Evaluation of electrical efficiency of photovoltaic thermal solar collector
In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperatur...
Saved in:
Published in | Engineering applications of computational fluid mechanics Vol. 14; no. 1; pp. 545 - 565 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hong Kong
Taylor & Francis
01.01.2020
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1994-2060 1997-003X |
DOI | 10.1080/19942060.2020.1734094 |
Cover
Loading…
Abstract | In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations. |
---|---|
AbstractList | In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations. |
Author | Shamshirband, Shahaboddin Mohammadi-Khanaposhtani, Mohammad Baghban, Alireza Mosavi, Amir Kumar, Ravinder Ahmadi, Mohammad Hossein Sadeghzadeh, Milad Zamen, Mohammad |
Author_xml | – sequence: 1 givenname: Mohammad Hossein surname: Ahmadi fullname: Ahmadi, Mohammad Hossein organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 2 givenname: Alireza surname: Baghban fullname: Baghban, Alireza organization: Chemical engineering Department, Amirkabir University of Technology – sequence: 3 givenname: Milad orcidid: 0000-0001-8574-5463 surname: Sadeghzadeh fullname: Sadeghzadeh, Milad organization: Department of Renewable Energies, Faculty of New Sciences and Technologies, University of Tehran – sequence: 4 givenname: Mohammad surname: Zamen fullname: Zamen, Mohammad organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 5 givenname: Amir orcidid: 0000-0003-4842-0613 surname: Mosavi fullname: Mosavi, Amir email: amirhoseinmosavi@duytan.edu.vn, amir.mosavi@kvk.uni-obuda.hu, shahaboddin.shamshirband@tdtu.edu.vn organization: Institute of Structural Mechanics, Bauhaus Universität-Weimar – sequence: 6 givenname: Shahaboddin orcidid: 0000-0002-6605-498X surname: Shamshirband fullname: Shamshirband, Shahaboddin email: amirhoseinmosavi@duytan.edu.vn, amir.mosavi@kvk.uni-obuda.hu, shahaboddin.shamshirband@tdtu.edu.vn organization: Faculty of Information Technology, Ton Duc Thang University – sequence: 7 givenname: Ravinder surname: Kumar fullname: Kumar, Ravinder organization: Department of Mechanical Engineering, Lovely Professional University – sequence: 8 givenname: Mohammad surname: Mohammadi-Khanaposhtani fullname: Mohammadi-Khanaposhtani, Mohammad organization: Fouman Faculty of Engineering, College of Engineering, University of Tehran |
BookMark | eNqFUcFu1TAQtFArUdp-AlIkzmntxE5scQFVpVRU4tIDN2tjr6krN_tw_Ire3-O8VzhwgNOuxjOz1swbdjTTjIy9FfxCcM0vhTGy4wO_6HhXobGX3MhX7KTiY8t5_-1ov8t2Jb1m58sSJ6742AsxyhP25foZ0hZKpLmh0GBCV3J0kBoMIbqIs9utD5sHKvRMqUB0TXnA_FQpCyXIjaO0qiifseMAacHzl3nK7j9d3199bu--3txefbxrnVSitE70cgShjcRpNAHMoPXQeYHoNa8AApjRIXI1jV4Hr5DLfpBecK8nZfpTdnuw9QSPdpPjE-SdJYh2D1D-biGX6BLagB120mnQSkgjRtMHqaTmeqg-2k_V693Ba5PpxxaXYh9pm-f6e9vJYehqxEpWljqwXKZlyRj-XBXcri3Y3y3YtQX70kLVvf9L52LZZ10yxPRf9YeDOs6Bat4_KSdvC-wS5ZBhdnGx_b8tfgGDPKGT |
CitedBy_id | crossref_primary_10_1080_19942060_2020_1778091 crossref_primary_10_14710_jebt_2024_23089 crossref_primary_10_15377_2409_5826_2020_07_7 crossref_primary_10_1155_2021_2204021 crossref_primary_10_1016_j_jobe_2024_111221 crossref_primary_10_1002_ese3_1252 crossref_primary_10_1007_s10973_021_10826_y crossref_primary_10_1021_acs_energyfuels_1c03364 crossref_primary_10_1155_2021_6668325 crossref_primary_10_1007_s13202_022_01531_z crossref_primary_10_1080_15325008_2022_2159588 crossref_primary_10_1155_2022_3625541 crossref_primary_10_2166_aqua_2022_253 crossref_primary_10_1080_19942060_2023_2297044 crossref_primary_10_1371_journal_pone_0307616 crossref_primary_10_1016_j_asej_2022_102110 crossref_primary_10_1016_j_petlm_2021_12_002 crossref_primary_10_3389_fenrg_2022_951233 crossref_primary_10_3389_feart_2022_1023578 crossref_primary_10_1002_ese3_1067 crossref_primary_10_1080_19942060_2022_2104928 crossref_primary_10_1115_1_4054852 crossref_primary_10_1080_01430750_2020_1861091 crossref_primary_10_1016_j_molliq_2021_118400 crossref_primary_10_1115_1_4052672 crossref_primary_10_1016_j_est_2022_106016 crossref_primary_10_1155_2021_6648739 crossref_primary_10_1080_19942060_2020_1815586 crossref_primary_10_1016_j_rser_2024_114901 crossref_primary_10_1016_j_seta_2022_102105 crossref_primary_10_1080_15567036_2020_1826017 crossref_primary_10_1002_er_8268 crossref_primary_10_1007_s11356_022_24044_y crossref_primary_10_1007_s11356_022_25071_5 crossref_primary_10_2478_rtuect_2023_0006 crossref_primary_10_3233_JIFS_189757 crossref_primary_10_2139_ssrn_3917487 crossref_primary_10_1088_1755_1315_1285_1_012035 crossref_primary_10_1016_j_apm_2024_115643 crossref_primary_10_3389_fenrg_2021_665978 crossref_primary_10_37394_232016_2023_18_4 crossref_primary_10_1155_2021_4107429 crossref_primary_10_1016_j_cep_2022_108857 crossref_primary_10_1080_19942060_2022_2126528 crossref_primary_10_1051_bioconf_20248601012 crossref_primary_10_1051_bioconf_20248601011 crossref_primary_10_1051_bioconf_20248601010 crossref_primary_10_1080_15435075_2021_2025063 crossref_primary_10_1155_2021_9202127 crossref_primary_10_1155_2021_6630140 |
Cites_doi | 10.1016/j.apenergy.2008.09.003 10.1016/j.rser.2016.12.004 10.1016/j.renene.2014.12.012 10.1175/1520-0450(1997)036<0531:CRMFPU>2.0.CO;2 10.1016/j.rser.2017.01.173 10.1016/J.SOLENER.2016.03.067 10.1016/j.rser.2015.09.043 10.1016/J.IJHEATMASSTRANSFER.2016.02.032 10.1016/j.rser.2017.03.044 10.1016/j.agrformet.2003.11.002 10.1080/19942060.2018.1526119 10.1080/10916466.2016.1176039 10.1016/J.CONBUILDMAT.2016.02.063 10.1016/j.rser.2016.09.078 10.1016/J.ENERGY.2017.04.077 10.1007/s10973-018-7916-1 10.1016/j.asej.2016.08.006 10.1016/J.RSER.2015.07.177 10.1016/j.energy.2006.11.010 10.1016/J.JHYDROL.2011.01.017 10.1007/s10973-019-08154-3 10.1002/ese3.239 10.1162/neco.1993.5.2.305 10.1142/5089 10.1080/19942060.2018.1448896 10.1016/j.solener.2011.01.007 10.1016/j.rser.2016.05.022 10.1016/J.COLDREGIONS.2015.12.006 10.3390/w9030186 10.1016/j.rser.2017.05.174 10.1016/j.rser.2013.04.014 10.2307/2528964 10.1016/j.eswa.2009.08.007 10.1126/science.aad1920 10.1016/j.solener.2011.05.017 10.1016/j.applthermaleng.2016.04.005 10.1016/j.molliq.2017.06.123 10.1016/j.eswa.2010.07.090 10.1016/j.solener.2013.08.042 10.1080/14680629.2016.1162732 10.1016/j.applthermaleng.2016.11.105 10.18280/mmep.050401 10.24842/1611/0018 10.1061/(ASCE)CR.1943-5495.0000051 10.1016/j.rser.2016.09.075 10.4324/9781315766416 10.1016/S0377-2217(01)00319-8 10.1016/j.jcou.2018.05.009 10.1080/19942060.2018.1512010 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7TC 7XB 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ KR7 L6V M2O M7S MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1080/19942060.2020.1734094 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Mechanical Engineering Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Research Library Engineering Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Central Basic ProQuest One Academic Eastern Edition Mechanical Engineering Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1997-003X |
EndPage | 565 |
ExternalDocumentID | oai_doaj_org_article_fe2e24c8a851491793f45480865938db 10_1080_19942060_2020_1734094 1734094 |
Genre | Research Article |
GroupedDBID | 0YH 4.4 5VS 8G5 ABUWG ACGFS ADBBV ADCVX AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 KQ8 M2O M4Z OK1 P2P PROAC RDKPK TDBHL TFMNY TFW AAYXX ADMLS CITATION PHGZM PHGZT 3V. 7TC 7XB 8FD 8FE 8FG 8FK ABJCF BGLVJ FR3 HCIFZ KR7 L6V M7S MBDVC PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO Q9U |
ID | FETCH-LOGICAL-c451t-c1347a1894eb79fa968862d1eed8079feaa97cee05b7d8fd5e04364d10d8b593 |
IEDL.DBID | DOA |
ISSN | 1994-2060 |
IngestDate | Wed Aug 27 00:33:17 EDT 2025 Sat Sep 06 07:30:27 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 01:30:37 EDT 2025 Wed Dec 25 09:07:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-c1347a1894eb79fa968862d1eed8079feaa97cee05b7d8fd5e04364d10d8b593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6605-498X 0000-0001-8574-5463 0000-0003-4842-0613 |
OpenAccessLink | https://doaj.org/article/fe2e24c8a851491793f45480865938db |
PQID | 2466210854 |
PQPubID | 3933313 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2466210854 informaworld_taylorfrancis_310_1080_19942060_2020_1734094 crossref_citationtrail_10_1080_19942060_2020_1734094 doaj_primary_oai_doaj_org_article_fe2e24c8a851491793f45480865938db crossref_primary_10_1080_19942060_2020_1734094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hong Kong |
PublicationPlace_xml | – name: Hong Kong |
PublicationTitle | Engineering applications of computational fluid mechanics |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 Haykin S. S. (CIT0021) 2009 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Lin C.-T. (CIT0028) 1996 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 Wasserman P. D. (CIT0060) 1993 CIT0009 CIT0008 Yegnanarayana B. (CIT0063) 2009 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Haykin S. (CIT0020) 1994 Brown M. (CIT0010) 1994 Mitchell T. M. (CIT0030) 1997; 45 Rousseeuw P. J. (CIT0050) 2005 Schalkoff R. J. (CIT0051) 1997 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0061 CIT0062 CIT0023 CIT0022 CIT0025 Sijm J. P. M. (CIT0052) 2017; 2016 CIT0024 CIT0027 CIT0026 CIT0029 Wagh S. (CIT0059) 2017; 3 |
References_xml | – ident: CIT0015 doi: 10.1016/j.apenergy.2008.09.003 – ident: CIT0009 doi: 10.1016/j.rser.2016.12.004 – volume-title: Advanced methods in neural computing year: 1993 ident: CIT0060 – ident: CIT0049 doi: 10.1016/j.renene.2014.12.012 – ident: CIT0011 doi: 10.1175/1520-0450(1997)036<0531:CRMFPU>2.0.CO;2 – ident: CIT0001 doi: 10.1016/j.rser.2017.01.173 – ident: CIT0043 doi: 10.1016/J.SOLENER.2016.03.067 – volume-title: Neural networks and learning machines (Vol. 3) year: 2009 ident: CIT0021 – ident: CIT0034 doi: 10.1016/j.rser.2015.09.043 – ident: CIT0039 doi: 10.1016/J.IJHEATMASSTRANSFER.2016.02.032 – ident: CIT0026 doi: 10.1016/j.rser.2017.03.044 – ident: CIT0037 doi: 10.1016/j.agrformet.2003.11.002 – volume-title: Neurofuzzy adaptive modelling and control year: 1994 ident: CIT0010 – ident: CIT0054 doi: 10.1080/19942060.2018.1526119 – ident: CIT0006 doi: 10.1080/10916466.2016.1176039 – ident: CIT0040 doi: 10.1016/J.CONBUILDMAT.2016.02.063 – ident: CIT0033 doi: 10.1016/j.rser.2016.09.078 – ident: CIT0045 doi: 10.1016/J.ENERGY.2017.04.077 – ident: CIT0046 doi: 10.1007/s10973-018-7916-1 – ident: CIT0005 doi: 10.1016/j.asej.2016.08.006 – volume-title: Artificial neural networks (Vol. 1) year: 1997 ident: CIT0051 – volume-title: Robust regression and outlier detection (Vol. 589) year: 2005 ident: CIT0050 – volume-title: Artificial neural networks year: 2009 ident: CIT0063 – ident: CIT0038 doi: 10.1016/J.RSER.2015.07.177 – ident: CIT0055 doi: 10.1016/j.energy.2006.11.010 – ident: CIT0057 – ident: CIT0061 doi: 10.1016/J.JHYDROL.2011.01.017 – ident: CIT0047 doi: 10.1007/s10973-019-08154-3 – ident: CIT0036 – ident: CIT0002 doi: 10.1002/ese3.239 – ident: CIT0035 doi: 10.1162/neco.1993.5.2.305 – ident: CIT0053 doi: 10.1142/5089 – ident: CIT0016 doi: 10.1080/19942060.2018.1448896 – ident: CIT0029 doi: 10.1016/j.solener.2011.01.007 – ident: CIT0024 doi: 10.1016/j.rser.2016.05.022 – ident: CIT0042 doi: 10.1016/J.COLDREGIONS.2015.12.006 – volume: 2016 start-page: 2015 year: 2017 ident: CIT0052 publication-title: Policy Studies – ident: CIT0013 doi: 10.3390/w9030186 – ident: CIT0017 doi: 10.1016/j.rser.2017.05.174 – ident: CIT0022 doi: 10.1016/j.rser.2013.04.014 – ident: CIT0004 doi: 10.2307/2528964 – ident: CIT0058 doi: 10.1016/j.eswa.2009.08.007 – ident: CIT0027 doi: 10.1126/science.aad1920 – ident: CIT0032 doi: 10.1016/j.solener.2011.05.017 – ident: CIT0008 doi: 10.1016/j.applthermaleng.2016.04.005 – ident: CIT0019 doi: 10.1016/j.molliq.2017.06.123 – ident: CIT0012 doi: 10.1016/j.eswa.2010.07.090 – ident: CIT0025 doi: 