Generative Artificial Intelligence Enhancements for Reducing Image-based Training Data Requirements
Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the...
Saved in:
Published in | Ophthalmology science (Online) Vol. 4; no. 5; p. 100531 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2666-9145 2666-9145 |
DOI | 10.1016/j.xops.2024.100531 |
Cover
Abstract | Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.
Computational study with open-source data.
The data were obtained from 6 open-source datasets comprising patients aged 40–80 years in Singapore, China, India, and Spain.
The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.
Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.
Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.
Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.
The authors have no proprietary or commercial interest in any materials discussed in this article. |
---|---|
AbstractList | Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.
Computational study with open-source data.
The data were obtained from 6 open-source datasets comprising patients aged 40–80 years in Singapore, China, India, and Spain.
The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.
Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.
Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.
Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.
The authors have no proprietary or commercial interest in any materials discussed in this article. Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.ObjectiveTraining data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.Computational study with open-source data.DesignComputational study with open-source data.The data were obtained from 6 open-source datasets comprising patients aged 40-80 years in Singapore, China, India, and Spain.SubjectsThe data were obtained from 6 open-source datasets comprising patients aged 40-80 years in Singapore, China, India, and Spain.The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.MethodsThe reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.Main Outcome MeasuresArea under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.ResultsResults show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.ConclusionsOur findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.The authors have no proprietary or commercial interest in any materials discussed in this article.Financial DisclosuresThe authors have no proprietary or commercial interest in any materials discussed in this article. |
ArticleNumber | 100531 |
Author | Duncan, Jacque Shan, Jing Han, Ying Chen, Dake Jia, Lin |
Author_xml | – sequence: 1 givenname: Dake orcidid: 0000-0002-1596-6700 surname: Chen fullname: Chen, Dake organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California – sequence: 2 givenname: Ying surname: Han fullname: Han, Ying organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California – sequence: 3 givenname: Jacque surname: Duncan fullname: Duncan, Jacque organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California – sequence: 4 givenname: Lin surname: Jia fullname: Jia, Lin organization: Digillect LLC, San Francisco, California – sequence: 5 givenname: Jing orcidid: 0000-0003-0590-9937 surname: Shan fullname: Shan, Jing email: jing.shan@ucsf.edu organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39071920$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFL5TAUhcOgjI76B2YhXbrpM0mbmoobUUcfCAODrkNye_vMs02fSSr6702pwuBCV_dyON-Fe84vsuUGh4T8ZnTBKKuO14uXYRMWnPIyCVQU7AfZ5VVV5TUrxdZ_-w45CGFNKeWCFbxkP8lOUdMTVnO6S-AaHXod7TNm5z7a1oLVXbZ0EbvOrtABZlfuQafZo4shawef_cNmBOtW2bLXK8yNDthkd15bN4mXOupkeRqtn5l9st3qLuDB-9wj93-u7i5u8tu_18uL89scSsFibiQVJXCoNDMCZBJNgdpwrWuKvK0MN4yetEyUrJXCGKhRlFjxBiQvhBHFHjma72788DRiiKq3AdIf2uEwBlVQKSpZy1Im6-G7dTQ9Nmrjba_9q_oIJhnkbAA_hOCxVWBjimlwMf3ZKUbVVINaq6kGNdWg5hoSyj-hH9e_hM5mCFNAzxa9CmCn9JuUIkTVDPZr_PQTDl1qA3T3iK_fwW-kD7T_ |
CitedBy_id | crossref_primary_10_3348_kjr_2024_0392 |
Cites_doi | 10.1038/s41598-021-89743-x 10.1016/j.ophtha.2014.05.013 10.1016/j.ogla.2023.06.011 10.1145/3457607 10.1016/j.ophtha.2021.04.009 10.1109/JBHI.2019.2949075 10.1016/j.ophtha.2017.12.001 10.1167/tvst.9.2.27 10.1016/j.xops.2021.100069 10.1038/s41591-021-01614-0 10.1186/s12938-019-0649-y 10.1001/jamaophthalmol.2018.6156 10.1038/s41551-018-0195-0 10.1016/j.compmedimag.2019.02.005 10.1038/s41598-018-35044-9 10.1001/jama.2019.18058 10.3390/bioengineering10111266 10.1167/tvst.9.2.42 10.1561/2200000056 10.1016/j.xops.2022.100233 10.1016/j.ajo.2019.08.004 10.1155/2013/154860 10.1001/jamaophthalmol.2020.2974 10.1016/j.ajo.2021.12.008 |
ContentType | Journal Article |
Copyright | 2024 American Academy of Ophthalmology 2024 by the American Academy of Ophthalmology. |
Copyright_xml | – notice: 2024 American Academy of Ophthalmology – notice: 2024 by the American Academy of Ophthalmology. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.xops.2024.100531 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-9145 |
ExternalDocumentID | 39071920 10_1016_j_xops_2024_100531 S2666914524000678 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M~E OK1 ROL RPM Z5R 0SF 6I. AAFTH AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c451t-b8054c2c6a1b5c8c45b3eab2aa90e2f6b2b107f1541f85bbc9e54e62dc8235b53 |
ISSN | 2666-9145 |
IngestDate | Fri Jul 11 09:30:19 EDT 2025 Mon Jul 21 05:44:53 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 03:50:43 EDT 2025 Sat Sep 21 15:59:48 EDT 2024 Tue Aug 26 16:33:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Glaucoma ViT CNN Generative AI AI Data scarcity AUC |
Language | English |
License | This is an open access article under the CC BY license. 2024 by the American Academy of Ophthalmology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-b8054c2c6a1b5c8c45b3eab2aa90e2f6b2b107f1541f85bbc9e54e62dc8235b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1596-6700 0000-0003-0590-9937 |
OpenAccessLink | http://dx.doi.org/10.1016/j.xops.2024.100531 |
PMID | 39071920 |
PQID | 3085689848 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3085689848 pubmed_primary_39071920 crossref_citationtrail_10_1016_j_xops_2024_100531 crossref_primary_10_1016_j_xops_2024_100531 elsevier_sciencedirect_doi_10_1016_j_xops_2024_100531 elsevier_clinicalkey_doi_10_1016_j_xops_2024_100531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September-October 2024 2024-09-00 2024 Sep-Oct 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September-October 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ophthalmology science (Online) |
PublicationTitleAlternate | Ophthalmol Sci |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Poplin, Varadarajan, Blumer (bib39) 2018; 2 Chen, Zhu, Papandreou (bib43) 2018 Luo, Tian, Shi (bib31) 2023 Bommakanti, Zhou, Ehrlich (bib35) 2020; 138 Yu, Xiao, Frost, Kanagasingam (bib7) 2019; 74 Fang, Li, Wu (bib18) 2022 Wang, Feng, Xue (bib17) 2023; 12464 Parikh, Teeple, Navathe (bib33) 2019; 322 He, Zhang, Ren, Sun (bib29) 2016 Shan, Li, Ma (bib12) 2024; 7 Korot, Pontikos, Liu (bib40) 2021; 11 Wu, Nishida, Weinreb, Lin (bib4) 2022; 237 Deng (bib37) 2009 Fan, Alipour, Bowd (bib10) 2023; 3 Sivaswamy, Krishnadas, Joshi (bib19) 2014 Rajpurkar, Jia, Liang (bib26) 2018 Yu, Guo, Zhang (bib34) 2022 Xu, Chiang, Chaudhary (bib11) 2019; 208 Rajpurkar, Chen, Banerjee, Topol (bib30) 2022; 28 Hwang, Chen, Han (bib44) 2023; 10 Chiang, Sommer, Rich (bib36) 2018; 125 Liao, Zou, Zhao (bib6) 2019; 24 Thompson, Jammal, Medeiros (bib2) 2020; 9 Carion, Massa, Synnaeve (bib15) 2020 Zheng, Lu, Zhao (bib16) 2021 Burlina, Joshi, Pacheco (bib24) 2019; 137 (bib23) 2022 Lo, Timothy, Ma (bib41) 2021; 1 Fumero, Alayón, Sanchez (bib21) 2011 Mehrabi, Morstatter, Saxena (bib32) 2021; 54 Christopher, Nakahara, Bowd (bib8) 2020; 9 Dosovitskiy, Beyer, Kolesnikove (bib13) 2020 Diaz-Pinto, Moralles, Naranjo (bib9) 2019; 18 Tham, Li, Wong (bib1) 2014; 121 Soh, Yu, Betzler (bib3) 2021; 128 (bib22) 2016 Ho, Jain, Abbeel (bib27) 2020; 33 Hugo, Cord, Douze (bib14) 2021; 139 Goodfellow, Pouget-Abadie, Mirza (bib25) 2014; 27 Budai, Bock, Maier (bib20) 2013; 2013 Kingma, Welling (bib28) 2019; 12 Hu, Chen, Ho, Shi (bib38) 2023 Zhang, Yin, Liu (bib42) 2010 Christopher, Belghith, Bowd (bib5) 2018; 8 Sivaswamy (10.1016/j.xops.2024.100531_bib19) 2014 Hugo (10.1016/j.xops.2024.100531_bib14) 2021; 139 Hwang (10.1016/j.xops.2024.100531_bib44) 2023; 10 Budai (10.1016/j.xops.2024.100531_bib20) 2013; 2013 Christopher (10.1016/j.xops.2024.100531_bib5) 2018; 8 Dosovitskiy (10.1016/j.xops.2024.100531_bib13) 2020 (10.1016/j.xops.2024.100531_bib23) 2022 Rajpurkar (10.1016/j.xops.2024.100531_bib30) 2022; 28 Bommakanti (10.1016/j.xops.2024.100531_bib35) 2020; 138 Thompson (10.1016/j.xops.2024.100531_bib2) 2020; 9 Yu (10.1016/j.xops.2024.100531_bib7) 2019; 74 Zheng (10.1016/j.xops.2024.100531_bib16) 2021 Chiang (10.1016/j.xops.2024.100531_bib36) 2018; 125 He (10.1016/j.xops.2024.100531_bib29) 2016 Rajpurkar (10.1016/j.xops.2024.100531_bib26) 2018 Yu (10.1016/j.xops.2024.100531_bib34) 2022 Wang (10.1016/j.xops.2024.100531_bib17) 2023; 12464 Zhang (10.1016/j.xops.2024.100531_bib42) 2010 Chen (10.1016/j.xops.2024.100531_bib43) 2018 Fan (10.1016/j.xops.2024.100531_bib10) 2023; 3 Deng (10.1016/j.xops.2024.100531_bib37) 2009 Ho (10.1016/j.xops.2024.100531_bib27) 2020; 33 Korot (10.1016/j.xops.2024.100531_bib40) 2021; 11 Fumero (10.1016/j.xops.2024.100531_bib21) 2011 Hu (10.1016/j.xops.2024.100531_bib38) 2023 Soh (10.1016/j.xops.2024.100531_bib3) 2021; 128 Lo (10.1016/j.xops.2024.100531_bib41) 2021; 1 Tham (10.1016/j.xops.2024.100531_bib1) 2014; 121 Carion (10.1016/j.xops.2024.100531_bib15) 2020 Burlina (10.1016/j.xops.2024.100531_bib24) 2019; 137 Goodfellow (10.1016/j.xops.2024.100531_bib25) 2014; 27 Fang (10.1016/j.xops.2024.100531_bib18) 2022 Luo (10.1016/j.xops.2024.100531_bib31) 2023 Mehrabi (10.1016/j.xops.2024.100531_bib32) 2021; 54 Wu (10.1016/j.xops.2024.100531_bib4) 2022; 237 Kingma (10.1016/j.xops.2024.100531_bib28) 2019; 12 Poplin (10.1016/j.xops.2024.100531_bib39) 2018; 2 Christopher (10.1016/j.xops.2024.100531_bib8) 2020; 9 Xu (10.1016/j.xops.2024.100531_bib11) 2019; 208 Diaz-Pinto (10.1016/j.xops.2024.100531_bib9) 2019; 18 Parikh (10.1016/j.xops.2024.100531_bib33) 2019; 322 Liao (10.1016/j.xops.2024.100531_bib6) 2019; 24 Shan (10.1016/j.xops.2024.100531_bib12) 2024; 7 |
References_xml | – volume: 11 start-page: 10286 year: 2021 ident: bib40 article-title: Predicting sex from retinal fundus photographs using automated deep learning publication-title: Sci Rep – volume: 2013 year: 2013 ident: bib20 article-title: Robust vessel segmentation in fundus images publication-title: Int J Biomed Imaging – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: bib28 article-title: An introduction to variational autoencoders publication-title: Found Trends Mach Learn – year: 2020 ident: bib13 article-title: An image is worth 16x16 words: transformers for image recognition at scale publication-title: arXiv – year: 2022 ident: bib23 article-title: Improving Representation in Clinical Trials and Research: Building Research Equity for Women and Underrepresented Groups – volume: 9 start-page: 27 year: 2020 ident: bib8 article-title: Effects of study population, labeling and training on glaucoma detection using deep learning algorithms publication-title: Transl Vis Sci Technol – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: bib27 article-title: Denoising diffusion probabilistic models publication-title: Adv Neural Inf Process Syst – year: 2023 ident: bib31 article-title: Harvard glaucoma fairness: a retinal nerve disease dataset for fairness learning and fair identity normalization publication-title: arXiv – start-page: 3065 year: 2010 end-page: 3068 ident: bib42 article-title: Origa-light: an online retinal fundus image database for glaucoma analysis and research – year: 2018 ident: bib26 article-title: Know what you don't know: unanswerable questions for SQuAD publication-title: arXiv – volume: 10 start-page: 1266 year: 2023 ident: bib44 article-title: Multi-dataset Comparison of vision transformers and convolutional neural networks for detecting glaucomatous optic neuropathy from fundus photographs publication-title: Bioengineering (Basel) – volume: 8 start-page: 16685 year: 2018 ident: bib5 article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs publication-title: Sci Rep – volume: 24 start-page: 1405 year: 2019 end-page: 1412 ident: bib6 article-title: Clinical interpretable deep learning model for glaucoma diagnosis publication-title: IEEE J Biomed Health Inform – start-page: 801 year: 2018 end-page: 818 ident: bib43 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 7 start-page: 8 year: 2024 end-page: 15 ident: bib12 article-title: Deep learning classification of angle closure based on anterior segment optical coherence tomography publication-title: Ophthalmol Glaucoma – volume: 27 year: 2014 ident: bib25 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 74 start-page: 61 year: 2019 end-page: 71 ident: bib7 article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection publication-title: Comput Med Imaging Graph – year: 2021 ident: bib16 article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 53 year: 2014 end-page: 56 ident: bib19 article-title: Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: bib39 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat Biomed Eng – year: 2022 ident: bib18 article-title: REFUGE2 challenge: a treasure trove for multi-dimension analysis and evaluation in glaucoma screening publication-title: arXiv – start-page: 248 year: 2009 end-page: 255 ident: bib37 article-title: Imagenet: a large-scale hierarchical image database – start-page: 1 year: 2011 end-page: 6 ident: bib21 article-title: RIM-ONE: an open retinal image database for optic nerve evaluation publication-title: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS) – volume: 322 start-page: 2377 year: 2019 end-page: 2378 ident: bib33 article-title: Addressing bias in artificial intelligence in health care publication-title: JAMA – year: 2016 ident: bib22 article-title: sjchoi86: sjchoi86-HRF database. GitHub – volume: 128 start-page: 1393 year: 2021 end-page: 1404 ident: bib3 article-title: The global extent of undetected glaucoma in adults: a systematic review and meta-analysis publication-title: Ophthalmology – start-page: 770 year: 2016 end-page: 778 ident: bib29 article-title: Deep residual learning for image recognition – volume: 18 start-page: 1 year: 2019 end-page: 19 ident: bib9 article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation publication-title: Biomed Eng Online – volume: 125 start-page: 1143 year: 2018 end-page: 1148 ident: bib36 article-title: The 2016 American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) database: characteristics and methods publication-title: Ophthalmology – volume: 139 start-page: 10347 year: 2021 end-page: 10357 ident: bib14 article-title: Training data-efficient image transformers & distillation through attention. Proceedings of the 38th International Conference on Machine Learning publication-title: PMLR – start-page: 70 year: 2022 end-page: 79 ident: bib34 article-title: A re-balancing strategy for class-imbalanced classification based on instance difficulty publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 9 start-page: 42 year: 2020 ident: bib2 article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression publication-title: Transl Vis Sci Technol – volume: 137 start-page: 258 year: 2019 end-page: 264 ident: bib24 article-title: Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration publication-title: JAMA Ophthalmol – volume: 54 start-page: 1 year: 2021 end-page: 35 ident: bib32 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput Surv – start-page: 213 year: 2020 end-page: 229 ident: bib15 article-title: End-to-end object detection with transformers publication-title: European Conference on Computer Vision – volume: 1 start-page: 100069 year: 2021 ident: bib41 article-title: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data publication-title: Ophthalmol Sci – volume: 138 start-page: 974 year: 2020 end-page: 980 ident: bib35 article-title: Application of the sight outcomes research collaborative ophthalmology data repository for triaging patients with glaucoma and clinic appointments during pandemics such as COVID-19 publication-title: JAMA Ophthalmol – volume: 237 start-page: 1 year: 2022 end-page: 12 ident: bib4 article-title: Performances of machine learning in detecting glaucoma using fundus and retinal optical coherence tomography images: a meta-analysis publication-title: Am J Ophthalmol – volume: 208 start-page: 273 year: 2019 end-page: 280 ident: bib11 article-title: Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images publication-title: Am J Ophthalmol – volume: 12464 start-page: 565 year: 2023 end-page: 570 ident: bib17 article-title: Investigation of probability maps in deep-learning-based brain ventricle parcellation – volume: 121 start-page: 2081 year: 2014 end-page: 2090 ident: bib1 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology – volume: 3 start-page: 100233 year: 2023 ident: bib10 article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization publication-title: Ophthalmol Sci – volume: 28 start-page: 31 year: 2022 end-page: 38 ident: bib30 article-title: AI in health and medicine publication-title: Nat Med – year: 2023 ident: bib38 article-title: Conditional diffusion models for weakly supervised medical image segmentation publication-title: arXiv – start-page: 248 year: 2009 ident: 10.1016/j.xops.2024.100531_bib37 – volume: 11 start-page: 10286 year: 2021 ident: 10.1016/j.xops.2024.100531_bib40 article-title: Predicting sex from retinal fundus photographs using automated deep learning publication-title: Sci Rep doi: 10.1038/s41598-021-89743-x – volume: 121 start-page: 2081 year: 2014 ident: 10.1016/j.xops.2024.100531_bib1 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 7 start-page: 8 year: 2024 ident: 10.1016/j.xops.2024.100531_bib12 article-title: Deep learning classification of angle closure based on anterior segment optical coherence tomography publication-title: Ophthalmol Glaucoma doi: 10.1016/j.ogla.2023.06.011 – volume: 54 start-page: 1 year: 2021 ident: 10.1016/j.xops.2024.100531_bib32 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput Surv doi: 10.1145/3457607 – volume: 128 start-page: 1393 year: 2021 ident: 10.1016/j.xops.2024.100531_bib3 article-title: The global extent of undetected glaucoma in adults: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.04.009 – volume: 24 start-page: 1405 year: 2019 ident: 10.1016/j.xops.2024.100531_bib6 article-title: Clinical interpretable deep learning model for glaucoma diagnosis publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2949075 – start-page: 53 year: 2014 ident: 10.1016/j.xops.2024.100531_bib19 – volume: 125 start-page: 1143 year: 2018 ident: 10.1016/j.xops.2024.100531_bib36 article-title: The 2016 American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) database: characteristics and methods publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.12.001 – year: 2023 ident: 10.1016/j.xops.2024.100531_bib38 article-title: Conditional diffusion models for weakly supervised medical image segmentation publication-title: arXiv – volume: 27 year: 2014 ident: 10.1016/j.xops.2024.100531_bib25 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 9 start-page: 27 year: 2020 ident: 10.1016/j.xops.2024.100531_bib8 article-title: Effects of study population, labeling and training on glaucoma detection using deep learning algorithms publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.9.2.27 – volume: 1 start-page: 100069 year: 2021 ident: 10.1016/j.xops.2024.100531_bib41 article-title: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data publication-title: Ophthalmol Sci doi: 10.1016/j.xops.2021.100069 – year: 2022 ident: 10.1016/j.xops.2024.100531_bib18 article-title: REFUGE2 challenge: a treasure trove for multi-dimension analysis and evaluation in glaucoma screening publication-title: arXiv – volume: 28 start-page: 31 year: 2022 ident: 10.1016/j.xops.2024.100531_bib30 article-title: AI in health and medicine publication-title: Nat Med doi: 10.1038/s41591-021-01614-0 – volume: 18 start-page: 1 year: 2019 ident: 10.1016/j.xops.2024.100531_bib9 article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation publication-title: Biomed Eng Online doi: 10.1186/s12938-019-0649-y – year: 2021 ident: 10.1016/j.xops.2024.100531_bib16 article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers – volume: 139 start-page: 10347 year: 2021 ident: 10.1016/j.xops.2024.100531_bib14 article-title: Training data-efficient image transformers & distillation through attention. Proceedings of the 38th International Conference on Machine Learning publication-title: PMLR – volume: 137 start-page: 258 year: 2019 ident: 10.1016/j.xops.2024.100531_bib24 article-title: Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2018.6156 – volume: 2 start-page: 158 year: 2018 ident: 10.1016/j.xops.2024.100531_bib39 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0195-0 – year: 2020 ident: 10.1016/j.xops.2024.100531_bib13 article-title: An image is worth 16x16 words: transformers for image recognition at scale publication-title: arXiv – volume: 74 start-page: 61 year: 2019 ident: 10.1016/j.xops.2024.100531_bib7 article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.02.005 – volume: 12464 start-page: 565 year: 2023 ident: 10.1016/j.xops.2024.100531_bib17 article-title: Investigation of probability maps in deep-learning-based brain ventricle parcellation – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.xops.2024.100531_bib27 article-title: Denoising diffusion probabilistic models publication-title: Adv Neural Inf Process Syst – volume: 8 start-page: 16685 year: 2018 ident: 10.1016/j.xops.2024.100531_bib5 article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs publication-title: Sci Rep doi: 10.1038/s41598-018-35044-9 – volume: 322 start-page: 2377 year: 2019 ident: 10.1016/j.xops.2024.100531_bib33 article-title: Addressing bias in artificial intelligence in health care publication-title: JAMA doi: 10.1001/jama.2019.18058 – start-page: 801 year: 2018 ident: 10.1016/j.xops.2024.100531_bib43 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – start-page: 213 year: 2020 ident: 10.1016/j.xops.2024.100531_bib15 article-title: End-to-end object detection with transformers – volume: 10 start-page: 1266 year: 2023 ident: 10.1016/j.xops.2024.100531_bib44 article-title: Multi-dataset Comparison of vision transformers and convolutional neural networks for detecting glaucomatous optic neuropathy from fundus photographs publication-title: Bioengineering (Basel) doi: 10.3390/bioengineering10111266 – year: 2022 ident: 10.1016/j.xops.2024.100531_bib23 – start-page: 3065 year: 2010 ident: 10.1016/j.xops.2024.100531_bib42 – volume: 9 start-page: 42 year: 2020 ident: 10.1016/j.xops.2024.100531_bib2 article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.9.2.42 – year: 2023 ident: 10.1016/j.xops.2024.100531_bib31 article-title: Harvard glaucoma fairness: a retinal nerve disease dataset for fairness learning and fair identity normalization publication-title: arXiv – volume: 12 start-page: 307 issue: 4 year: 2019 ident: 10.1016/j.xops.2024.100531_bib28 article-title: An introduction to variational autoencoders publication-title: Found Trends Mach Learn doi: 10.1561/2200000056 – start-page: 1 year: 2011 ident: 10.1016/j.xops.2024.100531_bib21 article-title: RIM-ONE: an open retinal image database for optic nerve evaluation – year: 2018 ident: 10.1016/j.xops.2024.100531_bib26 article-title: Know what you don't know: unanswerable questions for SQuAD publication-title: arXiv – start-page: 70 year: 2022 ident: 10.1016/j.xops.2024.100531_bib34 article-title: A re-balancing strategy for class-imbalanced classification based on instance difficulty – start-page: 770 year: 2016 ident: 10.1016/j.xops.2024.100531_bib29 – volume: 3 start-page: 100233 year: 2023 ident: 10.1016/j.xops.2024.100531_bib10 article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization publication-title: Ophthalmol Sci doi: 10.1016/j.xops.2022.100233 – volume: 208 start-page: 273 year: 2019 ident: 10.1016/j.xops.2024.100531_bib11 article-title: Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2019.08.004 – volume: 2013 year: 2013 ident: 10.1016/j.xops.2024.100531_bib20 article-title: Robust vessel segmentation in fundus images publication-title: Int J Biomed Imaging doi: 10.1155/2013/154860 – volume: 138 start-page: 974 year: 2020 ident: 10.1016/j.xops.2024.100531_bib35 article-title: Application of the sight outcomes research collaborative ophthalmology data repository for triaging patients with glaucoma and clinic appointments during pandemics such as COVID-19 publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2020.2974 – volume: 237 start-page: 1 year: 2022 ident: 10.1016/j.xops.2024.100531_bib4 article-title: Performances of machine learning in detecting glaucoma using fundus and retinal optical coherence tomography images: a meta-analysis publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2021.12.008 |
SSID | ssj0002513241 |
Score | 2.273486 |
Snippet | Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100531 |
SubjectTerms | Data scarcity Generative AI Glaucoma |
Title | Generative Artificial Intelligence Enhancements for Reducing Image-based Training Data Requirements |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666914524000678 https://dx.doi.org/10.1016/j.xops.2024.100531 https://www.ncbi.nlm.nih.gov/pubmed/39071920 https://www.proquest.com/docview/3085689848 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB2MvY_dll6LB3oZDrIsvj2WklJK1MBLInoSkSISudULnwtiv39HN9kradXsxQeg4Rufz0ZH8nU8IfVQKliaK5JnNjckYp2WmKGUZp8QSqhSjyqt9nhRHC3a85MuebuurS1o11r921pX8j1ehDfzqqmT_wbPdTaEBfoN_4QoehuudfBw0oz355-DSk36CdMZAZXParJ1fQyGboxR-dVqtniZwAaEkc7PYykmc-4MiAASthC6OHhxshsnr6XbdruX5RZBtSgVB1_RKI1kgRjP5vQdO2Gr9lubKkD3r0HosdWB_BzpPYPDOoip43JQgrGNdxdgF034BcTQoRY7NjrYYfNkAY3wQSHMfHXbG-LDdcDb-udk6vXXCxn3nPwW1T07F4WI2E_Ppcn4fPSBl6b_kpw0dN1lDegcppVuWd48XS6sCC_D6n9yUvty0PPFpyvwJehzXF_gggOUpumeaZ-jhl8igeI50jxncYwYPMYOHmMGAGZwwgweYwQkz2GEGDzHzAi0Op_PPR1k8aCPTjOdtpipI3DXRhcwV1xU0KmqkIlLWE0NsoYjKJ6WFbDu3FVdK14YzU5CVrgjlitOXaK_ZNOY1wrKm1pZ2xYl2967qlckhTlCm9IQYK0coT-MndFShd4ehnItENzwTbsyFG3MRxnyEPnU226DBcmtvmtwiUnUxzIcC4HOrFe-s4vsTcsq_2n1InhcQmN3XNtmYzdUPQWExU1R1xaoRehUg0T09rSGzr8nkzR2s36JH_Rv2Du21l1fmPSTCrdr3G0j7HtC_AZZItUQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Artificial+Intelligence+Enhancements+for+Reducing+Image-based+Training+Data+Requirements&rft.jtitle=Ophthalmology+science+%28Online%29&rft.au=Chen%2C+Dake&rft.au=Han%2C+Ying&rft.au=Duncan%2C+Jacque&rft.au=Jia%2C+Lin&rft.date=2024-09-01&rft.issn=2666-9145&rft.eissn=2666-9145&rft.volume=4&rft.issue=5&rft.spage=100531&rft_id=info:doi/10.1016%2Fj.xops.2024.100531&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9145&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9145&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9145&client=summon |