Grading surface urban heat island and investigating factor weight based on interpretable deep learning model across global cities

[Display omitted] •According to SUHI difference, global cities were mainly divided into five grades.•Factor analysis was conducted based on TabNet for various indicators and grades.•The weight of △EVI for daytime SUHII gradually increased according to the grades.•Population and NTL affected nighttim...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 180; p. 108196
Main Authors Li, Kangning, Chen, Yunhao, Jiang, Jinbao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] •According to SUHI difference, global cities were mainly divided into five grades.•Factor analysis was conducted based on TabNet for various indicators and grades.•The weight of △EVI for daytime SUHII gradually increased according to the grades.•Population and NTL affected nighttime SUHII of medium-value and high-value grades. Significant urbanization resulted in increasing surface urban heat island (SUHI) that caused negative impacts on urban ecological environment, and residential comfort. Accurately monitoring the spatiotemporal variations and understanding controls of SUHI were essential to propose effective mitigation measurements. However, SUHI grades across global cities remained unknown, which cloud greatly support for global mitigations. Additionally, quantitative evaluating factor weights for different SUHI indicators and grades worldwide remained further investigations. Therefore, this paper proposed SUHI grading based on agglomerative hierarchical clustering, and further quantified factor weights for different indicators and grades based on an interoperable machine learning named TabNet. There were three major findings. (1) Global cities were grouped into five grades, including SUCI (surface urban cool island), insignificant, low-value, medium-value, and high-value SUHI grades, indicating significant differences among different grades. SUHI grades showed significant climate-based variations, wherein the arid climate was dominated by the SUCI grade at daytime but the high-value grade at nighttime. (2) Vegetation difference was an important factor for daytime SUHII accounting for 27%. Daytime frequency of SUHI was controlled by vegetation difference, temperature, evaporation and nighttime light, accounting for 78%. The major factors for nighttime frequency were albedo differences and nighttime light, accounting for 45%. (3) Related factors contributed differently to various SUHI grades. The weight of △EVI for daytime SUHII gradually increased with grades, while it for daytime frequency and maximum duration of SUHI decreased with grades. The nighttime SUHII of the low-value grade was greatly affected by the background climate, while that of the medium-value and high-value grades were strongly impacted by anthropogenic heat flux. The diurnal contrast of grades and coupling effects with heat wave were further discussed. This paper aimed to provide information on grades and controls of SUHI for further mitigation proposal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0160-4120
1873-6750
1873-6750
DOI:10.1016/j.envint.2023.108196