Higgs interference effects in top-quark pair production in the 1HSM
A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 8; pp. 112 - 30 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
14.08.2024
Springer Nature B.V Springer SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We present a next-to-leading-order (NLO) study of the process
pp
(
→
{
h
1
,
h
2
})
→
t
t
¯
+
X
in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson
h
2
that mixes with the light Higgs boson
h
1
. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. |
---|---|
AbstractList | Abstract We present a next-to-leading-order (NLO) study of the process pp (→ {h 1, h 2}) → t t ¯ $$ t\overline{t} $$ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. We present a next-to-leading-order (NLO) study of the process $pp \; ( \to \{ h_1, h_2 \}) \to t\bar{t} + X$ in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson $h_2$ that mixes with the light Higgs boson $h_1$. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range $700$--$3000$ GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. We present a next-to-leading-order (NLO) study of the process pp (→ {h1, h2}) →tt¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h2 that mixes with the light Higgs boson h1. This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → $$ t\overline{t} $$ t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. A bstract We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → t t ¯ + X in the 1-Higgs-singlet extension of the Standard Model with an additional heavy Higgs boson h 2 that mixes with the light Higgs boson h 1 . This process is subject to large interference effects between loop-induced Higgs-mediated amplitudes and the QCD continuum background which tend to overcompensate any resonance contributions. A reliable modelling of the resulting top-pair invariant mass shapes requires the inclusion of higher-order QCD corrections, which are presented here. The computation of these NLO corrections is exact in all contributions but in the class of non-factorisable two-loop diagrams which are included in an approximate way such that all infrared singular limits are preserved. We present numerical results for several benchmark points with heavy Higgs masses in the range 700–3000 GeV considering the production of stable top quarks. We find that the interference effects dominate the BSM signal yielding sharp dip structures instead of resonance peaks. The significance and excludability of the BSM effect is explored for the LHC Run 2, Run 3 and HL-LHC. |
ArticleNumber | 112 |
Author | Banfi, Andrea Lind, Alexander Kauer, Nikolas Lindert, Jonas M. Wood, Ryan |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0003-0409-4115 surname: Banfi fullname: Banfi, Andrea organization: Department of Physics and Astronomy, University of Sussex – sequence: 2 givenname: Nikolas orcidid: 0009-0008-5702-0236 surname: Kauer fullname: Kauer, Nikolas organization: Department of Physics, Royal Holloway, University of London – sequence: 3 givenname: Alexander orcidid: 0000-0002-0491-3507 surname: Lind fullname: Lind, Alexander email: alexander.lind@subatech.in2p3.fr organization: SUBATECH, Université de Nantes, IMT Atlantique, IN2P3/CNRS – sequence: 4 givenname: Jonas M. orcidid: 0000-0001-6936-998X surname: Lindert fullname: Lindert, Jonas M. organization: Department of Physics and Astronomy, University of Sussex – sequence: 5 givenname: Ryan orcidid: 0000-0001-5773-4740 surname: Wood fullname: Wood, Ryan organization: Department of Physics and Astronomy, University of Sussex |
BackLink | https://hal.science/hal-04237819$$DView record in HAL |
BookMark | eNp9kUFPGzEQhS0EEpBy5roSl3LYZrxrx_YRRdClCioS7dma2N7EaVgHr1Op_75eFrVQiR4sW-P3Ps_4nZLDLnSOkHMKnyiAmH5pru9BfqygYpeUVgfkhEKlSsmEOnx1Pianfb8BoJwqOCHzxq9WfeG75GLrouuMK1zbOpOGYpHCrnzaY_xR7NDHYheD3ZvkQ_d8uXYFbR7uPpCjFre9O3vZJ-T7zfW3eVMuvn6-nV8tSsM4TaUBBCs5m6FCJYHNjFpyhrjk3DIjnHQgck9WtqoyombUKqeYraiw9RIs1hNyO3JtwI3eRf-I8ZcO6PVzIcSVxpi82To9E1RwLjOLI-NYK2SyReBiBkIKXGbW5cha4_YNqrla6KEGrKqFpOonzdqLUZvHf9q7PulN2Mcuj6prUHVeTNZZNR1VJoa-j679g6Wgh4T0mJAeEtI5oezg_ziMTzj8borot__xwejr8wvdysW__bxn-Q1z_6JT |
CitedBy_id | crossref_primary_10_1007_JHEP12_2024_197 crossref_primary_10_1007_JHEP09_2024_098 |
Cites_doi | 10.1007/JHEP07(2016)105 10.1103/PhysRevD.74.013004 10.1016/0550-3213(95)00379-7 10.1103/PhysRevLett.13.508 10.1088/1126-6708/2007/03/036 10.1007/JHEP06(2011)127 10.1103/PhysRevD.77.117701 10.1016/0370-2693(84)91711-8 10.1103/PhysRevD.101.015019 10.1103/PhysRevLett.13.585 10.1088/1126-6708/2009/08/085 10.1016/j.cpc.2014.04.012 10.1016/j.nuclphysb.2017.02.004 10.1007/JHEP03(2019)119 10.1016/0550-3213(88)90422-1 10.1103/PhysRevD.99.051501 10.1007/JHEP07(2014)079 10.1007/JHEP05(2017)036 10.1016/0370-2693(94)91017-0 10.1007/JHEP09(2022)011 10.1103/PhysRevD.92.075038 10.1016/j.nuclphysbps.2006.09.104 10.1088/1126-6708/2007/01/021 10.1140/epjc/s10052-020-08763-5 10.1007/JHEP12(2019)034 10.1103/PhysRevD.89.095031 10.1088/1126-6708/2009/01/047 10.1007/JHEP04(2018)062 10.1007/JHEP10(2017)096 10.1016/S0010-4655(97)00123-9 10.1142/S0217751X00000367 10.1103/PhysRevLett.13.321 10.1103/PhysRevD.92.055009 10.1007/JHEP05(2021)099 10.1088/1126-6708/2007/02/080 10.1007/JHEP07(2019)100 10.1103/PhysRevD.94.114033 10.1103/PhysRevD.95.095012 10.1103/PhysRevLett.124.112002 10.1103/PhysRevD.79.015018 10.1140/epjc/s10052-019-7306-2 10.1103/PhysRevD.92.025024 10.1103/PhysRevD.93.034032 10.1016/j.cpc.2018.12.010 10.1103/PhysRevD.60.113006 10.1016/S0550-3213(05)80032-X 10.1103/PhysRevD.85.035008 10.1103/PhysRevD.93.075038 10.1016/j.physletb.2011.12.067 10.1007/JHEP10(2016)016 10.1140/epjc/s10052-015-3461-2 10.1140/epjc/s10052-015-3323-y 10.1007/JHEP03(2018)022 10.1103/PhysRevD.79.095002 10.1016/j.nuclphysb.2016.04.005 10.1007/JHEP06(2010)043 10.23731/CYRM-2017-002 10.1142/S0217732318300070 10.1007/JHEP11(2016)159 10.1016/j.physletb.2021.136618 10.1007/JHEP02(2012)088 10.1088/1126-6708/2007/11/070 10.23731/CYRM-2020-0010 10.1016/j.cpc.2013.02.006 10.1007/JHEP07(2011)018 10.1016/j.cpc.2009.02.018 10.1007/JHEP10(2012)104 10.1007/JHEP07(2019)108 10.1007/s002880050442 10.1088/1126-6708/2004/11/040 10.1016/j.cpc.2014.05.022 10.1088/1126-6708/2005/12/015 10.1007/JHEP05(2015)057 10.1103/PhysRev.145.1156 10.1007/JHEP06(2012)172 10.1007/JHEP01(2013)080 10.1016/j.cpc.2018.06.012 10.1007/JHEP02(2022)185 10.1007/JHEP05(2016)034 10.1103/PhysRevD.72.093007 10.1103/PhysRevD.40.54 10.1140/epjc/s10052-013-2428-4 10.1016/0550-3213(92)90435-E 10.1103/PhysRevD.87.055002 10.1103/PhysRevD.91.035015 10.1103/PhysRevD.107.075040 10.1016/j.cpc.2012.01.022 10.1016/S0550-3213(96)00589-5 10.1103/PhysRevD.77.035005 10.1103/PhysRevD.88.115012 10.1016/0031-9163(64)91136-9 10.1016/j.physletb.2012.02.056 10.1103/PhysRevLett.116.082003 10.1016/j.physletb.2011.08.002 10.1007/JHEP08(2015)004 10.1103/PhysRevD.91.035018 10.1103/PhysRevLett.109.132001 10.1007/JHEP12(2012)054 10.1140/epjc/s10052-016-4115-8 10.1103/PhysRevLett.110.252004 10.1016/j.physletb.2010.09.032 10.1016/j.cpc.2016.10.015 10.1088/0954-3899/43/2/023001 10.1016/j.revip.2020.100045 10.1103/PhysRevD.96.035037 10.1016/S0550-3213(02)00098-6 10.1140/epjc/s10052-020-08815-w |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES DOA |
DOI | 10.1007/JHEP08(2024)112 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_6717558d8f5a45a39a48fa05760787ab oai_HAL_hal_04237819v1 10_1007_JHEP08_2024_112 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC R9I RO9 S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 02O 1JI 1WK 1XC 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABTEG ACAFW ACARI ACBXY ADKPE ADRFC AEFHF AEJGL AERVB AFLOW AGJBK AGQPQ AHSBF AHSEE AIYBF AKPSB ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 VOOES PUEGO |
ID | FETCH-LOGICAL-c451t-c0a0d8546a9a98046c9b54aab55d4c7e8e07190d8f92c7341d9e94d217d3b0da3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Fri May 09 12:14:35 EDT 2025 Fri Jul 25 23:41:24 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Tue Jul 01 05:15:43 EDT 2025 Mon Jul 21 06:07:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Higgs Production Multi-Higgs Models Higher-Order Perturbative Calculations numerical calculations new physics upgrade quantum chromodynamics mass infrared dip CERN LHC Coll pair production benchmark structure heavy 1 top background effect Higgs particle GeV higher-order interference correction stability |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-c0a0d8546a9a98046c9b54aab55d4c7e8e07190d8f92c7341d9e94d217d3b0da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-5702-0236 0000-0001-6936-998X 0000-0003-0409-4115 0000-0001-5773-4740 0000-0002-0491-3507 |
OpenAccessLink | https://www.proquest.com/docview/3093309483?pq-origsite=%requestingapplication% |
PQID | 3093309483 |
PQPubID | 2034718 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6717558d8f5a45a39a48fa05760787ab hal_primary_oai_HAL_hal_04237819v1 proquest_journals_3093309483 crossref_primary_10_1007_JHEP08_2024_112 crossref_citationtrail_10_1007_JHEP08_2024_112 springer_journals_10_1007_JHEP08_2024_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-14 |
PublicationDateYYYYMMDD | 2024-08-14 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
References | IlnickaARobensTStefaniakTConstraining extended scalar sectors at the LHC and beyondMod. Phys. Lett. A20183318300072018MPLA...3330007I10.1142/S0217732318300070[arXiv:1803.03594] [INSPIRE] CzakonMMitovANNLO corrections to top pair production at hadron colliders: the quark-gluon reactionJHEP2013010802013JHEP...01..080C10.1007/JHEP01(2013)080[arXiv:1210.6832] [INSPIRE] GoriSKimI-WShahNRZurekKMClosing the wedge: search strategies for extended Higgs sectors with heavy flavor final statesPhys. Rev. D2016932016PhRvD..93g5038G10.1103/PhysRevD.93.075038[arXiv:1602.02782] [INSPIRE] DegrandeCUFO — the Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D10.1016/j.cpc.2012.01.022[arXiv:1108.2040] [INSPIRE] LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [DOI:10.5170/CERN-2013-004] [INSPIRE]. HDECAY collaboration, HDECAY: twenty++years after, Comput. Phys. Commun.238 (2019) 214 [arXiv:1801.09506] [INSPIRE]. G. Durieux et al., Snowmass white paper: prospects for the measurement of top-quark couplings, in the proceedings of the Snowmass 2021, (2022) [arXiv:2205.02140] [INSPIRE]. LindABanfiAH1jet, a fast program to compute transverse momentum distributionsEur. Phys. J. C202181722021EPJC...81...72L10.1140/epjc/s10052-020-08815-w[arXiv:2011.04694] [INSPIRE] CasasJACerdeñoDGMorenoJMQuilisJReopening the Higgs portal for single scalar dark matterJHEP2017050362017JHEP...05..036C10.1007/JHEP05(2017)036[arXiv:1701.08134] [INSPIRE] RobensTStefaniakTStatus of the Higgs singlet extension of the standard model after LHC run 1Eur. Phys. J. C2015751042015EPJC...75..104R10.1140/epjc/s10052-015-3323-y[arXiv:1501.02234] [INSPIRE] PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channelsJHEP2021050992021JHEP...05..099P10.1007/JHEP05(2021)099[arXiv:2010.00597] [INSPIRE] NoJMRamsey-MusolfMProbing the Higgs portal at the LHC through resonant di-Higgs productionPhys. Rev. D2014892014PhRvD..89i5031N10.1103/PhysRevD.89.095031[arXiv:1310.6035] [INSPIRE] CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [INSPIRE] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B333 (1994) 126 [hep-ph/9404359] [INSPIRE]. BatellBGoriSWangL-TExploring the Higgs portal with 10 fb−1at the LHCJHEP2012061722012JHEP...06..172B10.1007/JHEP06(2012)172[arXiv:1112.5180] [INSPIRE] CostaRMoraisAPSampaioMOPSantosRTwo-loop stability of a complex singlet extended standard modelPhys. Rev. D2015922015PhRvD..92b5024C10.1103/PhysRevD.92.025024[arXiv:1411.4048] [INSPIRE] R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP12 (2005) 015 [hep-ph/0509189] [INSPIRE]. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132 [INSPIRE]. LoganHEHiding a Higgs width enhancement from off-shell gg(→ h∗) → ZZ measurementsPhys. Rev. D2015922015PhRvD..92g5038L10.1103/PhysRevD.92.075038[arXiv:1412.7577] [INSPIRE] G. Aad et al., Luminosity determination in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C83 (2023) 982 [arXiv:2212.09379]. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. B Proc. Suppl.160 (2006) 131 [hep-ph/0607060] [INSPIRE]. ATLAS collaboration, Measurement of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} cross section and its ratio to the Z production cross section using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13.6 TeV with the ATLAS detector, Phys. Lett. B848 (2024) 138376 [arXiv:2308.09529] [INSPIRE]. ChenC-YDawsonSLewisIMExploring resonant di-Higgs boson production in the Higgs singlet modelPhys. Rev. D2015912015PhRvD..91c5015C10.1103/PhysRevD.91.035015[arXiv:1410.5488] [INSPIRE] KanemuraSKikuchiMYagyuKOne-loop corrections to the Higgs self-couplings in the singlet extensionNucl. Phys. B20179171542017NuPhB.917..154K10.1016/j.nuclphysb.2017.02.004[arXiv:1608.01582] [INSPIRE] DaviesJHerrenFSteinhauserMTop quark mass effects in Higgs boson production at four-loop order: virtual correctionsPhys. Rev. Lett.20201242020PhRvL.124k2002D10.1103/PhysRevLett.124.112002[arXiv:1911.10214] [INSPIRE] CoimbraRSampaioMOPSantosRScannerS: constraining the phase diagram of a complex scalar singlet at the LHCEur. Phys. J. C20137324282013EPJC...73.2428C10.1140/epjc/s10052-013-2428-4[arXiv:1301.2599] [INSPIRE] T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C75 (1997) 17 [hep-ph/9608245] [INSPIRE]. W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production inpp¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\overline{p} $$\end{document}collisions, Phys. Rev. D40 (1989) 54 [INSPIRE]. CampbellJMEllisRKGieleWTA multi-threaded version of MCFMEur. Phys. J. C2015752462015EPJC...75..246C10.1140/epjc/s10052-015-3461-2[arXiv:1503.06182] [INSPIRE] LewisIMSullivanMBenchmarks for double Higgs production in the singlet extended standard model at the LHCPhys. Rev. D2017962017PhRvD..96c5037L10.1103/PhysRevD.96.035037[arXiv:1701.08774] [INSPIRE] DjouadiAEllisJPopovAQuevillonJInterference effects in tt production at the LHC as a window on new physicsJHEP2019031192019JHEP...03..119D10.1007/JHEP03(2019)119[arXiv:1901.03417] [INSPIRE] ATLAS collaboration, Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, arXiv:2404.18986 [INSPIRE]. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D74 (2006) 013004 [hep-ph/0604011] [INSPIRE]. HarlanderRVLieblerSMantlerHSusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSMComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006[arXiv:1212.3249] [INSPIRE] Buarque FranzosiDVryonidouEZhangCScalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approachJHEP20171009610.1007/JHEP10(2017)096[arXiv:1707.06760] [INSPIRE] LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE]. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE]. ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B10.1088/0954-3899/43/2/023001[arXiv:1510.03865] [INSPIRE] AtkinsonOEnglertCStylianouPOn interference effects in top-philic decay chainsPhys. Lett. B202182110.1016/j.physletb.2021.136618[arXiv:2012.07424] [INSPIRE] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders throughOαS4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_S^4\right) $$\end{document}, Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. BaslerPDawsonSEnglertCMühlleitnerMDi-Higgs boson peaks and top valleys: interference effects in Higgs sector extensionsPhys. Rev. D20201012020PhRvD.101a5019B10.1103/PhysRevD.101.015019[arXiv:1909.09987] [INSPIRE] ProfumoSRamsey-MusolfMJWainwrightCLWinslowPSinglet-catalyzed electroweak phase transitions and precision Higgs boson studiesPhys. Rev. D2015912015PhRvD..91c5018P10.1103/PhysRevD.91.035018[arXiv:1407.5342] [INSPIRE] A. Alloul et al., FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP01 (2007) 021 [hep-ph/0611266] [INSPIRE]. EnglertCJaeckelJReESpannowskyMEvasive Higgs maneuvers at the LHCPhys. Rev. D2012852012PhRvD..85c5008E10.1103/PhysRevD.85.035008[arXiv:1111.1719] [INSPIRE] A. van Hameren, Kaleu: a general-purpose parton-level phase space generator, arXiv:1003.4953 [INSPIRE]. FrederixRMaltoniFTop pair invariant mass distribution: a window on new physicsJHEP2009010472009JHEP...01..047F10.1088/1126-6708/2009/01/047[arXiv:0712.2355] [INSPIRE] Buarque FranzosiDFabbriFSchumannSConstrain JM No (24246_CR29) 2014; 89 24246_CR35 S Buehler (24246_CR87) 2014; 185 S Bock (24246_CR20) 2011; 694 JM Campbell (24246_CR90) 2011; 07 L Altenkamp (24246_CR41) 2018; 04 JA Casas (24246_CR40) 2017; 05 C-Y Chen (24246_CR32) 2015; 91 W Bernreuther (24246_CR58) 2016; 93 D Gonçalves (24246_CR11) 2023; 107 V Barger (24246_CR17) 2009; 79 A Djouadi (24246_CR54) 2016; 07 A Djouadi (24246_CR64) 2019; 03 PJ Fox (24246_CR21) 2011; 06 S Frixione (24246_CR106) 2007; 11 S Kanemura (24246_CR36) 2016; 907 HE Logan (24246_CR31) 2015; 92 S Kanemura (24246_CR37) 2017; 917 S Gori (24246_CR55) 2016; 93 A Falkowski (24246_CR34) 2015; 05 24246_CR15 24246_CR12 J Alison (24246_CR47) 2020; 5 24246_CR99 24246_CR14 A Ilnicka (24246_CR46) 2018; 33 24246_CR13 24246_CR113 24246_CR95 24246_CR112 M Czakon (24246_CR75) 2013; 01 24246_CR98 24246_CR111 24246_CR97 24246_CR117 24246_CR116 24246_CR115 24246_CR114 B Batell (24246_CR24) 2012; 06 V Barger (24246_CR16) 2008; 77 S Jung (24246_CR53) 2015; 92 H Abouabid (24246_CR42) 2022; 09 B Hespel (24246_CR59) 2016; 10 G Bhattacharyya (24246_CR18) 2008; 77 24246_CR89 24246_CR88 R Frederix (24246_CR52) 2009; 01 24246_CR3 C Englert (24246_CR23) 2012; 85 24246_CR102 24246_CR2 24246_CR84 24246_CR101 24246_CR1 24246_CR100 24246_CR7 S Dawson (24246_CR19) 2009; 79 24246_CR81 24246_CR6 24246_CR105 24246_CR5 24246_CR83 24246_CR4 24246_CR82 24246_CR109 M Czakon (24246_CR77) 2016; 116 J Butterworth (24246_CR96) 2016; 43 M Czakon (24246_CR85) 2009; 08 N Kauer (24246_CR65) 2019; 07 S Catani (24246_CR79) 2019; 07 A Papaefstathiou (24246_CR10) 2022; 02 24246_CR73 24246_CR76 P Basler (24246_CR63) 2020; 101 S Frixione (24246_CR66) 2020; 80 ND Christensen (24246_CR118) 2009; 180 24246_CR70 24246_CR72 JM Campbell (24246_CR91) 2015; 75 24246_CR71 J Alwall (24246_CR120) 2014; 07 D Buarque Franzosi (24246_CR61) 2017; 10 T Robens (24246_CR44) 2015; 75 M Czakon (24246_CR74) 2012; 12 R Costa (24246_CR33) 2015; 92 S Alioli (24246_CR107) 2010; 06 S Catani (24246_CR80) 2019; 99 A Lind (24246_CR110) 2021; 81 F Buccioni (24246_CR86) 2019; 79 24246_CR69 24246_CR68 24246_CR60 R Coimbra (24246_CR30) 2013; 73 J Davies (24246_CR108) 2020; 124 C Englert (24246_CR22) 2011; 703 J Campbell (24246_CR92) 2019; 12 RV Harlander (24246_CR93) 2013; 184 C Englert (24246_CR25) 2012; 707 MJ Dolan (24246_CR27) 2013; 87 24246_CR56 24246_CR57 24246_CR51 E Bagnaschi (24246_CR104) 2012; 02 24246_CR50 RS Gupta (24246_CR26) 2012; 710 O Atkinson (24246_CR67) 2021; 821 A Papaefstathiou (24246_CR9) 2021; 05 24246_CR49 24246_CR48 A Banfi (24246_CR103) 2016; 04 B Batell (24246_CR28) 2012; 10 D Buarque Franzosi (24246_CR62) 2018; 03 T Robens (24246_CR45) 2016; 76 S Profumo (24246_CR8) 2015; 91 IM Lewis (24246_CR39) 2017; 96 M Czakon (24246_CR78) 2016; 05 C Degrande (24246_CR119) 2012; 183 RV Harlander (24246_CR94) 2017; 212 GM Pruna (24246_CR43) 2013; 88 S Kanemura (24246_CR38) 2018; 233 |
References_xml | – reference: GoriSKimI-WShahNRZurekKMClosing the wedge: search strategies for extended Higgs sectors with heavy flavor final statesPhys. Rev. D2016932016PhRvD..93g5038G10.1103/PhysRevD.93.075038[arXiv:1602.02782] [INSPIRE] – reference: LewisIMSullivanMBenchmarks for double Higgs production in the singlet extended standard model at the LHCPhys. Rev. D2017962017PhRvD..96c5037L10.1103/PhysRevD.96.035037[arXiv:1701.08774] [INSPIRE] – reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D74 (2006) 013004 [hep-ph/0604011] [INSPIRE]. – reference: M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B453 (1995) 17 [hep-ph/9504378] [INSPIRE]. – reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP02 (2007) 080 [hep-ph/0611234] [INSPIRE]. – reference: PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channelsJHEP2021050992021JHEP...05..099P10.1007/JHEP05(2021)099[arXiv:2010.00597] [INSPIRE] – reference: G. Durieux et al., Snowmass white paper: prospects for the measurement of top-quark couplings, in the proceedings of the Snowmass 2021, (2022) [arXiv:2205.02140] [INSPIRE]. – reference: ATLAS collaboration, Search for resonant pair production of Higgs bosons in the bb¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b\overline{b}b\overline{b} $$\end{document} final state using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Rev. D105 (2022) 092002 [arXiv:2202.07288] [INSPIRE]. – reference: HarlanderRVLieblerSMantlerHSusHi Bento: beyond NNLO and the heavy-top limitComput. Phys. Commun.20172122392017CoPhC.212..239H10.1016/j.cpc.2016.10.015[arXiv:1605.03190] [INSPIRE] – reference: R.M. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D72 (2005) 093007 [hep-ph/0509209] [INSPIRE]. – reference: M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in thett¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}channel at the LHC, JHEP11 (2016) 159 [arXiv:1608.07282] [INSPIRE]. – reference: ATLAS collaboration, Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, arXiv:2404.18986 [INSPIRE]. – reference: M. Czakon, D. Heymes and A. Mitov, Bump hunting in LHCtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events, Phys. Rev. D94 (2016) 114033 [arXiv:1608.00765] [INSPIRE]. – reference: RobensTStefaniakTStatus of the Higgs singlet extension of the standard model after LHC run 1Eur. Phys. J. C2015751042015EPJC...75..104R10.1140/epjc/s10052-015-3323-y[arXiv:1501.02234] [INSPIRE] – reference: CzakonMHeymesDMitovAHigh-precision differential predictions for top-quark pairs at the LHCPhys. Rev. Lett.20161162016PhRvL.116h2003C10.1103/PhysRevLett.116.082003[arXiv:1511.00549] [INSPIRE] – reference: KauerNLindAMaierhöferPSongWHiggs interference effects at the one-loop level in the 1-Higgs-singlet extension of the standard modelJHEP2019071082019JHEP...07..108K10.1007/JHEP07(2019)108[arXiv:1905.03296] [INSPIRE] – reference: CoimbraRSampaioMOPSantosRScannerS: constraining the phase diagram of a complex scalar singlet at the LHCEur. Phys. J. C20137324282013EPJC...73.2428C10.1140/epjc/s10052-013-2428-4[arXiv:1301.2599] [INSPIRE] – reference: LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE]. – reference: CataniSTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev. D2019992019PhRvD..99e1501C10.1103/PhysRevD.99.051501[arXiv:1901.04005] [INSPIRE] – reference: CataniSTop-quark pair production at the LHC: fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C10.1007/JHEP07(2019)100[arXiv:1906.06535] [INSPIRE] – reference: P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. – reference: BatellBGoriSWangL-TExploring the Higgs portal with 10 fb−1at the LHCJHEP2012061722012JHEP...06..172B10.1007/JHEP06(2012)172[arXiv:1112.5180] [INSPIRE] – reference: CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. – reference: KanemuraSKikuchiMYagyuKRadiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar fieldNucl. Phys. B20169072862016NuPhB.907..286K349843410.1016/j.nuclphysb.2016.04.005[arXiv:1511.06211] [INSPIRE] – reference: ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. – reference: LoganHEHiding a Higgs width enhancement from off-shell gg(→ h∗) → ZZ measurementsPhys. Rev. D2015922015PhRvD..92g5038L10.1103/PhysRevD.92.075038[arXiv:1412.7577] [INSPIRE] – reference: BanfiAJet-vetoed Higgs cross section in gluon fusion at N3LO+NNLL with small-R resummationJHEP2016040492016JHEP...04..049B[arXiv:1511.02886] [INSPIRE] – reference: A. van Hameren, Kaleu: a general-purpose parton-level phase space generator, arXiv:1003.4953 [INSPIRE]. – reference: ChenC-YDawsonSLewisIMExploring resonant di-Higgs boson production in the Higgs singlet modelPhys. Rev. D2015912015PhRvD..91c5015C10.1103/PhysRevD.91.035015[arXiv:1410.5488] [INSPIRE] – reference: K.J.F. Gaemers and F. Hoogeveen, Higgs production and decay into heavy flavors with the gluon fusion mechanism, Phys. Lett. B146 (1984) 347 [INSPIRE]. – reference: BargerVLHC phenomenology of an extended standard model with a real scalar singletPhys. Rev. D2008772008PhRvD..77c5005B10.1103/PhysRevD.77.035005[arXiv:0706.4311] [INSPIRE] – reference: AlisonJHiggs boson potential at colliders: status and perspectivesRev. Phys.2020510.1016/j.revip.2020.100045[arXiv:1910.00012] [INSPIRE] – reference: CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [INSPIRE] – reference: ChristensenNDDuhrCFeynRules — Feynman rules made easyComput. Phys. Commun.200918016142009CoPhC.180.1614C10.1016/j.cpc.2009.02.018[arXiv:0806.4194] [INSPIRE] – reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [INSPIRE] – reference: HespelBMaltoniFVryonidouESignal background interference effects in heavy scalar production and decay to a top-anti-top pairJHEP2016100162016JHEP...10..016H10.1007/JHEP10(2016)016[arXiv:1606.04149] [INSPIRE] – reference: M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and H → hh decays: two LHC search paths for a hidden sector Higgs boson, JHEP03 (2007) 036 [hep-ph/0701035] [INSPIRE]. – reference: BuehlerSDuhrCCHAPLIN — Complex Harmonic Polylogarithms in FortranComput. Phys. Commun.201418527032014CoPhC.185.2703B10.1016/j.cpc.2014.05.022[arXiv:1106.5739] [INSPIRE] – reference: A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. B Proc. Suppl.160 (2006) 131 [hep-ph/0607060] [INSPIRE]. – reference: P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132 [INSPIRE]. – reference: BagnaschiEDegrassiGSlavichPViciniAHiggs production via gluon fusion in the POWHEG approach in the SM and in the MSSMJHEP2012020882012JHEP...02..088B10.1007/JHEP02(2012)088[arXiv:1111.2854] [INSPIRE] – reference: P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13 (1964) 508 [INSPIRE]. – reference: S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B627 (2002) 189 [hep-ph/0201036] [INSPIRE]. – reference: HDECAY collaboration, HDECAY: twenty++years after, Comput. Phys. Commun.238 (2019) 214 [arXiv:1801.09506] [INSPIRE]. – reference: G. Aad et al., Luminosity determination in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C83 (2023) 982 [arXiv:2212.09379]. – reference: EnglertCPlehnTZerwasDZerwasPMExploring the Higgs portalPhys. Lett. B20117032982011PhLB..703..298E10.1016/j.physletb.2011.08.002[arXiv:1106.3097] [INSPIRE] – reference: AbouabidHBenchmarking di-Higgs production in various extended Higgs sector modelsJHEP2022090112022JHEP...09..011A10.1007/JHEP09(2022)011[arXiv:2112.12515] [INSPIRE] – reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. – reference: U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP01 (2007) 021 [hep-ph/0611266] [INSPIRE]. – reference: DegrandeCUFO — the Universal FeynRules OutputComput. Phys. Commun.201218312012012CoPhC.183.1201D10.1016/j.cpc.2012.01.022[arXiv:1108.2040] [INSPIRE] – reference: BockSMeasuring hidden Higgs and strongly-interacting Higgs scenariosPhys. Lett. B2011694442010PhLB..694...44B10.1016/j.physletb.2010.09.032[arXiv:1007.2645] [INSPIRE] – reference: NoJMRamsey-MusolfMProbing the Higgs portal at the LHC through resonant di-Higgs productionPhys. Rev. D2014892014PhRvD..89i5031N10.1103/PhysRevD.89.095031[arXiv:1310.6035] [INSPIRE] – reference: HarlanderRVLieblerSMantlerHSusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSMComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006[arXiv:1212.3249] [INSPIRE] – reference: DolanMJEnglertCSpannowskyMNew physics in LHC Higgs boson pair productionPhys. Rev. D2013872013PhRvD..87e5002D10.1103/PhysRevD.87.055002[arXiv:1210.8166] [INSPIRE] – reference: Buarque FranzosiDFabbriFSchumannSConstraining scalar resonances with top-quark pair production at the LHCJHEP20180302210.1007/JHEP03(2018)022[arXiv:1711.00102] [INSPIRE] – reference: M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders throughOαS4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_S^4\right) $$\end{document}, Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. – reference: F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13 (1964) 321 [INSPIRE]. – reference: DjouadiAEllisJQuevillonJInterference effects in the decays of spin-zero resonances into γγ and ttJHEP2016071052016JHEP...07..105D10.1007/JHEP07(2016)105[arXiv:1605.00542] [INSPIRE] – reference: BargerVComplex singlet extension of the standard modelPhys. Rev. D2009792009PhRvD..79a5018B10.1103/PhysRevD.79.015018[arXiv:0811.0393] [INSPIRE] – reference: LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [DOI:10.5170/CERN-2013-004] [INSPIRE]. – reference: CzakonMFiedlerPHeymesDMitovANNLO QCD predictions for fully-differential top-quark pair production at the TevatronJHEP2016050342016JHEP...05..034C10.1007/JHEP05(2016)034[arXiv:1601.05375] [INSPIRE] – reference: A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE]. – reference: RobensTStefaniakTLHC benchmark scenarios for the real Higgs singlet extension of the standard modelEur. Phys. J. C2016762682016EPJC...76..268R10.1140/epjc/s10052-016-4115-8[arXiv:1601.07880] [INSPIRE] – reference: P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B303 (1988) 607 [INSPIRE]. – reference: BaslerPDawsonSEnglertCMühlleitnerMDi-Higgs boson peaks and top valleys: interference effects in Higgs sector extensionsPhys. Rev. D20201012020PhRvD.101a5019B10.1103/PhysRevD.101.015019[arXiv:1909.09987] [INSPIRE] – reference: CzakonMMitovANNLO corrections to top pair production at hadron colliders: the quark-gluon reactionJHEP2013010802013JHEP...01..080C10.1007/JHEP01(2013)080[arXiv:1210.6832] [INSPIRE] – reference: A. Alloul et al., FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. – reference: R. Barlow, Statistics. A guide to the use of statistical methods in the physical sciences, Wiley (1993). – reference: ATLAS collaboration, Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV with the ATLAS detector, Phys. Rev. D106 (2022) 052001 [arXiv:2112.11876] [INSPIRE]. – reference: JungSSongJYoonYWDip or nothingness of a Higgs resonance from the interference with a complex phasePhys. Rev. D2015922015PhRvD..92e5009J10.1103/PhysRevD.92.055009[arXiv:1505.00291] [INSPIRE] – reference: DawsonSYanWHiding the Higgs boson with multiple scalarsPhys. Rev. D2009792009PhRvD..79i5002D10.1103/PhysRevD.79.095002[arXiv:0904.2005] [INSPIRE] – reference: CostaRMoraisAPSampaioMOPSantosRTwo-loop stability of a complex singlet extended standard modelPhys. Rev. D2015922015PhRvD..92b5024C10.1103/PhysRevD.92.025024[arXiv:1411.4048] [INSPIRE] – reference: EnglertCJaeckelJReESpannowskyMEvasive Higgs maneuvers at the LHCPhys. Rev. D2012852012PhRvD..85c5008E10.1103/PhysRevD.85.035008[arXiv:1111.1719] [INSPIRE] – reference: W. Beenakker et al., QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B351 (1991) 507 [INSPIRE]. – reference: FalkowskiAGrossCLebedevOA second Higgs from the Higgs portalJHEP2015050572015JHEP...05..057F10.1007/JHEP05(2015)057[arXiv:1502.01361] [INSPIRE] – reference: S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE]. – reference: CampbellJNeumannTPrecision phenomenology with MCFMJHEP2019120342019JHEP...12..034C10.1007/JHEP12(2019)034[arXiv:1909.09117] [INSPIRE] – reference: FrixioneSNasonPOleariCMatching NLO QCD computations with parton shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE] – reference: FrederixRMaltoniFTop pair invariant mass distribution: a window on new physicsJHEP2009010472009JHEP...01..047F10.1088/1126-6708/2009/01/047[arXiv:0712.2355] [INSPIRE] – reference: GonçalvesDKaladharanAWuYResonant top pair searches at the LHC: a window to the electroweak phase transitionPhys. Rev. D20231072023PhRvD.107g5040G10.1103/PhysRevD.107.075040[arXiv:2206.08381] [INSPIRE] – reference: BuccioniFOpenLoops 2Eur. Phys. J. C2019798662019EPJC...79..866B10.1140/epjc/s10052-019-7306-2[arXiv:1907.13071] [INSPIRE] – reference: D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B333 (1994) 126 [hep-ph/9404359] [INSPIRE]. – reference: KanemuraSKikuchiMSakuraiKYagyuKH-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectorsComput. Phys. Commun.20182331342018CoPhC.233..134K384518910.1016/j.cpc.2018.06.012[arXiv:1710.04603] [INSPIRE] – reference: DaviesJHerrenFSteinhauserMTop quark mass effects in Higgs boson production at four-loop order: virtual correctionsPhys. Rev. Lett.20201242020PhRvL.124k2002D10.1103/PhysRevLett.124.112002[arXiv:1911.10214] [INSPIRE] – reference: FoxPJTucker-SmithDWeinerNHiggs friends and counterfeits at hadron collidersJHEP2011061272011JHEP...06..127F10.1007/JHEP06(2011)127[arXiv:1104.5450] [INSPIRE] – reference: ATLAS collaboration, Measurement of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} cross section and its ratio to the Z production cross section using pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13.6 TeV with the ATLAS detector, Phys. Lett. B848 (2024) 138376 [arXiv:2308.09529] [INSPIRE]. – reference: BernreutherWProduction of heavy Higgs bosons and decay into top quarks at the LHCPhys. Rev. D2016932016PhRvD..93c4032B10.1103/PhysRevD.93.034032[arXiv:1511.05584] [INSPIRE] – reference: P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections toqq¯→tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to t\overline{t} $$\end{document} + X, Phys. Rev. Lett.109 (2012) 132001 [arXiv:1204.5201] [INSPIRE]. – reference: EnglertCLHC: standard Higgs and hidden HiggsPhys. Lett. B20127075122012PhLB..707..512E10.1016/j.physletb.2011.12.067[arXiv:1112.3007] [INSPIRE] – reference: ProfumoSRamsey-MusolfMJWainwrightCLWinslowPSinglet-catalyzed electroweak phase transitions and precision Higgs boson studiesPhys. Rev. D2015912015PhRvD..91c5018P10.1103/PhysRevD.91.035018[arXiv:1407.5342] [INSPIRE] – reference: GuptaRSWellsJDHiggs boson search significance deformations due to mixed-in scalarsPhys. Lett. B20127101542012PhLB..710..154G10.1016/j.physletb.2012.02.056[arXiv:1110.0824] [INSPIRE] – reference: FrixioneSModel-independent approach for incorporating interference effects in collider searches for new resonancesEur. Phys. J. C20208011742020EPJC...80.1174F10.1140/epjc/s10052-020-08763-5[arXiv:2008.07751] [INSPIRE] – reference: R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP12 (2005) 015 [hep-ph/0509189] [INSPIRE]. – reference: BhattacharyyaGBrancoGCNandiSUniversal doublet-singlet Higgs couplings and phenomenology at the CERN Large Hadron ColliderPhys. Rev. D2008772008PhRvD..77k7701B10.1103/PhysRevD.77.117701[arXiv:0712.2693] [INSPIRE] – reference: PapaefstathiouAWhiteGThe electro-weak phase transition at colliders: discovery post-mortemJHEP2022021852022JHEP...02..185P10.1007/JHEP02(2022)185[arXiv:2108.11394] [INSPIRE] – reference: M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B373 (1992) 295 [INSPIRE]. – reference: T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C75 (1997) 17 [hep-ph/9608245] [INSPIRE]. – reference: J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D60 (1999) 113006 [hep-ph/9905386] [INSPIRE]. – reference: V. Martín Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in thehh→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ hh\to b\overline{b} $$\end{document}WW→bb¯ℓ+νℓ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ WW\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} $$\end{document}decay channel, JHEP08 (2015) 004 [arXiv:1501.03799] [INSPIRE]. – reference: CampbellJMEllisRKWilliamsCVector boson pair production at the LHCJHEP2011070182011JHEP...07..018C10.1007/JHEP07(2011)018[arXiv:1105.0020] [INSPIRE] – reference: DjouadiAEllisJPopovAQuevillonJInterference effects in tt production at the LHC as a window on new physicsJHEP2019031192019JHEP...03..119D10.1007/JHEP03(2019)119[arXiv:1901.03417] [INSPIRE] – reference: B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE]. – reference: CzakonMMitovANNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channelsJHEP2012120542012JHEP...12..054C10.1007/JHEP12(2012)054[arXiv:1207.0236] [INSPIRE] – reference: PrunaGMRobensTHiggs singlet extension parameter space in the light of the LHC discoveryPhys. Rev. D2013882013PhRvD..88k5012P10.1103/PhysRevD.88.115012[arXiv:1303.1150] [INSPIRE] – reference: CasasJACerdeñoDGMorenoJMQuilisJReopening the Higgs portal for single scalar dark matterJHEP2017050362017JHEP...05..036C10.1007/JHEP05(2017)036[arXiv:1701.08134] [INSPIRE] – reference: Buarque FranzosiDVryonidouEZhangCScalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approachJHEP20171009610.1007/JHEP10(2017)096[arXiv:1707.06760] [INSPIRE] – reference: W. Bernreuther, P. Galler, Z.-G. Si and P. Uwer, Production of heavy Higgs bosons and decay into top quarks at the LHC. II: top-quark polarization and spin correlation effects, Phys. Rev. D95 (2017) 095012 [arXiv:1702.06063] [INSPIRE]. – reference: ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B10.1088/0954-3899/43/2/023001[arXiv:1510.03865] [INSPIRE] – reference: KanemuraSKikuchiMYagyuKOne-loop corrections to the Higgs self-couplings in the singlet extensionNucl. Phys. B20179171542017NuPhB.917..154K10.1016/j.nuclphysb.2017.02.004[arXiv:1608.01582] [INSPIRE] – reference: I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): technical design report, CERN-2020-010, CERN, Geneva, Switzerland (2020) [https://doi.org/10.23731/CYRM-2020-0010] [INSPIRE]. – reference: G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett.13 (1964) 585 [INSPIRE]. – reference: AtkinsonOEnglertCStylianouPOn interference effects in top-philic decay chainsPhys. Lett. B202182110.1016/j.physletb.2021.136618[arXiv:2012.07424] [INSPIRE] – reference: LindABanfiAH1jet, a fast program to compute transverse momentum distributionsEur. Phys. J. C202181722021EPJC...81...72L10.1140/epjc/s10052-020-08815-w[arXiv:2011.04694] [INSPIRE] – reference: BatellBMcKeenDPospelovMSinglet neighbors of the Higgs bosonJHEP2012101042012JHEP...10..104B10.1007/JHEP10(2012)104[arXiv:1207.6252] [INSPIRE] – reference: CampbellJMEllisRKGieleWTA multi-threaded version of MCFMEur. Phys. J. C2015752462015EPJC...75..246C10.1140/epjc/s10052-015-3461-2[arXiv:1503.06182] [INSPIRE] – reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A10.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE] – reference: AltenkampLBoggiaMDittmaierSPrecision calculations for h → WW/ZZ → 4 fermions in a singlet extension of the standard model with Prophecy4fJHEP2018040622018JHEP...04..062A10.1007/JHEP04(2018)062[arXiv:1801.07291] [INSPIRE] – reference: IlnickaARobensTStefaniakTConstraining extended scalar sectors at the LHC and beyondMod. Phys. Lett. A20183318300072018MPLA...3330007I10.1142/S0217732318300070[arXiv:1803.03594] [INSPIRE] – reference: P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev.145 (1966) 1156 [INSPIRE]. – reference: W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production inpp¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\overline{p} $$\end{document}collisions, Phys. Rev. D40 (1989) 54 [INSPIRE]. – volume: 07 start-page: 105 year: 2016 ident: 24246_CR54 publication-title: JHEP doi: 10.1007/JHEP07(2016)105 – ident: 24246_CR97 doi: 10.1103/PhysRevD.74.013004 – ident: 24246_CR102 doi: 10.1016/0550-3213(95)00379-7 – ident: 24246_CR4 doi: 10.1103/PhysRevLett.13.508 – ident: 24246_CR15 doi: 10.1088/1126-6708/2007/03/036 – ident: 24246_CR1 – volume: 06 start-page: 127 year: 2011 ident: 24246_CR21 publication-title: JHEP doi: 10.1007/JHEP06(2011)127 – ident: 24246_CR48 – volume: 77 year: 2008 ident: 24246_CR18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.117701 – ident: 24246_CR50 doi: 10.1016/0370-2693(84)91711-8 – ident: 24246_CR116 – volume: 101 year: 2020 ident: 24246_CR63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.015019 – ident: 24246_CR7 doi: 10.1103/PhysRevLett.13.585 – volume: 08 start-page: 085 year: 2009 ident: 24246_CR85 publication-title: JHEP doi: 10.1088/1126-6708/2009/08/085 – ident: 24246_CR117 doi: 10.1016/j.cpc.2014.04.012 – volume: 917 start-page: 154 year: 2017 ident: 24246_CR37 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.02.004 – volume: 03 start-page: 119 year: 2019 ident: 24246_CR64 publication-title: JHEP doi: 10.1007/JHEP03(2019)119 – ident: 24246_CR69 doi: 10.1016/0550-3213(88)90422-1 – volume: 99 year: 2019 ident: 24246_CR80 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.051501 – volume: 07 start-page: 079 year: 2014 ident: 24246_CR120 publication-title: JHEP doi: 10.1007/JHEP07(2014)079 – volume: 05 start-page: 036 year: 2017 ident: 24246_CR40 publication-title: JHEP doi: 10.1007/JHEP05(2017)036 – ident: 24246_CR51 doi: 10.1016/0370-2693(94)91017-0 – volume: 09 start-page: 011 year: 2022 ident: 24246_CR42 publication-title: JHEP doi: 10.1007/JHEP09(2022)011 – volume: 92 year: 2015 ident: 24246_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.075038 – ident: 24246_CR98 doi: 10.1016/j.nuclphysbps.2006.09.104 – ident: 24246_CR109 doi: 10.1088/1126-6708/2007/01/021 – volume: 80 start-page: 1174 year: 2020 ident: 24246_CR66 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08763-5 – volume: 12 start-page: 034 year: 2019 ident: 24246_CR92 publication-title: JHEP doi: 10.1007/JHEP12(2019)034 – volume: 89 year: 2014 ident: 24246_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.095031 – volume: 01 start-page: 047 year: 2009 ident: 24246_CR52 publication-title: JHEP doi: 10.1088/1126-6708/2009/01/047 – volume: 04 start-page: 062 year: 2018 ident: 24246_CR41 publication-title: JHEP doi: 10.1007/JHEP04(2018)062 – volume: 10 start-page: 096 year: 2017 ident: 24246_CR61 publication-title: JHEP doi: 10.1007/JHEP10(2017)096 – ident: 24246_CR68 – ident: 24246_CR100 doi: 10.1016/S0010-4655(97)00123-9 – ident: 24246_CR88 doi: 10.1142/S0217751X00000367 – ident: 24246_CR6 doi: 10.1103/PhysRevLett.13.321 – volume: 92 year: 2015 ident: 24246_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.055009 – ident: 24246_CR113 – volume: 05 start-page: 099 year: 2021 ident: 24246_CR9 publication-title: JHEP doi: 10.1007/JHEP05(2021)099 – ident: 24246_CR99 doi: 10.1088/1126-6708/2007/02/080 – volume: 07 start-page: 100 year: 2019 ident: 24246_CR79 publication-title: JHEP doi: 10.1007/JHEP07(2019)100 – ident: 24246_CR57 doi: 10.1103/PhysRevD.94.114033 – ident: 24246_CR60 doi: 10.1103/PhysRevD.95.095012 – volume: 04 start-page: 049 year: 2016 ident: 24246_CR103 publication-title: JHEP – volume: 124 year: 2020 ident: 24246_CR108 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.112002 – volume: 79 year: 2009 ident: 24246_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.015018 – ident: 24246_CR111 – volume: 79 start-page: 866 year: 2019 ident: 24246_CR86 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7306-2 – volume: 92 year: 2015 ident: 24246_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.025024 – volume: 93 year: 2016 ident: 24246_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.034032 – ident: 24246_CR101 doi: 10.1016/j.cpc.2018.12.010 – ident: 24246_CR89 doi: 10.1103/PhysRevD.60.113006 – ident: 24246_CR71 doi: 10.1016/S0550-3213(05)80032-X – volume: 85 year: 2012 ident: 24246_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.035008 – volume: 93 year: 2016 ident: 24246_CR55 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.075038 – volume: 707 start-page: 512 year: 2012 ident: 24246_CR25 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2011.12.067 – volume: 10 start-page: 016 year: 2016 ident: 24246_CR59 publication-title: JHEP doi: 10.1007/JHEP10(2016)016 – volume: 75 start-page: 246 year: 2015 ident: 24246_CR91 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3461-2 – volume: 75 start-page: 104 year: 2015 ident: 24246_CR44 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3323-y – ident: 24246_CR49 – volume: 03 start-page: 022 year: 2018 ident: 24246_CR62 publication-title: JHEP doi: 10.1007/JHEP03(2018)022 – volume: 79 year: 2009 ident: 24246_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.095002 – volume: 907 start-page: 286 year: 2016 ident: 24246_CR36 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2016.04.005 – volume: 06 start-page: 043 year: 2010 ident: 24246_CR107 publication-title: JHEP doi: 10.1007/JHEP06(2010)043 – ident: 24246_CR95 doi: 10.23731/CYRM-2017-002 – volume: 33 start-page: 1830007 year: 2018 ident: 24246_CR46 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732318300070 – ident: 24246_CR56 doi: 10.1007/JHEP11(2016)159 – volume: 821 year: 2021 ident: 24246_CR67 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136618 – volume: 02 start-page: 088 year: 2012 ident: 24246_CR104 publication-title: JHEP doi: 10.1007/JHEP02(2012)088 – volume: 11 start-page: 070 year: 2007 ident: 24246_CR106 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/070 – ident: 24246_CR114 doi: 10.23731/CYRM-2020-0010 – volume: 184 start-page: 1605 year: 2013 ident: 24246_CR93 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.02.006 – volume: 07 start-page: 018 year: 2011 ident: 24246_CR90 publication-title: JHEP doi: 10.1007/JHEP07(2011)018 – volume: 180 start-page: 1614 year: 2009 ident: 24246_CR118 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.018 – volume: 10 start-page: 104 year: 2012 ident: 24246_CR28 publication-title: JHEP doi: 10.1007/JHEP10(2012)104 – volume: 07 start-page: 108 year: 2019 ident: 24246_CR65 publication-title: JHEP doi: 10.1007/JHEP07(2019)108 – ident: 24246_CR12 doi: 10.1007/s002880050442 – ident: 24246_CR105 doi: 10.1088/1126-6708/2004/11/040 – volume: 185 start-page: 2703 year: 2014 ident: 24246_CR87 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.022 – ident: 24246_CR81 doi: 10.1088/1126-6708/2005/12/015 – volume: 05 start-page: 057 year: 2015 ident: 24246_CR34 publication-title: JHEP doi: 10.1007/JHEP05(2015)057 – ident: 24246_CR112 – ident: 24246_CR5 doi: 10.1103/PhysRev.145.1156 – volume: 06 start-page: 172 year: 2012 ident: 24246_CR24 publication-title: JHEP doi: 10.1007/JHEP06(2012)172 – volume: 01 start-page: 080 year: 2013 ident: 24246_CR75 publication-title: JHEP doi: 10.1007/JHEP01(2013)080 – volume: 233 start-page: 134 year: 2018 ident: 24246_CR38 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.06.012 – volume: 02 start-page: 185 year: 2022 ident: 24246_CR10 publication-title: JHEP doi: 10.1007/JHEP02(2022)185 – volume: 05 start-page: 034 year: 2016 ident: 24246_CR78 publication-title: JHEP doi: 10.1007/JHEP05(2016)034 – ident: 24246_CR13 doi: 10.1103/PhysRevD.72.093007 – ident: 24246_CR70 doi: 10.1103/PhysRevD.40.54 – volume: 73 start-page: 2428 year: 2013 ident: 24246_CR30 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2428-4 – ident: 24246_CR72 doi: 10.1016/0550-3213(92)90435-E – volume: 87 year: 2013 ident: 24246_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.055002 – volume: 91 year: 2015 ident: 24246_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.035015 – volume: 107 year: 2023 ident: 24246_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.075040 – volume: 183 start-page: 1201 year: 2012 ident: 24246_CR119 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.01.022 – ident: 24246_CR83 doi: 10.1016/S0550-3213(96)00589-5 – volume: 77 year: 2008 ident: 24246_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.035005 – volume: 88 year: 2013 ident: 24246_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.115012 – ident: 24246_CR3 doi: 10.1016/0031-9163(64)91136-9 – volume: 710 start-page: 154 year: 2012 ident: 24246_CR26 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.02.056 – volume: 116 year: 2016 ident: 24246_CR77 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.082003 – volume: 703 start-page: 298 year: 2011 ident: 24246_CR22 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2011.08.002 – ident: 24246_CR35 doi: 10.1007/JHEP08(2015)004 – ident: 24246_CR2 – ident: 24246_CR14 – volume: 91 year: 2015 ident: 24246_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.035018 – ident: 24246_CR73 doi: 10.1103/PhysRevLett.109.132001 – volume: 12 start-page: 054 year: 2012 ident: 24246_CR74 publication-title: JHEP doi: 10.1007/JHEP12(2012)054 – volume: 76 start-page: 268 year: 2016 ident: 24246_CR45 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4115-8 – ident: 24246_CR76 doi: 10.1103/PhysRevLett.110.252004 – volume: 694 start-page: 44 year: 2011 ident: 24246_CR20 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.09.032 – volume: 212 start-page: 239 year: 2017 ident: 24246_CR94 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.10.015 – volume: 43 year: 2016 ident: 24246_CR96 publication-title: J. Phys. G doi: 10.1088/0954-3899/43/2/023001 – ident: 24246_CR82 – volume: 5 year: 2020 ident: 24246_CR47 publication-title: Rev. Phys. doi: 10.1016/j.revip.2020.100045 – volume: 96 year: 2017 ident: 24246_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.035037 – ident: 24246_CR115 – ident: 24246_CR84 doi: 10.1016/S0550-3213(02)00098-6 – volume: 81 start-page: 72 year: 2021 ident: 24246_CR110 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08815-w |
SSID | ssj0015190 |
Score | 2.4656444 |
Snippet | A
bstract
We present a next-to-leading-order (NLO) study of the process
pp
(
→
{
h
1
,
h
2
})
→
t
t
¯
+
X
in the 1-Higgs-singlet extension of the Standard... We present a next-to-leading-order (NLO) study of the process pp ( → { h 1 , h 2 }) → $$ t\overline{t} $$ t t ¯ + X in the 1-Higgs-singlet extension of the... We present a next-to-leading-order (NLO) study of the process pp (→ {h1, h2}) →tt¯ + X in the 1-Higgs-singlet extension of the Standard Model with an... We present a next-to-leading-order (NLO) study of the process $pp \; ( \to \{ h_1, h_2 \}) \to t\bar{t} + X$ in the 1-Higgs-singlet extension of the Standard... Abstract We present a next-to-leading-order (NLO) study of the process pp (→ {h 1, h 2}) → t t ¯ $$ t\overline{t} $$ + X in the 1-Higgs-singlet extension of... |
SourceID | doaj hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Classical and Quantum Gravitation Elementary Particles Higgs bosons Higgs Production High Energy Physics - Experiment High Energy Physics - Phenomenology Higher-Order Perturbative Calculations Large Hadron Collider Multi-Higgs Models Pair production Physics Physics and Astronomy Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory Resonance Standard model (particle physics) String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7En1idUsSDHqpp-9IlR5WNMlQEHexW8qtMlG1u07_fl7TVTRAvXpM0hPc1fd_Le_1CyCk1kAEXOrKZTSLgSkeKllkEGveSFlxYL_Z8d5_lfegN2GDhqi9XE1bJA1eGu8ww3mCMG14yCUymQgIvJbKMDJ1bWyr39UWf1wRTdf4AeQlthHxo-7KXdx4oP8NAH87jOFnyQV6qHz3L0BVCLrDMH4lR72-6m2SjJorhVbXALbJiR9tkzRds6tkOuXFnxbPQqT1M61_2wro2AxvD-XgSvSH6L-FEPk_DSaXrihj4zqEN4_zxbpf0u52nmzyqL0SINLB4HmkqqeEMMimk4BjZaqEYSKkYM6DbllskDAKHlCLRbfRPRlgBBqMOkypqZLpHVkfjkd0nIYWSMk2VS6SC4kqWCTMSp9ZcoHUhIBeNiQpdq4W7Sytei0bnuLJp4WyKYUQSkLOvByaVUMbvQ6-dzb-GOYVr34C4FzXuxV-4B-QEEVuaI7-6LVybL_VBpvMRB6TVAFrUe3NWpP4QRwBPA3LegPzd_cuiD_5j0Ydk3c3nzqRjaJHV-fTdHiGpmatj__5-Anl87c8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GIvgifmJ1ShEf9KGSrpcueZzDUcSJoIJvJUlTFWWb2_Tv95K184s9-BaSS0jvkuYud_cLwDErMEUhTWRT24pQaBNpVqYRGtpLRgppPdhz_zrN7vHygT80IK5zYXy0e-2S9H_qOtntMru4YeKEjHU8jd27wsucym5Rd12CQ-U4IIWE1Qg-fzv9OHw8Rj8dKU8uAvKbevnLI-oPmt46rFUaYtiZiXQDGnawCSs-UtNMtqDrLoknoYN5GFe5emEVlEGV4XQ4it5I7C_hSD2Pw9EM0JWY7xufbBhnt_1tuO9d3HWzqHoJITLI42lkmGKF4JgqqaQgk9ZIzVEpzXmBpm2FJU1BEkkpW6ZNB1MhrcSCzI0i0axQyQ4sDYYDuwshw5Jxw7TzoKIWWpUtXiga2gipSH8L4KxmUW4qmHD3WsVrXgMcz3iaO56S_dAK4GTeYTRDyFhMeu54Pidz0Na-Yjh-zKudkqdkYHIu6Fu4Qq4SqVCUNLN2StpMW-kAjkhiP8bIOle5q_MxPqTifMQBNGuB5tWmnOSJv72RKJIATmshfzUvmPTeP2j3YdUV3Z1zjE1Ymo7f7QEpLVN96JfpJxSY4Zk priority: 102 providerName: Springer Nature |
Title | Higgs interference effects in top-quark pair production in the 1HSM |
URI | https://link.springer.com/article/10.1007/JHEP08(2024)112 https://www.proquest.com/docview/3093309483 https://hal.science/hal-04237819 https://doaj.org/article/6717558d8f5a45a39a48fa05760787ab |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8aoEm7oH1qGayKph3g4OEkdmKfplK1i9BAaFslbpG_AoipDW23v3_PrlMGElwsxXYsx8_2-8zvAXymlpVMSENc6XLChDZE07YkzOBZMlJIF8CeT8_KespOLvhFNLgtY1hlfyeGi9rOjbeRHxVB9ZZMFF-7W-KzRnnvakyhsQU7eAULVL52jsdn5z82fgSUT2gP6EOro5N6fE7FASr87DDL8nu8KED2I4e58gGR_0mbDxykge9MXsJuFBjT4ZrCr-CZm72G5yFw0yzfwMjbjJepR31YxF_30hijgZXpat6RW9wFN2mnrhdpt8Z3RVqExiuXZvXP07cwnYx_jWoSEyMQw3i2IoYqagVnpZJKCtRwjdScKaU5t8xUTjgUHCR2aWVuKuRTVjrJLGofttDUquIdbM_mM_ceUspayg3V3qHKtNCqzblVOLQRUqE4l8CXfokaE1HDffKK302Pd7xe08avKaoTeQIHmxe6NWDG412P_Zpvunmk61AxX1w28eA0JeqbnAv8Fq4YV4VUTLQ4s6pE4aZSOoFPSLF7Y9TD742vCyE_KPH8zRLY7wnaxDO6bO52VAKHPZHvmh-Z9Ienh9qDF76ntzpnbB-2V4s_7iOKLSs9gC0x-TaIOxSfRjnzZTkaBEMAltN8-A_WROwD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIIYoy_Gz1hFbYwm8LCybXfb3QdiEDkL3BETIeGt7FfFaO7K3QnhT_kbnd22h5jgG6_7MWnnY2dmZ3YG4C21LGdCGuJylxImtCGa1jlhBmXJSCFdKPY82s_LQ7Z7xI-W4Hf_FsanVfZnYjio7cT4O_L1LLjekonsQ3NKfNcoH13tW2i0bLHnLs7RZZtt7HxC-r5L08H2wVZJuq4CxDCezImhilrBWa6kkgLdQyM1Z0ppzi0zhRMOta7EJbVMTYGHvJVOMoumu800tSpDuLfgNssy6SVKDD4vohZoDdG-fBAt1nfL7S9UrKaoBteSJL2i-UKDANRnJz798i_b9p9wbNBygwdwvzNP482Wnx7Ckhs_gjshTdTMHsOWv6Gexb7GxLR7KBh3GSE4GM8nDTlFnvsRN-r7NG7aarJI-TB54uKk_Dp6Aoc3grCnsDyejN0ziCmrKTdU-_At00KrOuVWIWgjpELjMYL3PYoq09Uo960yflZ9deUWp5XHKTovaQSriw1NW57j-qUfPc4Xy3xd7TAwmX6rOjGtcvRuORf4L1wxrjKpmKjxy4ocTalC6QjeIMWuwCg3h5UfCwlGaF-dJRGs9AStuhNhVl3ybwRrPZEvp6_56Of_B_Ua7pYHo2E13NnfewH3_C5_352wFVieT3-5l2gwzfWrwKUxHN-0WPwBaBYi8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFB5SUCBSwEUnsI6yR2Yh9Q1ceu0tdqBVTqLdiOQxFoN91dQPxav67jxNlSpHLr1Y9RMg_PjGc8A_CWlixlQprQpjYOmdAm1LRKQ2ZQlowU0jbFno9HaX7CDk756QpcdG9hXFpldyY2B3U5Ne6OvJ80rrdkIulXPi1ivDfcqs9D10HKRVq7dhotixzaP7_RfZt_2N9DWr-L4-Hg824e-g4DoWE8WoSGKloKzlIllRToKhqpOVNKc14yk1lhUQNLXFLJ2GR44JfSSlaiGV8mmpYqQbh3YDVDr4j2YHVnMBp_XMYw0DaiXTEhmvUP8sGYio0YleJmFMXX9GDTLgC125lLxvzL0v0nONvovOEaPPDGKtluueshrNjJI7jbJI2a-WPYdffVc-IqTsz8s0Hi80NwkCymdXiOHPid1OrbjNRtbVnkg2byzJIo_3T8BE5uBWVPoTeZTuwzIJRVlBuqXTCXaaFVFfNSIWgjpEJTMoD3HYoK4yuWu8YZP4qu1nKL08LhFF2ZOICN5Ya6LdZx89Idh_PlMldluxmYzr4WXmiLFH1dzgX-C1eMq0QqJir8sixFwypTOoA3SLFrMPLto8KNNelGaG39igJY7wha-PNhXlxxcwCbHZGvpm_46Of_B_Ua7qFIFEf7o8MXcN9tcpffEVuH3mL2075E62mhX3k2JfDltiXjEg3NKIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higgs+interference+effects+in+top-quark+pair+production+in+the+1HSM&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Banfi%2C+Andrea&rft.au=Kauer%2C+Nikolas&rft.au=Lind%2C+Alexander&rft.au=Lindert%2C+Jonas+M&rft.date=2024-08-14&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=112&rft_id=info:doi/10.1007%2FJHEP08%282024%29112&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |