Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction
Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear t...
Saved in:
Published in | Psychopharmacologia Vol. 174; no. 1; pp. 143 - 150 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Berlin
Springer
01.06.2004
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0033-3158 1432-2072 |
DOI | 10.1007/s00213-003-1673-x |
Cover
Loading…
Abstract | Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia.
Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness.
Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia. |
---|---|
AbstractList | Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia. Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness. Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia. Rationale. Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia. Objectives. Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness. Results and conclusions. Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA sub(A) receptors containing the a super(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA sub(A) receptors containing the a super(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia. RATIONALEDisturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia.OBJECTIVESThus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness.RESULTS AND CONCLUSIONSPostmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia. Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia. Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness. Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia. |
Author | Volk, DavidW Hashimoto, Takanori Lewis, DavidA |
Author_xml | – sequence: 1 givenname: DavidA surname: Lewis fullname: Lewis, DavidA – sequence: 2 givenname: DavidW surname: Volk fullname: Volk, DavidW – sequence: 3 givenname: Takanori surname: Hashimoto fullname: Hashimoto, Takanori |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15896115$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15205885$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URP_AA3BBFhLcAh47ibPclgoKUiUOwNlynHHXJbEX2yldnoMHxmEXhCohfLEl_2ZG33zfKTnywSMhj4G9AMbky8QYB1ExJipopahu75ETqAWvOJP8iJyUD1EJaLpjcprSNSun7uoH5Bgazpqua07Ij484osnuBqkeM0adXfCJOk-3EW0MPuuRmhCzM-VxsX69ph7nGHLUPk0upYIvdDIb9z1sNxG906-opj7c4EizjleYqQ2R5g3SHFHnCX2mwdJvIX5x_opOOIW4o8Mu2dmbZf5Dct_qMeGjw31GPr998-n8XXX54eL9-fqyMnUDueqHui0yBuj5gGIFwoLppayFHaA2vdZ24KbudCMFgjZcoxh6rHthZbeSHMUZeb7vu43h64wpq6LI4Dhqj2FOqm3belVm_BcE2UjZQVvAp3fA6zBHX0QoDt2qBSZkgZ4coLmfcFDb6CYdd-q3KwV4dgB0Kmu3ZdfGpb-4pRMsnNxzJoaUil_KuPzLwWKPGxUwteRE7XOiShzUkhN1WyrhTuWf5v-s-QkQB8Me |
CODEN | PSYPAG |
CitedBy_id | crossref_primary_10_1016_j_bbr_2013_04_012 crossref_primary_10_1038_sj_mp_4001574 crossref_primary_10_1111_j_1600_0447_2009_01447_x crossref_primary_10_1016_j_semcdb_2021_01_005 crossref_primary_10_3390_biomedicines9101328 crossref_primary_10_1016_j_pbb_2008_09_003 crossref_primary_10_1016_j_schres_2014_06_011 crossref_primary_10_1073_pnas_0609440103 crossref_primary_10_1111_j_1399_5618_2011_00931_x crossref_primary_10_1016_j_mehy_2013_03_026 crossref_primary_10_1016_j_conb_2005_01_019 crossref_primary_10_1016_j_neuroscience_2021_06_037 crossref_primary_10_1007_s00213_005_2212_8 crossref_primary_10_1177_0269881111434623 crossref_primary_10_1016_j_conb_2011_10_007 crossref_primary_10_1016_j_biopsych_2016_03_2101 crossref_primary_10_1016_j_psiq_2015_03_001 crossref_primary_10_1016_j_cobeha_2024_101398 crossref_primary_10_1016_j_cnr_2005_07_002 crossref_primary_10_1016_j_neuroimage_2006_06_016 crossref_primary_10_1176_appi_ajp_2008_08030395 crossref_primary_10_3748_wjg_14_5197 crossref_primary_10_31887_DCNS_2015_17_4_aanticevic crossref_primary_10_1016_j_neuropharm_2011_04_006 crossref_primary_10_1177_0004867414533012 crossref_primary_10_3389_fpsyt_2017_00118 crossref_primary_10_1007_s10608_006_9118_6 crossref_primary_10_1371_journal_pone_0061278 crossref_primary_10_1080_08927022_2014_896462 crossref_primary_10_1152_jn_00147_2022 crossref_primary_10_1186_s12888_016_1157_2 crossref_primary_10_1016_j_neuroscience_2014_08_047 crossref_primary_10_1093_schbul_sbu165 crossref_primary_10_1016_j_bbr_2016_04_020 crossref_primary_10_1016_j_schres_2006_05_023 crossref_primary_10_1038_npp_2014_99 crossref_primary_10_1016_j_neuropharm_2011_02_007 crossref_primary_10_1038_npp_2013_239 crossref_primary_10_1016_j_jpsychires_2009_02_005 crossref_primary_10_1016_j_tins_2005_04_004 crossref_primary_10_1186_s12915_021_01050_z crossref_primary_10_1007_s12031_016_0730_y crossref_primary_10_1124_pr_107_00107 crossref_primary_10_1097_FBP_0b013e3283347091 crossref_primary_10_1016_j_celrep_2021_109950 crossref_primary_10_1016_j_pharmthera_2011_07_005 crossref_primary_10_1093_cercor_bht308 crossref_primary_10_1016_j_bpj_2014_03_024 crossref_primary_10_1111_bph_14198 crossref_primary_10_1177_1073858405279692 crossref_primary_10_1038_nrn1648 crossref_primary_10_1016_j_neubiorev_2018_12_031 crossref_primary_10_1093_brain_awy107 crossref_primary_10_3390_genes8020048 crossref_primary_10_1016_j_biopsych_2004_09_005 crossref_primary_10_1016_j_bbr_2009_03_044 crossref_primary_10_1007_s00115_008_2414_5 crossref_primary_10_1002_nbm_3851 crossref_primary_10_1196_annals_1308_008 crossref_primary_10_1016_j_neuroscience_2011_08_038 crossref_primary_10_1016_j_jhazmat_2023_132074 crossref_primary_10_3389_fnins_2020_586133 crossref_primary_10_1016_j_neuroscience_2016_02_014 crossref_primary_10_1080_10673220500433262 crossref_primary_10_1093_schbul_sbn070 crossref_primary_10_1097_WNR_0000000000001272 crossref_primary_10_1016_j_brainres_2012_04_045 crossref_primary_10_1016_j_pnpbp_2007_10_017 crossref_primary_10_1016_j_neulet_2006_01_065 crossref_primary_10_1016_j_neuropharm_2009_07_027 crossref_primary_10_1038_s41398_021_01311_z crossref_primary_10_1093_schbul_sbp132 crossref_primary_10_1016_j_neuroscience_2020_07_049 crossref_primary_10_1016_j_arres_2021_100013 crossref_primary_10_1016_j_brainresbull_2010_04_006 crossref_primary_10_1016_j_pbb_2006_07_032 crossref_primary_10_1016_j_biopsych_2006_03_055 crossref_primary_10_1016_j_tips_2006_09_007 crossref_primary_10_1152_jn_00539_2013 crossref_primary_10_1038_s41398_017_0002_9 crossref_primary_10_1038_srep43629 crossref_primary_10_1007_s00213_015_4137_1 crossref_primary_10_1016_j_neuropharm_2011_01_008 crossref_primary_10_1007_s11172_015_1135_8 crossref_primary_10_1080_10673220600642960 crossref_primary_10_1007_s00702_007_0742_4 crossref_primary_10_1038_sj_npp_1300952 crossref_primary_10_1038_srep38321 crossref_primary_10_1016_j_nicl_2014_10_005 crossref_primary_10_1016_j_schres_2007_10_014 crossref_primary_10_1177_2167702614562041 crossref_primary_10_1111_jnc_14640 crossref_primary_10_1016_j_biopsych_2015_02_034 crossref_primary_10_1038_nature10360 crossref_primary_10_1016_j_pnpbp_2009_03_013 crossref_primary_10_1016_j_schres_2010_07_022 crossref_primary_10_1093_schbul_sbn163 crossref_primary_10_1016_j_neulet_2015_05_056 crossref_primary_10_1016_j_biopsych_2011_12_029 crossref_primary_10_1038_s41537_017_0032_6 crossref_primary_10_2165_00003495_200666110_00004 crossref_primary_10_3389_fpsyt_2021_774192 crossref_primary_10_1152_jn_00661_2020 crossref_primary_10_1038_sj_mp_4002054 crossref_primary_10_1038_nm1478 crossref_primary_10_1016_j_clinph_2009_06_020 crossref_primary_10_1134_S0006350920010248 crossref_primary_10_1007_BF03033236 crossref_primary_10_1007_s11071_017_3348_x crossref_primary_10_3389_fncir_2018_00096 crossref_primary_10_1038_npp_2009_26 crossref_primary_10_1016_j_clinthera_2005_07_015 crossref_primary_10_1016_j_neuroscience_2011_06_076 crossref_primary_10_1007_s11836_007_0038_7 crossref_primary_10_1016_j_bbr_2020_112772 crossref_primary_10_1016_j_imed_2022_03_001 crossref_primary_10_1007_s10571_006_9062_8 crossref_primary_10_1016_j_biopsych_2010_09_038 crossref_primary_10_1523_JNEUROSCI_3575_07_2007 crossref_primary_10_1016_j_neuropharm_2011_08_010 crossref_primary_10_1016_j_tins_2020_05_003 crossref_primary_10_1038_s41467_023_43636_x crossref_primary_10_1097_PRA_0000000000000131 crossref_primary_10_1016_j_jns_2019_06_021 crossref_primary_10_1038_aps_2017_172 crossref_primary_10_1186_1471_2377_13_76 crossref_primary_10_1016_j_brainres_2004_10_047 crossref_primary_10_1517_13543784_14_5_601 crossref_primary_10_1007_s12035_018_1330_3 crossref_primary_10_1016_j_euroneuro_2016_12_006 crossref_primary_10_1016_j_biopsych_2013_07_026 crossref_primary_10_3389_fpsyt_2018_00766 crossref_primary_10_1016_j_schres_2015_05_040 crossref_primary_10_1016_j_neubiorev_2018_09_025 crossref_primary_10_1007_BF03033897 crossref_primary_10_1016_j_drugalcdep_2013_09_017 crossref_primary_10_1093_cercor_bhs370 crossref_primary_10_1586_ecp_10_21 crossref_primary_10_1016_j_pbb_2010_11_009 crossref_primary_10_1073_pnas_0409665102 crossref_primary_10_1007_s12291_008_0071_x crossref_primary_10_1002_nbm_3539 crossref_primary_10_1038_sj_mp_4001739 crossref_primary_10_1254_fpj_140_111 crossref_primary_10_1007_s11065_009_9103_4 crossref_primary_10_1016_j_genhosppsych_2014_02_010 crossref_primary_10_1002_syn_20393 crossref_primary_10_1016_j_biopsych_2011_01_001 crossref_primary_10_1038_tp_2016_66 crossref_primary_10_1016_j_psc_2008_11_003 crossref_primary_10_1093_molbev_msv031 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2004 INIST-CNRS Copyright Springer-Verlag 2004 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright Springer-Verlag 2004 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QR 7RV 7TK 7X7 7XB 88E 88G 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s00213-003-1673-x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database (ProQuest) Psychology Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1432-2072 |
EndPage | 150 |
ExternalDocumentID | 762199961 15205885 15896115 10_1007_s00213_003_1673_x |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Review |
GeographicLocations | United States--US Pittsburgh Pennsylvania |
GeographicLocations_xml | – name: United States--US – name: Pittsburgh Pennsylvania |
GrantInformation_xml | – fundername: National Institute of Mental Health (NIMH) ; Measurement and treatment research to improve cognition in schizophrenia (MATRICS) program ; Neuropharmacology Committee – fundername: NIMH NIH HHS grantid: MH51234 – fundername: NIMH NIH HHS grantid: MH43784 – fundername: NIMH NIH HHS grantid: MH45156 |
GroupedDBID | .55 3SX 40D 40E 95. 95~ AAYXX ABMNI AGWIL ALMA_UNASSIGNED_HOLDINGS CITATION KOW N2Q R9- RHV SBY SOJ X7M ~EX IQODW -4W -BR CGR CUY CVF ECM EIF NPM 3V. 7QG 7QR 7RV 7TK 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GNUQQ K9. M1P M2M NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-bd46058d1b2de3913f1cb7743fd14cbaafd2c48a573e1ac2ae3dbe4b3f78972e3 |
IEDL.DBID | BENPR |
ISSN | 0033-3158 |
IngestDate | Thu Jul 10 23:36:13 EDT 2025 Fri Jul 11 09:14:19 EDT 2025 Thu Aug 14 11:36:35 EDT 2025 Sat Sep 28 07:42:50 EDT 2024 Wed Apr 02 07:26:19 EDT 2025 Tue Jul 01 00:39:31 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Toxicity Schizophrenia GABA receptor Psychosis Gabaergic receptor Target Treatment Neurotransmitter GABA Chandelier neuron Working memory Pyramidal neuron Neurotransmission |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Special issue on MATRICS: Measurement and Treatment Research to Improve Cognition in Schizophrenia |
MergedId | FETCHMERGED-LOGICAL-c451t-bd46058d1b2de3913f1cb7743fd14cbaafd2c48a573e1ac2ae3dbe4b3f78972e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 ObjectType-Feature-3 ObjectType-Review-1 |
PMID | 15205885 |
PQID | 218961037 |
PQPubID | 47309 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66649460 proquest_miscellaneous_17577816 proquest_journals_218961037 pubmed_primary_15205885 pascalfrancis_primary_15896115 crossref_citationtrail_10_1007_s00213_003_1673_x crossref_primary_10_1007_s00213_003_1673_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-06-01 |
PublicationDateYYYYMMDD | 2004-06-01 |
PublicationDate_xml | – month: 06 year: 2004 text: 2004-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Psychopharmacologia |
PublicationTitleAlternate | Psychopharmacology (Berl) |
PublicationYear | 2004 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | 11743939 - Biol Psychiatry. 2001 Dec 1;50(11):825-44 8938738 - Neuroscience. 1996 Dec;75(4):1021-31 11021797 - Science. 2000 Oct 6;290(5489):131-4 12917376 - J Neurosci. 2003 Aug 13;23(19):7407-11 9592102 - J Neurosci. 1998 Jun 1;18(11):4244-54 10553733 - Am J Psychiatry. 1999 Nov;156(11):1709-19 12526990 - Physiol Behav. 2002 Dec;77(4-5):501-5 10022492 - Cereb Cortex. 1999 Jan-Feb;9(1):20-6 8610818 - Am J Psychiatry. 1996 Mar;153(3):321-30 11356867 - J Neurosci. 2001 Jun 1;21(11):3788-96 9512391 - Neuroreport. 1998 Feb 16;9(3):467-70 9334308 - Science. 1997 Oct 17;278(5337):474-6 9699697 - Am J Psychiatry. 1998 Aug;155(8):1080-6 10331577 - J Comp Neurol. 1999 May 24;408(1):11-22 10472415 - Biol Psychiatry. 1999 Sep 1;46(5):616-26 9742069 - J Histochem Cytochem. 1998 Oct;46(10):1129-39 11135257 - J Comp Neurol. 2001 Feb 5;430(2):209-21 9007187 - J Comp Neurol. 1997 Jan 27;377(4):465-99 1637931 - Biol Psychiatry. 1992 May 1;31(9):909-18 11156808 - Am J Psychiatry. 2001 Feb;158(2):256-65 10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45 2329196 - J Comp Neurol. 1990 Mar 22;293(4):599-615 12097508 - J Neurosci. 2002 Jul 1;22(13):5572-80 1360199 - Arch Gen Psychiatry. 1992 Dec;49(12 ):943-58 4181098 - Annu Rev Psychol. 1969;20:321-48 9647870 - Pharmacol Rev. 1998 Jun;50(2):291-313 12764043 - Cereb Cortex. 2003 Jun;13(6):670-6 10331104 - Biol Psychiatry. 1999 May 1;45(9):1128-37 12679292 - Cereb Cortex. 2003 May;13(5):452-60 12012429 - J Comp Neurol. 2002 Jun 24;448(2):186-202 2648389 - Proc Natl Acad Sci U S A. 1989 Mar;86(6):2093-7 8395585 - J Neurophysiol. 1993 Jul;70(1):387-96 6729409 - Schizophr Bull. 1984;10(2):160-203 11488380 - Psychol Rev. 2001 Jul;108(3):624-52 11793346 - J Comp Neurol. 2002 Jan 28;443(1):43-55 10816315 - Nat Neurosci. 2000 Jun;3(6):587-92 12594513 - Nature. 2003 Feb 20;421(6925):844-8 7760605 - Lancet. 1995 Jun 3;345(8962):1383-4 11498596 - Science. 2001 Aug 10;293(5532):1159-63 12084936 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8980-5 11296301 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4746-51 12217970 - Cereb Cortex. 2002 Oct;12(10):1063-70 9498163 - J Chem Neuroanat. 1997 Dec;14(1):1-19 9352344 - Int Clin Psychopharmacol. 1997 Sep;12 Suppl 4:S29-36 8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13 12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15 9734557 - Am J Psychiatry. 1998 Sep;155(9):1285-7 9560277 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5341-6 11086983 - Neuron. 2000 Oct;28(1):53-67 9210755 - Am J Psychiatry. 1997 Jul;154(7):1013-5 8876241 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11939-44 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 7477292 - Nature. 1995 Nov 2;378(6552):75-8 12050665 - Nature. 2002 Jun 6;417(6889):645-9 10627624 - J Neurosci. 2000 Jan 1;20(1):485-94 10548105 - Nature. 1999 Oct 21;401(6755):796-800 11053229 - Cereb Cortex. 2000 Nov;10(11):1078-92 7477911 - Neuroscience. 1995 Jul;67(1):7-22 8541247 - Schizophr Res. 1995 Sep;17(1):25-33 9040284 - Arch Gen Psychiatry. 1997 Feb;54(2):159-65 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 12966563 - J Comp Neurol. 2003 Oct 20;465(3):385-400 12363385 - Schizophr Res. 2002 Nov 1;58(1):11-20 3382320 - Arch Gen Psychiatry. 1988 Jul;45(7):609-15 3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24 12546824 - Neuron. 2003 Jan 23;37(2):299-309 11253953 - Crit Rev Neurobiol. 2000;14(1):1-21 9453664 - J Comp Neurol. 1998 Jan 12;390(2):194-210 9989567 - Am J Psychiatry. 1999 Feb;156(2):299-303 1449384 - Arch Gen Psychiatry. 1992 Dec;49(12):975-82 9471116 - Neuropsychopharmacology. 1998 Mar;18(3):186-96 8789911 - Schizophr Res. 1996 May;19(2-3):129-40 2772099 - Psychiatry Res. 1989 Jul;29(1):65-85 8006226 - J Comp Neurol. 1994 Mar 1;341(1):95-116 1747023 - Arch Gen Psychiatry. 1991 Nov;48(11):996-1001 12135541 - Int J Neuropsychopharmacol. 2002 Jun;5(2):159-79 8821450 - J Comp Neurol. 1996 Jan 22;364(4):609-36 1674645 - Am J Psychiatry. 1991 Jun;148(6):714-26 12209121 - Nat Rev Neurosci. 2002 Sep;3(9):728-39 8896783 - Biol Psychiatry. 1996 Nov 1;40(9):930-2 2287929 - Schizophr Bull. 1990;16(3):379-89 8557845 - J Comp Neurol. 1995 Aug 14;359(1):154-94 10356991 - Rev Neurosci. 1999;10(1):49-57 10769376 - Nat Neurosci. 2000 May;3(5):421-3 10200225 - J Neurophysiol. 1999 Apr;81(4):1903-16 12748642 - Nature. 2003 May 15;423(6937):288-93 |
References_xml | – reference: 12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15 – reference: 12526990 - Physiol Behav. 2002 Dec;77(4-5):501-5 – reference: 11488380 - Psychol Rev. 2001 Jul;108(3):624-52 – reference: 12209121 - Nat Rev Neurosci. 2002 Sep;3(9):728-39 – reference: 9210755 - Am J Psychiatry. 1997 Jul;154(7):1013-5 – reference: 2648389 - Proc Natl Acad Sci U S A. 1989 Mar;86(6):2093-7 – reference: 11356867 - J Neurosci. 2001 Jun 1;21(11):3788-96 – reference: 2287929 - Schizophr Bull. 1990;16(3):379-89 – reference: 9512391 - Neuroreport. 1998 Feb 16;9(3):467-70 – reference: 10553733 - Am J Psychiatry. 1999 Nov;156(11):1709-19 – reference: 9498163 - J Chem Neuroanat. 1997 Dec;14(1):1-19 – reference: 10472415 - Biol Psychiatry. 1999 Sep 1;46(5):616-26 – reference: 11498596 - Science. 2001 Aug 10;293(5532):1159-63 – reference: 8541247 - Schizophr Res. 1995 Sep;17(1):25-33 – reference: 11053229 - Cereb Cortex. 2000 Nov;10(11):1078-92 – reference: 9699697 - Am J Psychiatry. 1998 Aug;155(8):1080-6 – reference: 6729409 - Schizophr Bull. 1984;10(2):160-203 – reference: 9742069 - J Histochem Cytochem. 1998 Oct;46(10):1129-39 – reference: 1360199 - Arch Gen Psychiatry. 1992 Dec;49(12 ):943-58 – reference: 3382320 - Arch Gen Psychiatry. 1988 Jul;45(7):609-15 – reference: 9647870 - Pharmacol Rev. 1998 Jun;50(2):291-313 – reference: 11021797 - Science. 2000 Oct 6;290(5489):131-4 – reference: 10816315 - Nat Neurosci. 2000 Jun;3(6):587-92 – reference: 12097508 - J Neurosci. 2002 Jul 1;22(13):5572-80 – reference: 9471116 - Neuropsychopharmacology. 1998 Mar;18(3):186-96 – reference: 10627624 - J Neurosci. 2000 Jan 1;20(1):485-94 – reference: 9989567 - Am J Psychiatry. 1999 Feb;156(2):299-303 – reference: 9453664 - J Comp Neurol. 1998 Jan 12;390(2):194-210 – reference: 8557845 - J Comp Neurol. 1995 Aug 14;359(1):154-94 – reference: 12363385 - Schizophr Res. 2002 Nov 1;58(1):11-20 – reference: 10356991 - Rev Neurosci. 1999;10(1):49-57 – reference: 4181098 - Annu Rev Psychol. 1969;20:321-48 – reference: 12764043 - Cereb Cortex. 2003 Jun;13(6):670-6 – reference: 1637931 - Biol Psychiatry. 1992 May 1;31(9):909-18 – reference: 9734557 - Am J Psychiatry. 1998 Sep;155(9):1285-7 – reference: 11793346 - J Comp Neurol. 2002 Jan 28;443(1):43-55 – reference: 11086983 - Neuron. 2000 Oct;28(1):53-67 – reference: 11135257 - J Comp Neurol. 2001 Feb 5;430(2):209-21 – reference: 7760605 - Lancet. 1995 Jun 3;345(8962):1383-4 – reference: 8896783 - Biol Psychiatry. 1996 Nov 1;40(9):930-2 – reference: 12594513 - Nature. 2003 Feb 20;421(6925):844-8 – reference: 8938738 - Neuroscience. 1996 Dec;75(4):1021-31 – reference: 11253953 - Crit Rev Neurobiol. 2000;14(1):1-21 – reference: 8876241 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11939-44 – reference: 12546824 - Neuron. 2003 Jan 23;37(2):299-309 – reference: 8789911 - Schizophr Res. 1996 May;19(2-3):129-40 – reference: 11156808 - Am J Psychiatry. 2001 Feb;158(2):256-65 – reference: 12217970 - Cereb Cortex. 2002 Oct;12(10):1063-70 – reference: 7477292 - Nature. 1995 Nov 2;378(6552):75-8 – reference: 1449384 - Arch Gen Psychiatry. 1992 Dec;49(12):975-82 – reference: 12966563 - J Comp Neurol. 2003 Oct 20;465(3):385-400 – reference: 10331577 - J Comp Neurol. 1999 May 24;408(1):11-22 – reference: 8395585 - J Neurophysiol. 1993 Jul;70(1):387-96 – reference: 12679292 - Cereb Cortex. 2003 May;13(5):452-60 – reference: 9592102 - J Neurosci. 1998 Jun 1;18(11):4244-54 – reference: 10548105 - Nature. 1999 Oct 21;401(6755):796-800 – reference: 9560277 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5341-6 – reference: 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 – reference: 11296301 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4746-51 – reference: 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 – reference: 12135541 - Int J Neuropsychopharmacol. 2002 Jun;5(2):159-79 – reference: 9352344 - Int Clin Psychopharmacol. 1997 Sep;12 Suppl 4:S29-36 – reference: 10200225 - J Neurophysiol. 1999 Apr;81(4):1903-16 – reference: 9040284 - Arch Gen Psychiatry. 1997 Feb;54(2):159-65 – reference: 10022492 - Cereb Cortex. 1999 Jan-Feb;9(1):20-6 – reference: 10769376 - Nat Neurosci. 2000 May;3(5):421-3 – reference: 12050665 - Nature. 2002 Jun 6;417(6889):645-9 – reference: 8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13 – reference: 12012429 - J Comp Neurol. 2002 Jun 24;448(2):186-202 – reference: 8006226 - J Comp Neurol. 1994 Mar 1;341(1):95-116 – reference: 11743939 - Biol Psychiatry. 2001 Dec 1;50(11):825-44 – reference: 8821450 - J Comp Neurol. 1996 Jan 22;364(4):609-36 – reference: 2772099 - Psychiatry Res. 1989 Jul;29(1):65-85 – reference: 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 – reference: 10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45 – reference: 12084936 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8980-5 – reference: 8610818 - Am J Psychiatry. 1996 Mar;153(3):321-30 – reference: 3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24 – reference: 1747023 - Arch Gen Psychiatry. 1991 Nov;48(11):996-1001 – reference: 2329196 - J Comp Neurol. 1990 Mar 22;293(4):599-615 – reference: 12748642 - Nature. 2003 May 15;423(6937):288-93 – reference: 9334308 - Science. 1997 Oct 17;278(5337):474-6 – reference: 1674645 - Am J Psychiatry. 1991 Jun;148(6):714-26 – reference: 12917376 - J Neurosci. 2003 Aug 13;23(19):7407-11 – reference: 7477911 - Neuroscience. 1995 Jul;67(1):7-22 – reference: 10331104 - Biol Psychiatry. 1999 May 1;45(9):1128-37 – reference: 9007187 - J Comp Neurol. 1997 Jan 27;377(4):465-99 |
SSID | ssj0000484 ssj0068394 |
Score | 2.2504363 |
SecondaryResourceType | review_article |
Snippet | Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological... Rationale. Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available... RATIONALEDisturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 143 |
SubjectTerms | Animals Benzodiazepines Biological and medical sciences Cognition & reasoning Fundamental and applied biological sciences. Psychology GABA Agents - therapeutic use GABA Plasma Membrane Transport Proteins gamma-Aminobutyric Acid - metabolism Glutamate Decarboxylase - metabolism Humans Illnesses Immunohistochemistry - methods Information processing Isoenzymes - metabolism Medical sciences Membrane Transport Proteins - metabolism Memory Memory Disorders - drug therapy Memory Disorders - etiology Memory, Short-Term - drug effects Models, Neurological Neurons Neurons - drug effects Neurons - physiology Neuropharmacology Parvalbumins - metabolism Pharmacology. Drug treatments Prefrontal Cortex - drug effects Prefrontal Cortex - metabolism Primates Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychosis Receptors, GABA - metabolism Schizophrenia Schizophrenia - complications Signal Transduction - drug effects |
Title | Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15205885 https://www.proquest.com/docview/218961037 https://www.proquest.com/docview/17577816 https://www.proquest.com/docview/66649460 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xVkJICMH4FQbFD2gPaBGJ7SQOL6hFKxPSqgo2qW-RnTgS0kgK6WD9P_iDubPTdnvYHqM4ceQ73325O38H8E4ktU54KsIyzfJQlrilEByJkPOoRn02lXLNYE5n6cm5_LpIFn1tTteXVW5sojPUVVtSjPwDuqI8pUNtn5a_QmoaRcnVvoPGHgzRAqtkAMPJ8Wz-bWeKJZ3C9BcpQgHPySzoRFmiNjnOyFGKcupyQHVaaSbCqxte6uFSd7hgte90cTsUdS5p-hge9ViSjb3wn8A92-zD_dM-W74Ph3PPS70-Yme7Y1bdETtk8x1j9fop_PvuuuGg4WMue-6jeOxHw5b4aURxgNPgb6qLe7Mv48mYOR7MFTk6VBSKuNHo7noF30emWdP-sRfMV5szhMcM4Sbb1raztmZ_fbCe_aSK3zWr1h15Wpr_GZxPj88-n4R9u4awlEm8Ck3lcqxVbHhlRR6LOi4NoktRV7EsjdZ1xUupdJIJG-uSaysqY6URdabyjFvxHAZN29iXwIyUWmkT5ZFVUtelTrmKclXhlsY35nUA0UY8RdlzmVNLjYtiy8LsJErMpwVJtLgK4P32kaUn8rhr8OiGzHdPJKSFcRLAwUYJin7Td8VWRQN4u72LQqAUjG5se9kVCNayTMXp7SPwd1LmuJABvPC6dW1ujsurkld3zn0AD3xxEQWKXsNg9fvSvkHctDIj2MsW2QiG4-lkMhv1e-U_g_Uaow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BSJTEGMXbisJ5UB4Mje3M9GZizKLgIuxmo0vCW52204QEu6tdhP0f_g3_o-d02l14gDcem047Tc_tm3MFeC39QvsikE4WhLGjMhIpAkfSEcItiJ_TPKqHwfQHQe9IfT32j5fgX1sLw2mVrU6sFXU-zthH_o5MURxwUdvHyS-Hh0ZxcLWdoGG54sDMzunEVn3Y_0zkfSPE3u7oU89phgo4mfK9qZPmdSQw91KRGxl7svCylDCQLHJPZanWRS4yFWk_lMbTmdBG5qlRqSzCKA6FkfTeO7BCKCMmIVrZ2R0Mvy1Uv-KqT3sREPSwPaAlV7D5URtTdesWpoKnKnBeWBBK5-KKVbw_0RURqLCTNa6HvrUJ3HsIDxrsil3LbI9gyZRrcLffROfXYGto-2DPtnG0KOuqtnELh4sO2bPH8Pd7PX2HFC3W0XrrNcSTEif0adxSgbahY3HtZ8cv3Z0u1n03p2xYiTHZw8erq8sZg-9RYzn-Y07RZrcjwXEkeIvzXHocF3hugwP4kzOMZ5jPKrbsvP8TOLoVSj6F5XJcmueAqVI60qkbuyZSush0ICI3jnJSIfTGuOiA25InyZre6TzC4zSZd32uKcqdVhOmaHLRgbfzRya2cchNizeu0HzxhM9c7_kdWG-ZIGmUTJXMRaIDm_O7RAQO-ejSjM-qhMBhGEZecP0KOr6qmH5kB55Z3rq0t6DfG_kvbtx7E-71Rv3D5HB_cLAOqzaxiZ1UL2F5-vvMvCLMNk03GklB-HHbwvkf_WBXEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVQhIQTlLxRaH6AH1IjEdhIHCaEt7dJSulpBK_UWnMSWkEqykC1t3oOX4e0Y28lue2hvPUax48jz65nxNwCvWKRlRGPmF3GS-rxAkULniPmUBhr5OS-FbQZzOI73jvnnk-hkCf71d2FMWWWvE62iLuvCxMjfoilKYwvHo7uqiMnO6MP0l28aSJlEa99Nw3HIgWrP8fTWvN_fQVK_pnS0e_Rxz-8aDPgFj8KZn5c2K1iGOS0VS0OmwyJHf4jpMuRFLqUuacGFjBKmQllQqViZK54znYg0oYrhd-_AcoJGUQxgeXt3PPm6MAPc3AB1DzG6IQ4PmpnbbJHo86uBhTOlpsOCqRGLE-ZfXLGQ96ayQWJp12XjejfYmsPRA7jf-bFk6BjvISypahVWDrtM_SpsThwmdrtFjhZXvJotskkmC7Ts9hH8_WY78aDSJTZz7yKI5EdFpvhrBl4Bl8Ejso25k0_D7SGxGJwzY2SRSU20z4xuLlcPviOSVPUfdUpcpTtB15ygq0vmdfWk1uTcJQrIT1Nt3JKybYyVN-s_huNboeQTGFR1pZ4ByTmXQuZBGijBpS5kTEWQihLVCX4x1R4EPXmyosNRN-08TrM5ArSlqEFdzQxFswsP3synTB2IyE2D16_QfDEjMhIQRh6s9UyQdQqnyebi4cHG_C0SwaR_ZKXqsyZDRzFJRBhfPwKPsjzFjfTgqeOtS2tT3F4RPb9x7Q1YQaHMvuyPD9bgrqtxMvGqFzCY_T5TL9F9m-XrnaAQ-H7bsvkfquZbPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Psychopharmacologia&rft.atitle=Selective+alterations+in+prefrontal+cortical+GABA+neurotransmission+in+schizophrenia%3A+a+novel+target+for+the+treatment+of+working+memory+dysfunction&rft.au=LEWIS%2C+David+A&rft.au=VOLK%2C+David+W&rft.au=HASHIMOTO%2C+Takanori&rft.date=2004-06-01&rft.pub=Springer&rft.issn=0033-3158&rft.volume=174&rft.issue=1&rft.spage=143&rft.epage=150&rft_id=info:doi/10.1007%2Fs00213-003-1673-x&rft.externalDBID=n%2Fa&rft.externalDocID=15896115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3158&client=summon |