10.1016/j.solener.2013.08.042 – ident: CIT0044 doi: 10.1080/14680629.2016.1162732 – ident: CIT0023 doi: 10.1016/j.applthermaleng.2016.11.105 – ident: CIT0062 – volume: 45 start-page: 81 year: 1997 ident: CIT0030 publication-title: Machine Learning – volume: 3 start-page: 112 year: 2017 ident: CIT0059 publication-title: International Journal of Research In Science & Engineering – ident: CIT0048 doi: 10.18280/mmep.050401 – ident: CIT0003 doi: 10.24842/1611/0018 – volume-title: Neural networks: A comprehensive foundation year: 1994 ident: CIT0020 – ident: CIT0041 doi: 10.1061/(ASCE)CR.1943-5495.0000051 – ident: CIT0031 doi: 10.1016/j.rser.2016.09.075 – ident: CIT0056 doi: 10.4324/9781315766416 – volume-title: Neural fuzzy systems year: 1996 ident: CIT0028 – ident: CIT0014 doi: 10.1016/S0377-2217(01)00319-8 – ident: CIT0007 doi: 10.1016/j.jcou.2018.05.009 – ident: CIT0018 doi: 10.1080/19942060.2018.1512010 |
SSID | ssib050731174 ssj0001753472 |
Score | 2.501571 |
Snippet | In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | adaptive neuro-fuzzy inference system (ANFIS) Artificial neural networks Flow velocity Fuzzy logic hybrid machine learning model Inlet temperature least square support vector machine (LSSVM) Machine learning neural networks (NNs) Photovoltaic cells photovoltaic-thermal (PV/T) Prediction models Renewable energy Solar radiation Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dIeyrPq8qhy4BrIw3HsEwK0CLUqQggkblb8opVgs91N_z8zjrNQKsEtmthRMh7PfJ7Y3wAcOIkxu6nq1GCsS5kxPNUyL1PutfNCOmtCFYWfl_ziln2_q-5iwm0Rt1UOPjE4atsaypEfFYzzgrbKs-PZn5SqRtHf1VhC4wOsogsW1QhWTyeXV9eDRSHYKfM8ApyQdUF0zkJFp8CJW2Q8G471iOyIZCTCZWOBorqkxc8_ASvw-r9iNf3Pi4fQdL4OnyOmTE56I9iAFTfdhLWIL5M4exeb8OkF-eAW_Jgsib6T1id9PRwassQFWgk6k0k3Zr_arkUn1jW_TUJw8RGbLGhFnJARhaz_NtycT27OLtJYWiFF3eddaugEaZMLyZyupW8kF7i0sTlGTJGhwDWNrDF-ZpWurfC2ckRVz2yeWaErWX6B0bSduq-QuEII32jvcOozLvDKmDoT2tfeIlSzY2CD-pSJtONU_eJB5ZGddNC6Iq2rqPUxHC67zXrejfc6nNLYLBsTbXYQtPN7FWeh8q5wBTOiQZzJJPkmz4jwTnD8JmH1GOTLkVVdyJr4vsSJKt95gb3BDFT0Awv1bLU7b9_ehY_0sD65swejbv7X7SPc6fS3aNNPszH2sA priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8UwDI44Fhi4EY9LHVgLPdI0GQGBnkAwgQRTlBOQ4BXR8v-x0_SJQ4iBrU3TqHUc-7OVfCbkwAnw2aqqUwO-LqXGsFSLvEyZ185z4awJVRSurtn4ll7cVcNuwjZuq8QY2vdEEcFW4-JWuh12xB0hnW2RsQyiuwKa6hJjlFkyXwBQRMXO7seDSgHaKfM8IpyQdgF4TkNJp0CKi8MM53p-G_mLxwrE_t9oTX-Y8eCbzlfIUgSVyXGvBatkxk3WyHIEmElcvu0aWfzEPrhOLs-mTN9J45O-IA7OWeICrwQeysQHr49N14AV69STSRAvvkCXFkPiBLUopP03yM352c3pOI21FVIQft6lBo-QqpwL6nQtvBKMQ2xjc3CZPIMGp5SowYFmla4t97ZyyFVPbZ5ZritRbpK5STNxWyRxBedeae9g7VPG4cqYOuPa194CVrMjQgfxSRN5x7H8xbPMIz3pIHWJUpdR6iNyOH3ttSfe-OuFE5ybaWfkzQ4NzduDjMtQele4ghquAGhSgcbJU2S84wz-iVs9IuLzzMoupE18X-NEln98wO6gBjIaglYWlLECT3jQ7X8MvUMW8LZP_eySue7t3e0BGOr0flD3D28g-q0 priority: 102 providerName: Taylor & Francis |
Title | Evaluation of electrical efficiency of photovoltaic thermal solar collector |
URI | https://www.tandfonline.com/doi/abs/10.1080/19942060.2020.1734094 https://www.proquest.com/docview/2466210854 https://doaj.org/article/fe2e24c8a851491793f45480865938db |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RuMChLS-xsF3lwDWQh-PYR6h2uypahCoqwcmKX2ol2EXdcOW3M-N4Vwsc9tJLFE1sxRmPPd-M4m8ATp1En91UdWrQ16XMGJ5qmZcp99p5IZ01oYrC5JqPf7Ofd9XdSqkv-iesowfuFHfuXeEKZkSD0IBJMifPiKNM8EqWwmrafdHnrQRTaEkIcso8j8AmZFsQlbNQySlw4RYZzxbHeUR2TjISYbhYoKguKeh546gCn_87NtMPu3dwSaOv8DliyeSi-4Zd2HDTPfgScWUSV-18D3ZWSAf34Wq4JPhOZj7p6uDQVCUu0EnQWUx68PRn1s5w82qbvyYhmPiITeYUCSdkPCHbfwC3o-Ht93EaSyqkqPO8TQ2dHG1yIZnTtfSN5AJDGpujpxQZClzTyBr9Zlbp2gpvK0cU9czmmRUaFX4Im9PZ1B1B4gohfKO9wyXPuMA7Y-pMaF97ixDN9oAt1KdMpBunqhcPKo-spAutK9K6ilrvwdmy21PHt7GuwyXNzbIx0WUHARqRikak1hlRD-TqzKo2ZEt8V9pElWsG0F-YgYrrf64KxnlBBzvY8f8Y3wls0yu71E8fNtt_z-4bgqFWD-BTdj_Gqxj9GMDW5fD65tcgrAW8Tl6GrxqoAVE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1V7QE48FFABAr4AEdTe7Ne7x4QopAqJW2EUJB6W3m_AAni0BghfhT_kZn1OhSQ6Km3aGwnzuzszJu19z2AJ15hzW6qOrdY63JurciNKse5CMYHqbyzUUXhZC6m7_mb0-p0C34Oe2HotcohJ8ZE7VpLa-T7jAvB6FV5_mL1NSfVKHq6Okho9GEx8z--Y8u2fn70Gsf3KWOHk8WraZ5UBXL82bLLLW2ebEqpuDe1Co0SElG9K7FYyAINvmlUjaWjqEztZHCVJ5Z27srCSVMR9xJm_B1EGQon0c7BZP723RDAiK3GZZnwVFzkwWaARwGpSMHLClEMu4hksU82MmGXytBUj6nX-qM-RhmBv0hU_ykasRIe3oTrCcJmL_uYuwVbfrkLNxKczVKyWO_CtXNch7dhNtnwimdtyHr5HYqQzEcWC9oCSgdWH9uuxZzZNZ9sRuj0C56ypgY8o5iNDxnuwOIyfH4Xtpft0t-DzDMpQ2OCx0zDhcRP1taFNKEODpGhGwEf3KdtYjknsY3PukxkqIPXNXldJ6-P4NnmslVP83HRBQc0NpuTiaU7GtqzDzpNeh0884xb2SCs5YpSYeDErycF_ifpzAjU-ZHVXVykCb2iih5fcAN7QxjolHbW-vckuf__w4_hynRxcqyPj-azB3CVvrhfV9qD7e7sm3-ISKszj1J8Z6AveUb9AjJ9M6o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIlX0QGHbqgul5MA1kIfj2McWdrVtoeKwSOVkxS-oBJtVN_3_nXGcVQFVe-AWObaVjMcz34zsbwDeOYk-u6nq1KCvS5kxPNUyL1PutfNCOmtCFYUvV3z2jV1cV8NpwlU8VkkxtO-JIoKtps29tH44EfeB6GyLjGcY3RXYVJcUozyBp5WQBcVf2ffZoFKIdso8jwgnpF0QnrNQ0imQ4tI0w72ex2b-w2MFYv-_aE3_MePBN01fwPMIKpPTXgtewpZbjGAvAswkbt_VCHYfsA_uw-VkzfSdtD7pC-LQmiUu8ErQpUx6sfzZdi1asa65MQnhxd_YZUUhcUJaFNL-BzCfTuYfZ2msrZCi8PMuNXSFtMmFZE7X0jeSC4xtbI4uU2TY4JpG1uhAs0rXVnhbOeKqZzbPrNCVLA9he9Eu3BEkrhDCN9o73PuMC3wyps6E9rW3iNXsGNggPmUi7ziVv_il8khPOkhdkdRVlPoY3q-HLXvijU0Dzmht1p2JNzs0tLc_VNyGyrvCFcyIBoEmk2ScPCPGO8Hxn4TVY5APV1Z1IW3i-xonqtzwAceDGqhoCFaqYJwXdMODvfqPqd_CztdPU_X5_OryNTyjN30W6Bi2u9s79wZxUadPgubfA2Fc_UE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+electrical+efficiency+of+photovoltaic+thermal+solar+collector&rft.jtitle=Engineering+applications+of+computational+fluid+mechanics&rft.au=Mohammad+Hossein+Ahmadi&rft.au=Alireza+Baghban&rft.au=Milad+Sadeghzadeh&rft.au=Mohammad+Zamen&rft.date=2020-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1994-2060&rft.eissn=1997-003X&rft.volume=14&rft.issue=1&rft.spage=545&rft.epage=565&rft_id=info:doi/10.1080%2F19942060.2020.1734094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe2e24c8a851491793f45480865938db |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-2060&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-2060&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-2060&client=summon |