Higgs interference effects in top-quark pair production in the 1HSM

A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 8; pp. 112 - 30
Main Authors Banfi, Andrea, Kauer, Nikolas, Lind, Alexander, Lindert, Jonas M., Wood, Ryan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 14.08.2024
Springer Nature B.V
Springer
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
AbstractList Abstract We present a next-to-leading-order (NLO) study of the process pp (→ {h 1, h 2}) → t t ¯ $$ t\overline{t} $$ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
We present a next-to-leading-order (NLO) study of the process $pp \; ( \to \{ h_1, h_2 \}) \to t\bar{t} + X$ in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson $h_2$ that mixes with the light Higgs boson $h_1$. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range $700$--$3000$ GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
We present a next-to-leading-order (NLO) study of the process pp (→ {h1, h2}) →tt¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h2 that mixes with the light Higgs boson h1. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → $$ t\overline{t} $$ t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC.
ArticleNumber 112
Author Banfi, Andrea
Lind, Alexander
Kauer, Nikolas
Lindert, Jonas M.
Wood, Ryan
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0003-0409-4115
  surname: Banfi
  fullname: Banfi, Andrea
  organization: Department of Physics and Astronomy, University of Sussex
– sequence: 2
  givenname: Nikolas
  orcidid: 0009-0008-5702-0236
  surname: Kauer
  fullname: Kauer, Nikolas
  organization: Department of Physics, Royal Holloway, University of London
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0002-0491-3507
  surname: Lind
  fullname: Lind, Alexander
  email: alexander.lind@subatech.in2p3.fr
  organization: SUBATECH, Université de Nantes, IMT Atlantique, IN2P3/CNRS
– sequence: 4
  givenname: Jonas M.
  orcidid: 0000-0001-6936-998X
  surname: Lindert
  fullname: Lindert, Jonas M.
  organization: Department of Physics and Astronomy, University of Sussex
– sequence: 5
  givenname: Ryan
  orcidid: 0000-0001-5773-4740
  surname: Wood
  fullname: Wood, Ryan
  organization: Department of Physics and Astronomy, University of Sussex
BackLink https://hal.science/hal-04237819$$DView record in HAL
BookMark eNp9kUFPGzEQhS0EEpBy5roSl3LYZrxrx_YRRdClCioS7dma2N7EaVgHr1Op_75eFrVQiR4sW-P3Ps_4nZLDLnSOkHMKnyiAmH5pru9BfqygYpeUVgfkhEKlSsmEOnx1Pianfb8BoJwqOCHzxq9WfeG75GLrouuMK1zbOpOGYpHCrnzaY_xR7NDHYheD3ZvkQ_d8uXYFbR7uPpCjFre9O3vZJ-T7zfW3eVMuvn6-nV8tSsM4TaUBBCs5m6FCJYHNjFpyhrjk3DIjnHQgck9WtqoyombUKqeYraiw9RIs1hNyO3JtwI3eRf-I8ZcO6PVzIcSVxpi82To9E1RwLjOLI-NYK2SyReBiBkIKXGbW5cha4_YNqrla6KEGrKqFpOonzdqLUZvHf9q7PulN2Mcuj6prUHVeTNZZNR1VJoa-j679g6Wgh4T0mJAeEtI5oezg_ziMTzj8borot__xwejr8wvdysW__bxn-Q1z_6JT
CitedBy_id crossref_primary_10_1007_JHEP12_2024_197
crossref_primary_10_1007_JHEP09_2024_098
Cites_doi 10.1007/JHEP07(2016)105
10.1103/PhysRevD.74.013004
10.1016/0550-3213(95)00379-7
10.1103/PhysRevLett.13.508
10.1088/1126-6708/2007/03/036
10.1007/JHEP06(2011)127
10.1103/PhysRevD.77.117701
10.1016/0370-2693(84)91711-8
10.1103/PhysRevD.101.015019
10.1103/PhysRevLett.13.585
10.1088/1126-6708/2009/08/085
10.1016/j.cpc.2014.04.012
10.1016/j.nuclphysb.2017.02.004
10.1007/JHEP03(2019)119
10.1016/0550-3213(88)90422-1
10.1103/PhysRevD.99.051501
10.1007/JHEP07(2014)079
10.1007/JHEP05(2017)036
10.1016/0370-2693(94)91017-0
10.1007/JHEP09(2022)011
10.1103/PhysRevD.92.075038
10.1016/j.nuclphysbps.2006.09.104
10.1088/1126-6708/2007/01/021
10.1140/epjc/s10052-020-08763-5
10.1007/JHEP12(2019)034
10.1103/PhysRevD.89.095031
10.1088/1126-6708/2009/01/047
10.1007/JHEP04(2018)062
10.1007/JHEP10(2017)096
10.1016/S0010-4655(97)00123-9
10.1142/S0217751X00000367
10.1103/PhysRevLett.13.321
10.1103/PhysRevD.92.055009
10.1007/JHEP05(2021)099
10.1088/1126-6708/2007/02/080
10.1007/JHEP07(2019)100
10.1103/PhysRevD.94.114033
10.1103/PhysRevD.95.095012
10.1103/PhysRevLett.124.112002
10.1103/PhysRevD.79.015018
10.1140/epjc/s10052-019-7306-2
10.1103/PhysRevD.92.025024
10.1103/PhysRevD.93.034032
10.1016/j.cpc.2018.12.010
10.1103/PhysRevD.60.113006
10.1016/S0550-3213(05)80032-X
10.1103/PhysRevD.85.035008
10.1103/PhysRevD.93.075038
10.1016/j.physletb.2011.12.067
10.1007/JHEP10(2016)016
10.1140/epjc/s10052-015-3461-2
10.1140/epjc/s10052-015-3323-y
10.1007/JHEP03(2018)022
10.1103/PhysRevD.79.095002
10.1016/j.nuclphysb.2016.04.005
10.1007/JHEP06(2010)043
10.23731/CYRM-2017-002
10.1142/S0217732318300070
10.1007/JHEP11(2016)159
10.1016/j.physletb.2021.136618
10.1007/JHEP02(2012)088
10.1088/1126-6708/2007/11/070
10.23731/CYRM-2020-0010
10.1016/j.cpc.2013.02.006
10.1007/JHEP07(2011)018
10.1016/j.cpc.2009.02.018
10.1007/JHEP10(2012)104
10.1007/JHEP07(2019)108
10.1007/s002880050442
10.1088/1126-6708/2004/11/040
10.1016/j.cpc.2014.05.022
10.1088/1126-6708/2005/12/015
10.1007/JHEP05(2015)057
10.1103/PhysRev.145.1156
10.1007/JHEP06(2012)172
10.1007/JHEP01(2013)080
10.1016/j.cpc.2018.06.012
10.1007/JHEP02(2022)185
10.1007/JHEP05(2016)034
10.1103/PhysRevD.72.093007
10.1103/PhysRevD.40.54
10.1140/epjc/s10052-013-2428-4
10.1016/0550-3213(92)90435-E
10.1103/PhysRevD.87.055002
10.1103/PhysRevD.91.035015
10.1103/PhysRevD.107.075040
10.1016/j.cpc.2012.01.022
10.1016/S0550-3213(96)00589-5
10.1103/PhysRevD.77.035005
10.1103/PhysRevD.88.115012
10.1016/0031-9163(64)91136-9
10.1016/j.physletb.2012.02.056
10.1103/PhysRevLett.116.082003
10.1016/j.physletb.2011.08.002
10.1007/JHEP08(2015)004
10.1103/PhysRevD.91.035018
10.1103/PhysRevLett.109.132001
10.1007/JHEP12(2012)054
10.1140/epjc/s10052-016-4115-8
10.1103/PhysRevLett.110.252004
10.1016/j.physletb.2010.09.032
10.1016/j.cpc.2016.10.015
10.1088/0954-3899/43/2/023001
10.1016/j.revip.2020.100045
10.1103/PhysRevD.96.035037
10.1016/S0550-3213(02)00098-6
10.1140/epjc/s10052-020-08815-w
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.1007/JHEP08(2024)112
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 30
ExternalDocumentID oai_doaj_org_article_6717558d8f5a45a39a48fa05760787ab
oai_HAL_hal_04237819v1
10_1007_JHEP08_2024_112
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
1XC
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABTEG
ACAFW
ACARI
ACBXY
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
VOOES
PUEGO
ID FETCH-LOGICAL-c451t-c0a0d8546a9a98046c9b54aab55d4c7e8e07190d8f92c7341d9e94d217d3b0da3
IEDL.DBID BENPR
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:28:08 EDT 2025
Fri May 09 12:14:35 EDT 2025
Fri Jul 25 23:41:24 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Tue Jul 01 05:15:43 EDT 2025
Mon Jul 21 06:07:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Higgs Production
Multi-Higgs Models
Higher-Order Perturbative Calculations
numerical calculations
new physics
upgrade
quantum chromodynamics
mass
infrared
dip
CERN LHC Coll
pair production
benchmark
structure
heavy
1
top
background
effect
Higgs particle
GeV
higher-order
interference
correction
stability
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-c0a0d8546a9a98046c9b54aab55d4c7e8e07190d8f92c7341d9e94d217d3b0da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-5702-0236
0000-0001-6936-998X
0000-0003-0409-4115
0000-0001-5773-4740
0000-0002-0491-3507
OpenAccessLink https://www.proquest.com/docview/3093309483?pq-origsite=%requestingapplication%
PQID 3093309483
PQPubID 2034718
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_6717558d8f5a45a39a48fa05760787ab
hal_primary_oai_HAL_hal_04237819v1
proquest_journals_3093309483
crossref_primary_10_1007_JHEP08_2024_112
crossref_citationtrail_10_1007_JHEP08_2024_112
springer_journals_10_1007_JHEP08_2024_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-14
PublicationDateYYYYMMDD 2024-08-14
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-14
  day: 14
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References IlnickaARobensTStefaniakTConstraining extended scalar sectors at the LHC and beyondMod. Phys. Lett. A20183318300072018MPLA...3330007I10.1142/S0217732318300070[arXiv:1803.03594] [INSPIRE]
CzakonMMitovANNLO corrections to top pair production at hadron colliders: the quark-gluon reactionJHEP2013010802013JHEP...01..080C10.1007/JHEP01(2013)080[arXiv:1210.6832] [INSPIRE]
GoriSKimI-WShahNRZurekKMClosing the wedge: search strategies for extended Higgs sectors with heavy flavor final statesPhys. Rev. D2016932016PhRvD..93g5038G10.1103/PhysRevD.93.075038[arXiv:1602.02782] [INSPIRE]
DegrandeCUFO — the Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D10.1016/j.cpc.2012.01.022[arXiv:1108.2040] [INSPIRE]
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [DOI:10.5170/CERN-2013-004] [INSPIRE].
HDECAY collaboration, HDECAY: twenty++years after, Comput. Phys. Commun.238 (2019) 214 [arXiv:1801.09506] [INSPIRE].
G. Durieux et al., Snowmass white paper: prospects for the measurement of top-quark couplings, in the proceedings of the Snowmass 2021, (2022) [arXiv:2205.02140] [INSPIRE].
LindABanfiAH1jet, a fast program to compute transverse momentum distributionsEur. Phys. J. C202181722021EPJC...81...72L10.1140/epjc/s10052-020-08815-w[arXiv:2011.04694] [INSPIRE]
CasasJACerdeñoDGMorenoJMQuilisJReopening the Higgs portal for single scalar dark matterJHEP2017050362017JHEP...05..036C10.1007/JHEP05(2017)036[arXiv:1701.08134] [INSPIRE]
RobensTStefaniakTStatus of the Higgs singlet extension of the standard model after LHC run 1Eur. Phys. J. C2015751042015EPJC...75..104R10.1140/epjc/s10052-015-3323-y[arXiv:1501.02234] [INSPIRE]
PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channelsJHEP2021050992021JHEP...05..099P10.1007/JHEP05(2021)099[arXiv:2010.00597] [INSPIRE]
NoJMRamsey-MusolfMProbing the Higgs portal at the LHC through resonant di-Higgs productionPhys. Rev. D2014892014PhRvD..89i5031N10.1103/PhysRevD.89.095031[arXiv:1310.6035] [INSPIRE]
CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [INSPIRE]
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B333 (1994) 126 [hep-ph/9404359] [INSPIRE].
BatellBGoriSWangL-TExploring the Higgs portal with 10 fb−1at the LHCJHEP2012061722012JHEP...06..172B10.1007/JHEP06(2012)172[arXiv:1112.5180] [INSPIRE]
CostaRMoraisAPSampaioMOPSantosRTwo-loop stability of a complex singlet extended standard modelPhys. Rev. D2015922015PhRvD..92b5024C10.1103/PhysRevD.92.025024[arXiv:1411.4048] [INSPIRE]
R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP12 (2005) 015 [hep-ph/0509189] [INSPIRE].
P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132 [INSPIRE].
LoganHEHiding a Higgs width enhancement from off-shell gg(→ h∗) → ZZ measurementsPhys. Rev. D2015922015PhRvD..92g5038L10.1103/PhysRevD.92.075038[arXiv:1412.7577] [INSPIRE]
G. Aad et al., Luminosity determination in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C83 (2023) 982 [arXiv:2212.09379].
A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. B Proc. Suppl.160 (2006) 131 [hep-ph/0607060] [INSPIRE].
ATLAS collaboration, Measurement of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} cross section and its ratio to the Z production cross section using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13.6 TeV with the ATLAS detector, Phys. Lett. B848 (2024) 138376 [arXiv:2308.09529] [INSPIRE].
ChenC-YDawsonSLewisIMExploring resonant di-Higgs boson production in the Higgs singlet modelPhys. Rev. D2015912015PhRvD..91c5015C10.1103/PhysRevD.91.035015[arXiv:1410.5488] [INSPIRE]
KanemuraSKikuchiMYagyuKOne-loop corrections to the Higgs self-couplings in the singlet extensionNucl. Phys. B20179171542017NuPhB.917..154K10.1016/j.nuclphysb.2017.02.004[arXiv:1608.01582] [INSPIRE]
DaviesJHerrenFSteinhauserMTop quark mass effects in Higgs boson production at four-loop order: virtual correctionsPhys. Rev. Lett.20201242020PhRvL.124k2002D10.1103/PhysRevLett.124.112002[arXiv:1911.10214] [INSPIRE]
CoimbraRSampaioMOPSantosRScannerS: constraining the phase diagram of a complex scalar singlet at the LHCEur. Phys. J. C20137324282013EPJC...73.2428C10.1140/epjc/s10052-013-2428-4[arXiv:1301.2599] [INSPIRE]
T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C75 (1997) 17 [hep-ph/9608245] [INSPIRE].
W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production inpp¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\overline{p} $$\end{document}collisions, Phys. Rev. D40 (1989) 54 [INSPIRE].
CampbellJMEllisRKGieleWTA multi-threaded version of MCFMEur. Phys. J. C2015752462015EPJC...75..246C10.1140/epjc/s10052-015-3461-2[arXiv:1503.06182] [INSPIRE]
LewisIMSullivanMBenchmarks for double Higgs production in the singlet extended standard model at the LHCPhys. Rev. D2017962017PhRvD..96c5037L10.1103/PhysRevD.96.035037[arXiv:1701.08774] [INSPIRE]
DjouadiAEllisJPopovAQuevillonJInterference effects in tt production at the LHC as a window on new physicsJHEP2019031192019JHEP...03..119D10.1007/JHEP03(2019)119[arXiv:1901.03417] [INSPIRE]
ATLAS collaboration, Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, arXiv:2404.18986 [INSPIRE].
A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
HarlanderRVLieblerSMantlerHSusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSMComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006[arXiv:1212.3249] [INSPIRE]
Buarque FranzosiDVryonidouEZhangCScalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approachJHEP20171009610.1007/JHEP10(2017)096[arXiv:1707.06760] [INSPIRE]
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE].
S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE].
ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B10.1088/0954-3899/43/2/023001[arXiv:1510.03865] [INSPIRE]
AtkinsonOEnglertCStylianouPOn interference effects in top-philic decay chainsPhys. Lett. B202182110.1016/j.physletb.2021.136618[arXiv:2012.07424] [INSPIRE]
M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders throughOαS4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_S^4\right) $$\end{document}, Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
BaslerPDawsonSEnglertCMühlleitnerMDi-Higgs boson peaks and top valleys: interference effects in Higgs sector extensionsPhys. Rev. D20201012020PhRvD.101a5019B10.1103/PhysRevD.101.015019[arXiv:1909.09987] [INSPIRE]
ProfumoSRamsey-MusolfMJWainwrightCLWinslowPSinglet-catalyzed electroweak phase transitions and precision Higgs boson studiesPhys. Rev. D2015912015PhRvD..91c5018P10.1103/PhysRevD.91.035018[arXiv:1407.5342] [INSPIRE]
A. Alloul et al., FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP01 (2007) 021 [hep-ph/0611266] [INSPIRE].
EnglertCJaeckelJReESpannowskyMEvasive Higgs maneuvers at the LHCPhys. Rev. D2012852012PhRvD..85c5008E10.1103/PhysRevD.85.035008[arXiv:1111.1719] [INSPIRE]
A. van Hameren, Kaleu: a general-purpose parton-level phase space generator, arXiv:1003.4953 [INSPIRE].
FrederixRMaltoniFTop pair invariant mass distribution: a window on new physicsJHEP2009010472009JHEP...01..047F10.1088/1126-6708/2009/01/047[arXiv:0712.2355] [INSPIRE]
Buarque FranzosiDFabbriFSchumannSConstrain
JM No (24246_CR29) 2014; 89
24246_CR35
S Buehler (24246_CR87) 2014; 185
S Bock (24246_CR20) 2011; 694
JM Campbell (24246_CR90) 2011; 07
L Altenkamp (24246_CR41) 2018; 04
JA Casas (24246_CR40) 2017; 05
C-Y Chen (24246_CR32) 2015; 91
W Bernreuther (24246_CR58) 2016; 93
D Gonçalves (24246_CR11) 2023; 107
V Barger (24246_CR17) 2009; 79
A Djouadi (24246_CR54) 2016; 07
A Djouadi (24246_CR64) 2019; 03
PJ Fox (24246_CR21) 2011; 06
S Frixione (24246_CR106) 2007; 11
S Kanemura (24246_CR36) 2016; 907
HE Logan (24246_CR31) 2015; 92
S Kanemura (24246_CR37) 2017; 917
S Gori (24246_CR55) 2016; 93
A Falkowski (24246_CR34) 2015; 05
24246_CR15
24246_CR12
J Alison (24246_CR47) 2020; 5
24246_CR99
24246_CR14
A Ilnicka (24246_CR46) 2018; 33
24246_CR13
24246_CR113
24246_CR95
24246_CR112
M Czakon (24246_CR75) 2013; 01
24246_CR98
24246_CR111
24246_CR97
24246_CR117
24246_CR116
24246_CR115
24246_CR114
B Batell (24246_CR24) 2012; 06
V Barger (24246_CR16) 2008; 77
S Jung (24246_CR53) 2015; 92
H Abouabid (24246_CR42) 2022; 09
B Hespel (24246_CR59) 2016; 10
G Bhattacharyya (24246_CR18) 2008; 77
24246_CR89
24246_CR88
R Frederix (24246_CR52) 2009; 01
24246_CR3
C Englert (24246_CR23) 2012; 85
24246_CR102
24246_CR2
24246_CR84
24246_CR101
24246_CR1
24246_CR100
24246_CR7
S Dawson (24246_CR19) 2009; 79
24246_CR81
24246_CR6
24246_CR105
24246_CR5
24246_CR83
24246_CR4
24246_CR82
24246_CR109
M Czakon (24246_CR77) 2016; 116
J Butterworth (24246_CR96) 2016; 43
M Czakon (24246_CR85) 2009; 08
N Kauer (24246_CR65) 2019; 07
S Catani (24246_CR79) 2019; 07
A Papaefstathiou (24246_CR10) 2022; 02
24246_CR73
24246_CR76
P Basler (24246_CR63) 2020; 101
S Frixione (24246_CR66) 2020; 80
ND Christensen (24246_CR118) 2009; 180
24246_CR70
24246_CR72
JM Campbell (24246_CR91) 2015; 75
24246_CR71
J Alwall (24246_CR120) 2014; 07
D Buarque Franzosi (24246_CR61) 2017; 10
T Robens (24246_CR44) 2015; 75
M Czakon (24246_CR74) 2012; 12
R Costa (24246_CR33) 2015; 92
S Alioli (24246_CR107) 2010; 06
S Catani (24246_CR80) 2019; 99
A Lind (24246_CR110) 2021; 81
F Buccioni (24246_CR86) 2019; 79
24246_CR69
24246_CR68
24246_CR60
R Coimbra (24246_CR30) 2013; 73
J Davies (24246_CR108) 2020; 124
C Englert (24246_CR22) 2011; 703
J Campbell (24246_CR92) 2019; 12
RV Harlander (24246_CR93) 2013; 184
C Englert (24246_CR25) 2012; 707
MJ Dolan (24246_CR27) 2013; 87
24246_CR56
24246_CR57
24246_CR51
E Bagnaschi (24246_CR104) 2012; 02
24246_CR50
RS Gupta (24246_CR26) 2012; 710
O Atkinson (24246_CR67) 2021; 821
A Papaefstathiou (24246_CR9) 2021; 05
24246_CR49
24246_CR48
A Banfi (24246_CR103) 2016; 04
B Batell (24246_CR28) 2012; 10
D Buarque Franzosi (24246_CR62) 2018; 03
T Robens (24246_CR45) 2016; 76
S Profumo (24246_CR8) 2015; 91
IM Lewis (24246_CR39) 2017; 96
M Czakon (24246_CR78) 2016; 05
C Degrande (24246_CR119) 2012; 183
RV Harlander (24246_CR94) 2017; 212
GM Pruna (24246_CR43) 2013; 88
S Kanemura (24246_CR38) 2018; 233
References_xml – reference: GoriSKimI-WShahNRZurekKMClosing the wedge: search strategies for extended Higgs sectors with heavy flavor final statesPhys. Rev. D2016932016PhRvD..93g5038G10.1103/PhysRevD.93.075038[arXiv:1602.02782] [INSPIRE]
– reference: LewisIMSullivanMBenchmarks for double Higgs production in the singlet extended standard model at the LHCPhys. Rev. D2017962017PhRvD..96c5037L10.1103/PhysRevD.96.035037[arXiv:1701.08774] [INSPIRE]
– reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
– reference: M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B453 (1995) 17 [hep-ph/9504378] [INSPIRE].
– reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP02 (2007) 080 [hep-ph/0611234] [INSPIRE].
– reference: PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channelsJHEP2021050992021JHEP...05..099P10.1007/JHEP05(2021)099[arXiv:2010.00597] [INSPIRE]
– reference: G. Durieux et al., Snowmass white paper: prospects for the measurement of top-quark couplings, in the proceedings of the Snowmass 2021, (2022) [arXiv:2205.02140] [INSPIRE].
– reference: ATLAS collaboration, Search for resonant pair production of Higgs bosons in the bb¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b\overline{b}b\overline{b} $$\end{document} final state using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Rev. D105 (2022) 092002 [arXiv:2202.07288] [INSPIRE].
– reference: HarlanderRVLieblerSMantlerHSusHi Bento: beyond NNLO and the heavy-top limitComput. Phys. Commun.20172122392017CoPhC.212..239H10.1016/j.cpc.2016.10.015[arXiv:1605.03190] [INSPIRE]
– reference: R.M. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
– reference: M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in thett¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}channel at the LHC, JHEP11 (2016) 159 [arXiv:1608.07282] [INSPIRE].
– reference: ATLAS collaboration, Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, arXiv:2404.18986 [INSPIRE].
– reference: M. Czakon, D. Heymes and A. Mitov, Bump hunting in LHCtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events, Phys. Rev. D94 (2016) 114033 [arXiv:1608.00765] [INSPIRE].
– reference: RobensTStefaniakTStatus of the Higgs singlet extension of the standard model after LHC run 1Eur. Phys. J. C2015751042015EPJC...75..104R10.1140/epjc/s10052-015-3323-y[arXiv:1501.02234] [INSPIRE]
– reference: CzakonMHeymesDMitovAHigh-precision differential predictions for top-quark pairs at the LHCPhys. Rev. Lett.20161162016PhRvL.116h2003C10.1103/PhysRevLett.116.082003[arXiv:1511.00549] [INSPIRE]
– reference: KauerNLindAMaierhöferPSongWHiggs interference effects at the one-loop level in the 1-Higgs-singlet extension of the standard modelJHEP2019071082019JHEP...07..108K10.1007/JHEP07(2019)108[arXiv:1905.03296] [INSPIRE]
– reference: CoimbraRSampaioMOPSantosRScannerS: constraining the phase diagram of a complex scalar singlet at the LHCEur. Phys. J. C20137324282013EPJC...73.2428C10.1140/epjc/s10052-013-2428-4[arXiv:1301.2599] [INSPIRE]
– reference: LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE].
– reference: CataniSTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev. D2019992019PhRvD..99e1501C10.1103/PhysRevD.99.051501[arXiv:1901.04005] [INSPIRE]
– reference: CataniSTop-quark pair production at the LHC: fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C10.1007/JHEP07(2019)100[arXiv:1906.06535] [INSPIRE]
– reference: P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
– reference: BatellBGoriSWangL-TExploring the Higgs portal with 10 fb−1at the LHCJHEP2012061722012JHEP...06..172B10.1007/JHEP06(2012)172[arXiv:1112.5180] [INSPIRE]
– reference: CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
– reference: KanemuraSKikuchiMYagyuKRadiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar fieldNucl. Phys. B20169072862016NuPhB.907..286K349843410.1016/j.nuclphysb.2016.04.005[arXiv:1511.06211] [INSPIRE]
– reference: ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
– reference: LoganHEHiding a Higgs width enhancement from off-shell gg(→ h∗) → ZZ measurementsPhys. Rev. D2015922015PhRvD..92g5038L10.1103/PhysRevD.92.075038[arXiv:1412.7577] [INSPIRE]
– reference: BanfiAJet-vetoed Higgs cross section in gluon fusion at N3LO+NNLL with small-R resummationJHEP2016040492016JHEP...04..049B[arXiv:1511.02886] [INSPIRE]
– reference: A. van Hameren, Kaleu: a general-purpose parton-level phase space generator, arXiv:1003.4953 [INSPIRE].
– reference: ChenC-YDawsonSLewisIMExploring resonant di-Higgs boson production in the Higgs singlet modelPhys. Rev. D2015912015PhRvD..91c5015C10.1103/PhysRevD.91.035015[arXiv:1410.5488] [INSPIRE]
– reference: K.J.F. Gaemers and F. Hoogeveen, Higgs production and decay into heavy flavors with the gluon fusion mechanism, Phys. Lett. B146 (1984) 347 [INSPIRE].
– reference: BargerVLHC phenomenology of an extended standard model with a real scalar singletPhys. Rev. D2008772008PhRvD..77c5005B10.1103/PhysRevD.77.035005[arXiv:0706.4311] [INSPIRE]
– reference: AlisonJHiggs boson potential at colliders: status and perspectivesRev. Phys.2020510.1016/j.revip.2020.100045[arXiv:1910.00012] [INSPIRE]
– reference: CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [INSPIRE]
– reference: ChristensenNDDuhrCFeynRules — Feynman rules made easyComput. Phys. Commun.200918016142009CoPhC.180.1614C10.1016/j.cpc.2009.02.018[arXiv:0806.4194] [INSPIRE]
– reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [INSPIRE]
– reference: HespelBMaltoniFVryonidouESignal background interference effects in heavy scalar production and decay to a top-anti-top pairJHEP2016100162016JHEP...10..016H10.1007/JHEP10(2016)016[arXiv:1606.04149] [INSPIRE]
– reference: M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and H → hh decays: two LHC search paths for a hidden sector Higgs boson, JHEP03 (2007) 036 [hep-ph/0701035] [INSPIRE].
– reference: BuehlerSDuhrCCHAPLIN — Complex Harmonic Polylogarithms in FortranComput. Phys. Commun.201418527032014CoPhC.185.2703B10.1016/j.cpc.2014.05.022[arXiv:1106.5739] [INSPIRE]
– reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. B Proc. Suppl.160 (2006) 131 [hep-ph/0607060] [INSPIRE].
– reference: P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132 [INSPIRE].
– reference: BagnaschiEDegrassiGSlavichPViciniAHiggs production via gluon fusion in the POWHEG approach in the SM and in the MSSMJHEP2012020882012JHEP...02..088B10.1007/JHEP02(2012)088[arXiv:1111.2854] [INSPIRE]
– reference: P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13 (1964) 508 [INSPIRE].
– reference: S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B627 (2002) 189 [hep-ph/0201036] [INSPIRE].
– reference: HDECAY collaboration, HDECAY: twenty++years after, Comput. Phys. Commun.238 (2019) 214 [arXiv:1801.09506] [INSPIRE].
– reference: G. Aad et al., Luminosity determination in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C83 (2023) 982 [arXiv:2212.09379].
– reference: EnglertCPlehnTZerwasDZerwasPMExploring the Higgs portalPhys. Lett. B20117032982011PhLB..703..298E10.1016/j.physletb.2011.08.002[arXiv:1106.3097] [INSPIRE]
– reference: AbouabidHBenchmarking di-Higgs production in various extended Higgs sector modelsJHEP2022090112022JHEP...09..011A10.1007/JHEP09(2022)011[arXiv:2112.12515] [INSPIRE]
– reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE].
– reference: U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP01 (2007) 021 [hep-ph/0611266] [INSPIRE].
– reference: DegrandeCUFO — the Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D10.1016/j.cpc.2012.01.022[arXiv:1108.2040] [INSPIRE]
– reference: BockSMeasuring hidden Higgs and strongly-interacting Higgs scenariosPhys. Lett. B2011694442010PhLB..694...44B10.1016/j.physletb.2010.09.032[arXiv:1007.2645] [INSPIRE]
– reference: NoJMRamsey-MusolfMProbing the Higgs portal at the LHC through resonant di-Higgs productionPhys. Rev. D2014892014PhRvD..89i5031N10.1103/PhysRevD.89.095031[arXiv:1310.6035] [INSPIRE]
– reference: HarlanderRVLieblerSMantlerHSusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSMComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006[arXiv:1212.3249] [INSPIRE]
– reference: DolanMJEnglertCSpannowskyMNew physics in LHC Higgs boson pair productionPhys. Rev. D2013872013PhRvD..87e5002D10.1103/PhysRevD.87.055002[arXiv:1210.8166] [INSPIRE]
– reference: Buarque FranzosiDFabbriFSchumannSConstraining scalar resonances with top-quark pair production at the LHCJHEP20180302210.1007/JHEP03(2018)022[arXiv:1711.00102] [INSPIRE]
– reference: M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders throughOαS4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_S^4\right) $$\end{document}, Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
– reference: F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13 (1964) 321 [INSPIRE].
– reference: DjouadiAEllisJQuevillonJInterference effects in the decays of spin-zero resonances into γγ and ttJHEP2016071052016JHEP...07..105D10.1007/JHEP07(2016)105[arXiv:1605.00542] [INSPIRE]
– reference: BargerVComplex singlet extension of the standard modelPhys. Rev. D2009792009PhRvD..79a5018B10.1103/PhysRevD.79.015018[arXiv:0811.0393] [INSPIRE]
– reference: LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [DOI:10.5170/CERN-2013-004] [INSPIRE].
– reference: CzakonMFiedlerPHeymesDMitovANNLO QCD predictions for fully-differential top-quark pair production at the TevatronJHEP2016050342016JHEP...05..034C10.1007/JHEP05(2016)034[arXiv:1601.05375] [INSPIRE]
– reference: A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE].
– reference: RobensTStefaniakTLHC benchmark scenarios for the real Higgs singlet extension of the standard modelEur. Phys. J. C2016762682016EPJC...76..268R10.1140/epjc/s10052-016-4115-8[arXiv:1601.07880] [INSPIRE]
– reference: P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B303 (1988) 607 [INSPIRE].
– reference: BaslerPDawsonSEnglertCMühlleitnerMDi-Higgs boson peaks and top valleys: interference effects in Higgs sector extensionsPhys. Rev. D20201012020PhRvD.101a5019B10.1103/PhysRevD.101.015019[arXiv:1909.09987] [INSPIRE]
– reference: CzakonMMitovANNLO corrections to top pair production at hadron colliders: the quark-gluon reactionJHEP2013010802013JHEP...01..080C10.1007/JHEP01(2013)080[arXiv:1210.6832] [INSPIRE]
– reference: A. Alloul et al., FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
– reference: R. Barlow, Statistics. A guide to the use of statistical methods in the physical sciences, Wiley (1993).
– reference: ATLAS collaboration, Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Rev. D106 (2022) 052001 [arXiv:2112.11876] [INSPIRE].
– reference: JungSSongJYoonYWDip or nothingness of a Higgs resonance from the interference with a complex phasePhys. Rev. D2015922015PhRvD..92e5009J10.1103/PhysRevD.92.055009[arXiv:1505.00291] [INSPIRE]
– reference: DawsonSYanWHiding the Higgs boson with multiple scalarsPhys. Rev. D2009792009PhRvD..79i5002D10.1103/PhysRevD.79.095002[arXiv:0904.2005] [INSPIRE]
– reference: CostaRMoraisAPSampaioMOPSantosRTwo-loop stability of a complex singlet extended standard modelPhys. Rev. D2015922015PhRvD..92b5024C10.1103/PhysRevD.92.025024[arXiv:1411.4048] [INSPIRE]
– reference: EnglertCJaeckelJReESpannowskyMEvasive Higgs maneuvers at the LHCPhys. Rev. D2012852012PhRvD..85c5008E10.1103/PhysRevD.85.035008[arXiv:1111.1719] [INSPIRE]
– reference: W. Beenakker et al., QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B351 (1991) 507 [INSPIRE].
– reference: FalkowskiAGrossCLebedevOA second Higgs from the Higgs portalJHEP2015050572015JHEP...05..057F10.1007/JHEP05(2015)057[arXiv:1502.01361] [INSPIRE]
– reference: S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE].
– reference: CampbellJNeumannTPrecision phenomenology with MCFMJHEP2019120342019JHEP...12..034C10.1007/JHEP12(2019)034[arXiv:1909.09117] [INSPIRE]
– reference: FrixioneSNasonPOleariCMatching NLO QCD computations with parton shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE]
– reference: FrederixRMaltoniFTop pair invariant mass distribution: a window on new physicsJHEP2009010472009JHEP...01..047F10.1088/1126-6708/2009/01/047[arXiv:0712.2355] [INSPIRE]
– reference: GonçalvesDKaladharanAWuYResonant top pair searches at the LHC: a window to the electroweak phase transitionPhys. Rev. D20231072023PhRvD.107g5040G10.1103/PhysRevD.107.075040[arXiv:2206.08381] [INSPIRE]
– reference: BuccioniFOpenLoops 2Eur. Phys. J. C2019798662019EPJC...79..866B10.1140/epjc/s10052-019-7306-2[arXiv:1907.13071] [INSPIRE]
– reference: D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B333 (1994) 126 [hep-ph/9404359] [INSPIRE].
– reference: KanemuraSKikuchiMSakuraiKYagyuKH-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectorsComput. Phys. Commun.20182331342018CoPhC.233..134K384518910.1016/j.cpc.2018.06.012[arXiv:1710.04603] [INSPIRE]
– reference: DaviesJHerrenFSteinhauserMTop quark mass effects in Higgs boson production at four-loop order: virtual correctionsPhys. Rev. Lett.20201242020PhRvL.124k2002D10.1103/PhysRevLett.124.112002[arXiv:1911.10214] [INSPIRE]
– reference: FoxPJTucker-SmithDWeinerNHiggs friends and counterfeits at hadron collidersJHEP2011061272011JHEP...06..127F10.1007/JHEP06(2011)127[arXiv:1104.5450] [INSPIRE]
– reference: ATLAS collaboration, Measurement of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} cross section and its ratio to the Z production cross section using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13.6 TeV with the ATLAS detector, Phys. Lett. B848 (2024) 138376 [arXiv:2308.09529] [INSPIRE].
– reference: BernreutherWProduction of heavy Higgs bosons and decay into top quarks at the LHCPhys. Rev. D2016932016PhRvD..93c4032B10.1103/PhysRevD.93.034032[arXiv:1511.05584] [INSPIRE]
– reference: P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections toqq¯→tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to t\overline{t} $$\end{document} + X, Phys. Rev. Lett.109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].
– reference: EnglertCLHC: standard Higgs and hidden HiggsPhys. Lett. B20127075122012PhLB..707..512E10.1016/j.physletb.2011.12.067[arXiv:1112.3007] [INSPIRE]
– reference: ProfumoSRamsey-MusolfMJWainwrightCLWinslowPSinglet-catalyzed electroweak phase transitions and precision Higgs boson studiesPhys. Rev. D2015912015PhRvD..91c5018P10.1103/PhysRevD.91.035018[arXiv:1407.5342] [INSPIRE]
– reference: GuptaRSWellsJDHiggs boson search significance deformations due to mixed-in scalarsPhys. Lett. B20127101542012PhLB..710..154G10.1016/j.physletb.2012.02.056[arXiv:1110.0824] [INSPIRE]
– reference: FrixioneSModel-independent approach for incorporating interference effects in collider searches for new resonancesEur. Phys. J. C20208011742020EPJC...80.1174F10.1140/epjc/s10052-020-08763-5[arXiv:2008.07751] [INSPIRE]
– reference: R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP12 (2005) 015 [hep-ph/0509189] [INSPIRE].
– reference: BhattacharyyaGBrancoGCNandiSUniversal doublet-singlet Higgs couplings and phenomenology at the CERN Large Hadron ColliderPhys. Rev. D2008772008PhRvD..77k7701B10.1103/PhysRevD.77.117701[arXiv:0712.2693] [INSPIRE]
– reference: PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: discovery post-mortemJHEP2022021852022JHEP...02..185P10.1007/JHEP02(2022)185[arXiv:2108.11394] [INSPIRE]
– reference: M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B373 (1992) 295 [INSPIRE].
– reference: T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C75 (1997) 17 [hep-ph/9608245] [INSPIRE].
– reference: J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
– reference: V. Martín Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in thehh→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ hh\to b\overline{b} $$\end{document}WW→bb¯ℓ+νℓ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ WW\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} $$\end{document}decay channel, JHEP08 (2015) 004 [arXiv:1501.03799] [INSPIRE].
– reference: CampbellJMEllisRKWilliamsCVector boson pair production at the LHCJHEP2011070182011JHEP...07..018C10.1007/JHEP07(2011)018[arXiv:1105.0020] [INSPIRE]
– reference: DjouadiAEllisJPopovAQuevillonJInterference effects in tt production at the LHC as a window on new physicsJHEP2019031192019JHEP...03..119D10.1007/JHEP03(2019)119[arXiv:1901.03417] [INSPIRE]
– reference: B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
– reference: CzakonMMitovANNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channelsJHEP2012120542012JHEP...12..054C10.1007/JHEP12(2012)054[arXiv:1207.0236] [INSPIRE]
– reference: PrunaGMRobensTHiggs singlet extension parameter space in the light of the LHC discoveryPhys. Rev. D2013882013PhRvD..88k5012P10.1103/PhysRevD.88.115012[arXiv:1303.1150] [INSPIRE]
– reference: CasasJACerdeñoDGMorenoJMQuilisJReopening the Higgs portal for single scalar dark matterJHEP2017050362017JHEP...05..036C10.1007/JHEP05(2017)036[arXiv:1701.08134] [INSPIRE]
– reference: Buarque FranzosiDVryonidouEZhangCScalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approachJHEP20171009610.1007/JHEP10(2017)096[arXiv:1707.06760] [INSPIRE]
– reference: W. Bernreuther, P. Galler, Z.-G. Si and P. Uwer, Production of heavy Higgs bosons and decay into top quarks at the LHC. II: top-quark polarization and spin correlation effects, Phys. Rev. D95 (2017) 095012 [arXiv:1702.06063] [INSPIRE].
– reference: ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B10.1088/0954-3899/43/2/023001[arXiv:1510.03865] [INSPIRE]
– reference: KanemuraSKikuchiMYagyuKOne-loop corrections to the Higgs self-couplings in the singlet extensionNucl. Phys. B20179171542017NuPhB.917..154K10.1016/j.nuclphysb.2017.02.004[arXiv:1608.01582] [INSPIRE]
– reference: I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): technical design report, CERN-2020-010, CERN, Geneva, Switzerland (2020) [https://doi.org/10.23731/CYRM-2020-0010] [INSPIRE].
– reference: G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett.13 (1964) 585 [INSPIRE].
– reference: AtkinsonOEnglertCStylianouPOn interference effects in top-philic decay chainsPhys. Lett. B202182110.1016/j.physletb.2021.136618[arXiv:2012.07424] [INSPIRE]
– reference: LindABanfiAH1jet, a fast program to compute transverse momentum distributionsEur. Phys. J. C202181722021EPJC...81...72L10.1140/epjc/s10052-020-08815-w[arXiv:2011.04694] [INSPIRE]
– reference: BatellBMcKeenDPospelovMSinglet neighbors of the Higgs bosonJHEP2012101042012JHEP...10..104B10.1007/JHEP10(2012)104[arXiv:1207.6252] [INSPIRE]
– reference: CampbellJMEllisRKGieleWTA multi-threaded version of MCFMEur. Phys. J. C2015752462015EPJC...75..246C10.1140/epjc/s10052-015-3461-2[arXiv:1503.06182] [INSPIRE]
– reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A10.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE]
– reference: AltenkampLBoggiaMDittmaierSPrecision calculations for h → WW/ZZ → 4 fermions in a singlet extension of the standard model with Prophecy4fJHEP2018040622018JHEP...04..062A10.1007/JHEP04(2018)062[arXiv:1801.07291] [INSPIRE]
– reference: IlnickaARobensTStefaniakTConstraining extended scalar sectors at the LHC and beyondMod. Phys. Lett. A20183318300072018MPLA...3330007I10.1142/S0217732318300070[arXiv:1803.03594] [INSPIRE]
– reference: P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev.145 (1966) 1156 [INSPIRE].
– reference: W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production inpp¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\overline{p} $$\end{document}collisions, Phys. Rev. D40 (1989) 54 [INSPIRE].
– volume: 07
  start-page: 105
  year: 2016
  ident: 24246_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)105
– ident: 24246_CR97
  doi: 10.1103/PhysRevD.74.013004
– ident: 24246_CR102
  doi: 10.1016/0550-3213(95)00379-7
– ident: 24246_CR4
  doi: 10.1103/PhysRevLett.13.508
– ident: 24246_CR15
  doi: 10.1088/1126-6708/2007/03/036
– ident: 24246_CR1
– volume: 06
  start-page: 127
  year: 2011
  ident: 24246_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP06(2011)127
– ident: 24246_CR48
– volume: 77
  year: 2008
  ident: 24246_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.117701
– ident: 24246_CR50
  doi: 10.1016/0370-2693(84)91711-8
– ident: 24246_CR116
– volume: 101
  year: 2020
  ident: 24246_CR63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.015019
– ident: 24246_CR7
  doi: 10.1103/PhysRevLett.13.585
– volume: 08
  start-page: 085
  year: 2009
  ident: 24246_CR85
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/08/085
– ident: 24246_CR117
  doi: 10.1016/j.cpc.2014.04.012
– volume: 917
  start-page: 154
  year: 2017
  ident: 24246_CR37
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.02.004
– volume: 03
  start-page: 119
  year: 2019
  ident: 24246_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)119
– ident: 24246_CR69
  doi: 10.1016/0550-3213(88)90422-1
– volume: 99
  year: 2019
  ident: 24246_CR80
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.051501
– volume: 07
  start-page: 079
  year: 2014
  ident: 24246_CR120
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– volume: 05
  start-page: 036
  year: 2017
  ident: 24246_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)036
– ident: 24246_CR51
  doi: 10.1016/0370-2693(94)91017-0
– volume: 09
  start-page: 011
  year: 2022
  ident: 24246_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)011
– volume: 92
  year: 2015
  ident: 24246_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.075038
– ident: 24246_CR98
  doi: 10.1016/j.nuclphysbps.2006.09.104
– ident: 24246_CR109
  doi: 10.1088/1126-6708/2007/01/021
– volume: 80
  start-page: 1174
  year: 2020
  ident: 24246_CR66
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08763-5
– volume: 12
  start-page: 034
  year: 2019
  ident: 24246_CR92
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)034
– volume: 89
  year: 2014
  ident: 24246_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.095031
– volume: 01
  start-page: 047
  year: 2009
  ident: 24246_CR52
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/01/047
– volume: 04
  start-page: 062
  year: 2018
  ident: 24246_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP04(2018)062
– volume: 10
  start-page: 096
  year: 2017
  ident: 24246_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)096
– ident: 24246_CR68
– ident: 24246_CR100
  doi: 10.1016/S0010-4655(97)00123-9
– ident: 24246_CR88
  doi: 10.1142/S0217751X00000367
– ident: 24246_CR6
  doi: 10.1103/PhysRevLett.13.321
– volume: 92
  year: 2015
  ident: 24246_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.055009
– ident: 24246_CR113
– volume: 05
  start-page: 099
  year: 2021
  ident: 24246_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)099
– ident: 24246_CR99
  doi: 10.1088/1126-6708/2007/02/080
– volume: 07
  start-page: 100
  year: 2019
  ident: 24246_CR79
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)100
– ident: 24246_CR57
  doi: 10.1103/PhysRevD.94.114033
– ident: 24246_CR60
  doi: 10.1103/PhysRevD.95.095012
– volume: 04
  start-page: 049
  year: 2016
  ident: 24246_CR103
  publication-title: JHEP
– volume: 124
  year: 2020
  ident: 24246_CR108
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.112002
– volume: 79
  year: 2009
  ident: 24246_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.015018
– ident: 24246_CR111
– volume: 79
  start-page: 866
  year: 2019
  ident: 24246_CR86
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7306-2
– volume: 92
  year: 2015
  ident: 24246_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.025024
– volume: 93
  year: 2016
  ident: 24246_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.034032
– ident: 24246_CR101
  doi: 10.1016/j.cpc.2018.12.010
– ident: 24246_CR89
  doi: 10.1103/PhysRevD.60.113006
– ident: 24246_CR71
  doi: 10.1016/S0550-3213(05)80032-X
– volume: 85
  year: 2012
  ident: 24246_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.035008
– volume: 93
  year: 2016
  ident: 24246_CR55
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.075038
– volume: 707
  start-page: 512
  year: 2012
  ident: 24246_CR25
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2011.12.067
– volume: 10
  start-page: 016
  year: 2016
  ident: 24246_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)016
– volume: 75
  start-page: 246
  year: 2015
  ident: 24246_CR91
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3461-2
– volume: 75
  start-page: 104
  year: 2015
  ident: 24246_CR44
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3323-y
– ident: 24246_CR49
– volume: 03
  start-page: 022
  year: 2018
  ident: 24246_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)022
– volume: 79
  year: 2009
  ident: 24246_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.095002
– volume: 907
  start-page: 286
  year: 2016
  ident: 24246_CR36
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2016.04.005
– volume: 06
  start-page: 043
  year: 2010
  ident: 24246_CR107
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)043
– ident: 24246_CR95
  doi: 10.23731/CYRM-2017-002
– volume: 33
  start-page: 1830007
  year: 2018
  ident: 24246_CR46
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732318300070
– ident: 24246_CR56
  doi: 10.1007/JHEP11(2016)159
– volume: 821
  year: 2021
  ident: 24246_CR67
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136618
– volume: 02
  start-page: 088
  year: 2012
  ident: 24246_CR104
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)088
– volume: 11
  start-page: 070
  year: 2007
  ident: 24246_CR106
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/070
– ident: 24246_CR114
  doi: 10.23731/CYRM-2020-0010
– volume: 184
  start-page: 1605
  year: 2013
  ident: 24246_CR93
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.02.006
– volume: 07
  start-page: 018
  year: 2011
  ident: 24246_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)018
– volume: 180
  start-page: 1614
  year: 2009
  ident: 24246_CR118
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.02.018
– volume: 10
  start-page: 104
  year: 2012
  ident: 24246_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)104
– volume: 07
  start-page: 108
  year: 2019
  ident: 24246_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)108
– ident: 24246_CR12
  doi: 10.1007/s002880050442
– ident: 24246_CR105
  doi: 10.1088/1126-6708/2004/11/040
– volume: 185
  start-page: 2703
  year: 2014
  ident: 24246_CR87
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.05.022
– ident: 24246_CR81
  doi: 10.1088/1126-6708/2005/12/015
– volume: 05
  start-page: 057
  year: 2015
  ident: 24246_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)057
– ident: 24246_CR112
– ident: 24246_CR5
  doi: 10.1103/PhysRev.145.1156
– volume: 06
  start-page: 172
  year: 2012
  ident: 24246_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)172
– volume: 01
  start-page: 080
  year: 2013
  ident: 24246_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP01(2013)080
– volume: 233
  start-page: 134
  year: 2018
  ident: 24246_CR38
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.06.012
– volume: 02
  start-page: 185
  year: 2022
  ident: 24246_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)185
– volume: 05
  start-page: 034
  year: 2016
  ident: 24246_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)034
– ident: 24246_CR13
  doi: 10.1103/PhysRevD.72.093007
– ident: 24246_CR70
  doi: 10.1103/PhysRevD.40.54
– volume: 73
  start-page: 2428
  year: 2013
  ident: 24246_CR30
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2428-4
– ident: 24246_CR72
  doi: 10.1016/0550-3213(92)90435-E
– volume: 87
  year: 2013
  ident: 24246_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.055002
– volume: 91
  year: 2015
  ident: 24246_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.035015
– volume: 107
  year: 2023
  ident: 24246_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.075040
– volume: 183
  start-page: 1201
  year: 2012
  ident: 24246_CR119
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.01.022
– ident: 24246_CR83
  doi: 10.1016/S0550-3213(96)00589-5
– volume: 77
  year: 2008
  ident: 24246_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.035005
– volume: 88
  year: 2013
  ident: 24246_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.115012
– ident: 24246_CR3
  doi: 10.1016/0031-9163(64)91136-9
– volume: 710
  start-page: 154
  year: 2012
  ident: 24246_CR26
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.02.056
– volume: 116
  year: 2016
  ident: 24246_CR77
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.082003
– volume: 703
  start-page: 298
  year: 2011
  ident: 24246_CR22
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2011.08.002
– ident: 24246_CR35
  doi: 10.1007/JHEP08(2015)004
– ident: 24246_CR2
– ident: 24246_CR14
– volume: 91
  year: 2015
  ident: 24246_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.035018
– ident: 24246_CR73
  doi: 10.1103/PhysRevLett.109.132001
– volume: 12
  start-page: 054
  year: 2012
  ident: 24246_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP12(2012)054
– volume: 76
  start-page: 268
  year: 2016
  ident: 24246_CR45
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4115-8
– ident: 24246_CR76
  doi: 10.1103/PhysRevLett.110.252004
– volume: 694
  start-page: 44
  year: 2011
  ident: 24246_CR20
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.09.032
– volume: 212
  start-page: 239
  year: 2017
  ident: 24246_CR94
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.10.015
– volume: 43
  year: 2016
  ident: 24246_CR96
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/43/2/023001
– ident: 24246_CR82
– volume: 5
  year: 2020
  ident: 24246_CR47
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2020.100045
– volume: 96
  year: 2017
  ident: 24246_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.035037
– ident: 24246_CR115
– ident: 24246_CR84
  doi: 10.1016/S0550-3213(02)00098-6
– volume: 81
  start-page: 72
  year: 2021
  ident: 24246_CR110
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08815-w
SSID ssj0015190
Score 2.4656444
Snippet A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard...
We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → $$ t\overline{t} $$ t t ¯ + X in the 1-Higgs-singlet extension of the...
We present a next-to-leading-order (NLO) study of the process pp (→ {h1, h2}) →tt¯ + X in the 1-Higgs-singlet extension of the Standard Model with an...
We present a next-to-leading-order (NLO) study of the process $pp \; ( \to \{ h_1, h_2 \}) \to t\bar{t} + X$ in the 1-Higgs-singlet extension of the Standard...
Abstract We present a next-to-leading-order (NLO) study of the process pp (→ {h 1, h 2}) → t t ¯ $$ t\overline{t} $$ + X in the 1-Higgs-singlet extension of...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Classical and Quantum Gravitation
Elementary Particles
Higgs bosons
Higgs Production
High Energy Physics - Experiment
High Energy Physics - Phenomenology
Higher-Order Perturbative Calculations
Large Hadron Collider
Multi-Higgs Models
Pair production
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
Resonance
Standard model (particle physics)
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7En1idUsSDHqpp-9IlR5WNMlQEHexW8qtMlG1u07_fl7TVTRAvXpM0hPc1fd_Le_1CyCk1kAEXOrKZTSLgSkeKllkEGveSFlxYL_Z8d5_lfegN2GDhqi9XE1bJA1eGu8ww3mCMG14yCUymQgIvJbKMDJ1bWyr39UWf1wRTdf4AeQlthHxo-7KXdx4oP8NAH87jOFnyQV6qHz3L0BVCLrDMH4lR72-6m2SjJorhVbXALbJiR9tkzRds6tkOuXFnxbPQqT1M61_2wro2AxvD-XgSvSH6L-FEPk_DSaXrihj4zqEN4_zxbpf0u52nmzyqL0SINLB4HmkqqeEMMimk4BjZaqEYSKkYM6DbllskDAKHlCLRbfRPRlgBBqMOkypqZLpHVkfjkd0nIYWSMk2VS6SC4kqWCTMSp9ZcoHUhIBeNiQpdq4W7Sytei0bnuLJp4WyKYUQSkLOvByaVUMbvQ6-dzb-GOYVr34C4FzXuxV-4B-QEEVuaI7-6LVybL_VBpvMRB6TVAFrUe3NWpP4QRwBPA3LegPzd_cuiD_5j0Ydk3c3nzqRjaJHV-fTdHiGpmatj__5-Anl87c8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GIvgifmJ1ShEf9KGSrpcueZzDUcSJoIJvJUlTFWWb2_Tv95K184s9-BaSS0jvkuYud_cLwDErMEUhTWRT24pQaBNpVqYRGtpLRgppPdhz_zrN7vHygT80IK5zYXy0e-2S9H_qOtntMru4YeKEjHU8jd27wsucym5Rd12CQ-U4IIWE1Qg-fzv9OHw8Rj8dKU8uAvKbevnLI-oPmt46rFUaYtiZiXQDGnawCSs-UtNMtqDrLoknoYN5GFe5emEVlEGV4XQ4it5I7C_hSD2Pw9EM0JWY7xufbBhnt_1tuO9d3HWzqHoJITLI42lkmGKF4JgqqaQgk9ZIzVEpzXmBpm2FJU1BEkkpW6ZNB1MhrcSCzI0i0axQyQ4sDYYDuwshw5Jxw7TzoKIWWpUtXiga2gipSH8L4KxmUW4qmHD3WsVrXgMcz3iaO56S_dAK4GTeYTRDyFhMeu54Pidz0Na-Yjh-zKudkqdkYHIu6Fu4Qq4SqVCUNLN2StpMW-kAjkhiP8bIOle5q_MxPqTifMQBNGuB5tWmnOSJv72RKJIATmshfzUvmPTeP2j3YdUV3Z1zjE1Ymo7f7QEpLVN96JfpJxSY4Zk
  priority: 102
  providerName: Springer Nature
Title Higgs interference effects in top-quark pair production in the 1HSM
URI https://link.springer.com/article/10.1007/JHEP08(2024)112
https://www.proquest.com/docview/3093309483
https://hal.science/hal-04237819
https://doaj.org/article/6717558d8f5a45a39a48fa05760787ab
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8aoEm7oH1qGayKph3g4OEkdmKfplK1i9BAaFslbpG_AoipDW23v3_PrlMGElwsxXYsx8_2-8zvAXymlpVMSENc6XLChDZE07YkzOBZMlJIF8CeT8_KespOLvhFNLgtY1hlfyeGi9rOjbeRHxVB9ZZMFF-7W-KzRnnvakyhsQU7eAULVL52jsdn5z82fgSUT2gP6EOro5N6fE7FASr87DDL8nu8KED2I4e58gGR_0mbDxykge9MXsJuFBjT4ZrCr-CZm72G5yFw0yzfwMjbjJepR31YxF_30hijgZXpat6RW9wFN2mnrhdpt8Z3RVqExiuXZvXP07cwnYx_jWoSEyMQw3i2IoYqagVnpZJKCtRwjdScKaU5t8xUTjgUHCR2aWVuKuRTVjrJLGofttDUquIdbM_mM_ceUspayg3V3qHKtNCqzblVOLQRUqE4l8CXfokaE1HDffKK302Pd7xe08avKaoTeQIHmxe6NWDG412P_Zpvunmk61AxX1w28eA0JeqbnAv8Fq4YV4VUTLQ4s6pE4aZSOoFPSLF7Y9TD742vCyE_KPH8zRLY7wnaxDO6bO52VAKHPZHvmh-Z9Ienh9qDF76ntzpnbB-2V4s_7iOKLSs9gC0x-TaIOxSfRjnzZTkaBEMAltN8-A_WROwD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIIYoy_Gz1hFbYwm8LCybXfb3QdiEDkL3BETIeGt7FfFaO7K3QnhT_kbnd22h5jgG6_7MWnnY2dmZ3YG4C21LGdCGuJylxImtCGa1jlhBmXJSCFdKPY82s_LQ7Z7xI-W4Hf_FsanVfZnYjio7cT4O_L1LLjekonsQ3NKfNcoH13tW2i0bLHnLs7RZZtt7HxC-r5L08H2wVZJuq4CxDCezImhilrBWa6kkgLdQyM1Z0ppzi0zhRMOta7EJbVMTYGHvJVOMoumu800tSpDuLfgNssy6SVKDD4vohZoDdG-fBAt1nfL7S9UrKaoBteSJL2i-UKDANRnJz798i_b9p9wbNBygwdwvzNP482Wnx7Ckhs_gjshTdTMHsOWv6Gexb7GxLR7KBh3GSE4GM8nDTlFnvsRN-r7NG7aarJI-TB54uKk_Dp6Aoc3grCnsDyejN0ziCmrKTdU-_At00KrOuVWIWgjpELjMYL3PYoq09Uo960yflZ9deUWp5XHKTovaQSriw1NW57j-qUfPc4Xy3xd7TAwmX6rOjGtcvRuORf4L1wxrjKpmKjxy4ocTalC6QjeIMWuwCg3h5UfCwlGaF-dJRGs9AStuhNhVl3ybwRrPZEvp6_56Of_B_Ua7pYHo2E13NnfewH3_C5_352wFVieT3-5l2gwzfWrwKUxHN-0WPwBaBYi8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFB5SUCBSwEUnsI6yR2Yh9Q1ceu0tdqBVTqLdiOQxFoN91dQPxav67jxNlSpHLr1Y9RMg_PjGc8A_CWlixlQprQpjYOmdAm1LRKQ2ZQlowU0jbFno9HaX7CDk756QpcdG9hXFpldyY2B3U5Ne6OvJ80rrdkIulXPi1ivDfcqs9D10HKRVq7dhotixzaP7_RfZt_2N9DWr-L4-Hg824e-g4DoWE8WoSGKloKzlIllRToKhqpOVNKc14yk1lhUQNLXFLJ2GR44JfSSlaiGV8mmpYqQbh3YDVDr4j2YHVnMBp_XMYw0DaiXTEhmvUP8sGYio0YleJmFMXX9GDTLgC125lLxvzL0v0nONvovOEaPPDGKtluueshrNjJI7jbJI2a-WPYdffVc-IqTsz8s0Hi80NwkCymdXiOHPid1OrbjNRtbVnkg2byzJIo_3T8BE5uBWVPoTeZTuwzIJRVlBuqXTCXaaFVFfNSIWgjpEJTMoD3HYoK4yuWu8YZP4qu1nKL08LhFF2ZOICN5Ya6LdZx89Idh_PlMldluxmYzr4WXmiLFH1dzgX-C1eMq0QqJir8sixFwypTOoA3SLFrMPLto8KNNelGaG39igJY7wha-PNhXlxxcwCbHZGvpm_46Of_B_Ua7qFIFEf7o8MXcN9tcpffEVuH3mL2075E62mhX3k2JfDltiXjEg3NKIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higgs+interference+effects+in+top-quark+pair+production+in+the+1HSM&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Banfi%2C+Andrea&rft.au=Kauer%2C+Nikolas&rft.au=Lind%2C+Alexander&rft.au=Lindert%2C+Jonas+M&rft.date=2024-08-14&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=112&rft_id=info:doi/10.1007%2FJHEP08%282024%29112&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon