Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins

•Assessing sphingolipid distribution in plasma lipoproteins is clinically valuable.•Plasma levels do not consistently reflect changes in circulating lipoproteins.•HDL sphingolipids are significantly lower in diabetes than in controls.•LDL sphingomyelins are higher in patients with diabetes and macro...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical lipidology Vol. 16; no. 2; pp. 173 - 183
Main Authors Hammad, Samar M, Hunt, Kelly J, Baker, Nathaniel L, Klein, Richard L, Lopes-Virella, Maria F
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Assessing sphingolipid distribution in plasma lipoproteins is clinically valuable.•Plasma levels do not consistently reflect changes in circulating lipoproteins.•HDL sphingolipids are significantly lower in diabetes than in controls.•LDL sphingomyelins are higher in patients with diabetes and macroalbuminuria. We have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our studies into type 2 diabetes. This study proposes comparing the levels of plasma sphingolipids and their distribution in circulating lipoproteins (VLDL/IDL, LDL, HDL2 and HDL3) between a healthy control group and two groups of subjects with type 2 diabetes, one with and other without MA. Plasma and lipoprotein sphingolipids/glycosphingolipids were measured using HPLC-MS/MS in 114 subjects (40 controls; 74 type 2 diabetes, 40 without MA; and 34 with MA) and the levels were compared between controls and the two groups of diabetes. Group effect sizes were calculated using Cohen's d. Sphingomyelin species carried by LDL are significantly higher in diabetic patients with MA than in those with normal albumin excretion rate (AER). Compared to controls, significant decreases in the levels of sphingolipids carried by HDL in patients with diabetes with normal AER or MA were observed for all sphingolipid classes except for hexosylceramide, which was normal in diabetic patients without MA. Although lower than in controls, the levels of lactosylceramides carried by HDL2/HDL3 were significantly higher in diabetes with MA. Considering the critical role sphingolipids play in major cell biological responses and cell signaling pathways, the consequences for disease development of changes in the distribution of sphingolipids/glycosphingolipids carried by lipoproteins could be considerable. Our work is just a first step to address a considerable gap in our present knowledge in this important field.
AbstractList We have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our studies into type 2 diabetes. This study proposes comparing the levels of plasma sphingolipids and their distribution in circulating lipoproteins (VLDL/IDL, LDL, HDL2 and HDL3) between a healthy control group and two groups of subjects with type 2 diabetes, one with and other without MA. Plasma and lipoprotein sphingolipids/glycosphingolipids were measured using HPLC-MS/MS in 114 subjects (40 controls; 74 type 2 diabetes, 40 without MA; and 34 with MA) and the levels were compared between controls and the two groups of diabetes. Group effect sizes were calculated using Cohen's d. Sphingomyelin species carried by LDL are significantly higher in diabetic patients with MA than in those with normal albumin excretion rate (AER). Compared to controls, significant decreases in the levels of sphingolipids carried by HDL in patients with diabetes with normal AER or MA were observed for all sphingolipid classes except for hexosylceramide, which was normal in diabetic patients without MA. Although lower than in controls, the levels of lactosylceramides carried by HDL2/HDL3 were significantly higher in diabetes with MA. Considering the critical role sphingolipids play in major cell biological responses and cell signaling pathways, the consequences for disease development of changes in the distribution of sphingolipids/glycosphingolipids carried by lipoproteins could be considerable. Our work is just a first step to address a considerable gap in our present knowledge in this important field.
•Assessing sphingolipid distribution in plasma lipoproteins is clinically valuable.•Plasma levels do not consistently reflect changes in circulating lipoproteins.•HDL sphingolipids are significantly lower in diabetes than in controls.•LDL sphingomyelins are higher in patients with diabetes and macroalbuminuria. We have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our studies into type 2 diabetes. This study proposes comparing the levels of plasma sphingolipids and their distribution in circulating lipoproteins (VLDL/IDL, LDL, HDL2 and HDL3) between a healthy control group and two groups of subjects with type 2 diabetes, one with and other without MA. Plasma and lipoprotein sphingolipids/glycosphingolipids were measured using HPLC-MS/MS in 114 subjects (40 controls; 74 type 2 diabetes, 40 without MA; and 34 with MA) and the levels were compared between controls and the two groups of diabetes. Group effect sizes were calculated using Cohen's d. Sphingomyelin species carried by LDL are significantly higher in diabetic patients with MA than in those with normal albumin excretion rate (AER). Compared to controls, significant decreases in the levels of sphingolipids carried by HDL in patients with diabetes with normal AER or MA were observed for all sphingolipid classes except for hexosylceramide, which was normal in diabetic patients without MA. Although lower than in controls, the levels of lactosylceramides carried by HDL2/HDL3 were significantly higher in diabetes with MA. Considering the critical role sphingolipids play in major cell biological responses and cell signaling pathways, the consequences for disease development of changes in the distribution of sphingolipids/glycosphingolipids carried by lipoproteins could be considerable. Our work is just a first step to address a considerable gap in our present knowledge in this important field.
We have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our studies into type 2 diabetes.BACKGROUNDWe have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our studies into type 2 diabetes.This study proposes comparing the levels of plasma sphingolipids and their distribution in circulating lipoproteins (VLDL/IDL, LDL, HDL2 and HDL3) between a healthy control group and two groups of subjects with type 2 diabetes, one with and other without MA.OBJECTIVEThis study proposes comparing the levels of plasma sphingolipids and their distribution in circulating lipoproteins (VLDL/IDL, LDL, HDL2 and HDL3) between a healthy control group and two groups of subjects with type 2 diabetes, one with and other without MA.Plasma and lipoprotein sphingolipids/glycosphingolipids were measured using HPLC-MS/MS in 114 subjects (40 controls; 74 type 2 diabetes, 40 without MA; and 34 with MA) and the levels were compared between controls and the two groups of diabetes. Group effect sizes were calculated using Cohen's d.METHODSPlasma and lipoprotein sphingolipids/glycosphingolipids were measured using HPLC-MS/MS in 114 subjects (40 controls; 74 type 2 diabetes, 40 without MA; and 34 with MA) and the levels were compared between controls and the two groups of diabetes. Group effect sizes were calculated using Cohen's d.Sphingomyelin species carried by LDL are significantly higher in diabetic patients with MA than in those with normal albumin excretion rate (AER). Compared to controls, significant decreases in the levels of sphingolipids carried by HDL in patients with diabetes with normal AER or MA were observed for all sphingolipid classes except for hexosylceramide, which was normal in diabetic patients without MA. Although lower than in controls, the levels of lactosylceramides carried by HDL2/HDL3 were significantly higher in diabetes with MA.RESULTSSphingomyelin species carried by LDL are significantly higher in diabetic patients with MA than in those with normal albumin excretion rate (AER). Compared to controls, significant decreases in the levels of sphingolipids carried by HDL in patients with diabetes with normal AER or MA were observed for all sphingolipid classes except for hexosylceramide, which was normal in diabetic patients without MA. Although lower than in controls, the levels of lactosylceramides carried by HDL2/HDL3 were significantly higher in diabetes with MA.Considering the critical role sphingolipids play in major cell biological responses and cell signaling pathways, the consequences for disease development of changes in the distribution of sphingolipids/glycosphingolipids carried by lipoproteins could be considerable. Our work is just a first step to address a considerable gap in our present knowledge in this important field.CONCLUSIONSConsidering the critical role sphingolipids play in major cell biological responses and cell signaling pathways, the consequences for disease development of changes in the distribution of sphingolipids/glycosphingolipids carried by lipoproteins could be considerable. Our work is just a first step to address a considerable gap in our present knowledge in this important field.
Author Hunt, Kelly J
Lopes-Virella, Maria F
Hammad, Samar M
Baker, Nathaniel L
Klein, Richard L
Author_xml – sequence: 1
  givenname: Samar M
  surname: Hammad
  fullname: Hammad, Samar M
  email: hammadsm@musc.edu
  organization: Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
– sequence: 2
  givenname: Kelly J
  surname: Hunt
  fullname: Hunt, Kelly J
  organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
– sequence: 3
  givenname: Nathaniel L
  surname: Baker
  fullname: Baker, Nathaniel L
  organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
– sequence: 4
  givenname: Richard L
  surname: Klein
  fullname: Klein, Richard L
  organization: Division of Diabetes, Endocrinology and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
– sequence: 5
  givenname: Maria F
  orcidid: 0000-0001-5572-1700
  surname: Lopes-Virella
  fullname: Lopes-Virella, Maria F
  email: virellam@musc.edu
  organization: Division of Diabetes, Endocrinology and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35148982$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvVDEQhS0URB7wByiQS5q72L5PIxoUSECKRAO15TseE-967cX2Rbr_Hq82aVKEakaa881ozrkkZyEGJOQtZxvO-PBhu9lq8BvBBN9wsWGse0Eu-DQOTTdO8qz2sm0bMY3dObnMectY34-sf0XO2553k5zEBYlfnJ6xYKY6GLpzJuBKzZrtEqC4GOhepx0av1LtCyZa7pFCDAVDodHSfLh34Xf07uBMpqBTcmjovFJwCRavS53SOo2HFAu6kF-Tl1b7jG8e6hX5dfP15_W35u7H7ffrz3cNdD0vzWxmkDOzeuhQ8AFGxvncasm1xHmYTQsMhtFyA7KVwo7Cyt4OZrA9A5Dd1F6R96e99fCfBXNRe5cBvdcB45KVGMQk5NRzVqXvHqTLvEejDsnVp1f1aFIVTCcBpJhzQqvAFX10pyTtvOJMHfNQW3XMQx3zUFyomkdFxRP0cfuz0KcThNWgvw6TyuAwABqXEIoy0T2Pf3yCg3fBgfY7XP8H_wMpHroQ
CitedBy_id crossref_primary_10_1080_07435800_2025_2479256
crossref_primary_10_1007_s00424_024_03029_5
crossref_primary_10_3390_jcm13175050
crossref_primary_10_3390_ijms241814015
crossref_primary_10_1016_j_jacl_2024_07_004
crossref_primary_10_3389_fphys_2023_1229108
crossref_primary_10_3390_biomedicines12010190
crossref_primary_10_1080_17460441_2023_2292039
Cites_doi 10.2337/db08-1228
10.1681/ASN.V72171
10.1194/jlr.P119000543
10.1016/j.metabol.2014.07.001
10.1007/978-3-030-21162-2_7
10.1038/s41598-019-52916-w
10.1161/ATVBAHA.115.307049
10.1007/978-1-4419-6741-1_14
10.1194/jlr.M087502
10.3390/genes11020178
10.1371/journal.pone.0224496
10.1016/j.tem.2017.03.005
10.1021/pr201036j
10.1038/sj.ki.5001834
10.1172/jci.insight.130317
10.1146/annurev-physiol-031620-093815
10.1016/j.aca.2011.01.034
10.1074/jbc.M115.659110
10.1016/j.jacl.2019.02.004
10.2337/diab.32.1.20
10.1194/jlr.D008532
10.1194/jlr.M003988
10.1371/journal.pone.0192616
10.1016/j.ekir.2016.12.003
10.1007/s00125-020-05201-9
10.1042/bj3520809
10.1007/s00395-008-0769-1
10.1007/BF01469685
10.1016/j.jdiacomp.2020.107734
10.1016/j.atherosclerosis.2015.06.040
10.1155/2012/180705
10.1007/s11306-011-0343-y
10.1007/978-3-7091-1511-4_19
10.1016/j.talanta.2011.05.036
10.1186/1475-2840-12-27
10.1016/j.jacl.2019.03.005
10.1016/j.chemphyslip.2008.06.003
10.3389/fendo.2020.622692
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jacl.2021.12.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1876-4789
EndPage 183
ExternalDocumentID 35148982
10_1016_j_jacl_2021_12_004
S1933287421003512
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OA.
OAUVE
OL~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SPCBC
SSH
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c451t-bdbc9b0fa64e216c7011b3a91a9eb6bd3c0c67f1dc9392f72f95f6d6f50cc9483
IEDL.DBID .~1
ISSN 1933-2874
IngestDate Tue Aug 05 10:00:41 EDT 2025
Mon Jul 21 05:58:02 EDT 2025
Tue Jul 01 03:29:24 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
Fri Feb 23 02:39:36 EST 2024
Tue Aug 26 16:38:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Type 2 diabetes
eGFR
ESRD
Lactosylceramide
Sphingolipid
Albuminuria
AER
Cer
S1P
Dihydrosphingosine
Hex-Cer
MA
Glycosphingolipid
dhsph
Hexosylceramide
Sphingosine
Sphingomyelin
Ceramide
Lac-Cer
SM
dhsph-1
Macroalbuminuria
Language English
License Copyright © 2022. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-bdbc9b0fa64e216c7011b3a91a9eb6bd3c0c67f1dc9392f72f95f6d6f50cc9483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5572-1700
OpenAccessLink http://www.lipidjournal.com/article/S1933287421003512/pdf
PMID 35148982
PQID 2628298510
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2628298510
pubmed_primary_35148982
crossref_citationtrail_10_1016_j_jacl_2021_12_004
crossref_primary_10_1016_j_jacl_2021_12_004
elsevier_sciencedirect_doi_10_1016_j_jacl_2021_12_004
elsevier_clinicalkey_doi_10_1016_j_jacl_2021_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March-April 2022
2022-03-00
2022 Mar-Apr
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March-April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of clinical lipidology
PublicationTitleAlternate J Clin Lipidol
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lopes-VIrella, Wohltmann, Mayfield, Loadholt, Colwell (bib0025) 1983; 32
Hammad, Al Gadban, Semler, Klein (bib0026) 2012
Zakiev, Rached, Lhomme, Darabi-Amin, Ponnaiah, Becker, Therond p, Serrano, Santos, Chapman, Orekhov, Kontush (bib0028) 2019; 13
(bib0015) 2014
Haus, Kashyap, Kasumov, Zhang, Kelly, Defronzo, Kirwan (bib0008) 2009; 58
Lee, Hammad, Semler, Luttrell, Lopes-Virella, Klein (bib0024) 2010; 51
Tong, Peng, Liu, Ji, Niu, Ren, Pan, Hu, Zheng, Huang (bib0035) 2013; 12
Denimal, Pais de Barros, Petit, Bouillet, Vergès, Duvillard (bib0038) 2015; 241
Han, Xia, Liang, Wang, Wang, Hu, Li, Luo (bib0020) 2011; 689
Chaurasia, Summers (bib0032) 2021; 83
Klein, Hammad, Baker, Hunt, Al Gadban, Cleary, Virella, Lopes-Virella (bib0003) 2014; 63
Kremer, Atzpodien, Schnellbacher (bib0007) 1975; 53
Hammad, Twal, Arif, Semler, Klein, Nihalani (bib0039) 2020; 11
Kumpula, Kumpula, Taskinen, Jauhiainen, Kaski, Ala-Korpela (bib0011) 2008; 155
Hammad, Hardin, Wilson, Twal, Nietert, Oates (bib0027) 2019; 14
Iqbal, Walsh, Hammad, Cuchel, Rader, Hussain (bib0014) 2018; 59
Russo, Ross, Cowart (bib0006) 2013
Mäkinen, Tynkkynen, Soininen, Forsblom, Peltola, Kangas, Groop, Ala-Korpela (bib0017) 2012; 8
Mäkinen, Tynkkynen, Soininen, Peltola, Kanga, Forsblom, Thorn, Kaski, Laatikainen, Ala-Korpela, Groop (bib0016) 2012; 11
Nicholson, Pezzolesi, Summers (bib0033) 2021; 11
Fox, Kester (bib0001) 2010; 688
Afshinnia, Nair, Lin, Rajendiran, Soni, Byun, Sharma, Fort, Gardner, Looker, Nelson, Brosius, Feldman, Michailidis, Kretzler, Pennathur (bib0023) 2019; 4
Shayman (bib0030) 1996; 7
Weinberg (bib0031) 2006; 70
Brinck, Thomas, Lauer, Jornayvaz, Brulhart-Meynet, Prost, Pataky, Löfgren, Hoffstedt, Eriksson, Pramfalk, Morel, Kwak, van Eck, James, Frias (bib0036) 2016; 36
Pongrac Barlovic, Harjutsalo, Sandholm, Forsblom (bib0018) 2020; 63
Lopes-Virella, Baker, Hunt, Hammad, Arthur, Virella, Klein, Group (bib0004) 2019; 13
Tofte, Suvitaival, Ahonen, Winther, Theilade, Frimodt-Møller, Ahluwalia, Rossing (bib0019) 2019; 9
Randriamboavonjy, Badenhoop, Schmidt, Geisslinger, Fisslthaler, Fleming (bib0034) 2009; 104
Hammad, Pierce, Soodavar, Smith, Al Gadban, Rembiesa, Klein, Hannun, Bielawski, Bielawska (bib0010) 2010; 51
Liu, Ghosh, Kovalik, Ching, Choi, Tavintharan, Ong, Sum, Summers, Tai, Lim (bib0022) 2016; 2
Matanes, Twal, Hammad (bib0009) 2019; 1159
Iqbal, Walsh, Hammad, Cuchel, Tarugi, Hegele, Davidson, Rader, Klein, Hussain (bib0013) 2015; 290
Murata, Sato, Kon, Tomura, Yanagita, Kuwabara, Ui, Okajima (bib0012) 2000; 352
Iqbal, Walsh, Hammad (bib0005) 2017; 28
Zhu, Liang, Hu, Wang, Luo (bib0021) 2011; 85
Chapman, Orsoni, Tan, Mellett, Nguyen, Robillard, Giral, Therond, Meikle (bib0029) 2020; 61
Mandal, Grambergs, Mondal, Basu, Tahia, Dagogo-Jack (bib0002) 2021; 35
Vaisar, Couzens, Hwang, Russell, Barlow, DeFina, Hoofnagle, Kim (bib0037) 2018; 13
Chaurasia (10.1016/j.jacl.2021.12.004_bib0032) 2021; 83
Klein (10.1016/j.jacl.2021.12.004_bib0003) 2014; 63
Lopes-Virella (10.1016/j.jacl.2021.12.004_bib0004) 2019; 13
Haus (10.1016/j.jacl.2021.12.004_bib0008) 2009; 58
Fox (10.1016/j.jacl.2021.12.004_bib0001) 2010; 688
(10.1016/j.jacl.2021.12.004_bib0015) 2014
Matanes (10.1016/j.jacl.2021.12.004_bib0009) 2019; 1159
Iqbal (10.1016/j.jacl.2021.12.004_bib0013) 2015; 290
Afshinnia (10.1016/j.jacl.2021.12.004_bib0023) 2019; 4
Denimal (10.1016/j.jacl.2021.12.004_bib0038) 2015; 241
Iqbal (10.1016/j.jacl.2021.12.004_bib0014) 2018; 59
Chapman (10.1016/j.jacl.2021.12.004_bib0029) 2020; 61
Mandal (10.1016/j.jacl.2021.12.004_bib0002) 2021; 35
Hammad (10.1016/j.jacl.2021.12.004_bib0039) 2020; 11
Hammad (10.1016/j.jacl.2021.12.004_bib0026) 2012
Brinck (10.1016/j.jacl.2021.12.004_bib0036) 2016; 36
Lee (10.1016/j.jacl.2021.12.004_bib0024) 2010; 51
Weinberg (10.1016/j.jacl.2021.12.004_bib0031) 2006; 70
Lopes-VIrella (10.1016/j.jacl.2021.12.004_bib0025) 1983; 32
Tofte (10.1016/j.jacl.2021.12.004_bib0019) 2019; 9
Zhu (10.1016/j.jacl.2021.12.004_bib0021) 2011; 85
Vaisar (10.1016/j.jacl.2021.12.004_bib0037) 2018; 13
Mäkinen (10.1016/j.jacl.2021.12.004_bib0017) 2012; 8
Han (10.1016/j.jacl.2021.12.004_bib0020) 2011; 689
Murata (10.1016/j.jacl.2021.12.004_bib0012) 2000; 352
Zakiev (10.1016/j.jacl.2021.12.004_bib0028) 2019; 13
Kumpula (10.1016/j.jacl.2021.12.004_bib0011) 2008; 155
Kremer (10.1016/j.jacl.2021.12.004_bib0007) 1975; 53
Iqbal (10.1016/j.jacl.2021.12.004_bib0005) 2017; 28
Hammad (10.1016/j.jacl.2021.12.004_bib0010) 2010; 51
Mäkinen (10.1016/j.jacl.2021.12.004_bib0016) 2012; 11
Russo (10.1016/j.jacl.2021.12.004_bib0006) 2013
Nicholson (10.1016/j.jacl.2021.12.004_bib0033) 2021; 11
Tong (10.1016/j.jacl.2021.12.004_bib0035) 2013; 12
Pongrac Barlovic (10.1016/j.jacl.2021.12.004_bib0018) 2020; 63
Liu (10.1016/j.jacl.2021.12.004_bib0022) 2016; 2
Hammad (10.1016/j.jacl.2021.12.004_bib0027) 2019; 14
Shayman (10.1016/j.jacl.2021.12.004_bib0030) 1996; 7
Randriamboavonjy (10.1016/j.jacl.2021.12.004_bib0034) 2009; 104
References_xml – volume: 14
  year: 2019
  ident: bib0027
  article-title: Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity
  publication-title: PLoS One
– volume: 51
  start-page: 2619
  year: 2010
  end-page: 2628
  ident: bib0024
  article-title: HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate
  publication-title: J Lipid Res
– volume: 7
  start-page: 171
  year: 1996
  end-page: 182
  ident: bib0030
  article-title: Sphingolipids: their role in intracellular signaling and renal growth
  publication-title: J Am Soc Nephrol
– volume: 83
  start-page: 303
  year: 2021
  end-page: 330
  ident: bib0032
  article-title: Ceramides in metabolism: key lipotoxic players
  publication-title: Annu Rev Physiol
– volume: 352
  start-page: 809
  year: 2000
  end-page: 815
  ident: bib0012
  article-title: Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions
  publication-title: Biochem J
– volume: 13
  year: 2018
  ident: bib0037
  article-title: Type 2 diabetes is associated with loss of HDL endothelium protective functions
  publication-title: PLoS One
– year: 2014
  ident: bib0015
  article-title: 2014 USRDS annual data report: epidemiology of kidney disease in the United States
– volume: 61
  start-page: 911
  year: 2020
  end-page: 932
  ident: bib0029
  article-title: LDL subclass lipidomics in atherogenic dyslipidemia:effect of statin therapy on bioactive lipids and dense LDL
  publication-title: J. Lipid Res
– volume: 4
  year: 2019
  ident: bib0023
  article-title: Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians
  publication-title: JCI Insight
– volume: 32
  start-page: 20
  year: 1983
  end-page: 25
  ident: bib0025
  article-title: Effect of Metabolic Control on lipid, lipoprotein, and apolipoprotein levesl in 55 insulin-dependent diabetic patients. A longitudinal study
  publication-title: Diabetes
– volume: 35
  year: 2021
  ident: bib0002
  article-title: Role of ceramides in the pathogenesis of diabetes mellitus and its complications
  publication-title: J Diabetes Complications
– volume: 2
  start-page: 470
  year: 2016
  end-page: 480
  ident: bib0022
  article-title: Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease
  publication-title: Kidney Int Rep
– volume: 63
  start-page: 1287
  year: 2014
  end-page: 1295
  ident: bib0003
  article-title: Decreased plasma levels of select very long chain ceramides species are associated with the development of nephropathy in type 1 diabetes
  publication-title: Metabolism
– volume: 12
  start-page: 27
  year: 2013
  ident: bib0035
  article-title: High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate
  publication-title: Cardiovasc Diabetol
– volume: 13
  start-page: 481
  year: 2019
  end-page: 491
  ident: bib0004
  article-title: Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes
  publication-title: J Clin Lipidol
– volume: 11
  start-page: 1782
  year: 2012
  end-page: 1790
  ident: bib0016
  article-title: Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane Study)
  publication-title: J Proteome Res
– volume: 241
  start-page: 752
  year: 2015
  end-page: 760
  ident: bib0038
  article-title: Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration
  publication-title: Atherosclerosis
– volume: 688
  start-page: 206
  year: 2010
  end-page: 216
  ident: bib0001
  article-title: Therapeutic strategies for diabetes and complications: a role for sphingolipids?
  publication-title: Adv Exp Med Biol
– volume: 36
  start-page: 817
  year: 2016
  end-page: 824
  ident: bib0036
  article-title: Diabetes mellitus is associated with reduced high-density lipoprotein sphingosine-1-phosphate content and impaired high-density lipoprotein cardiac cell protection
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 51
  start-page: 3074
  year: 2010
  end-page: 3087
  ident: bib0010
  article-title: Blood sphingolipidomics in healthy humans: impact of sample collection and methodology
  publication-title: J Lipid Res
– volume: 8
  start-page: 369
  year: 2012
  end-page: 375
  ident: bib0017
  article-title: Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study)
  publication-title: Metabolomics
– start-page: 373
  year: 2013
  end-page: 401
  ident: bib0006
  article-title: Sphingolipids in obesity, type 2 diabetes, and metabolic disease
  publication-title: Handb Exp Pharmacol
– volume: 1159
  start-page: 109
  year: 2019
  end-page: 138
  ident: bib0009
  article-title: Sphingolipids as Biomarkers of Disease
  publication-title: Adv Exp Med Biol
– volume: 70
  start-page: 1560
  year: 2006
  end-page: 1566
  ident: bib0031
  article-title: Lipotoxicity
  publication-title: Kidney Int
– volume: 9
  start-page: 16398
  year: 2019
  ident: bib0019
  article-title: Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes
  publication-title: Sci Rep
– volume: 85
  start-page: 1711
  year: 2011
  end-page: 1720
  ident: bib0021
  article-title: Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy
  publication-title: Talanta
– volume: 63
  start-page: 1847
  year: 2020
  end-page: 1856
  ident: bib0018
  article-title: Groop PH; FinnDiane Study Group. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes
  publication-title: Diabetologia
– volume: 28
  start-page: 506
  year: 2017
  end-page: 518
  ident: bib0005
  article-title: Hussain MM. Sphingolipids and Lipoproteins in Health and Metabolic Disorders
  publication-title: Trends Endocrinol Metab
– volume: 155
  start-page: 57
  year: 2008
  end-page: 62
  ident: bib0011
  article-title: Reconsideration of hydrophobic lipid distributions in lipoprotein particles
  publication-title: Chem. Phys. Lipids.
– volume: 11
  start-page: 178
  year: 2020
  ident: bib0039
  article-title: Transcriptomics reveal altered metabolic and signaling pathways in podocytes exposed to C16 ceramide-enriched lipoproteins
  publication-title: Genes (Basel)
– volume: 13
  start-page: 468
  year: 2019
  end-page: 480
  ident: bib0028
  publication-title: .Journal of Clinical Lipidology
– year: 2012
  ident: bib0026
  article-title: Sphingosine 1-phosphate distribution in plasma: associations with atypical lipoprotein profiles
  publication-title: J Lipids
– volume: 53
  start-page: 637
  year: 1975
  end-page: 638
  ident: bib0007
  article-title: Plasma glycosphingolipids in diabetics and normals
  publication-title: Klin Wochenschr
– volume: 689
  start-page: 85
  year: 2011
  end-page: 91
  ident: bib0020
  article-title: Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy
  publication-title: Anal Chim Acta
– volume: 290
  start-page: 25863
  year: 2015
  end-page: 25875
  ident: bib0013
  article-title: Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but Not glycosylceramide
  publication-title: J Biol Chem
– volume: 59
  start-page: 2084
  year: 2018
  end-page: 2097
  ident: bib0014
  article-title: ATP binding cassette family A protein 1 determines hexosylceramide and sphingomyelin levels in human and mouse plasma
  publication-title: J Lipid Res
– volume: 104
  start-page: 333
  year: 2009
  end-page: 340
  ident: bib0034
  article-title: The S1P(2) receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes
  publication-title: Basic Res Cardiol
– volume: 58
  start-page: 337
  year: 2009
  end-page: 343
  ident: bib0008
  article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance
  publication-title: Diabetes
– volume: 11
  year: 2021
  ident: bib0033
  article-title: Rotten to the cortex: ceramide-mediated lipotoxicity in diabetic kidney disease
  publication-title: Front Endocrinol (Lausanne)
– volume: 58
  start-page: 337
  issue: 2
  year: 2009
  ident: 10.1016/j.jacl.2021.12.004_bib0008
  article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db08-1228
– volume: 7
  start-page: 171
  issue: 2
  year: 1996
  ident: 10.1016/j.jacl.2021.12.004_bib0030
  article-title: Sphingolipids: their role in intracellular signaling and renal growth
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V72171
– volume: 61
  start-page: 911
  year: 2020
  ident: 10.1016/j.jacl.2021.12.004_bib0029
  article-title: LDL subclass lipidomics in atherogenic dyslipidemia:effect of statin therapy on bioactive lipids and dense LDL
  publication-title: J. Lipid Res
  doi: 10.1194/jlr.P119000543
– volume: 63
  start-page: 1287
  year: 2014
  ident: 10.1016/j.jacl.2021.12.004_bib0003
  article-title: Decreased plasma levels of select very long chain ceramides species are associated with the development of nephropathy in type 1 diabetes
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.07.001
– volume: 1159
  start-page: 109
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0009
  article-title: Sphingolipids as Biomarkers of Disease
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-030-21162-2_7
– volume: 9
  start-page: 16398
  issue: 1
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0019
  article-title: Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52916-w
– volume: 36
  start-page: 817
  issue: 5
  year: 2016
  ident: 10.1016/j.jacl.2021.12.004_bib0036
  article-title: Diabetes mellitus is associated with reduced high-density lipoprotein sphingosine-1-phosphate content and impaired high-density lipoprotein cardiac cell protection
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.115.307049
– volume: 688
  start-page: 206
  year: 2010
  ident: 10.1016/j.jacl.2021.12.004_bib0001
  article-title: Therapeutic strategies for diabetes and complications: a role for sphingolipids?
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4419-6741-1_14
– volume: 59
  start-page: 2084
  year: 2018
  ident: 10.1016/j.jacl.2021.12.004_bib0014
  article-title: ATP binding cassette family A protein 1 determines hexosylceramide and sphingomyelin levels in human and mouse plasma
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M087502
– volume: 11
  start-page: 178
  issue: 2
  year: 2020
  ident: 10.1016/j.jacl.2021.12.004_bib0039
  article-title: Transcriptomics reveal altered metabolic and signaling pathways in podocytes exposed to C16 ceramide-enriched lipoproteins
  publication-title: Genes (Basel)
  doi: 10.3390/genes11020178
– volume: 14
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0027
  article-title: Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0224496
– volume: 28
  start-page: 506
  year: 2017
  ident: 10.1016/j.jacl.2021.12.004_bib0005
  article-title: Hussain MM. Sphingolipids and Lipoproteins in Health and Metabolic Disorders
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2017.03.005
– volume: 11
  start-page: 1782
  issue: 3
  year: 2012
  ident: 10.1016/j.jacl.2021.12.004_bib0016
  article-title: Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane Study)
  publication-title: J Proteome Res
  doi: 10.1021/pr201036j
– volume: 70
  start-page: 1560
  issue: 9
  year: 2006
  ident: 10.1016/j.jacl.2021.12.004_bib0031
  article-title: Lipotoxicity
  publication-title: Kidney Int
  doi: 10.1038/sj.ki.5001834
– volume: 4
  issue: 21
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0023
  article-title: Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.130317
– volume: 83
  start-page: 303
  year: 2021
  ident: 10.1016/j.jacl.2021.12.004_bib0032
  article-title: Ceramides in metabolism: key lipotoxic players
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-031620-093815
– volume: 689
  start-page: 85
  issue: 1
  year: 2011
  ident: 10.1016/j.jacl.2021.12.004_bib0020
  article-title: Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2011.01.034
– volume: 290
  start-page: 25863
  year: 2015
  ident: 10.1016/j.jacl.2021.12.004_bib0013
  article-title: Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but Not glycosylceramide
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.659110
– volume: 13
  start-page: 468
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0028
  publication-title: .Journal of Clinical Lipidology
  doi: 10.1016/j.jacl.2019.02.004
– volume: 32
  start-page: 20
  year: 1983
  ident: 10.1016/j.jacl.2021.12.004_bib0025
  article-title: Effect of Metabolic Control on lipid, lipoprotein, and apolipoprotein levesl in 55 insulin-dependent diabetic patients. A longitudinal study
  publication-title: Diabetes
  doi: 10.2337/diab.32.1.20
– volume: 51
  start-page: 3074
  year: 2010
  ident: 10.1016/j.jacl.2021.12.004_bib0010
  article-title: Blood sphingolipidomics in healthy humans: impact of sample collection and methodology
  publication-title: J Lipid Res
  doi: 10.1194/jlr.D008532
– volume: 51
  start-page: 2619
  year: 2010
  ident: 10.1016/j.jacl.2021.12.004_bib0024
  article-title: HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M003988
– volume: 13
  issue: 3
  year: 2018
  ident: 10.1016/j.jacl.2021.12.004_bib0037
  article-title: Type 2 diabetes is associated with loss of HDL endothelium protective functions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192616
– volume: 2
  start-page: 470
  issue: 3
  year: 2016
  ident: 10.1016/j.jacl.2021.12.004_bib0022
  article-title: Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease
  publication-title: Kidney Int Rep
  doi: 10.1016/j.ekir.2016.12.003
– year: 2014
  ident: 10.1016/j.jacl.2021.12.004_bib0015
– volume: 63
  start-page: 1847
  issue: 9
  year: 2020
  ident: 10.1016/j.jacl.2021.12.004_bib0018
  article-title: Groop PH; FinnDiane Study Group. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-020-05201-9
– volume: 352
  start-page: 809
  year: 2000
  ident: 10.1016/j.jacl.2021.12.004_bib0012
  article-title: Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions
  publication-title: Biochem J
  doi: 10.1042/bj3520809
– volume: 104
  start-page: 333
  issue: 3
  year: 2009
  ident: 10.1016/j.jacl.2021.12.004_bib0034
  article-title: The S1P(2) receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-008-0769-1
– volume: 53
  start-page: 637
  issue: 13
  year: 1975
  ident: 10.1016/j.jacl.2021.12.004_bib0007
  article-title: Plasma glycosphingolipids in diabetics and normals
  publication-title: Klin Wochenschr
  doi: 10.1007/BF01469685
– volume: 35
  issue: 2
  year: 2021
  ident: 10.1016/j.jacl.2021.12.004_bib0002
  article-title: Role of ceramides in the pathogenesis of diabetes mellitus and its complications
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2020.107734
– volume: 241
  start-page: 752
  issue: 2
  year: 2015
  ident: 10.1016/j.jacl.2021.12.004_bib0038
  article-title: Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.06.040
– year: 2012
  ident: 10.1016/j.jacl.2021.12.004_bib0026
  article-title: Sphingosine 1-phosphate distribution in plasma: associations with atypical lipoprotein profiles
  publication-title: J Lipids
  doi: 10.1155/2012/180705
– volume: 8
  start-page: 369
  year: 2012
  ident: 10.1016/j.jacl.2021.12.004_bib0017
  article-title: Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study)
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0343-y
– start-page: 373
  issue: 216
  year: 2013
  ident: 10.1016/j.jacl.2021.12.004_bib0006
  article-title: Sphingolipids in obesity, type 2 diabetes, and metabolic disease
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/978-3-7091-1511-4_19
– volume: 85
  start-page: 1711
  issue: 4
  year: 2011
  ident: 10.1016/j.jacl.2021.12.004_bib0021
  article-title: Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.05.036
– volume: 12
  start-page: 27
  year: 2013
  ident: 10.1016/j.jacl.2021.12.004_bib0035
  article-title: High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-12-27
– volume: 13
  start-page: 481
  year: 2019
  ident: 10.1016/j.jacl.2021.12.004_bib0004
  article-title: Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes
  publication-title: J Clin Lipidol
  doi: 10.1016/j.jacl.2019.03.005
– volume: 155
  start-page: 57
  year: 2008
  ident: 10.1016/j.jacl.2021.12.004_bib0011
  article-title: Reconsideration of hydrophobic lipid distributions in lipoprotein particles
  publication-title: Chem. Phys. Lipids.
  doi: 10.1016/j.chemphyslip.2008.06.003
– volume: 11
  year: 2021
  ident: 10.1016/j.jacl.2021.12.004_bib0033
  article-title: Rotten to the cortex: ceramide-mediated lipotoxicity in diabetic kidney disease
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2020.622692
SSID ssj0055705
Score 2.330718
Snippet •Assessing sphingolipid distribution in plasma lipoproteins is clinically valuable.•Plasma levels do not consistently reflect changes in circulating...
We have previously shown that very long ceramides/lactosylceramides predicted the development of macroalbuminuria (MA) in type 1 diabetes and expanded our...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms Albuminuria
Ceramide
Dihydrosphingosine
Glycosphingolipid
Hexosylceramide
Lactosylceramide
Macroalbuminuria
Sphingolipid
Sphingomyelin
Sphingosine
Type 2 diabetes
Title Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1933287421003512
https://dx.doi.org/10.1016/j.jacl.2021.12.004
https://www.ncbi.nlm.nih.gov/pubmed/35148982
https://www.proquest.com/docview/2628298510
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXHqpqKDtQlkZqbcq3bycxEeEQFtQ99IicbPssVMFlmS12T3shd_OTOKshERB4ppkFGs8nvnG82LsOzpcMjSlDIwT6KDkOQTauCiIRYKq0BWQWCpO_j3Lpjfp1a243WHnQy0MpVV63d_r9E5b-ycTz83JoqomfxB6JNStHZ0WCoeRHk7TnKT85-M2zYM6TIk-spwE9LUvnOlzvO40UPghjrorQT-s7QXj9D_w2Rmhy3320aNHftYv8BPbcfUBa3xWS8t1bfl9ZWu34XbTkskitvMHSsGx8w3vQuMcIR-nDHU0N7wpebugS6hmXi0q23LQS3SeLTcbDtUSuuFe9T-Ob5uupUNVt4fs5vLi7_k08HMUAkhFtAqMNSBNWOosdXGUQY5n2iRaRlo6kxmbQAhZXkYWJKKlMo9LKcrMZqUIAWRaJJ_Zbt3U7ivjiD5AICYEnSOUMUYjHHTapEWqTS5EMWLRwEAFvsk4zbqYqyGb7E4R0xUxXUWxQqaP2I8tzaJvsfHq18mwL2ooHkV1p9ACvEoltlTPxOtNutNh6xWeOwqm6No161bFGcWgEa-GI_all4nt6qk6opBFfPTOvx6zDzFVWXSpbt_Y7mq5dieIfVZm3An3mO2d_bqezp4Adv8EjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOXBCIF4LBYwEJxQ2duIkPnBALdWWPi60Um_Gr6C022S12arKpX-qf5CZxFkJCYqE1GuSSaIZe-Ybz4uQ9-BwydiUMjJegIOS5zbSxrOIiwRUoS9s4rA4-fAom52k307F6Qa5GWthMK0y6P5Bp_faOlyZBm5OF1U1_Q7QI8Fu7eC0YDiMh8zKfd9dgd_Wft7bASF_4Hz36_H2LAqjBSKbCraKjDNWmrjUWeo5y2wOy9wkWjItvcmMS2xss7xkzkoAEGXOSynKzGWliK2VaZHAe--R-ymoCxyb8Ol6nVeCLa3EEMpOIvy9UKkzJJWdaYvxDs76M8gwHe4P1vBvaLe3eruPyMMAV-mXgSOPyYavn5AmpNG0VNeOnleu9h11XYs2EuVMLzDnx8072sfiKWBMiinxYN9oU9J2gadezbxaVK6lVi_BW3fUdNRWS9tPE6t_Urjb9D0kqrp9Sk7uhLvPyGbd1P4FoQB3rAAQanUO2MkYDfjTa5MWqTa5EMWEsJGByoau5jhcY67G9LUzhUxXyHTFuAKmT8jHNc1i6Olx69PJKBc1VquCflVgcm6lEmuq39bzP-nejaJXsNExeqNr31y2imcY9AaAHE_I82FNrP8eyzEKWfCX__nVt-TB7PjwQB3sHe2_wqOLfsRkFLMtsrlaXvrXALxW5k2_0Cn5cdc76xfkD0F1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diabetes+and+kidney+dysfunction+markedly+alter+the+content+of+sphingolipids+carried+by+circulating+lipoproteins&rft.jtitle=Journal+of+clinical+lipidology&rft.au=Hammad%2C+Samar+M&rft.au=Hunt%2C+Kelly+J&rft.au=Baker%2C+Nathaniel+L&rft.au=Klein%2C+Richard+L&rft.date=2022-03-01&rft.issn=1933-2874&rft.volume=16&rft.issue=2&rft.spage=173&rft_id=info:doi/10.1016%2Fj.jacl.2021.12.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1933-2874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1933-2874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1933-2874&client=summon