Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior

The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which poi...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 116; no. 6; pp. 1127 - 1135
Main Authors Armistead, Fern J., Gala De Pablo, Julia, Gadêlha, Hermes, Peyman, Sally A., Evans, Stephen D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.03.2019
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which points to the critical importance of cell mechanoresponse for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here, we use cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes to probe different aspects of the cell structure. In the inertial regime, we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses >11.8 kN/m2. Comparatively, a shear-dominant regime requires lower applied stresses to achieve higher cell strains. From this regime, deformation traces as a function of time contain a rich source of information including maximal strain, elastic modulus, and cell relaxation times and thus provide a number of markers for distinguishing cell types and potential disease progression. These results emphasize the benefit of multiple parameter determination for improving detection and will ultimately lead to improved accuracy for diagnosis. We present results for leukemia cells (HL60) as a model circulatory cell as well as for a colorectal cancer cell line, SW480, derived from primary adenocarcinoma (Dukes stage B). SW480 were also treated with the actin-disrupting drug latrunculin A to test the sensitivity of flow regimes to the cytoskeleton. We show that the shear regime is more sensitive to cytoskeletal changes and that large strains in the inertial regime cannot resolve changes to the actin cytoskeleton.
AbstractList The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which points to the critical importance of cell mechanoresponse for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here, we use cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes to probe different aspects of the cell structure. In the inertial regime, we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses >11.8 kN/m2. Comparatively, a shear-dominant regime requires lower applied stresses to achieve higher cell strains. From this regime, deformation traces as a function of time contain a rich source of information including maximal strain, elastic modulus, and cell relaxation times and thus provide a number of markers for distinguishing cell types and potential disease progression. These results emphasize the benefit of multiple parameter determination for improving detection and will ultimately lead to improved accuracy for diagnosis. We present results for leukemia cells (HL60) as a model circulatory cell as well as for a colorectal cancer cell line, SW480, derived from primary adenocarcinoma (Dukes stage B). SW480 were also treated with the actin-disrupting drug latrunculin A to test the sensitivity of flow regimes to the cytoskeleton. We show that the shear regime is more sensitive to cytoskeletal changes and that large strains in the inertial regime cannot resolve changes to the actin cytoskeleton.
The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which points to the critical importance of cell mechanoresponse for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here, we use cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes to probe different aspects of the cell structure. In the inertial regime, we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses >11.8 kN/m 2 . Comparatively, a shear-dominant regime requires lower applied stresses to achieve higher cell strains. From this regime, deformation traces as a function of time contain a rich source of information including maximal strain, elastic modulus, and cell relaxation times and thus provide a number of markers for distinguishing cell types and potential disease progression. These results emphasize the benefit of multiple parameter determination for improving detection and will ultimately lead to improved accuracy for diagnosis. We present results for leukemia cells (HL60) as a model circulatory cell as well as for a colorectal cancer cell line, SW480, derived from primary adenocarcinoma (Dukes stage B). SW480 were also treated with the actin-disrupting drug latrunculin A to test the sensitivity of flow regimes to the cytoskeleton. We show that the shear regime is more sensitive to cytoskeletal changes and that large strains in the inertial regime cannot resolve changes to the actin cytoskeleton.
The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which points to the critical importance of cell mechanoresponse for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here, we use cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes to probe different aspects of the cell structure. In the inertial regime, we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses >11.8 kN/m . Comparatively, a shear-dominant regime requires lower applied stresses to achieve higher cell strains. From this regime, deformation traces as a function of time contain a rich source of information including maximal strain, elastic modulus, and cell relaxation times and thus provide a number of markers for distinguishing cell types and potential disease progression. These results emphasize the benefit of multiple parameter determination for improving detection and will ultimately lead to improved accuracy for diagnosis. We present results for leukemia cells (HL60) as a model circulatory cell as well as for a colorectal cancer cell line, SW480, derived from primary adenocarcinoma (Dukes stage B). SW480 were also treated with the actin-disrupting drug latrunculin A to test the sensitivity of flow regimes to the cytoskeleton. We show that the shear regime is more sensitive to cytoskeletal changes and that large strains in the inertial regime cannot resolve changes to the actin cytoskeleton.
Author Gadêlha, Hermes
Evans, Stephen D.
Peyman, Sally A.
Armistead, Fern J.
Gala De Pablo, Julia
AuthorAffiliation 2 Department of Mathematics, University of York, York, United Kingdom
1 Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
AuthorAffiliation_xml – name: 2 Department of Mathematics, University of York, York, United Kingdom
– name: 1 Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
Author_xml – sequence: 1
  givenname: Fern J.
  surname: Armistead
  fullname: Armistead, Fern J.
  organization: Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
– sequence: 2
  givenname: Julia
  surname: Gala De Pablo
  fullname: Gala De Pablo, Julia
  organization: Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
– sequence: 3
  givenname: Hermes
  surname: Gadêlha
  fullname: Gadêlha, Hermes
  organization: Department of Mathematics, University of York, York, United Kingdom
– sequence: 4
  givenname: Sally A.
  surname: Peyman
  fullname: Peyman, Sally A.
  organization: Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
– sequence: 5
  givenname: Stephen D.
  surname: Evans
  fullname: Evans, Stephen D.
  email: s.d.evans@leeds.ac.uk
  organization: Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30799072$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi3UiqaFH8AF-chll_F6vR8gIZXwValVhUrPlj_GxNHGDvYmEv8eRykVXHqaw7zzzMz7npOTEAMS8opBzYB1b9e13q7rBthYA6uBt8_Igom2qQCG7oQsAKCreDuKM3Ke8xqANQLYc3LGoR9H6JsF-b7Eacr0PlhM9G5OmPM7ehnoVcA0ezVVdytUid54k6Kbdt56Qz_hjGnjg5p9DDQ6emDQj7hSex_TC3Lq1JTx5UO9IPdfPv9Yfquub79eLS-vK9MKNlfaDg6MctzptmU4jqZnHPu-4yNwrpW2QovGaas6LFf3rHNcKGU0aOitEfyCfDhytzu9QWswzElNcpv8RqXfMiov_-8Ev5I_4152bTMMXV8Abx4AKf7aYZ7lxmdTXlEB4y7Lhg1i6BsxNEXKjtLiQs4J3eMaBvIQhVzLEoU8RCGByRJFmXn9732PE3-9L4L3RwEWl_Yek8zGYzBofUIzSxv9E_g_Ddmc2g
CitedBy_id crossref_primary_10_3390_biophysica1040032
crossref_primary_10_1002_admt_202400589
crossref_primary_10_1007_s10237_023_01705_6
crossref_primary_10_3390_mi11090839
crossref_primary_10_1002_smtd_202301195
crossref_primary_10_1002_cyto_a_24517
crossref_primary_10_1016_j_theriogenology_2021_08_033
crossref_primary_10_1021_acssensors_9b01061
crossref_primary_10_1007_s10404_020_02350_6
crossref_primary_10_1016_j_bpj_2020_08_035
crossref_primary_10_1016_j_bpj_2020_06_027
crossref_primary_10_1039_D3LC01061A
crossref_primary_10_1021_acs_langmuir_1c00441
crossref_primary_10_3390_mi12040355
crossref_primary_10_1021_acsomega_3c02933
crossref_primary_10_1017_jfm_2023_298
crossref_primary_10_1002_admt_202201412
crossref_primary_10_1109_ACCESS_2024_3398411
crossref_primary_10_1021_acs_analchem_0c05009
crossref_primary_10_1016_j_bioactmat_2020_10_014
crossref_primary_10_1039_D3LC00256J
crossref_primary_10_1039_D4SM00047A
crossref_primary_10_1063_5_0130762
crossref_primary_10_1098_rsif_2023_0572
crossref_primary_10_1039_D0LC00911C
crossref_primary_10_3390_ijms22157837
crossref_primary_10_1002_elps_202300177
crossref_primary_10_1016_j_bprint_2020_e00113
crossref_primary_10_1039_D3LC00552F
crossref_primary_10_7242_1999_6691_2021_14_2_14
crossref_primary_10_1002_smll_202104822
crossref_primary_10_3390_ijms24109062
crossref_primary_10_1002_smll_202303962
crossref_primary_10_1038_s41592_020_0818_8
crossref_primary_10_1016_j_jsamd_2020_07_008
crossref_primary_10_1038_s41551_023_01015_3
crossref_primary_10_1039_D2LC00527A
crossref_primary_10_1021_acs_analchem_3c03792
crossref_primary_10_1039_D2SM01515C
crossref_primary_10_3390_mi12050532
crossref_primary_10_3390_photonics9120955
crossref_primary_10_3390_mi11060576
crossref_primary_10_1109_TBME_2022_3197214
crossref_primary_10_1038_s41598_020_59952_x
crossref_primary_10_1063_5_0031640
crossref_primary_10_1063_5_0189218
crossref_primary_10_1016_j_bios_2022_114353
crossref_primary_10_1038_s41598_024_52079_3
crossref_primary_10_1063_5_0052185
crossref_primary_10_1021_acsomega_2c04027
crossref_primary_10_1016_j_aca_2022_340093
crossref_primary_10_1111_cts_13695
crossref_primary_10_3390_biophysica2010003
crossref_primary_10_3389_fbioe_2023_1214544
crossref_primary_10_1038_s41378_023_00541_z
crossref_primary_10_1039_D3AN01150J
crossref_primary_10_1039_D3LC00978E
crossref_primary_10_1007_s12551_019_00597_0
crossref_primary_10_1016_j_trac_2023_117383
crossref_primary_10_1063_10_0006042
crossref_primary_10_3390_mi11110981
Cites_doi 10.1152/ajpcell.00562.2006
10.1039/C5AN00851D
10.1164/ajrccm.157.2.9611103
10.1039/c3lc50649e
10.1007/s13206-014-8107-1
10.1016/j.bpj.2015.03.009
10.1039/C5SM01089F
10.1038/nmeth.3281
10.1002/cm.21369
10.1038/micronano.2017.13
10.1002/smll.201700705
10.1016/S0006-3495(01)75740-2
10.1016/j.bpj.2016.09.034
10.1039/C5IB00304K
10.1021/ac302763n
10.1039/C1SM06494K
10.1016/S0021-9290(01)00201-9
10.1038/nnano.2007.388
10.1002/cm.20345
10.2337/diab.27.9.895
10.1007/s11814-015-0080-4
10.1061/(ASCE)0733-9372(2003)129:3(222)
10.1126/scitranslmed.3006559
10.1039/C7LC00038C
10.1038/srep37863
10.1039/c3lc50355k
10.1016/S0006-3495(98)77646-5
10.1002/wsbm.1275
10.1016/j.actbio.2007.04.002
10.1016/j.bpj.2015.09.006
10.1016/0268-960X(90)90041-P
10.1016/S0021-9290(99)00175-X
10.1073/pnas.1200107109
10.1083/jcb.113.1.155
10.1039/c2lc20857a
10.1529/biophysj.105.067496
10.1016/j.mvr.2010.03.008
10.1039/C5LC01006C
10.1073/pnas.0704958104
10.1038/nmeth.2972
ContentType Journal Article
Copyright 2019 Biophysical Society
Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2019 Biophysical Society. 2019 Biophysical Society
Copyright_xml – notice: 2019 Biophysical Society
– notice: Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2019 Biophysical Society. 2019 Biophysical Society
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.bpj.2019.01.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 1135
ExternalDocumentID 10_1016_j_bpj_2019_01_034
30799072
S0006349519301043
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_14109
– fundername: Medical Research Council
  grantid: MR/M009084/1
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AHPSJ
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
0SF
AAEDT
AAMRU
ADVLN
AITUG
AKAPO
AKRWK
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
--K
.GJ
3O-
3V.
53G
6TJ
7X2
7X7
88A
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAIKJ
AAQXK
AAYXX
ABUWG
ACRPL
ADMUD
ADNMO
AFKRA
AGHFR
AI.
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
7X8
5PM
ID FETCH-LOGICAL-c451t-bd8f0caf3fb441e99c713e77639033babd5b52fbda6e250716f35aacb0b07dc53
IEDL.DBID RPM
ISSN 0006-3495
IngestDate Tue Sep 17 21:23:04 EDT 2024
Fri Oct 25 01:04:33 EDT 2024
Fri Dec 06 00:48:44 EST 2024
Sat Sep 28 08:26:09 EDT 2024
Fri Feb 23 02:33:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-bd8f0caf3fb441e99c713e77639033babd5b52fbda6e250716f35aacb0b07dc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428867/
PMID 30799072
PQID 2185872582
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428867
proquest_miscellaneous_2185872582
crossref_primary_10_1016_j_bpj_2019_01_034
pubmed_primary_30799072
elsevier_sciencedirect_doi_10_1016_j_bpj_2019_01_034
PublicationCentury 2000
PublicationDate 2019-03-19
PublicationDateYYYYMMDD 2019-03-19
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2019
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Zheng, Nguyen, Sun (bib1) 2013; 13
Dudani, Gossett, Di Carlo (bib17) 2013; 13
Golfier, Rosendahl, Otto (bib24) 2017; 74
Bae, Jang, Kim (bib27) 2016; 16
Lammerding (bib40) 2015; 1
Xavier, Rosendahl, Otto (bib25) 2016; 16
Kim (bib35) 2015; 32
Caille, Thoumine, Meister (bib41) 2002; 35
Trikritis, Richmond, Downes (bib42) 2015; 140
Puig-de-morales-marinkovic, Turner, Suresh (bib8) 2007; 293
Mietke, Otto, Fischer-Friedrich (bib23) 2015; 109
Guo, Reiling, Ma (bib3) 2012; 12
Brenner, Korn (bib37) 1987; 2
Cross, Jin, Gimzewski (bib6) 2007; 2
Deng, Davis, Chung (bib30) 2017; 13
De Pablo, Lones, Evans (bib39) 2018; 49
Gossett, Tse, Di Carlo (bib14) 2012; 109
Brown, Lawler (bib32) 2003; 129
Cha, Shin, Kim (bib28) 2012; 84
Palmieri, Lucchetti, De Spirito (bib43) 2015; 11
McMillan, Utterback, La Puma (bib4) 1978; 27
Hochmuth (bib10) 2000; 33
Baskurt, Gelmont, Meiselman (bib2) 1998; 157
Janmey, Euteneuer, Schliwa (bib38) 1991; 113
Chan, Ekpenyong, Otto (bib26) 2015; 108
Smith, Gaffney, Kirkman-Brown (bib36) 2009; 66
Bausch, Ziemann, Sackmann (bib9) 1998; 75
Otto, Rosendahl, Guck (bib13) 2015; 12
Tse, Gossett, Di Carlo (bib18) 2013; 5
Moeendarbary, Harris (bib11) 2014; 6
Stuart, Nash (bib5) 1990; 4
Faustino, Pinho, Lima (bib16) 2014; 8
Di Carlo, Irimia, Toner (bib33) 2007; 104
Forsyth, Wan, Stone (bib15) 2010; 80
Lin, Kim, Di Carlo (bib20) 2017; 3
Reymond, Este, Johnsson (bib29) 2014; 11
Guck, Ananthakrishnan, Käs (bib7) 2001; 81
Rosenbluth, Lam, Fletcher (bib31) 2006; 90
Suresh (bib12) 2007; 3
Haward, Ober, McKinley (bib34) 2012; 8
Guillou, Dahl, Muller (bib22) 2016; 111
Masaeli, Gupta, Di Carlo (bib21) 2016; 6
Che, Yu, Di Carlo (bib19) 2017; 17
Bae (10.1016/j.bpj.2019.01.034_bib27) 2016; 16
Faustino (10.1016/j.bpj.2019.01.034_bib16) 2014; 8
Moeendarbary (10.1016/j.bpj.2019.01.034_bib11) 2014; 6
Bausch (10.1016/j.bpj.2019.01.034_bib9) 1998; 75
Suresh (10.1016/j.bpj.2019.01.034_bib12) 2007; 3
Lin (10.1016/j.bpj.2019.01.034_bib20) 2017; 3
Di Carlo (10.1016/j.bpj.2019.01.034_bib33) 2007; 104
Xavier (10.1016/j.bpj.2019.01.034_bib25) 2016; 16
De Pablo (10.1016/j.bpj.2019.01.034_bib39) 2018; 49
Forsyth (10.1016/j.bpj.2019.01.034_bib15) 2010; 80
Che (10.1016/j.bpj.2019.01.034_bib19) 2017; 17
Puig-de-morales-marinkovic (10.1016/j.bpj.2019.01.034_bib8) 2007; 293
Haward (10.1016/j.bpj.2019.01.034_bib34) 2012; 8
Golfier (10.1016/j.bpj.2019.01.034_bib24) 2017; 74
Gossett (10.1016/j.bpj.2019.01.034_bib14) 2012; 109
Rosenbluth (10.1016/j.bpj.2019.01.034_bib31) 2006; 90
Mietke (10.1016/j.bpj.2019.01.034_bib23) 2015; 109
Stuart (10.1016/j.bpj.2019.01.034_bib5) 1990; 4
Lammerding (10.1016/j.bpj.2019.01.034_bib40) 2015; 1
Palmieri (10.1016/j.bpj.2019.01.034_bib43) 2015; 11
Chan (10.1016/j.bpj.2019.01.034_bib26) 2015; 108
Guck (10.1016/j.bpj.2019.01.034_bib7) 2001; 81
Dudani (10.1016/j.bpj.2019.01.034_bib17) 2013; 13
Smith (10.1016/j.bpj.2019.01.034_bib36) 2009; 66
Guillou (10.1016/j.bpj.2019.01.034_bib22) 2016; 111
Zheng (10.1016/j.bpj.2019.01.034_bib1) 2013; 13
Cha (10.1016/j.bpj.2019.01.034_bib28) 2012; 84
Hochmuth (10.1016/j.bpj.2019.01.034_bib10) 2000; 33
Janmey (10.1016/j.bpj.2019.01.034_bib38) 1991; 113
McMillan (10.1016/j.bpj.2019.01.034_bib4) 1978; 27
Brenner (10.1016/j.bpj.2019.01.034_bib37) 1987; 2
Deng (10.1016/j.bpj.2019.01.034_bib30) 2017; 13
Tse (10.1016/j.bpj.2019.01.034_bib18) 2013; 5
Baskurt (10.1016/j.bpj.2019.01.034_bib2) 1998; 157
Cross (10.1016/j.bpj.2019.01.034_bib6) 2007; 2
Brown (10.1016/j.bpj.2019.01.034_bib32) 2003; 129
Kim (10.1016/j.bpj.2019.01.034_bib35) 2015; 32
Trikritis (10.1016/j.bpj.2019.01.034_bib42) 2015; 140
Guo (10.1016/j.bpj.2019.01.034_bib3) 2012; 12
Masaeli (10.1016/j.bpj.2019.01.034_bib21) 2016; 6
Otto (10.1016/j.bpj.2019.01.034_bib13) 2015; 12
Caille (10.1016/j.bpj.2019.01.034_bib41) 2002; 35
Reymond (10.1016/j.bpj.2019.01.034_bib29) 2014; 11
References_xml – volume: 16
  start-page: 616
  year: 2016
  end-page: 623
  ident: bib25
  article-title: Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry
  publication-title: Integr. Biol (Camb)
  contributor:
    fullname: Otto
– volume: 293
  start-page: C597
  year: 2007
  end-page: C605
  ident: bib8
  article-title: Viscoelasticity of the human red blood cell
  publication-title: Am. J. Physiol. Physiol
  contributor:
    fullname: Suresh
– volume: 3
  start-page: 17013
  year: 2017
  ident: bib20
  article-title: High-throughput physical phenotyping of cell differentiation
  publication-title: Microsystems and Nanoeng
  contributor:
    fullname: Di Carlo
– volume: 32
  start-page: 2406
  year: 2015
  end-page: 2411
  ident: bib35
  article-title: Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow
  publication-title: Korean J. Chem. Eng
  contributor:
    fullname: Kim
– volume: 84
  start-page: 10471
  year: 2012
  end-page: 10477
  ident: bib28
  article-title: Cell stretching measurement utilizing viscoelastic particle focusing
  publication-title: Anal. Chem
  contributor:
    fullname: Kim
– volume: 11
  start-page: 5719
  year: 2015
  end-page: 5726
  ident: bib43
  article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer
  publication-title: Soft Matter
  contributor:
    fullname: De Spirito
– volume: 33
  start-page: 15
  year: 2000
  end-page: 22
  ident: bib10
  article-title: Micropipette aspiration of living cells
  publication-title: J. Biomech
  contributor:
    fullname: Hochmuth
– volume: 5
  start-page: 212ra163
  year: 2013
  ident: bib18
  article-title: Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping
  publication-title: Sci. Transl. Med
  contributor:
    fullname: Di Carlo
– volume: 157
  start-page: 421
  year: 1998
  end-page: 427
  ident: bib2
  article-title: Red blood cell deformability in sepsis
  publication-title: Am. J. Respir. Crit. Care Med
  contributor:
    fullname: Meiselman
– volume: 74
  start-page: 283
  year: 2017
  end-page: 296
  ident: bib24
  article-title: High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications
  publication-title: Cytoskeleton (Hoboken)
  contributor:
    fullname: Otto
– volume: 113
  start-page: 155
  year: 1991
  end-page: 160
  ident: bib38
  article-title: Viscoelastic properties of vimentin compared with other filamentous biopolymer networks
  publication-title: J. Cell Biol
  contributor:
    fullname: Schliwa
– volume: 129
  start-page: 222
  year: 2003
  end-page: 231
  ident: bib32
  article-title: Sphere drag and settling velocity revisited
  publication-title: J. Environ. Eng
  contributor:
    fullname: Lawler
– volume: 12
  start-page: 199
  year: 2015
  end-page: 202
  ident: bib13
  article-title: Real-time deformability cytometry: on-the-fly cell mechanical phenotyping
  publication-title: Nat. Methods
  contributor:
    fullname: Guck
– volume: 13
  start-page: 3728
  year: 2013
  end-page: 3734
  ident: bib17
  article-title: Pinched-flow hydrodynamic stretching of single-cells
  publication-title: Lab Chip
  contributor:
    fullname: Di Carlo
– volume: 13
  start-page: 2464
  year: 2013
  end-page: 2483
  ident: bib1
  article-title: Recent advances in microfluidic techniques for single-cell biophysical characterization
  publication-title: Lab Chip
  contributor:
    fullname: Sun
– volume: 108
  start-page: 1856
  year: 2015
  end-page: 1869
  ident: bib26
  article-title: Myosin II activity softens cells in suspension
  publication-title: Biophys. J
  contributor:
    fullname: Otto
– volume: 2
  start-page: 780
  year: 2007
  end-page: 783
  ident: bib6
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol
  contributor:
    fullname: Gimzewski
– volume: 90
  start-page: 2994
  year: 2006
  end-page: 3003
  ident: bib31
  article-title: Force microscopy of nonadherent cells : a comparison of leukemia cell deformability
  publication-title: Biophys. J
  contributor:
    fullname: Fletcher
– volume: 8
  start-page: 536
  year: 2012
  end-page: 555
  ident: bib34
  article-title: Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device
  publication-title: Soft Matter
  contributor:
    fullname: McKinley
– volume: 111
  start-page: 2039
  year: 2016
  end-page: 2050
  ident: bib22
  article-title: Measuring cell viscoelastic properties using a microfluidic extensional flow device
  publication-title: Biophys. J
  contributor:
    fullname: Muller
– volume: 109
  start-page: 2023
  year: 2015
  end-page: 2036
  ident: bib23
  article-title: Extracting cell stiffness from real-time deformability cytometry: theory and experiment
  publication-title: Biophys. J
  contributor:
    fullname: Fischer-Friedrich
– volume: 49
  start-page: 1323
  year: 2018
  end-page: 1332
  ident: bib39
  article-title: Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy
  contributor:
    fullname: Evans
– volume: 81
  start-page: 767
  year: 2001
  end-page: 784
  ident: bib7
  article-title: The optical stretcher: a novel laser tool to micromanipulate cells
  publication-title: Biophys. J
  contributor:
    fullname: Käs
– volume: 6
  start-page: 37863
  year: 2016
  ident: bib21
  article-title: Multiparameter mechanical and morphometric screening of cells
  publication-title: Sci. Rep
  contributor:
    fullname: Di Carlo
– volume: 35
  start-page: 177
  year: 2002
  end-page: 187
  ident: bib41
  article-title: Contribution of the nucleus to the mechanical properties of endothelial cells
  publication-title: J. Biomech
  contributor:
    fullname: Meister
– volume: 17
  start-page: 1452
  year: 2017
  end-page: 1461
  ident: bib19
  article-title: Biophysical isolation and identification of circulating tumor cells
  publication-title: Lab Chip
  contributor:
    fullname: Di Carlo
– volume: 11
  start-page: 731
  year: 2014
  end-page: 733
  ident: bib29
  article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton
  publication-title: Nat. Methods
  contributor:
    fullname: Johnsson
– volume: 13
  start-page: 1700705
  year: 2017
  ident: bib30
  article-title: Inertial microfluidic cell stretcher (iMCS): fully automated, high-throughput, and near real-time cell mechanotyping
  publication-title: Small
  contributor:
    fullname: Chung
– volume: 80
  start-page: 37
  year: 2010
  end-page: 43
  ident: bib15
  article-title: The dynamic behavior of chemically “stiffened” red blood cells in microchannel flows
  publication-title: Microvasc. Res
  contributor:
    fullname: Stone
– volume: 109
  start-page: 7630
  year: 2012
  end-page: 7635
  ident: bib14
  article-title: Hydrodynamic stretching of single cells for large population mechanical phenotyping
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Di Carlo
– volume: 3
  start-page: 413
  year: 2007
  end-page: 438
  ident: bib12
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Biomater
  contributor:
    fullname: Suresh
– volume: 66
  start-page: 220
  year: 2009
  end-page: 236
  ident: bib36
  article-title: Bend propagation in the flagella of migrating human sperm, and Its modulation by viscosity
  publication-title: Cell Motil. Cytoskeleton
  contributor:
    fullname: Kirkman-Brown
– volume: 4
  start-page: 141
  year: 1990
  end-page: 147
  ident: bib5
  article-title: Red cell deformability and haematological disorders
  publication-title: Blood Rev
  contributor:
    fullname: Nash
– volume: 6
  start-page: 371
  year: 2014
  end-page: 388
  ident: bib11
  article-title: Cell mechanics : principles, practices, and prospects
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med
  contributor:
    fullname: Harris
– volume: 12
  start-page: 1143
  year: 2012
  end-page: 1150
  ident: bib3
  article-title: Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum
  publication-title: Lab Chip
  contributor:
    fullname: Ma
– volume: 8
  start-page: 42
  year: 2014
  end-page: 47
  ident: bib16
  article-title: Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells
  publication-title: Biochip J
  contributor:
    fullname: Lima
– volume: 16
  start-page: 96
  year: 2016
  end-page: 103
  ident: bib27
  article-title: Microfluidic assessment of mechanical cell damage by extensional stress
  publication-title: Lab Chip
  contributor:
    fullname: Kim
– volume: 104
  start-page: 18892
  year: 2007
  end-page: 18897
  ident: bib33
  article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Toner
– volume: 1
  start-page: 783
  year: 2015
  end-page: 807
  ident: bib40
  article-title: Mechanics of the nucleus
  publication-title: Compr. Physiol
  contributor:
    fullname: Lammerding
– volume: 75
  start-page: 2038
  year: 1998
  end-page: 2049
  ident: bib9
  article-title: Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry
  publication-title: Biophys. J
  contributor:
    fullname: Sackmann
– volume: 27
  start-page: 895
  year: 1978
  end-page: 901
  ident: bib4
  article-title: Reduced erythrocyte deformability in diabetes
  publication-title: Diabetes
  contributor:
    fullname: La Puma
– volume: 2
  start-page: 316
  year: 1987
  end-page: 318
  ident: bib37
  article-title: Inhibition of actin polymerization by latrunculin A
  publication-title: FEBS Lett
  contributor:
    fullname: Korn
– volume: 140
  start-page: 5162
  year: 2015
  end-page: 5168
  ident: bib42
  article-title: Label-free identification and characterization of living human primary and secondary tumor cells
  publication-title: The Analyst
  contributor:
    fullname: Downes
– volume: 293
  start-page: C597
  year: 2007
  ident: 10.1016/j.bpj.2019.01.034_bib8
  article-title: Viscoelasticity of the human red blood cell
  publication-title: Am. J. Physiol. Physiol
  doi: 10.1152/ajpcell.00562.2006
  contributor:
    fullname: Puig-de-morales-marinkovic
– volume: 140
  start-page: 5162
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib42
  article-title: Label-free identification and characterization of living human primary and secondary tumor cells
  publication-title: The Analyst
  doi: 10.1039/C5AN00851D
  contributor:
    fullname: Trikritis
– volume: 157
  start-page: 421
  year: 1998
  ident: 10.1016/j.bpj.2019.01.034_bib2
  article-title: Red blood cell deformability in sepsis
  publication-title: Am. J. Respir. Crit. Care Med
  doi: 10.1164/ajrccm.157.2.9611103
  contributor:
    fullname: Baskurt
– volume: 13
  start-page: 3728
  year: 2013
  ident: 10.1016/j.bpj.2019.01.034_bib17
  article-title: Pinched-flow hydrodynamic stretching of single-cells
  publication-title: Lab Chip
  doi: 10.1039/c3lc50649e
  contributor:
    fullname: Dudani
– volume: 8
  start-page: 42
  year: 2014
  ident: 10.1016/j.bpj.2019.01.034_bib16
  article-title: Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells
  publication-title: Biochip J
  doi: 10.1007/s13206-014-8107-1
  contributor:
    fullname: Faustino
– volume: 108
  start-page: 1856
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib26
  article-title: Myosin II activity softens cells in suspension
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2015.03.009
  contributor:
    fullname: Chan
– volume: 49
  start-page: 1323
  year: 2018
  ident: 10.1016/j.bpj.2019.01.034_bib39
  article-title: Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy
  contributor:
    fullname: De Pablo
– volume: 11
  start-page: 5719
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib43
  article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer
  publication-title: Soft Matter
  doi: 10.1039/C5SM01089F
  contributor:
    fullname: Palmieri
– volume: 12
  start-page: 199
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib13
  article-title: Real-time deformability cytometry: on-the-fly cell mechanical phenotyping
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3281
  contributor:
    fullname: Otto
– volume: 74
  start-page: 283
  year: 2017
  ident: 10.1016/j.bpj.2019.01.034_bib24
  article-title: High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications
  publication-title: Cytoskeleton (Hoboken)
  doi: 10.1002/cm.21369
  contributor:
    fullname: Golfier
– volume: 3
  start-page: 17013
  year: 2017
  ident: 10.1016/j.bpj.2019.01.034_bib20
  article-title: High-throughput physical phenotyping of cell differentiation
  publication-title: Microsystems and Nanoeng
  doi: 10.1038/micronano.2017.13
  contributor:
    fullname: Lin
– volume: 13
  start-page: 1700705
  year: 2017
  ident: 10.1016/j.bpj.2019.01.034_bib30
  article-title: Inertial microfluidic cell stretcher (iMCS): fully automated, high-throughput, and near real-time cell mechanotyping
  publication-title: Small
  doi: 10.1002/smll.201700705
  contributor:
    fullname: Deng
– volume: 81
  start-page: 767
  year: 2001
  ident: 10.1016/j.bpj.2019.01.034_bib7
  article-title: The optical stretcher: a novel laser tool to micromanipulate cells
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(01)75740-2
  contributor:
    fullname: Guck
– volume: 111
  start-page: 2039
  year: 2016
  ident: 10.1016/j.bpj.2019.01.034_bib22
  article-title: Measuring cell viscoelastic properties using a microfluidic extensional flow device
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2016.09.034
  contributor:
    fullname: Guillou
– volume: 16
  start-page: 616
  year: 2016
  ident: 10.1016/j.bpj.2019.01.034_bib25
  article-title: Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry
  publication-title: Integr. Biol (Camb)
  doi: 10.1039/C5IB00304K
  contributor:
    fullname: Xavier
– volume: 84
  start-page: 10471
  year: 2012
  ident: 10.1016/j.bpj.2019.01.034_bib28
  article-title: Cell stretching measurement utilizing viscoelastic particle focusing
  publication-title: Anal. Chem
  doi: 10.1021/ac302763n
  contributor:
    fullname: Cha
– volume: 8
  start-page: 536
  year: 2012
  ident: 10.1016/j.bpj.2019.01.034_bib34
  article-title: Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device
  publication-title: Soft Matter
  doi: 10.1039/C1SM06494K
  contributor:
    fullname: Haward
– volume: 35
  start-page: 177
  year: 2002
  ident: 10.1016/j.bpj.2019.01.034_bib41
  article-title: Contribution of the nucleus to the mechanical properties of endothelial cells
  publication-title: J. Biomech
  doi: 10.1016/S0021-9290(01)00201-9
  contributor:
    fullname: Caille
– volume: 2
  start-page: 780
  year: 2007
  ident: 10.1016/j.bpj.2019.01.034_bib6
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2007.388
  contributor:
    fullname: Cross
– volume: 1
  start-page: 783
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib40
  article-title: Mechanics of the nucleus
  publication-title: Compr. Physiol
  contributor:
    fullname: Lammerding
– volume: 2
  start-page: 316
  year: 1987
  ident: 10.1016/j.bpj.2019.01.034_bib37
  article-title: Inhibition of actin polymerization by latrunculin A
  publication-title: FEBS Lett
  contributor:
    fullname: Brenner
– volume: 66
  start-page: 220
  year: 2009
  ident: 10.1016/j.bpj.2019.01.034_bib36
  article-title: Bend propagation in the flagella of migrating human sperm, and Its modulation by viscosity
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.20345
  contributor:
    fullname: Smith
– volume: 27
  start-page: 895
  year: 1978
  ident: 10.1016/j.bpj.2019.01.034_bib4
  article-title: Reduced erythrocyte deformability in diabetes
  publication-title: Diabetes
  doi: 10.2337/diab.27.9.895
  contributor:
    fullname: McMillan
– volume: 32
  start-page: 2406
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib35
  article-title: Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow
  publication-title: Korean J. Chem. Eng
  doi: 10.1007/s11814-015-0080-4
  contributor:
    fullname: Kim
– volume: 129
  start-page: 222
  year: 2003
  ident: 10.1016/j.bpj.2019.01.034_bib32
  article-title: Sphere drag and settling velocity revisited
  publication-title: J. Environ. Eng
  doi: 10.1061/(ASCE)0733-9372(2003)129:3(222)
  contributor:
    fullname: Brown
– volume: 5
  start-page: 212ra163
  year: 2013
  ident: 10.1016/j.bpj.2019.01.034_bib18
  article-title: Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.3006559
  contributor:
    fullname: Tse
– volume: 17
  start-page: 1452
  year: 2017
  ident: 10.1016/j.bpj.2019.01.034_bib19
  article-title: Biophysical isolation and identification of circulating tumor cells
  publication-title: Lab Chip
  doi: 10.1039/C7LC00038C
  contributor:
    fullname: Che
– volume: 6
  start-page: 37863
  year: 2016
  ident: 10.1016/j.bpj.2019.01.034_bib21
  article-title: Multiparameter mechanical and morphometric screening of cells
  publication-title: Sci. Rep
  doi: 10.1038/srep37863
  contributor:
    fullname: Masaeli
– volume: 13
  start-page: 2464
  year: 2013
  ident: 10.1016/j.bpj.2019.01.034_bib1
  article-title: Recent advances in microfluidic techniques for single-cell biophysical characterization
  publication-title: Lab Chip
  doi: 10.1039/c3lc50355k
  contributor:
    fullname: Zheng
– volume: 75
  start-page: 2038
  year: 1998
  ident: 10.1016/j.bpj.2019.01.034_bib9
  article-title: Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(98)77646-5
  contributor:
    fullname: Bausch
– volume: 6
  start-page: 371
  year: 2014
  ident: 10.1016/j.bpj.2019.01.034_bib11
  article-title: Cell mechanics : principles, practices, and prospects
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med
  doi: 10.1002/wsbm.1275
  contributor:
    fullname: Moeendarbary
– volume: 3
  start-page: 413
  year: 2007
  ident: 10.1016/j.bpj.2019.01.034_bib12
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.04.002
  contributor:
    fullname: Suresh
– volume: 109
  start-page: 2023
  year: 2015
  ident: 10.1016/j.bpj.2019.01.034_bib23
  article-title: Extracting cell stiffness from real-time deformability cytometry: theory and experiment
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2015.09.006
  contributor:
    fullname: Mietke
– volume: 4
  start-page: 141
  year: 1990
  ident: 10.1016/j.bpj.2019.01.034_bib5
  article-title: Red cell deformability and haematological disorders
  publication-title: Blood Rev
  doi: 10.1016/0268-960X(90)90041-P
  contributor:
    fullname: Stuart
– volume: 33
  start-page: 15
  year: 2000
  ident: 10.1016/j.bpj.2019.01.034_bib10
  article-title: Micropipette aspiration of living cells
  publication-title: J. Biomech
  doi: 10.1016/S0021-9290(99)00175-X
  contributor:
    fullname: Hochmuth
– volume: 109
  start-page: 7630
  year: 2012
  ident: 10.1016/j.bpj.2019.01.034_bib14
  article-title: Hydrodynamic stretching of single cells for large population mechanical phenotyping
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1200107109
  contributor:
    fullname: Gossett
– volume: 113
  start-page: 155
  year: 1991
  ident: 10.1016/j.bpj.2019.01.034_bib38
  article-title: Viscoelastic properties of vimentin compared with other filamentous biopolymer networks
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.113.1.155
  contributor:
    fullname: Janmey
– volume: 12
  start-page: 1143
  year: 2012
  ident: 10.1016/j.bpj.2019.01.034_bib3
  article-title: Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum
  publication-title: Lab Chip
  doi: 10.1039/c2lc20857a
  contributor:
    fullname: Guo
– volume: 90
  start-page: 2994
  year: 2006
  ident: 10.1016/j.bpj.2019.01.034_bib31
  article-title: Force microscopy of nonadherent cells : a comparison of leukemia cell deformability
  publication-title: Biophys. J
  doi: 10.1529/biophysj.105.067496
  contributor:
    fullname: Rosenbluth
– volume: 80
  start-page: 37
  year: 2010
  ident: 10.1016/j.bpj.2019.01.034_bib15
  article-title: The dynamic behavior of chemically “stiffened” red blood cells in microchannel flows
  publication-title: Microvasc. Res
  doi: 10.1016/j.mvr.2010.03.008
  contributor:
    fullname: Forsyth
– volume: 16
  start-page: 96
  year: 2016
  ident: 10.1016/j.bpj.2019.01.034_bib27
  article-title: Microfluidic assessment of mechanical cell damage by extensional stress
  publication-title: Lab Chip
  doi: 10.1039/C5LC01006C
  contributor:
    fullname: Bae
– volume: 104
  start-page: 18892
  year: 2007
  ident: 10.1016/j.bpj.2019.01.034_bib33
  article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704958104
  contributor:
    fullname: Di Carlo
– volume: 11
  start-page: 731
  year: 2014
  ident: 10.1016/j.bpj.2019.01.034_bib29
  article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2972
  contributor:
    fullname: Reymond
SSID ssj0012501
Score 2.5848606
Snippet The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1127
SubjectTerms Biomechanical Phenomena
Cell Line
Cytological Techniques - instrumentation
Elastic Modulus
Humans
Lab-On-A-Chip Devices
Phenotype
Shear Strength
Stress, Mechanical
SummonAdditionalLinks – databaseName: Elsevier Open Archive Journals
  dbid: ABVKL
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9WKfRFtLb11JYUfCoEs5tkd-PbeVXsJ5TW4lvIJ64ce4fePfjfO7MfR6-lfejjbpIlzGRnfsP8MkPIsYegIwgvGHdRMxlcZLa0nEkpbOUT13lsCbJfi8sr-fFaXW-QyXAXBmmVve3vbHprrfs3J700T-Z1jXd8wb0CvgcIgkGFeEK2sJY5HO2t8dnPT59XyQTw8n3jvILhgiG52dK83PwWCV66Ld4p5N_c05_w83cW5S9u6WKHbPd4ko67Le-Sjdg8J0-7DpMPe-TbJE6n97TtbkS_t_dCTum4oR8a5FPbKWs7WtMvSMtL02Udak_fDwwZ1BmdJYrfoH0hxbsX5Ori_MfkkvVdFJiXKlswF6rEvU0iOYA-UWsPcWkswa5oLoSzLiin8uSCLWKO6LBIQlnrHXe8DF6Jl2SzmTVxn1CAB9x5HZyQUSavtbJFiEWeZzLzqnIj8m4Qnpl3xTLMwCK7NSBpg5I2PDMg6RGRg3jNmsYNGPN_LXs7qMLAn4DpDdvE2fLeAFhRVZmrKh-RV51qVrsASwZut4SRck1pqwlYZXt9pKlv2mrbGKBVRXnwf9s9JM_wCVlrmT4im4u7ZXwNMGbh3vTH9BGQ0_Gd
  priority: 102
  providerName: Elsevier
Title Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior
URI https://dx.doi.org/10.1016/j.bpj.2019.01.034
https://www.ncbi.nlm.nih.gov/pubmed/30799072
https://search.proquest.com/docview/2185872582
https://pubmed.ncbi.nlm.nih.gov/PMC6428867
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51i5C4oPJeCisjcUJy14ntJOa2XahaoAgERXuz_BRbpdlVu3vg32M7cUVBcOCcOBrNTGa-0XyeAXhpQtFhqaGYaCcws9phVSuCGaOqMZ6I0iWC7Mfq-Iy9W_DFDvB8FyaR9o1eHnTtxUG3_J64lesLM808semn03nEzE1VT0cwCuk3l-hD6yDk9GFNXoVpgP-5lZlIXXp9HulcIo3qpHEpT_DxEJDr8m956U_c-Tt98pd8dLQHdwcgiWa9wPdgx3X34Xa_WvLHA_g8d217hdJaI_QlXQh5jWYdOukikVq1OK2yRqeRj-fb7dIuDXqTqTHRWGjlUfwGGiYoXj6Es6O3X-fHeFifgA3jxQZr23hilKdeB8zjhDChIHV1CCiCUKqVtlzz0murKldGWFh5ypUymmhSW8PpI9jtVp17AijgAqKNsJoyx7wRgqvKuqosC1YY3ugxvMrKk-t-SobM9LFzGZQuo9IlKWRQ-hhYVq8c0nyfvmWI4v869iKbQoZfIPY1VOdW2ysZUApv6pI35Rge96a5liKbdwz1DaNdvxDHa998ErwujdkevOzpf5_chztR_shYK8Qz2N1cbt3zAGE2egK3Zoff3n-YwOhkcThJDvwTYwTzew
link.rule.ids 230,314,727,780,784,885,3506,27569,27924,27925,45663,45874,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYY0zReEBvbKLDNk3iaZOHEdhLzBt1QuwHSNJD6ZvmnFlSlFbQP_PecnaRambaHvcZOdLpz7r7Tfb5D6MhC0uGYZYQaLwl3xhNdako4Z7qygcrcJ4LsVTG64d8mYrKBhv1dmEir7Hx_69OTt-6eHHfaPJ7XdbzjC-EV8D1AkJhUsGfoORdVGRvojydnq1ICxPhubF5B4va-tJlIXmZ-G-ldMrXuZPxvwelP8PmUQ_lbUDrfQdsdmsSnrcCv0IZvXqMX7XzJh130Y-in03ucZhvhn-lWyAk-bfC4iWxqPSVpnjW-jKS8MF3Wrrb4S8-PiRbDs4DjN3DXRvHuDbo5_3o9HJFuhgKxXGQLYlwVqNWBBQPAx0tpISv1JXgVSRkz2jhhRB6M04XPIzYsAhNaW0MNLZ0V7C3abGaN30MYwAE1VjrDuOfBSil04XyR5xnPrKjMAH3ulafmbasM1XPIbhVoWkVNK5op0PQA8V69as3eClz5v1771JtCwX8Qixu68bPlvQKoAsbPRZUP0LvWNCspwI9B0C1hpVwz2mpD7LG9vtLUv1Kv7ZieVUW5_3_ifkQvR9eXF-pifPX9AG3Flchfy-Qh2lzcLf17ADQL8yEd2EdMJfNo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6EBUXxKPAUh5G4oTkrhPbSdxbtWXVAq2KoFJvlp9iqzS7ancP_HvGTly1oHLgnDhyZiYz38hf5kPog4WmwzHLCDVeEu6MJ7rWlHDOdGMDlaVPBNmT6vCMfz4X57ekvhJp35rZbtde7nazn4lbubi048wTG58eTyJmbqp6vHBhvI42BYMgy436cIAAlX0Qy6sIgyYgH2gmapdZXERSl0wDO1mU5oFIh7Rcl_dVp7_R558kyltVafoYPRrgJN7vt_0ErfnuKXrQC0z-eoa-TXzbXuMkboS_p99C9vB-h4-6SKfWLUmC1vg4svJCu5q5mcUHmSATXYbnAcdn4GGO4tU2Opt--jE5JIOIArFcFEtiXBOo1YEFA8jHS2mhLfU1pBVJGTPaOGFEGYzTlS8jOKwCE1pbQw2tnRXsOdro5p1_iTCgA2qsdIZxz4OVUujK-aosC15Y0ZgR-piNpxb9rAyVSWQXCoyuotEVLRQYfYR4Nq8ain1fxBXk8n8te59doeBDiKcbuvPz1bUCrCKauhRNOUIvetfc7CK7d4TqO067uSEO2b57BWIvDdseYu3Vf698h7ZOD6bq69HJlx30ML5KpLAV8jXaWF6t_BvANEvzNkXvb4EW9Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cells+Under+Stress%3A+An+Inertial-Shear+Microfluidic+Determination+of+Cell+Behavior&rft.jtitle=Biophysical+journal&rft.au=Armistead%2C+Fern+J.&rft.au=Gala+De+Pablo%2C+Julia&rft.au=Gad%C3%AAlha%2C+Hermes&rft.au=Peyman%2C+Sally+A.&rft.date=2019-03-19&rft.issn=0006-3495&rft.volume=116&rft.issue=6&rft.spage=1127&rft.epage=1135&rft_id=info:doi/10.1016%2Fj.bpj.2019.01.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bpj_2019_01_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon