Combined application of biochar and sulfur alleviates cadmium toxicity in rice by affecting root gene expression and iron plaque accumulation
Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 266; p. 115596 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution.
[Display omitted]
•Combined application of biochar and sulfur can significantly reduce the accumulation of Cd all parts of the rice plant.•Increased iron plaque accumulation is an important factor in the combined application decreasing the uptake of Cd in rice.•The combined application of biochar and sulfur reduces the stress response of rice under Cd stress.•Combined biochar and sulfur application significantly upregulates the expression of genes encoding efflux proteins. |
---|---|
AbstractList | Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution.
[Display omitted]
•Combined application of biochar and sulfur can significantly reduce the accumulation of Cd all parts of the rice plant.•Increased iron plaque accumulation is an important factor in the combined application decreasing the uptake of Cd in rice.•The combined application of biochar and sulfur reduces the stress response of rice under Cd stress.•Combined biochar and sulfur application significantly upregulates the expression of genes encoding efflux proteins. Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution. Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution.Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution. |
ArticleNumber | 115596 |
Author | Zhang, Miao Wang, Jiangnan Meng, Jun E, Yang Sun, Xiaoxue He, Tianyi Liu, Zunqi |
Author_xml | – sequence: 1 givenname: Xiaoxue surname: Sun fullname: Sun, Xiaoxue – sequence: 2 givenname: Jiangnan surname: Wang fullname: Wang, Jiangnan – sequence: 3 givenname: Miao surname: Zhang fullname: Zhang, Miao – sequence: 4 givenname: Zunqi surname: Liu fullname: Liu, Zunqi – sequence: 5 givenname: Yang surname: E fullname: E, Yang – sequence: 6 givenname: Jun surname: Meng fullname: Meng, Jun – sequence: 7 givenname: Tianyi surname: He fullname: He, Tianyi email: hetianyi@syau.edu.cn |
BookMark | eNqFUcuO1DAQjNAiMbvwBxx85JLBTpwXByQ0YmGllbjs3bKd9tAjxw62M9r5CP4ZZ4I4cIBTt1pdVd1Vt8WN8w6K4i2je0ZZ-_60B-3BnfcVreo9Y00ztC-KHaMDLSvO-E2xo4x3Zduw-lVxG-OJUlrTptkVPw9-UuhgJHKeLWqZ0DviDVHo9XcZiHQjiYs1S26thTPKBJFoOU64TCT5Z9SYLgQdCaiBqAuRxoBO6I4keJ_IERwQeJ4DxLhyr4QYcjNb-WMBIrVepsVehV8XL420Ed78rnfF0_3np8PX8vHbl4fDp8dS84alUpmWt7qteq457TsFdOCDYuPQjWaoc2nzuGe0o0YNHDSTLWOcN6pq8uGqviseNtrRy5OYA04yXISXKK4DH45ChoTagjCcj2PXg-LNqqFknS8ACn3bGkVhzFzvNq45-PxOTGLCqMFa6cAvUVR919OK9tWQV_m2qoOPMYD5I82oWIMUJ7EFKdYgxRZkhn34C5Ydv9qVgkT7P_DHDQzZzjNCEFEjOA0jhpxSfhj_TfALDnLAvA |
CitedBy_id | crossref_primary_10_1007_s11947_024_03728_y crossref_primary_10_1016_j_ecoenv_2024_116974 crossref_primary_10_1016_j_jhazmat_2024_135402 crossref_primary_10_1016_j_scienta_2024_112943 crossref_primary_10_3390_antiox13101174 crossref_primary_10_1016_j_scitotenv_2024_171429 crossref_primary_10_1007_s10653_024_01956_x crossref_primary_10_1016_j_jenvman_2024_122670 |
Cites_doi | 10.1038/s41467-019-10544-y 10.1016/j.jplph.2020.153220 10.1016/j.jhazmat.2019.121343 10.1016/j.envexpbot.2019.03.004 10.1016/j.chemosphere.2022.136158 10.1007/s40726-021-00180-w 10.1111/tpj.15912 10.1038/s41598-021-02163-9 10.1111/gcbb.12182 10.1111/ppl.13688 10.1016/j.chemosphere.2022.135457 10.1016/j.chemosphere.2021.133055 10.1016/j.jhazmat.2022.128668 10.1016/j.ecoenv.2020.111098 10.1016/j.scitotenv.2019.06.044 10.1016/j.cj.2022.09.013 10.1016/j.jhazmat.2021.127183 10.1007/s00344-022-10839-3 10.1093/jxb/erz335 10.1016/j.ecoenv.2021.113149 10.1016/j.scitotenv.2020.136665 10.1093/bioinformatics/bty560 10.1007/s11356-022-21752-3 10.1038/s43016-022-00569-w 10.1007/s10653-022-01246-4 10.1186/s13059-014-0550-8 10.1016/j.jhazmat.2023.131411 10.1016/j.jhazmat.2019.121803 10.1186/1471-2105-12-323 10.1186/s40529-018-0238-6 10.1016/j.chemosphere.2017.07.126 10.1016/j.scitotenv.2022.155547 10.1016/j.plantsci.2022.111205 10.1016/j.scitotenv.2019.05.292 10.1080/10643389.2019.1642832 10.3389/fpubh.2021.758074 10.1093/jxb/erad098 10.1093/jxb/erj073 10.1016/j.chemosphere.2018.11.159 10.1016/j.chemosphere.2021.130212 10.1016/j.envpol.2020.113970 10.1016/j.envpol.2018.02.083 10.1186/s40538-023-00388-6 10.1016/j.envpol.2019.03.020 10.1016/j.envpol.2021.118655 10.1016/j.jenvman.2019.110051 10.1007/s13762-019-02215-8 10.1016/j.envexpbot.2018.01.007 10.1104/pp.19.01569 10.1016/j.scitotenv.2023.165369 10.1007/s11368-018-2009-0 10.1016/j.ecoenv.2023.114714 10.1016/j.plaphy.2023.107661 10.1038/s41598-021-91003-x 10.1016/j.jhazmat.2023.131815 10.1038/s41467-019-10472-x 10.3389/fpls.2018.00476 10.3390/toxics10080411 10.1007/s11816-017-0447-6 10.1016/j.chemosphere.2022.136466 10.1016/j.bbrc.2019.03.024 10.1186/s12870-019-1899-3 10.1016/j.jhazmat.2021.126039 10.1007/s00248-023-02238-2 10.1016/j.jhazmat.2022.130283 10.3390/su131810307 10.1007/s00425-018-2859-0 10.1038/s41467-018-03088-0 10.1016/j.chemosphere.2021.132369 10.1016/j.scitotenv.2022.160690 10.1016/j.scitotenv.2018.04.215 10.1007/s12088-021-00924-8 10.1006/meth.2001.1262 10.1016/j.envpol.2020.114327 10.1016/j.jhazmat.2021.125590 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2023.115596 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_f44dd78eb45949bba3451e0e866fb0ed 10_1016_j_ecoenv_2023_115596 S0147651323011004 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- RIG SEN SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 EFKBS |
ID | FETCH-LOGICAL-c451t-bf646c6284c4087be0949b1d97df93d97640881070fb94ec1a611445b25cadb3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 00:59:20 EDT 2025 Thu Aug 07 15:22:05 EDT 2025 Tue Jul 01 02:09:13 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Fri Feb 23 02:34:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cadmium Iron plaque Biochar Sulfur Transcriptome Rice |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-bf646c6284c4087be0949b1d97df93d97640881070fb94ec1a611445b25cadb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651323011004 |
PQID | 2878020829 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f44dd78eb45949bba3451e0e866fb0ed proquest_miscellaneous_2878020829 crossref_primary_10_1016_j_ecoenv_2023_115596 crossref_citationtrail_10_1016_j_ecoenv_2023_115596 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2023_115596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Yang, Chen, Ma, Hu, Wang, Li, Dong, Yang, Zhou, Chen, Liu, Yu, Liu, Zhou, Zhang, Zhao, Liu (bib67) 2023; 11 Barsova, Yakimenko, Tolpeshta, Motuzova (bib2) 2019; 249 Piñeiro, Ave, Mallah, Caamaño-Isorna, Jiménez, Vieira, Bianchini, Muñoz-Barús (bib45) 2021; 11 Ghori, Ghori, Hayat, Imadi, Gul, Altay, Ozturk (bib15) 2019; 16 Xu, Liu, Hsu, Zhao, Wu, Tang, Liu, Cui (bib65) 2019; 10 Li, Dewey (bib30) 2011; 12 Wang, Yuan, Zhang, Si, Li, Duan, Li, Pan (bib60) 2022; 836 Meena, Aamir, Kumar, Swapnil, Upadhyay (bib41) 2018; 148 Zheng, Liao, Xu, Wang, Zhang, Zhu, Zhu, Sun, Zhou, Zhong, Huang (bib78) 2022; 308 Nandni, Rani, Chopra, Wati (bib42) 2023 Kajla, Roy, Singh, Singh (bib23) 2023 Tan, Qu, Zhu, Peng, Wang, Gao, Chen (bib56) 2020; 183 Wang, Liu, Liu, Liu, Liu, Zhao (bib62) 2022; 291 Fu, Lu, Zhang, Yang, Chao, Wang, Shi, Chen, Chao, Li, Ma, Xia (bib13) 2019; 70 Zhang, Zhou, Zeng, Wang, Yang, Huang, Huo, Yu, Gu, Liao (bib74) 2021; 276 Khan, Naushad, Lima, Zhang, Shaheen, Rinklebe (bib24) 2021; 417 Liu, Feng, Zhang, Wang, Cao, Rono, Chen, Yang (bib36) 2019; 19 Sharma, Kapoor, Gautam, Landi, Kandhol, Araniti, Ramakrishnan, Satish, Singh, Sharma, Bhardwaj, Tripathi, Zheng (bib49) 2022; 174 Dang, Li, Wang, Lin, Du, Liao (bib11) 2022 Yin, Wang, Peng, Tan, Ma (bib69) 2017; 186 Bashir, Naveed, Ahmad, Gao, Mustafa, Núñez-Delgado (bib3) 2020; 259 Wu, Naveed, Zhang, Ge (bib63) 2020; 262 Khan, Fan, Khan, Khan, Zhang, Fu, Shen (bib25) 2022; 308 Cao, Qin, Lin, Zhu, Chen (bib7) 2018; 238 Khoo, Chia, Chew, Show (bib26) 2021; 61 Bandara, Franks, Xu, Bolan, Wang, Tang (bib1) 2020; 50 Sun, Liu, Xue, Xu, Peng, Yuan, Shi (bib53) 2019; 19 Shi, Lu, Liu, Lou, Zhang, Song, Zhou, Ma (bib51) 2020; 713 Sun, Song, Shi, Duan, Zhang, Sun, Qin, Xue (bib54) 2021; 11 Qiu, Chen, Tang, Zhang (bib47) 2018; 636 Li, Wang, Yang, Ke, Huang, Li, Qiu, Tao, Hu (bib33) 2023; 10 Yu, Wang, Yamaji, Fukuoka, Che, Ueno, Ando, Deng, Hori, Yano, Shen, Ma (bib70) 2022; 3 Cheng, Qiu, Shen, Wang, Li, Dai, Qi, Zhou, Zou (bib9) 2023; 197 Zulfiqar, Ashraf (bib81) 2023; 42 Xiong, Wang, Yan, Cao, Xu, Liu, Luo (bib64) 2018; 247 Jing, Yang, Chen, Yang, Zhou, Yang, Zhao, Wu, Zia-ur-Rehman (bib22) 2023; 897 Sharma, Dietz (bib50) 2006; 57 Yan, Xu, Xie, Gao, Wu, Sun, Feng, Chen, Zhang, Dai, Li, Lin, Zhang, Wang, Li, Zhu, Li, Li, Chen, Ma, Zhang, He (bib66) 2019; 10 Zhu, Qiu, He, Wu, Bi, Deng, He, Wu, Zhuo (bib80) 2022; 230 Liu, Chen, Liu, Niu, Tang, Mao, Li, Chen, Xiang (bib35) 2021; 415 Ji, Wang, Usman, Liu, Dan, Zhou, Campanaro, Luo, Sang (bib21) 2022; 294 Zandi, Yang, Darma, Bloem, Xia, Wang, Li, Schnug (bib72) 2023; 45 Deng, Yang, Zeng, Chen, Zeng (bib12) 2020; 384 Hao, Zeng, Wang, Zeng, Dai, Xie, Yang, Tian, Chen, Li (bib17) 2018; 9 Viger, Hancock, Miglietta, Taylor (bib59) 2015; 7 Gautam, Tiwari, Kidwai, Dutta, Chakrabarty (bib14) 2023; 458 Wang, Zhong, Shafi, Ma, Guo, Wu, Ye, Liu, Jin (bib61) 2019; 219 Gong, Zhao, Rui, Hu, Zhu (bib16) 2022; 432 Park, Ahn (bib44) 2017; 11 Luo, Huang, Zeng, Peng, Zhang, Ma, Guan, Yi, Fu, Han, Lin, Qian, Gong (bib40) 2018; 9 Love, Huber, Anders (bib39) 2014; 15 Tao, Lu (bib57) 2022; 10 Lin, Wang, Liu, Dong (bib34) 2022; 305 Loss Sperandio, Santos, Huertas Tavares, Fernandes, de Freitas Lima, de Souza (bib38) 2020; 251 Yang, Xiao, Wang, Peng, Zeng, Luo (bib68) 2022; 423 Li, Xiong, Xu, Mei, Cheng, Yu (bib31) 2021; 9 Kocaman (bib28) 2022 Zhang, Chen, Huang, Xu, Zhu, Zhu (bib76) 2019; 687 Huang, Zhao, Wang (bib19) 2021; 7 Hoagland, Arnon (bib18) 1950 Qiang, Zhao, Liao, Sun, Wang, Jin (bib46) 2023; 453 Ito, Kitaiwa, Nishizono, Umahashi, Miyaji, Agake, Kuwahara, Yokoyama, Fushinobu, Maruyama-Nakashita, Sugiyama, Sato, Inaba, Hirai, Ohkama-Ohtsu (bib20) 2022; 111 Rajendran, Priya, Khoo, Hoang, Ng, Munawaroh, Karaman, Orooji, Show (bib48) 2022; 287 Cui, Wang, Peng, Zhou, He, Wang, Chang, Yang, Zhou, Wang, Yao, Du, Liu, Zhao (bib10) 2019; 683 Bashir, Naveed, Ahmad, Gao, Mustafa, Núñez-Delgado (bib4) 2020; 259 Li, Sun, Chen, Dong, Cao, Dong, Yu, Yue, Jin (bib32) 2022; 318 Leng, Li, Wen, Zhao, Wang, Li (bib29) 2020; 204 Livak, Schmittgen (bib37) 2001; 25 Tan, Zhu, Fan, Peng, Wang, Sun, Chen (bib55) 2019; 512 Bonnot, Bachelet, Boudet, Le Signor, Bancel, Vernoud, Ravel, Gallardo (bib5) 2023; 74 Tian, Chai, Lu, Xiao, Xie, Luo (bib58) 2023; 254 Natasha, Shahid, Khalid, Bibi, Naeem, Niazi, Tack, Ippolito, Rinklebe (bib43) 2021 Kim, Lee, Lee, Kim (bib27) 2022; 29 Zhang, Chen, Xu, Zhu, Zhu (bib75) 2019; 162 Cao, Ma, Yu, Tan, Dhankher, White, Xing (bib6) 2023; 443 Chen, Zhou, Chen, Gu (bib8) 2018; 34 Zhao, Zhang, Huang, Feng (bib77) 2023; 862 Zandi, Yang, Xia, Tian, Li, Możdżeń, Barabasz-Krasny, Wang (bib71) 2020; 388 Zhang, Zhou, Gu, Huang, Yang, Wang, Yuan, Liao (bib73) 2020; 260 Siddique, Rahman, Islam, Shehzad, Nath, Naidu (bib52) 2021; 13 Zheng, Chen, Li (bib79) 2018; 59 Bonnot (10.1016/j.ecoenv.2023.115596_bib5) 2023; 74 Park (10.1016/j.ecoenv.2023.115596_bib44) 2017; 11 Kocaman (10.1016/j.ecoenv.2023.115596_bib28) 2022 Gong (10.1016/j.ecoenv.2023.115596_bib16) 2022; 432 Tan (10.1016/j.ecoenv.2023.115596_bib55) 2019; 512 Wu (10.1016/j.ecoenv.2023.115596_bib63) 2020; 262 Loss Sperandio (10.1016/j.ecoenv.2023.115596_bib38) 2020; 251 Tian (10.1016/j.ecoenv.2023.115596_bib58) 2023; 254 Ito (10.1016/j.ecoenv.2023.115596_bib20) 2022; 111 Zhang (10.1016/j.ecoenv.2023.115596_bib74) 2021; 276 Rajendran (10.1016/j.ecoenv.2023.115596_bib48) 2022; 287 Zandi (10.1016/j.ecoenv.2023.115596_bib72) 2023; 45 Barsova (10.1016/j.ecoenv.2023.115596_bib2) 2019; 249 Yang (10.1016/j.ecoenv.2023.115596_bib68) 2022; 423 Hoagland (10.1016/j.ecoenv.2023.115596_bib18) 1950 Liu (10.1016/j.ecoenv.2023.115596_bib35) 2021; 415 Cao (10.1016/j.ecoenv.2023.115596_bib6) 2023; 443 Li (10.1016/j.ecoenv.2023.115596_bib33) 2023; 10 Kajla (10.1016/j.ecoenv.2023.115596_bib23) 2023 Khoo (10.1016/j.ecoenv.2023.115596_bib26) 2021; 61 Natasha (10.1016/j.ecoenv.2023.115596_bib43) 2021 Sharma (10.1016/j.ecoenv.2023.115596_bib49) 2022; 174 Bashir (10.1016/j.ecoenv.2023.115596_bib3) 2020; 259 Deng (10.1016/j.ecoenv.2023.115596_bib12) 2020; 384 Nandni (10.1016/j.ecoenv.2023.115596_bib42) 2023 Love (10.1016/j.ecoenv.2023.115596_bib39) 2014; 15 Bandara (10.1016/j.ecoenv.2023.115596_bib1) 2020; 50 Cui (10.1016/j.ecoenv.2023.115596_bib10) 2019; 683 Dang (10.1016/j.ecoenv.2023.115596_bib11) 2022 Li (10.1016/j.ecoenv.2023.115596_bib31) 2021; 9 Ghori (10.1016/j.ecoenv.2023.115596_bib15) 2019; 16 Zhang (10.1016/j.ecoenv.2023.115596_bib76) 2019; 687 Livak (10.1016/j.ecoenv.2023.115596_bib37) 2001; 25 Xu (10.1016/j.ecoenv.2023.115596_bib65) 2019; 10 Zandi (10.1016/j.ecoenv.2023.115596_bib71) 2020; 388 Chen (10.1016/j.ecoenv.2023.115596_bib8) 2018; 34 Qiu (10.1016/j.ecoenv.2023.115596_bib47) 2018; 636 Li (10.1016/j.ecoenv.2023.115596_bib30) 2011; 12 Zheng (10.1016/j.ecoenv.2023.115596_bib79) 2018; 59 Liu (10.1016/j.ecoenv.2023.115596_bib36) 2019; 19 Qiang (10.1016/j.ecoenv.2023.115596_bib46) 2023; 453 Wang (10.1016/j.ecoenv.2023.115596_bib62) 2022; 291 Viger (10.1016/j.ecoenv.2023.115596_bib59) 2015; 7 Leng (10.1016/j.ecoenv.2023.115596_bib29) 2020; 204 Cheng (10.1016/j.ecoenv.2023.115596_bib9) 2023; 197 Yang (10.1016/j.ecoenv.2023.115596_bib67) 2023; 11 Yu (10.1016/j.ecoenv.2023.115596_bib70) 2022; 3 Lin (10.1016/j.ecoenv.2023.115596_bib34) 2022; 305 Xiong (10.1016/j.ecoenv.2023.115596_bib64) 2018; 247 Meena (10.1016/j.ecoenv.2023.115596_bib41) 2018; 148 Zhao (10.1016/j.ecoenv.2023.115596_bib77) 2023; 862 Huang (10.1016/j.ecoenv.2023.115596_bib19) 2021; 7 Zheng (10.1016/j.ecoenv.2023.115596_bib78) 2022; 308 Zhang (10.1016/j.ecoenv.2023.115596_bib75) 2019; 162 Siddique (10.1016/j.ecoenv.2023.115596_bib52) 2021; 13 Zhang (10.1016/j.ecoenv.2023.115596_bib73) 2020; 260 Luo (10.1016/j.ecoenv.2023.115596_bib40) 2018; 9 Yin (10.1016/j.ecoenv.2023.115596_bib69) 2017; 186 Wang (10.1016/j.ecoenv.2023.115596_bib61) 2019; 219 Khan (10.1016/j.ecoenv.2023.115596_bib24) 2021; 417 Wang (10.1016/j.ecoenv.2023.115596_bib60) 2022; 836 Sun (10.1016/j.ecoenv.2023.115596_bib53) 2019; 19 Zhu (10.1016/j.ecoenv.2023.115596_bib80) 2022; 230 Gautam (10.1016/j.ecoenv.2023.115596_bib14) 2023; 458 Piñeiro (10.1016/j.ecoenv.2023.115596_bib45) 2021; 11 Sharma (10.1016/j.ecoenv.2023.115596_bib50) 2006; 57 Zulfiqar (10.1016/j.ecoenv.2023.115596_bib81) 2023; 42 Bashir (10.1016/j.ecoenv.2023.115596_bib4) 2020; 259 Jing (10.1016/j.ecoenv.2023.115596_bib22) 2023; 897 Khan (10.1016/j.ecoenv.2023.115596_bib25) 2022; 308 Shi (10.1016/j.ecoenv.2023.115596_bib51) 2020; 713 Ji (10.1016/j.ecoenv.2023.115596_bib21) 2022; 294 Tao (10.1016/j.ecoenv.2023.115596_bib57) 2022; 10 Kim (10.1016/j.ecoenv.2023.115596_bib27) 2022; 29 Tan (10.1016/j.ecoenv.2023.115596_bib56) 2020; 183 Cao (10.1016/j.ecoenv.2023.115596_bib7) 2018; 238 Li (10.1016/j.ecoenv.2023.115596_bib32) 2022; 318 Fu (10.1016/j.ecoenv.2023.115596_bib13) 2019; 70 Hao (10.1016/j.ecoenv.2023.115596_bib17) 2018; 9 Sun (10.1016/j.ecoenv.2023.115596_bib54) 2021; 11 Yan (10.1016/j.ecoenv.2023.115596_bib66) 2019; 10 |
References_xml | – volume: 9 year: 2021 ident: bib31 article-title: Factors affecting the aluminum, arsenic, cadmium and lead concentrations in the knee joint structures publication-title: Front. Public Health – volume: 308 year: 2022 ident: bib78 article-title: Milk vetch returning reduces rice grain Cd concentration in paddy fields: roles of iron plaque and soil reducing-bacteria publication-title: Chemosphere – volume: 34 start-page: i884 year: 2018 end-page: i890 ident: bib8 article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinforma. Oxf. Engl. – volume: 308 year: 2022 ident: bib25 article-title: The toxicity of heavy metals and plant signaling facilitated by biochar application: implications for stress mitigation and crop production publication-title: Chemosphere – volume: 186 start-page: 928 year: 2017 end-page: 937 ident: bib69 article-title: Effect of biochar and Fe-biochar on Cd and as mobility and transfer in soil-rice system publication-title: Chemosphere – volume: 10 start-page: 11 year: 2023 ident: bib33 article-title: Effects of sulfur supply on cadmium transfer and concentration in rice at different growth stages exposed to sulfur-deficient but highly cadmium-contaminated soil publication-title: Chem. Biol. Technol. Agric. – volume: 7 start-page: 658 year: 2015 end-page: 672 ident: bib59 article-title: More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar publication-title: GCB Bioenergy – volume: 50 start-page: 903 year: 2020 end-page: 978 ident: bib1 article-title: Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 15 start-page: 550 year: 2014 ident: bib39 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 10 start-page: 411 year: 2022 ident: bib57 article-title: Advances in genes-encoding transporters for cadmium uptake, translocation, and accumulation in plants publication-title: Toxics – volume: 262 year: 2020 ident: bib63 article-title: Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture publication-title: Environ. Pollut. – volume: 10 start-page: 2562 year: 2019 ident: bib66 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nat. Commun. – volume: 294 year: 2022 ident: bib21 article-title: Effects of different feedstocks-based biochar on soil remediation: a review publication-title: Environ. Pollut. – volume: 29 start-page: 87555 year: 2022 end-page: 87567 ident: bib27 article-title: Synergetic effect of complex soil amendments to improve soil quality and alleviate toxicity of heavy metal(Loid)s in contaminated arable soil: toward securing crop food safety and productivity publication-title: Environ. Sci. Pollut. Res. – volume: 636 start-page: 80 year: 2018 end-page: 84 ident: bib47 article-title: A study of cadmium remediation and mechanisms: improvements in the stability of walnut shell-derived biochar publication-title: Sci. Total Environ. – volume: 318 year: 2022 ident: bib32 article-title: Overexpression of histone demethylase gene SlJMJ524 from tomato confers Cd tolerance by regulating metal transport-related protein genes and flavonoid content in arabidopsis publication-title: Plant Sci. – year: 2023 ident: bib42 article-title: Deciphering the potential of sulphur-oxidizing bacteria for sulphate production correlating with pH change publication-title: Microb. Ecol. – volume: 259 year: 2020 ident: bib3 article-title: Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils publication-title: J. Environ. Manag. – volume: 458 year: 2023 ident: bib14 article-title: Functional characterization of rice metallothionein OsMT-I-Id: insights into metal binding and heavy metal tolerance mechanisms publication-title: J. Hazard. Mater. – volume: 148 start-page: 144 year: 2018 end-page: 167 ident: bib41 article-title: Evaluation of morpho-physiological growth parameters of tomato in response to Cd induced toxicity and characterization of metal sensitive NRAMP3 transporter protein publication-title: Environ. Exp. Bot. – volume: 11 start-page: 11468 year: 2021 ident: bib54 article-title: Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants publication-title: Sci. Rep. – volume: 247 start-page: 1247 year: 2018 end-page: 1260 ident: bib64 article-title: The rice “Fruit-Weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots publication-title: Planta – volume: 162 start-page: 392 year: 2019 end-page: 398 ident: bib75 article-title: Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes publication-title: Environ. Exp. Bot. – volume: 9 year: 2018 ident: bib17 article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice publication-title: Front. Plant Sci. – volume: 70 start-page: 5909 year: 2019 end-page: 5918 ident: bib13 article-title: The ABC transporter ABCG36 is required for cadmium tolerance in rice publication-title: J. Exp. Bot. – volume: 251 year: 2020 ident: bib38 article-title: Silencing the Oryza sativa plasma membrane H+-ATPase isoform OsA2 affects grain yield and shoot growth and decreases nitrogen concentration publication-title: J. Plant Physiol. – volume: 11 start-page: 209 year: 2017 end-page: 218 ident: bib44 article-title: HMA3 is a key factor for differences in Cd- and Zn-related phenotype between arabidopsis Ws and Col-0 ecotypes publication-title: Plant Biotechnol. Rep. – volume: 388 year: 2020 ident: bib71 article-title: Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? publication-title: J. Hazard. Mater. – volume: 683 start-page: 782 year: 2019 end-page: 792 ident: bib10 article-title: Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil publication-title: Sci. Total Environ. – volume: 432 year: 2022 ident: bib16 article-title: A review of pristine and modified biochar immobilizing typical heavy metals in soil: applications and challenges publication-title: J. Hazard. Mater. – volume: 7 start-page: 194 year: 2021 end-page: 200 ident: bib19 article-title: Biogeochemical control on the mobilization of Cd in soil publication-title: Curr. Pollut. Rep. – volume: 862 year: 2023 ident: bib77 article-title: Enhancing the effect of biochar ageing on reducing cadmium accumulation in Medicago sativa L. publication-title: Sci. Total Environ. – volume: 687 start-page: 790 year: 2019 end-page: 799 ident: bib76 article-title: Water managements limit heavy metal accumulation in rice: dual effects of iron-plaque formation and microbial communities publication-title: Sci. Total Environ. – volume: 10 start-page: 2440 year: 2019 ident: bib65 article-title: Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry publication-title: Nat. Commun. – start-page: 1 year: 2021 end-page: 41 ident: bib43 article-title: Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. – year: 2022 ident: bib11 article-title: ZAT10 plays dual roles in cadmium uptake and detoxification in arabidopsis publication-title: Front. Plant Sci. – volume: 57 start-page: 711 year: 2006 end-page: 726 ident: bib50 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exp. Bot. – volume: 11 start-page: 417 year: 2023 end-page: 426 ident: bib67 article-title: OsNRAMP2 facilitates Cd efflux from vacuoles and contributes to the difference in grain Cd accumulation between japonica and indica rice publication-title: Crop J. – year: 1950 ident: bib18 article-title: The water culture method for growing plants without soil publication-title: Calif. Agric. Exp. Stn. Circ. – year: 2023 ident: bib23 article-title: Regulation of the regulators: transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs publication-title: Front. Plant Sci. – volume: 287 year: 2022 ident: bib48 article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils publication-title: Chemosphere – volume: 384 year: 2020 ident: bib12 article-title: Variations in iron plaque, root morphology and metal bioavailability response to seedling establishment methods and their impacts on Cd and Pb accumulation and translocation in rice (Oryza sativa L.) publication-title: J. Hazard. Mater. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib37 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods – volume: 276 year: 2021 ident: bib74 article-title: Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root publication-title: Chemosphere – volume: 230 year: 2022 ident: bib80 article-title: Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in sedum plumbizincicola publication-title: Ecotoxicol. Environ. Saf. – volume: 254 year: 2023 ident: bib58 article-title: A new insight into the role of iron plaque in arsenic and cadmium accumulation in rice (Oryza sativa L.) roots publication-title: Ecotoxicol. Environ. Saf. – volume: 74 start-page: 3276 year: 2023 end-page: 3285 ident: bib5 article-title: Sulfur in determining seed protein composition: present understanding of its interaction with abiotic stresses and future directions publication-title: J. Exp. Bot. – volume: 713 year: 2020 ident: bib51 article-title: Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant publication-title: Sci. Total Environ. – volume: 260 year: 2020 ident: bib73 article-title: Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.) publication-title: Environ. Pollut. – volume: 61 start-page: 262 year: 2021 end-page: 269 ident: bib26 article-title: Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production publication-title: Indian J. Microbiol. – year: 2022 ident: bib28 article-title: Combined interactions of amino acids and organic acids in heavy metal binding in plants publication-title: Plant Signal. Behav. – volume: 291 year: 2022 ident: bib62 article-title: Differences and mechanism of dynamic changes of Cd activity regulated by polymorphous sulfur in paddy soil publication-title: Chemosphere – volume: 59 start-page: 22 year: 2018 ident: bib79 article-title: Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress publication-title: Bot. Stud. – volume: 443 year: 2023 ident: bib6 article-title: The role of sulfur nutrition in plant response to metal(Loid) stress: facilitating biofortification and phytoremediation publication-title: J. Hazard. Mater. – volume: 836 year: 2022 ident: bib60 article-title: Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling publication-title: Sci. Total Environ. – volume: 12 start-page: 323 year: 2011 ident: bib30 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinforma. – volume: 197 year: 2023 ident: bib9 article-title: Transcriptome studies on cadmium tolerance and biochar mitigating cadmium stress in muskmelon publication-title: Plant Physiol. Biochem. – volume: 183 start-page: 1235 year: 2020 end-page: 1249 ident: bib56 article-title: Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake1 publication-title: Plant Physiol. – volume: 259 year: 2020 ident: bib4 article-title: Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils publication-title: J. Environ. Manag. – volume: 9 start-page: 645 year: 2018 ident: bib40 article-title: A defensin-like protein drives cadmium efflux and allocation in rice publication-title: Nat. Commun. – volume: 423 year: 2022 ident: bib68 article-title: Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes publication-title: J. Hazard. Mater. – volume: 11 start-page: 22729 year: 2021 ident: bib45 article-title: Heavy metal contamination in Peru: implications on children’s health publication-title: Sci. Rep. – volume: 204 year: 2020 ident: bib29 article-title: Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments publication-title: Ecotoxicol. Environ. Saf. – volume: 174 year: 2022 ident: bib49 article-title: Heavy metal induced regulation of plant biology: recent insights publication-title: Physiol. Plant. – volume: 19 start-page: 198 year: 2019 end-page: 210 ident: bib53 article-title: Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L.) rhizosphere soil during the whole life cycle of rice plants publication-title: J. Soils Sediment. – volume: 249 start-page: 200 year: 2019 end-page: 207 ident: bib2 article-title: Current state and dynamics of heavy metal soil pollution in Russian Federation—a review publication-title: Environ. Pollut. – volume: 453 year: 2023 ident: bib46 article-title: Metabolomics and transcriptomics reveal the toxic mechanism of Cd and nano TiO2 coexposure on rice (Oryza sativa L.) publication-title: J. Hazard. Mater. – volume: 3 start-page: 597 year: 2022 end-page: 607 ident: bib70 article-title: Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain publication-title: Nat. Food – volume: 16 start-page: 1807 year: 2019 end-page: 1828 ident: bib15 article-title: Heavy metal stress and responses in plants publication-title: Int. J. Environ. Sci. Technol. – volume: 238 start-page: 76 year: 2018 end-page: 84 ident: bib7 article-title: Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration publication-title: Environ. Pollut. – volume: 305 year: 2022 ident: bib34 article-title: Technologies for removing heavy metal from contaminated soils on farmland: a review publication-title: Chemosphere – volume: 111 start-page: 1626 year: 2022 end-page: 1642 ident: bib20 article-title: Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in arabidopsis publication-title: Plant J. – volume: 897 year: 2023 ident: bib22 article-title: Exploring the mechanism of Cd uptake and translocation in rice: future perspectives of rice safety publication-title: Sci. Total Environ. – volume: 13 start-page: 10307 year: 2021 ident: bib52 article-title: Influence of iron plaque on accumulation and translocation of cadmium by rice seedlings publication-title: Sustainability – volume: 42 start-page: 4629 year: 2023 end-page: 4651 ident: bib81 article-title: Proline alleviates abiotic stress induced oxidative stress in plants publication-title: J. Plant Growth Regul. – volume: 219 start-page: 510 year: 2019 end-page: 516 ident: bib61 article-title: Effects of biochar on growth, and heavy metals accumulation of moso bamboo (phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil publication-title: Chemosphere – volume: 417 year: 2021 ident: bib24 article-title: Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies – a review publication-title: J. Hazard. Mater. – volume: 512 start-page: 112 year: 2019 end-page: 118 ident: bib55 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice publication-title: Biochem. Biophys. Res. Commun. – volume: 19 start-page: 283 year: 2019 ident: bib36 article-title: OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice publication-title: BMC Plant Biol. – volume: 45 start-page: 525 year: 2023 end-page: 559 ident: bib72 article-title: Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.) publication-title: Environ. Geochem. Health – volume: 415 year: 2021 ident: bib35 article-title: Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios publication-title: J. Hazard. Mater. – volume: 10 start-page: 2562 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib66 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nat. Commun. doi: 10.1038/s41467-019-10544-y – volume: 251 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib38 article-title: Silencing the Oryza sativa plasma membrane H+-ATPase isoform OsA2 affects grain yield and shoot growth and decreases nitrogen concentration publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2020.153220 – volume: 384 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib12 article-title: Variations in iron plaque, root morphology and metal bioavailability response to seedling establishment methods and their impacts on Cd and Pb accumulation and translocation in rice (Oryza sativa L.) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121343 – volume: 162 start-page: 392 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib75 article-title: Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.03.004 – volume: 308 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib78 article-title: Milk vetch returning reduces rice grain Cd concentration in paddy fields: roles of iron plaque and soil reducing-bacteria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136158 – start-page: 14 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib23 article-title: Regulation of the regulators: transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs publication-title: Front. Plant Sci. – volume: 7 start-page: 194 issue: 2 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib19 article-title: Biogeochemical control on the mobilization of Cd in soil publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-021-00180-w – volume: 111 start-page: 1626 issue: 6 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib20 article-title: Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in arabidopsis publication-title: Plant J. doi: 10.1111/tpj.15912 – volume: 11 start-page: 22729 issue: 1 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib45 article-title: Heavy metal contamination in Peru: implications on children’s health publication-title: Sci. Rep. doi: 10.1038/s41598-021-02163-9 – volume: 7 start-page: 658 issue: 4 year: 2015 ident: 10.1016/j.ecoenv.2023.115596_bib59 article-title: More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar publication-title: GCB Bioenergy doi: 10.1111/gcbb.12182 – volume: 174 issue: 3 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib49 article-title: Heavy metal induced regulation of plant biology: recent insights publication-title: Physiol. Plant. doi: 10.1111/ppl.13688 – volume: 305 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib34 article-title: Technologies for removing heavy metal from contaminated soils on farmland: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135457 – volume: 291 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib62 article-title: Differences and mechanism of dynamic changes of Cd activity regulated by polymorphous sulfur in paddy soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.133055 – volume: 432 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib16 article-title: A review of pristine and modified biochar immobilizing typical heavy metals in soil: applications and challenges publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128668 – volume: 204 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib29 article-title: Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111098 – volume: 687 start-page: 790 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib76 article-title: Water managements limit heavy metal accumulation in rice: dual effects of iron-plaque formation and microbial communities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.044 – volume: 11 start-page: 417 issue: 2 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib67 article-title: OsNRAMP2 facilitates Cd efflux from vacuoles and contributes to the difference in grain Cd accumulation between japonica and indica rice publication-title: Crop J. doi: 10.1016/j.cj.2022.09.013 – volume: 423 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib68 article-title: Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127183 – volume: 42 start-page: 4629 issue: 8 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib81 article-title: Proline alleviates abiotic stress induced oxidative stress in plants publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-022-10839-3 – volume: 70 start-page: 5909 issue: 20 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib13 article-title: The ABC transporter ABCG36 is required for cadmium tolerance in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz335 – volume: 230 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib80 article-title: Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in sedum plumbizincicola publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.113149 – volume: 713 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib51 article-title: Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136665 – volume: 34 start-page: i884 issue: 17 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib8 article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinforma. Oxf. Engl. doi: 10.1093/bioinformatics/bty560 – volume: 29 start-page: 87555 issue: 58 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib27 article-title: Synergetic effect of complex soil amendments to improve soil quality and alleviate toxicity of heavy metal(Loid)s in contaminated arable soil: toward securing crop food safety and productivity publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21752-3 – volume: 3 start-page: 597 issue: 8 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib70 article-title: Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain publication-title: Nat. Food doi: 10.1038/s43016-022-00569-w – volume: 45 start-page: 525 issue: 3 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib72 article-title: Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.) publication-title: Environ. Geochem. Health doi: 10.1007/s10653-022-01246-4 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 10.1016/j.ecoenv.2023.115596_bib39 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 453 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib46 article-title: Metabolomics and transcriptomics reveal the toxic mechanism of Cd and nano TiO2 coexposure on rice (Oryza sativa L.) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131411 – volume: 388 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib71 article-title: Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121803 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.ecoenv.2023.115596_bib30 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-12-323 – volume: 59 start-page: 22 issue: 1 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib79 article-title: Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress publication-title: Bot. Stud. doi: 10.1186/s40529-018-0238-6 – volume: 186 start-page: 928 year: 2017 ident: 10.1016/j.ecoenv.2023.115596_bib69 article-title: Effect of biochar and Fe-biochar on Cd and as mobility and transfer in soil-rice system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.126 – volume: 836 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib60 article-title: Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155547 – volume: 318 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib32 article-title: Overexpression of histone demethylase gene SlJMJ524 from tomato confers Cd tolerance by regulating metal transport-related protein genes and flavonoid content in arabidopsis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2022.111205 – volume: 683 start-page: 782 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib10 article-title: Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.292 – volume: 50 start-page: 903 issue: 9 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib1 article-title: Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2019.1642832 – volume: 9 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib31 article-title: Factors affecting the aluminum, arsenic, cadmium and lead concentrations in the knee joint structures publication-title: Front. Public Health doi: 10.3389/fpubh.2021.758074 – volume: 74 start-page: 3276 issue: 11 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib5 article-title: Sulfur in determining seed protein composition: present understanding of its interaction with abiotic stresses and future directions publication-title: J. Exp. Bot. doi: 10.1093/jxb/erad098 – volume: 57 start-page: 711 issue: 4 year: 2006 ident: 10.1016/j.ecoenv.2023.115596_bib50 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj073 – volume: 219 start-page: 510 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib61 article-title: Effects of biochar on growth, and heavy metals accumulation of moso bamboo (phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.159 – volume: 276 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib74 article-title: Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130212 – volume: 260 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib73 article-title: Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.113970 – volume: 238 start-page: 76 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib7 article-title: Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.083 – volume: 10 start-page: 11 issue: 1 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib33 article-title: Effects of sulfur supply on cadmium transfer and concentration in rice at different growth stages exposed to sulfur-deficient but highly cadmium-contaminated soil publication-title: Chem. Biol. Technol. Agric. doi: 10.1186/s40538-023-00388-6 – volume: 249 start-page: 200 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib2 article-title: Current state and dynamics of heavy metal soil pollution in Russian Federation—a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.020 – volume: 294 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib21 article-title: Effects of different feedstocks-based biochar on soil remediation: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118655 – volume: 259 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib3 article-title: Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.110051 – volume: 259 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib4 article-title: Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.110051 – volume: 16 start-page: 1807 issue: 3 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib15 article-title: Heavy metal stress and responses in plants publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-019-02215-8 – year: 1950 ident: 10.1016/j.ecoenv.2023.115596_bib18 article-title: The water culture method for growing plants without soil publication-title: Calif. Agric. Exp. Stn. Circ. – volume: 148 start-page: 144 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib41 article-title: Evaluation of morpho-physiological growth parameters of tomato in response to Cd induced toxicity and characterization of metal sensitive NRAMP3 transporter protein publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.01.007 – volume: 183 start-page: 1235 issue: 3 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib56 article-title: Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake1 publication-title: Plant Physiol. doi: 10.1104/pp.19.01569 – volume: 897 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib22 article-title: Exploring the mechanism of Cd uptake and translocation in rice: future perspectives of rice safety publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.165369 – volume: 19 start-page: 198 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib53 article-title: Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L.) rhizosphere soil during the whole life cycle of rice plants publication-title: J. Soils Sediment. doi: 10.1007/s11368-018-2009-0 – volume: 254 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib58 article-title: A new insight into the role of iron plaque in arsenic and cadmium accumulation in rice (Oryza sativa L.) roots publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2023.114714 – volume: 197 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib9 article-title: Transcriptome studies on cadmium tolerance and biochar mitigating cadmium stress in muskmelon publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2023.107661 – volume: 11 start-page: 11468 issue: 1 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib54 article-title: Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants publication-title: Sci. Rep. doi: 10.1038/s41598-021-91003-x – volume: 458 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib14 article-title: Functional characterization of rice metallothionein OsMT-I-Id: insights into metal binding and heavy metal tolerance mechanisms publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131815 – volume: 10 start-page: 2440 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib65 article-title: Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry publication-title: Nat. Commun. doi: 10.1038/s41467-019-10472-x – volume: 9 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib17 article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00476 – volume: 10 start-page: 411 issue: 8 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib57 article-title: Advances in genes-encoding transporters for cadmium uptake, translocation, and accumulation in plants publication-title: Toxics doi: 10.3390/toxics10080411 – volume: 11 start-page: 209 issue: 4 year: 2017 ident: 10.1016/j.ecoenv.2023.115596_bib44 article-title: HMA3 is a key factor for differences in Cd- and Zn-related phenotype between arabidopsis Ws and Col-0 ecotypes publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-017-0447-6 – volume: 308 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib25 article-title: The toxicity of heavy metals and plant signaling facilitated by biochar application: implications for stress mitigation and crop production publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136466 – volume: 512 start-page: 112 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib55 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.03.024 – volume: 19 start-page: 283 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115596_bib36 article-title: OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-1899-3 – volume: 417 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib24 article-title: Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies – a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126039 – year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib42 article-title: Deciphering the potential of sulphur-oxidizing bacteria for sulphate production correlating with pH change publication-title: Microb. Ecol. doi: 10.1007/s00248-023-02238-2 – volume: 443 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib6 article-title: The role of sulfur nutrition in plant response to metal(Loid) stress: facilitating biofortification and phytoremediation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130283 – start-page: 1 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib43 article-title: Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 13 start-page: 10307 issue: 18 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib52 article-title: Influence of iron plaque on accumulation and translocation of cadmium by rice seedlings publication-title: Sustainability doi: 10.3390/su131810307 – volume: 247 start-page: 1247 issue: 5 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib64 article-title: The rice “Fruit-Weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots publication-title: Planta doi: 10.1007/s00425-018-2859-0 – volume: 9 start-page: 645 issue: 1 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib40 article-title: A defensin-like protein drives cadmium efflux and allocation in rice publication-title: Nat. Commun. doi: 10.1038/s41467-018-03088-0 – volume: 287 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib48 article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132369 – volume: 862 year: 2023 ident: 10.1016/j.ecoenv.2023.115596_bib77 article-title: Enhancing the effect of biochar ageing on reducing cadmium accumulation in Medicago sativa L. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160690 – volume: 636 start-page: 80 year: 2018 ident: 10.1016/j.ecoenv.2023.115596_bib47 article-title: A study of cadmium remediation and mechanisms: improvements in the stability of walnut shell-derived biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.215 – volume: 61 start-page: 262 issue: 3 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib26 article-title: Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production publication-title: Indian J. Microbiol. doi: 10.1007/s12088-021-00924-8 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: 10.1016/j.ecoenv.2023.115596_bib37 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 262 year: 2020 ident: 10.1016/j.ecoenv.2023.115596_bib63 article-title: Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114327 – start-page: 13 year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib11 article-title: ZAT10 plays dual roles in cadmium uptake and detoxification in arabidopsis publication-title: Front. Plant Sci. – year: 2022 ident: 10.1016/j.ecoenv.2023.115596_bib28 article-title: Combined interactions of amino acids and organic acids in heavy metal binding in plants publication-title: Plant Signal. Behav. – volume: 415 year: 2021 ident: 10.1016/j.ecoenv.2023.115596_bib35 article-title: Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125590 |
SSID | ssj0003055 |
Score | 2.4590528 |
Snippet | Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115596 |
SubjectTerms | Biochar Cadmium Iron plaque Rice Sulfur Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF9EKBSkqK30VS1T6DU2ednsJkcVRQrtyYK3ZT8h5b1EalL0j_B_dmY3Ee3lXXpKCJvdzczszm-y88HYVx0CxUc2mZHcZFyggdIEmWc88NKjFIUiVlH48VNc_eLfb6qbF6W-yCcspQdOhPsWOHdO1t7wCrs0Rpe8KnzuayGCyb2j3Rd13mxMTXsw5bFKzosyE1VRzkFz0bML7Trf_T2hwuG4YyCkFq-UUszd_0o3_bNLR9VzucveTZgRTtNc99iW7_bZm4uYb_phn-2kX2-QIores0dc42jvegcvTqehD2DanoKsQHcO7sZVGPF2ReHlhDfBarduxzUM_X1rEZtD2wFlHALzADp6faCWAwTaA6DQefD3kw9tFzukcDm4XWn8AtDWjuupLtgHdn15cX1-lU1VFzKLlB0yEwQXVqDasjyvpfE50b1wjXShKfEi8HGNVmMeTMO9LbRAm4pXZlnhRE15wLa7vvMfGWjt66UUtg4SmRYaRMi5qLkWXDpkRbNg5Ux1ZaeM5FQYY6Vm17PfKvFKEa9U4tWCZc9v3aaMHBvanxFDn9tSPu34AKVMTVKmNknZgslZHNQETRLkwK7aDcN_maVH4cql4xjd-X68U2ir1lQiddl8-h9TPGRvadgUJ3nEtoc_oz9GwDSYz3FtPAF1hRQN priority: 102 providerName: Directory of Open Access Journals |
Title | Combined application of biochar and sulfur alleviates cadmium toxicity in rice by affecting root gene expression and iron plaque accumulation |
URI | https://dx.doi.org/10.1016/j.ecoenv.2023.115596 https://www.proquest.com/docview/2878020829 https://doaj.org/article/f44dd78eb45949bba3451e0e866fb0ed |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQkhKCAWB6rQeKabrJx7ORYqlYLiJ6K1JtlOzYK2k1WbVK1F_4B_5kZOyksl0qckliO42TG83Dmm2Hsg_ae8JFVYiQ3CRfooFRepgn3PHfIRT4LVRS-nonVN_75orjYY8cTFobCKkfZH2V6kNZjy2L8mott0ywoLEmKAr2pPOY9IwQ7tiBPH_78E-ZBGa1iGKNMqPcEnwsxXujhufb6kEqIo-xA41rsqKeQxX9HS_0jr4MSOn3KnozWIxzFCT5je649YA9PQubp2wP2OG7CQcQWPWe_cLWj5-tq-Os_NXQeTNMR3Ap0W8PVsPYDnq4JaE6WJ1hdb5phA31301i00qFpgXIPgbkFHeI_UN8Bmtw9IPs5cDdjNG0bBiTgHGzXGt8AtLXDZqwQ9oKdn56cH6-Ssf5CYnmR9YnxggsrUIFZnpbSOHQFK5PVlax9leNBYHOJ_mPqTcWdzbRA74oXZlngRE3-ku23XeteMdDalUspbOllzgtfoa2cipJrwWWNpKhmLJ--urJjbnIqkbFWUxDaDxVppYhWKtJqxpK7u7YxN8c9_T8SQe_6Umbt0NBdflcjaynPeV3L0hle0NsajRPOXOpKIbxJXT1jcmIHtcOoOFRzz-PfT9yjcA3Tjxndum64Uui1llQsdVm9_u_R37BHdBVhkm_Zfn85uHdoL_VmHhbEnD04-vRldTYPuw6_AfzOFqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe6VNMmVdPWbVrafXjSXlkgGBseu6pVurZ5yqS-WbaxJ6YEohaq9o_o_9w7bKJlL5X2BDJgbO58H_jud4R8U85hfmQRacF0xDg4KIUTccQcSy1wkUv6KgqXcz77xX5eZVc75HjIhcGwyiD7vUzvpXVomYSvOVlX1QTDkgTPwJtKPe7ZM7KL6FTZiOwenZ3P5huBjKBWPpJRRPjAkEHXh3mBk2fr2-9YRRzEB9jXfEtD9UD-W4rqH5Hd66HT1-RVMCDpkR_jG7Jj633y_KQHn77fJ3v-Pxz16UVvyQMseHB-bUn_2qqmjaO6ajDjiqq6pDfd0nVwusRcczQ-qVHlqupWtG3uKgOGOq1qivBDVN9T1YeAgMqjYHW3FDjQUnsXAmrrvkPMnaPrpYIZUGVMtwpFwt6RxenJ4ngWhRIMkWFZ0kbaccYNBx1mWJwLbcEbLHRSFqJ0RQoHDs05uJCx0wWzJlEcHCyW6WkGA9XpezKqm9p-IFQpm08FN7kTKctcAeZyzHOmOBMlkKIYk3T46tIEeHKskrGUQxzaH-lpJZFW0tNqTKLNU2sPz_HE_T-QoJt7EVy7b2iuf8vAXdIxVpYit5plOFutYMCJjW3OudOxLcdEDOwgt3gVuqqeeP3XgXskLGPcm1G1bbobCY5rjvVSp8XBf_f-hbyYLS4v5MXZ_PyQvMQrPmvyIxm11539BOZTqz-H5fEI6REYYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+application+of+biochar+and+sulfur+alleviates+cadmium+toxicity+in+rice+by+affecting+root+gene+expression+and+iron+plaque+accumulation&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Sun%2C+Xiaoxue&rft.au=Wang%2C+Jiangnan&rft.au=Zhang%2C+Miao&rft.au=Liu%2C+Zunqi&rft.date=2023-11-01&rft.issn=0147-6513&rft.volume=266&rft.spage=115596&rft_id=info:doi/10.1016%2Fj.ecoenv.2023.115596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2023_115596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |