/j.jbiomech.2019.109445_b0050) 2015; 1–7 Longair (10.1016/j.jbiomech.2019.109445_b0155) 2011; 27 Secomb (10.1016/j.jbiomech.2019.109445_b0220) 2013; 14 Amin-Hanjani (10.1016/j.jbiomech.2019.109445_b0005) 2015; 35 Zamir (10.1016/j.jbiomech.2019.109445_b0265) 1978; 72 Uylings (10.1016/j.jbiomech.2019.109445_b0250) 1977; 39 Sforza (10.1016/j.jbiomech.2019.109445_b0235) 2012 Zhao (10.1016/j.jbiomech.2019.109445_b0275) 2000; 18 Qian (10.1016/j.jbiomech.2019.109445_b0205) 2011; 32 Seo (10.1016/j.jbiomech.2019.109445_b0225) 2018; 9 Groen (10.1016/j.jbiomech.2019.109445_b0095) 2018; 9 Can (10.1016/j.jbiomech.2019.109445_b0030) 2016; 78 Urbano (10.1016/j.jbiomech.2019.109445_b0245) 2008; 105 Paultre (10.1016/j.jbiomech.2019.109445_b0195) 2005; 36 Hutchins (10.1016/j.jbiomech.2019.109445_b0130) 1976; 38 Hardy-Stashin (10.1016/j.jbiomech.2019.109445_b0100) 1980; 37 van der Zwan (10.1016/j.jbiomech.2019.109445_b0255) 1991; 22 Amin-Hanjani (10.1016/j.jbiomech.2019.109445_b0010) 2007; 106 Cassot (10.1016/j.jbiomech.2019.109445_b0040) 2010; 1313 Meng (10.1016/j.jbiomech.2019.109445_b0160) 2014; 35 Rossitti (10.1016/j.jbiomech.2019.109445_b0215) 1993; 24 Sesso (10.1016/j.jbiomech.2019.109445_b0230) 2000; 36 Cassot (10.1016/j.jbiomech.2019.109445_b0035) 2006; 13 10.1016/j.jbiomech.2019.109445_b0110 Ho (10.1016/j.jbiomech.2019.109445_b0120) 2010; 5 Zhao (10.1016/j.jbiomech.2019.109445_b0270) 2007; 28 Morris (10.1016/j.jbiomech.2019.109445_b0165) 2016; 102 Murray (10.1016/j.jbiomech.2019.109445_b0175) 1926; 9 Fanucci (10.1016/j.jbiomech.2019.109445_b0070) 1990; 25 Kailasnath (10.1016/j.jbiomech.2019.109445_b0140) 1998; 50 Papageorgiou (10.1016/j.jbiomech.2019.109445_b0185) 1990; 24 Brosig (10.1016/j.jbiomech.2019.109445_b0020) 2014 Koo (10.1016/j.jbiomech.2019.109445_b0145) 2016; 15 Grinberg (10.1016/j.jbiomech.2019.109445_b0085) 2009; 36 Hoogeveen (10.1016/j.jbiomech.2019.109445_b0125) 1998; 8 Cousins (10.1016/j.jbiomech.2019.109445_b0060) 2012; 231 Immink (10.1016/j.jbiomech.2019.109445_b0135) 2004; 110 DeVault (10.1016/j.jbiomech.2019.109445_b0065) 2008; 7 Liang (10.1016/j.jbiomech.2019.109445_b0150) 2011; 10 Aries (10.1016/j.jbiomech.2019.109445_b0015) 2010; 41 Roessler (10.1016/j.jbiomech.2019.109445_b0210) 2006; 1118 Cebral (10.1016/j.jbiomech.2019.109445_b0045) 2011; 27 |
References_xml | – volume: 9 start-page: 721 year: 2018 ident: b0095 article-title: Validation of patient-specific cerebral blood flow simulation using transcranial doppler measurements publication-title: Front. Physiol. – volume: 24 start-page: 371 year: 1993 end-page: 377 ident: b0215 article-title: Vascular dimensions of the cerebral arteries follow the principle of minimum work publication-title: Stroke – volume: 35 start-page: 1254 year: 2014 end-page: 1262 ident: b0160 article-title: High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis publication-title: AJNR. Am. J. Neuroradiol. – volume: 276 start-page: H257 year: 1999 end-page: H268 ident: b0180 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am. J. Physiol. – year: 2012 ident: b0235 article-title: Computational fluid dynamics in brain aneurysms publication-title: Int. J. Numer. Method. Biomed. Eng. – volume: 7 start-page: 888 year: 2008 end-page: 909 ident: b0065 article-title: blood flow in the circle of willis: modeling and calibration publication-title: Multiscale Model. Simul. – volume: 24 start-page: 1951 year: 1993 end-page: 1959 ident: b0260 article-title: A quantitative investigation of the variability of the major cerebral arterial territories publication-title: Stroke – volume: 41 start-page: 2697 year: 2010 end-page: 2704 ident: b0015 article-title: Cerebral autoregulation in stroke: a review of transcranial doppler studies publication-title: Stroke – reference: Charbel, F.T., Zhao, M., Amin-Hanjani, S., Hoffman, W., Du, X., Clark, M.E., 2004. A patient-specific computer model to predict outcomes of the balloon occlusion test., Journal of neurosurgery. S. Amin-Hanjani, Neuropsychiatric Institute, Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, United States. https://doi.org/10.3171/jns.2004.101.6.0977. – volume: 110 start-page: 2241 year: 2004 end-page: 2245 ident: b0135 article-title: Impaired cerebral autoregulation in patients with malignant hypertension publication-title: Circulation – volume: 27 start-page: 977 year: 2011 end-page: 992 ident: b0045 article-title: Clinical application of image-based CFD for cerebral aneurysms publication-title: Int. J. Numer. Method. Biomed. Eng. – volume: 25 start-page: 1 year: 1993 end-page: 20 ident: b0240 article-title: The history of Poiseuille’s law publication-title: Annu. Rev. Fluid Mech. – volume: 1–7 year: 2015 ident: b0050 article-title: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture publication-title: J. Neurointerv. Surg. – volume: 10 start-page: 84 year: 2011 ident: b0150 article-title: A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery publication-title: Biomed. Eng. Online – volume: 15 start-page: 155 year: 2016 end-page: 163 ident: b0145 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. – volume: 18 start-page: 697 year: 2000 end-page: 706 ident: b0275 article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization publication-title: Magn. Reson. Imag. – volume: 7 start-page: 123 year: 2006 ident: b0170 article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate publication-title: BMC Bioinf. – start-page: 90342R year: 2014 ident: b0020 article-title: Blood flow quantification using 1D CFD parameter identification publication-title: MEDICAL IMAGING 2014: IMAGE PROCESSING, Proceedings of SPIE – volume: 32 start-page: 1552 year: 2011 end-page: 1559 ident: b0025 article-title: In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model publication-title: Am. J. Neuroradiol. – volume: 38 start-page: 572 year: 1976 end-page: 576 ident: b0130 article-title: Vessel caliber and branch-angle of human coronary artery branch-points publication-title: Circ. Res. – volume: 2 start-page: 161 year: 1990 end-page: 192 ident: b0190 article-title: Cerebral autoregulation publication-title: Cerebrovasc. Brain Metab. Rev. – volume: 1118 start-page: 183 year: 2006 end-page: 191 ident: b0210 article-title: Simulation of cerebral hemodynamics for preoperative risk assessment publication-title: Brain Res. – volume: 19 start-page: 187 year: 1986 end-page: 194 ident: b0115 article-title: A mathematical model of the flow in the circle of Willis publication-title: J. Biomech. – volume: 105 start-page: 1852 year: 2008 end-page: 1857 ident: b0245 article-title: Impaired cerebral autoregulation in obstructive sleep apnea publication-title: J. Appl. Physiol. – volume: 54 start-page: 1167 year: 2010 end-page: 1178 ident: b0080 article-title: Robust smoothing of gridded data in one and higher dimensions with missing values publication-title: Comput. Stat. Data Anal. – volume: 78 start-page: 510 year: 2016 end-page: 520 ident: b0030 article-title: Association of hemodynamic factors with intracranial aneurysm formation and rupture publication-title: Neurosurgery – volume: 32 start-page: 1948 year: 2011 end-page: 1955 ident: b0205 article-title: Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results publication-title: AJNR. Am. J. Neuroradiol. – volume: 22 start-page: 1078 year: 1991 end-page: 1084 ident: b0255 article-title: Review of the variability of the territories of the major cerebral arteries publication-title: Stroke – volume: 102 start-page: 18 year: 2016 end-page: 28 ident: b0165 article-title: Computational fluid dynamics modelling in cardiovascular medicine publication-title: Heart – volume: 9 start-page: 681 year: 2018 ident: b0225 article-title: A highly automated computational method for modeling of intracranial aneurysm hemodynamics publication-title: Front. Physiol. – reference: Helthuis, J.H.G., van Doormaal, T.P.C., Hillen, B., Bleys, R.L.A.W., Harteveld, A.A., Hendrikse, J., van der Toorn, A., Brozici, M., Zwanenburg, J.J.M., van der Zwan, A., 2018b. Branching Pattern of the Cerebral Arterial Tree. Anat. Rec. https://doi.org/10.1002/ar.23994 – volume: 231 start-page: 6086 year: 2012 end-page: 6096 ident: b0060 article-title: Boundary conditions for hemodynamics: the structured tree revisited publication-title: J. Comput. Phys. – volume: 36 start-page: 801 year: 2000 end-page: 807 ident: b0230 article-title: Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men publication-title: Hypertension – volume: 14 start-page: 470 year: 2013 end-page: 478 ident: b0220 article-title: Blood viscosity in microvessels: experiment and theory publication-title: Comptes Rendus. Phys. – volume: 159 start-page: 267 year: 1992 end-page: 270 ident: b0200 article-title: Dimensional optimization at different levels of the arterial hierarchy publication-title: J. Theor. Biol. – volume: 50 start-page: 1247 year: 2011 end-page: 1259 ident: b0075 article-title: A fast all-in-one method for automated post-processing of PIV data publication-title: Exp. Fluids – volume: 72 start-page: 837 year: 1978 end-page: 845 ident: b0265 article-title: Nonsymmetrical bifurcations in arterial branching publication-title: J. Gen. Physiol. – volume: 25 start-page: 62 year: 1990 end-page: 66 ident: b0070 article-title: Optimal branching of human arterial bifurcations publication-title: Invest. Radiol. – volume: 27 start-page: 2453 year: 2011 end-page: 2454 ident: b0155 article-title: Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes publication-title: Bioinformatics – volume: 13 start-page: 1 year: 2006 end-page: 18 ident: b0035 article-title: A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex publication-title: Microcirculation – volume: 37 start-page: 399 year: 1980 end-page: 402 ident: b0100 article-title: Branching coefficient (“area ratio”) of the human aortic bifurcation determined in distended specimens publication-title: Atherosclerosis – volume: 39 start-page: 509 year: 1977 end-page: 520 ident: b0250 article-title: Optimization of diameters and bifurcation angles in lung and vascular tree structures publication-title: Bull. Math. Biol. – volume: 8 year: 2018 ident: b0105 article-title: High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry publication-title: Sci. Rep. – volume: 8 start-page: 1228 year: 1998 end-page: 1235 ident: b0125 article-title: Limits to the accuracy of vessel diameter measurement in MR angiography publication-title: J. Magn. Reson. Imag. – volume: 1313 start-page: 62 year: 2010 end-page: 78 ident: b0040 article-title: Branching patterns for arterioles and venules of the human cerebral cortex publication-title: Brain Res. – volume: 5 start-page: 29 year: 2010 end-page: 37 ident: b0120 article-title: Computer simulation of vertebral artery occlusion in endovascular procedures publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 36 start-page: 194 year: 2009 end-page: 205 ident: b0085 article-title: Large-scale simulation of the human arterial tree publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 36 start-page: 1288 year: 2005 end-page: 1290 ident: b0195 article-title: Association of blood pressure indices and stroke mortality in isolated systolic hypertension publication-title: Stroke – volume: 106 start-page: 291 year: 2007 end-page: 298 ident: b0010 article-title: Evaluation of extracranial–intracranial bypass using quantitative magnetic resonance angiography publication-title: J. Neurosurg. – volume: 50 start-page: 257 year: 1998 end-page: 263 ident: b0140 article-title: Intracarotid pressure measurements in the evaluation of a computer model of the cerebral circulation publication-title: Surg. Neurol. – volume: 35 start-page: 312 year: 2015 end-page: 318 ident: b0005 article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels publication-title: J. Cereb. Blood Flow Metab. – volume: 39 start-page: 297 year: 2011 end-page: 309 ident: b0090 article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study publication-title: Ann. Biomed. Eng. – volume: 9 start-page: 835 year: 1926 end-page: 841 ident: b0175 article-title: The physiological principle of minimum work applied to the angle of branching of arteries publication-title: J. Gen. Physiol. – volume: 28 start-page: 1470 year: 2007 end-page: 1473 ident: b0270 article-title: Regional cerebral blood flow using quantitative MR angiography publication-title: Am. J. Neuroradiol. – volume: 24 start-page: 478 year: 1990 end-page: 484 ident: b0185 article-title: The areas ratio of normal arterial junctions and its implications in pulse wave reflections publication-title: Cardiovasc. Res. – start-page: 90342R year: 2014 ident: 10.1016/j.jbiomech.2019.109445_b0020 article-title: Blood flow quantification using 1D CFD parameter identification – volume: 19 start-page: 187 year: 1986 ident: 10.1016/j.jbiomech.2019.109445_b0115 article-title: A mathematical model of the flow in the circle of Willis publication-title: J. Biomech. doi: 10.1016/0021-9290(86)90151-X – volume: 54 start-page: 1167 year: 2010 ident: 10.1016/j.jbiomech.2019.109445_b0080 article-title: Robust smoothing of gridded data in one and higher dimensions with missing values publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.09.020 – volume: 9 start-page: 681 year: 2018 ident: 10.1016/j.jbiomech.2019.109445_b0225 article-title: A highly automated computational method for modeling of intracranial aneurysm hemodynamics publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00681 – volume: 231 start-page: 6086 year: 2012 ident: 10.1016/j.jbiomech.2019.109445_b0060 article-title: Boundary conditions for hemodynamics: the structured tree revisited publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.038 – volume: 27 start-page: 2453 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0155 article-title: Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr390 – volume: 24 start-page: 1951 year: 1993 ident: 10.1016/j.jbiomech.2019.109445_b0260 article-title: A quantitative investigation of the variability of the major cerebral arterial territories publication-title: Stroke doi: 10.1161/01.STR.24.12.1951 – volume: 102 start-page: 18 year: 2016 ident: 10.1016/j.jbiomech.2019.109445_b0165 article-title: Computational fluid dynamics modelling in cardiovascular medicine publication-title: Heart doi: 10.1136/heartjnl-2015-308044 – volume: 25 start-page: 1 year: 1993 ident: 10.1016/j.jbiomech.2019.109445_b0240 article-title: The history of Poiseuille’s law publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.000245 – volume: 159 start-page: 267 year: 1992 ident: 10.1016/j.jbiomech.2019.109445_b0200 article-title: Dimensional optimization at different levels of the arterial hierarchy publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(05)80706-4 – volume: 72 start-page: 837 year: 1978 ident: 10.1016/j.jbiomech.2019.109445_b0265 article-title: Nonsymmetrical bifurcations in arterial branching publication-title: J. Gen. Physiol. doi: 10.1085/jgp.72.6.837 – volume: 8 year: 2018 ident: 10.1016/j.jbiomech.2019.109445_b0105 article-title: High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry publication-title: Sci. Rep. doi: 10.1038/s41598-018-32427-w – volume: 35 start-page: 1254 year: 2014 ident: 10.1016/j.jbiomech.2019.109445_b0160 article-title: High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis publication-title: AJNR. Am. J. Neuroradiol. doi: 10.3174/ajnr.A3558 – volume: 8 start-page: 1228 year: 1998 ident: 10.1016/j.jbiomech.2019.109445_b0125 article-title: Limits to the accuracy of vessel diameter measurement in MR angiography publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.1880080608 – volume: 50 start-page: 1247 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0075 article-title: A fast all-in-one method for automated post-processing of PIV data publication-title: Exp. Fluids doi: 10.1007/s00348-010-0985-y – ident: 10.1016/j.jbiomech.2019.109445_b0055 doi: 10.3171/jns.2004.101.6.0977 – volume: 24 start-page: 371 year: 1993 ident: 10.1016/j.jbiomech.2019.109445_b0215 article-title: Vascular dimensions of the cerebral arteries follow the principle of minimum work publication-title: Stroke doi: 10.1161/01.STR.24.3.371 – volume: 36 start-page: 801 year: 2000 ident: 10.1016/j.jbiomech.2019.109445_b0230 article-title: Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men publication-title: Hypertension doi: 10.1161/01.HYP.36.5.801 – volume: 78 start-page: 510 year: 2016 ident: 10.1016/j.jbiomech.2019.109445_b0030 article-title: Association of hemodynamic factors with intracranial aneurysm formation and rupture publication-title: Neurosurgery doi: 10.1227/NEU.0000000000001083 – volume: 18 start-page: 697 year: 2000 ident: 10.1016/j.jbiomech.2019.109445_b0275 article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization publication-title: Magn. Reson. Imag. doi: 10.1016/S0730-725X(00)00157-0 – volume: 1118 start-page: 183 year: 2006 ident: 10.1016/j.jbiomech.2019.109445_b0210 article-title: Simulation of cerebral hemodynamics for preoperative risk assessment publication-title: Brain Res. doi: 10.1016/j.brainres.2006.08.021 – volume: 35 start-page: 312 year: 2015 ident: 10.1016/j.jbiomech.2019.109445_b0005 article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.203 – volume: 10 start-page: 84 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0150 article-title: A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-10-84 – volume: 38 start-page: 572 year: 1976 ident: 10.1016/j.jbiomech.2019.109445_b0130 article-title: Vessel caliber and branch-angle of human coronary artery branch-points publication-title: Circ. Res. doi: 10.1161/01.RES.38.6.572 – volume: 28 start-page: 1470 year: 2007 ident: 10.1016/j.jbiomech.2019.109445_b0270 article-title: Regional cerebral blood flow using quantitative MR angiography publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A0582 – year: 2012 ident: 10.1016/j.jbiomech.2019.109445_b0235 article-title: Computational fluid dynamics in brain aneurysms publication-title: Int. J. Numer. Method. Biomed. Eng. doi: 10.1002/cnm.1481 – volume: 36 start-page: 194 year: 2009 ident: 10.1016/j.jbiomech.2019.109445_b0085 article-title: Large-scale simulation of the human arterial tree publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2008.05010.x – volume: 41 start-page: 2697 year: 2010 ident: 10.1016/j.jbiomech.2019.109445_b0015 article-title: Cerebral autoregulation in stroke: a review of transcranial doppler studies publication-title: Stroke doi: 10.1161/STROKEAHA.110.594168 – ident: 10.1016/j.jbiomech.2019.109445_b0110 doi: 10.1002/ar.23994 – volume: 32 start-page: 1948 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0205 article-title: Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results publication-title: AJNR. Am. J. Neuroradiol. doi: 10.3174/ajnr.A2655 – volume: 110 start-page: 2241 year: 2004 ident: 10.1016/j.jbiomech.2019.109445_b0135 article-title: Impaired cerebral autoregulation in patients with malignant hypertension publication-title: Circulation doi: 10.1161/01.CIR.0000144472.08647.40 – volume: 36 start-page: 1288 year: 2005 ident: 10.1016/j.jbiomech.2019.109445_b0195 article-title: Association of blood pressure indices and stroke mortality in isolated systolic hypertension publication-title: Stroke doi: 10.1161/01.STR.0000166201.79222.4d – volume: 2 start-page: 161 year: 1990 ident: 10.1016/j.jbiomech.2019.109445_b0190 article-title: Cerebral autoregulation publication-title: Cerebrovasc. Brain Metab. Rev. – volume: 1–7 year: 2015 ident: 10.1016/j.jbiomech.2019.109445_b0050 article-title: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture publication-title: J. Neurointerv. Surg. – volume: 7 start-page: 888 year: 2008 ident: 10.1016/j.jbiomech.2019.109445_b0065 article-title: blood flow in the circle of willis: modeling and calibration publication-title: Multiscale Model. Simul. doi: 10.1137/07070231X – volume: 39 start-page: 297 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0090 article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0132-1 – volume: 9 start-page: 721 year: 2018 ident: 10.1016/j.jbiomech.2019.109445_b0095 article-title: Validation of patient-specific cerebral blood flow simulation using transcranial doppler measurements publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00721 – volume: 50 start-page: 257 year: 1998 ident: 10.1016/j.jbiomech.2019.109445_b0140 article-title: Intracarotid pressure measurements in the evaluation of a computer model of the cerebral circulation publication-title: Surg. Neurol. doi: 10.1016/S0090-3019(97)00416-3 – volume: 27 start-page: 977 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0045 article-title: Clinical application of image-based CFD for cerebral aneurysms publication-title: Int. J. Numer. Method. Biomed. Eng. doi: 10.1002/cnm.1373 – volume: 25 start-page: 62 year: 1990 ident: 10.1016/j.jbiomech.2019.109445_b0070 article-title: Optimal branching of human arterial bifurcations publication-title: Invest. Radiol. doi: 10.1097/00004424-199001000-00016 – volume: 22 start-page: 1078 year: 1991 ident: 10.1016/j.jbiomech.2019.109445_b0255 article-title: Review of the variability of the territories of the major cerebral arteries publication-title: Stroke doi: 10.1161/01.STR.22.8.1078 – volume: 39 start-page: 509 year: 1977 ident: 10.1016/j.jbiomech.2019.109445_b0250 article-title: Optimization of diameters and bifurcation angles in lung and vascular tree structures publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(77)80054-2 – volume: 1313 start-page: 62 year: 2010 ident: 10.1016/j.jbiomech.2019.109445_b0040 article-title: Branching patterns for arterioles and venules of the human cerebral cortex publication-title: Brain Res. doi: 10.1016/j.brainres.2009.12.007 – volume: 9 start-page: 835 year: 1926 ident: 10.1016/j.jbiomech.2019.109445_b0175 article-title: The physiological principle of minimum work applied to the angle of branching of arteries publication-title: J. Gen. Physiol. doi: 10.1085/jgp.9.6.835 – volume: 24 start-page: 478 year: 1990 ident: 10.1016/j.jbiomech.2019.109445_b0185 article-title: The areas ratio of normal arterial junctions and its implications in pulse wave reflections publication-title: Cardiovasc. Res. doi: 10.1093/cvr/24.6.478 – volume: 276 start-page: H257 year: 1999 ident: 10.1016/j.jbiomech.2019.109445_b0180 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am. J. Physiol. – volume: 15 start-page: 155 year: 2016 ident: 10.1016/j.jbiomech.2019.109445_b0145 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 – volume: 14 start-page: 470 year: 2013 ident: 10.1016/j.jbiomech.2019.109445_b0220 article-title: Blood viscosity in microvessels: experiment and theory publication-title: Comptes Rendus. Phys. doi: 10.1016/j.crhy.2013.04.002 – volume: 5 start-page: 29 year: 2010 ident: 10.1016/j.jbiomech.2019.109445_b0120 article-title: Computer simulation of vertebral artery occlusion in endovascular procedures publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-009-0379-x – volume: 32 start-page: 1552 year: 2011 ident: 10.1016/j.jbiomech.2019.109445_b0025 article-title: In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2546 – volume: 37 start-page: 399 year: 1980 ident: 10.1016/j.jbiomech.2019.109445_b0100 article-title: Branching coefficient (“area ratio”) of the human aortic bifurcation determined in distended specimens publication-title: Atherosclerosis doi: 10.1016/0021-9150(80)90144-6 – volume: 106 start-page: 291 year: 2007 ident: 10.1016/j.jbiomech.2019.109445_b0010 article-title: Evaluation of extracranial–intracranial bypass using quantitative magnetic resonance angiography publication-title: J. Neurosurg. doi: 10.3171/jns.2007.106.2.291 – volume: 13 start-page: 1 year: 2006 ident: 10.1016/j.jbiomech.2019.109445_b0035 article-title: A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex publication-title: Microcirculation doi: 10.1080/10739680500383407 – volume: 7 start-page: 123 year: 2006 ident: 10.1016/j.jbiomech.2019.109445_b0170 article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-123 – volume: 105 start-page: 1852 year: 2008 ident: 10.1016/j.jbiomech.2019.109445_b0245 article-title: Impaired cerebral autoregulation in obstructive sleep apnea publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.90900.2008 |
SSID | ssj0007479 |
Score | 2.3968492 |
Snippet | In clinical practice, many complex choices in treatment of complex cerebrovascular diseases have to be made. A patient-specific mathematical blood flow could... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109445 |
SubjectTerms | Aneurysms Arteries Asymmetry Blood flow Blood pressure Blood vessels Boundary conditions Cerebral blood flow Cerebrovascular diseases Hemodynamics Magnetic resonance imaging Mathematical models Mathematical morphology Model accuracy Modelling Morphology Patient-specific Patients Regression analysis Software Structured tree Vascular diseases Veins & arteries |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB7EB7l7OHT17tYfR4TDJ-s2bZo2j4soy4E-nbBvIUlTcNnrirdy-OLf7kyarnugeHCvbYam085kJvN9E4Dvypai8TJNqgbNTRgpExOYXGWZi0JJxS0lilfXcnIjfkyL6Qac91wYglVG39_59OCt45VR1Obo7vaWOL5obVQGVBj2qmxKDHZREqzv7OkF5oHhcoR58IRGr7GEZ2ezwHEPRQmuqLOSIFrT6wvUWwFoWIgut-FTjCDZuJvkDmz4dgC74xaz51-P7IQFTGfYLB_Ax7V2gwPYuoqF9F04HbPYUTUhriXhhZjz91RFnrMAZmfNfPGHhYNy9uDm8uLn-SSJByckThR8mbhS1FlqneKV9XXOC-ua1BSmrGyRFcbV3IkmV3nNvVHeCVOjVaemqVVu60q5_DNstovWfwXWSNnw3OMqXnoha2WFdKlVdGw6PsG6IRS9trSLXcXpcIu57uFjM91rWZOWdaflIYxWcnddX413Jcr-Y-ieNYp-TqPrf1dSrST_-rf-Sfaw_-46WvdvjVEopq2Z4vkQjle30S6p2GJav3igMQQgrDCbHMKX7n9ZvSjGbBh5Cb7_HxM7gA8Zpf60G5Qdwuby_sEfYXy0tN-CATwDe8wLHA priority: 102 providerName: Elsevier |
Title | A patient-specific cerebral blood flow model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S002192901930692X https://dx.doi.org/10.1016/j.jbiomech.2019.109445 https://www.ncbi.nlm.nih.gov/pubmed/31708241 https://www.proquest.com/docview/2329242913 https://www.proquest.com/docview/2313658966 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8RSIwcDCwqq7gZE-LJQqedTjsnshDIqmFDiCR7m8xXD5u1i7DEePFvd950WjmgcOqhfW36Zt6b3_sG2Be6ZLXjaVLVXtyY4jxRoZKrLHNWCC6oRkPxfMonV-zLrJhFh9ttTKvsdGJQ1HZp0Ed-6E9-bypkguZH1z8SnBqF0dU4QmMNNrB1GRpf5aw3uLA3fEzxoImHAem9CuH5wTzUt4eABBXYVYlhSdPDh9O_wGc4hM624GVEj2TcLvc2PHPNAHbGjbecv_8iH0nI5wyO8gFs3ms1OIDn5zGIvgOfxiR2U02wzhJzhYhxNxhBXpCQyE7qxfInCUNyXsHV2em3k0kShyYkhhV0lZiS2SzVRtBKO5vTQps6VYUqK11khTKWGlbnIrfUKeEMU9ZLdKpqK3JtK2Hy17DeLBu3C6TmvKa58yd46Ri3QjNuUi1wZLr_gjZDKDpuSRM7iuNgi4XsUsfmsuOyRC7LlstDOOzprtueGo9SlN1iyK5i1Os46dX-o5Sip4yYosUKT6Ld69ZdRsm-lX_34RA-9Le9TGKgRTVueYfPYPJg5S3JIbxp90v_ox6vedTF6Nv_v_wdvMjQskdnT7YH66ubO_few5-VHsHawW86Cjt9BBvjz18nU389Pp1eXP4B5FMEwA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIkE5VLCFdqGAkYAToXHiOPGhQiug2tJuT620NxM7zmG1zZZ2q6ovxTMy48ShB6Bcek7GUcbjmW88fwBvlclF7WQcFTUeN1FKGZW-kivPU5EpqbghR3FyJMcn4ts0m67Az1ALQ2mVQSd6RV0tLN2R76DlR1chUTz9dPYjoqlRFF0NIzRasThw11fosl3s7n_B_X2XJHtfjz-Po26qQGRFxpeRzUWVxMYqXhhXpTwzto7LrMwLkyVZaStuRZ2qtOKuVM6KskKRj8u6UqmpCmVTXPce3EfDG1MKYT7tHTzqRd-llPAIYUd8oyJ59nHm6-l9AIQr6uIkqITqz8bwb2DXG729x7DeoVU2asXrCay4ZgAbowY99dNr9p75_FF_MT-ARzdaGw7gwaQL2m_AhxHrurdGVNdJuUnMunOKWM-ZT5xn9XxxxfxQnqdwcifsfAarzaJxW8BqKWueOkQMuROyUkZIGxtFI9rxC8YOIQvc0rbrYE6DNOY6pKrNdOCyJi7rlstD2OnpztoeHrdS5GEzdKhQRZ2q0czcSql6yg7DtNjkv2i3w77rTpNc6N9yP4Q3_WPUARTYKRu3uKR3KFmxQM91CJutvPQ_ivgQUZ7gz_-9-Gt4OD6eHOrD_aODF7CW0K0CXTQl27C6PL90LxF6Lc0rL-8Mvt_1AfsF644_rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlX0gMoW6EIBIwEnwsax8_ABoRVl1VJacaDS3kzsOIfVNtvHVlX_Gr-uM04cegDKpefsZJXxPL7xvADeKJPL2mVxVNSobrLMsqj0nVx5LmSqMsUNBYoHh9nukfw6Tacr8Cv0wlBZZbCJ3lBXC0t35CP0_BgqJIqLUd2VRXzfmXw6OY1ogxRlWsM6jVZE9t3VJYZv5x_3dvCs3ybJ5MuPz7tRt2EgsjLly8jmskpiYxUvjKsET42t4zIt88KkSVrailtZCyUq7krlrCwrFP-4rCslTFUoK_C99-B-LtBtoi7l0z7Yo7n0XXkJjxCCxDe6k2cfZr633idDuKKJTpLaqf7sGP8GfL0DnGzAww65snErao9gxTUD2Bw3GLUfX7F3zNeS-kv6AazfGHM4gLWDLoG_Ce_HrJvkGlGPJ9UpMevOKHs9Z76IntXzxSXzC3oew9GdsPMJrDaLxm0Bq7Os5sIhesidzCplZGZjo2hdO_6DsUNIA7e07aaZ01KNuQ5lazMduKyJy7rl8hBGPd1JO8_jVoo8HIYO3apoXzW6nFspVU_Z4ZkWp_wX7XY4d91ZlXP9WweG8Lp_jPaAkjxl4xYX9BsqXCwwih3C01Ze-g9FrIiIT_Jn_375K1hD1dLf9g73n8ODhC4Y6M4p2YbV5dmFe4EobGleenFn8POu9esaw1VD5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patient-specific+cerebral+blood+flow+model&rft.jtitle=Journal+of+biomechanics&rft.au=Jasper+HG+Helthuis&rft.au=Tristan+PC+van+Doormaal&rft.au=Amin-Hanjani%2C+Sepideh&rft.au=Du%2C+XinJian&rft.date=2020-01-02&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=98&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109445&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |