Generative Artificial Intelligence Enhancements for Reducing Image-based Training Data Requirements

Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the...

Full description

Saved in:
Bibliographic Details
Published inOphthalmology science (Online) Vol. 4; no. 5; p. 100531
Main Authors Chen, Dake, Han, Ying, Duncan, Jacque, Jia, Lin, Shan, Jing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN2666-9145
2666-9145
DOI10.1016/j.xops.2024.100531

Cover

Abstract Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data. Computational study with open-source data. The data were obtained from 6 open-source datasets comprising patients aged 40–80 years in Singapore, China, India, and Spain. The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy. Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance. Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models. Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields. The authors have no proprietary or commercial interest in any materials discussed in this article.
AbstractList Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data. Computational study with open-source data. The data were obtained from 6 open-source datasets comprising patients aged 40–80 years in Singapore, China, India, and Spain. The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy. Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance. Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models. Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields. The authors have no proprietary or commercial interest in any materials discussed in this article.
Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.ObjectiveTraining data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of AI tools in sectors with inherently scarce data. In health care, training data are difficult to curate, triggering growing concerns that the current lack of access to health care by under-privileged social groups will translate into future bias in health care AIs. In this report, we developed an autoencoder to grow and enhance inherently scarce datasets to alleviate our dependence on big data.Computational study with open-source data.DesignComputational study with open-source data.The data were obtained from 6 open-source datasets comprising patients aged 40-80 years in Singapore, China, India, and Spain.SubjectsThe data were obtained from 6 open-source datasets comprising patients aged 40-80 years in Singapore, China, India, and Spain.The reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.MethodsThe reported framework generates synthetic images based on real-world patient imaging data. As a test case, we used autoencoder to expand publicly available training sets of optic disc photos, and evaluated the ability of the resultant datasets to train AI models in the detection of glaucomatous optic neuropathy.Area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.Main Outcome MeasuresArea under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the glaucoma detector. A higher AUC indicates better detection performance.Results show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.ResultsResults show that enhancing datasets with synthetic images generated by autoencoder led to superior training sets that improved the performance of AI models.Our findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.ConclusionsOur findings here help address the increasingly untenable data volume and quality requirements for AI model development and have implications beyond health care, toward empowering AI adoption for all similarly data-challenged fields.The authors have no proprietary or commercial interest in any materials discussed in this article.Financial DisclosuresThe authors have no proprietary or commercial interest in any materials discussed in this article.
ArticleNumber 100531
Author Duncan, Jacque
Shan, Jing
Han, Ying
Chen, Dake
Jia, Lin
Author_xml – sequence: 1
  givenname: Dake
  orcidid: 0000-0002-1596-6700
  surname: Chen
  fullname: Chen, Dake
  organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California
– sequence: 2
  givenname: Ying
  surname: Han
  fullname: Han, Ying
  organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California
– sequence: 3
  givenname: Jacque
  surname: Duncan
  fullname: Duncan, Jacque
  organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California
– sequence: 4
  givenname: Lin
  surname: Jia
  fullname: Jia, Lin
  organization: Digillect LLC, San Francisco, California
– sequence: 5
  givenname: Jing
  orcidid: 0000-0003-0590-9937
  surname: Shan
  fullname: Shan, Jing
  email: jing.shan@ucsf.edu
  organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39071920$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFL5TAUhcOgjI76B2YhXbrpM0mbmoobUUcfCAODrkNye_vMs02fSSr6702pwuBCV_dyON-Fe84vsuUGh4T8ZnTBKKuO14uXYRMWnPIyCVQU7AfZ5VVV5TUrxdZ_-w45CGFNKeWCFbxkP8lOUdMTVnO6S-AaHXod7TNm5z7a1oLVXbZ0EbvOrtABZlfuQafZo4shawef_cNmBOtW2bLXK8yNDthkd15bN4mXOupkeRqtn5l9st3qLuDB-9wj93-u7i5u8tu_18uL89scSsFibiQVJXCoNDMCZBJNgdpwrWuKvK0MN4yetEyUrJXCGKhRlFjxBiQvhBHFHjma72788DRiiKq3AdIf2uEwBlVQKSpZy1Im6-G7dTQ9Nmrjba_9q_oIJhnkbAA_hOCxVWBjimlwMf3ZKUbVVINaq6kGNdWg5hoSyj-hH9e_hM5mCFNAzxa9CmCn9JuUIkTVDPZr_PQTDl1qA3T3iK_fwW-kD7T_
CitedBy_id crossref_primary_10_3348_kjr_2024_0392
Cites_doi 10.1038/s41598-021-89743-x
10.1016/j.ophtha.2014.05.013
10.1016/j.ogla.2023.06.011
10.1145/3457607
10.1016/j.ophtha.2021.04.009
10.1109/JBHI.2019.2949075
10.1016/j.ophtha.2017.12.001
10.1167/tvst.9.2.27
10.1016/j.xops.2021.100069
10.1038/s41591-021-01614-0
10.1186/s12938-019-0649-y
10.1001/jamaophthalmol.2018.6156
10.1038/s41551-018-0195-0
10.1016/j.compmedimag.2019.02.005
10.1038/s41598-018-35044-9
10.1001/jama.2019.18058
10.3390/bioengineering10111266
10.1167/tvst.9.2.42
10.1561/2200000056
10.1016/j.xops.2022.100233
10.1016/j.ajo.2019.08.004
10.1155/2013/154860
10.1001/jamaophthalmol.2020.2974
10.1016/j.ajo.2021.12.008
ContentType Journal Article
Copyright 2024 American Academy of Ophthalmology
2024 by the American Academy of Ophthalmology.
Copyright_xml – notice: 2024 American Academy of Ophthalmology
– notice: 2024 by the American Academy of Ophthalmology.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.xops.2024.100531
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-9145
ExternalDocumentID 39071920
10_1016_j_xops_2024_100531
S2666914524000678
Genre Journal Article
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
Z5R
0SF
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c451t-b8054c2c6a1b5c8c45b3eab2aa90e2f6b2b107f1541f85bbc9e54e62dc8235b53
ISSN 2666-9145
IngestDate Fri Jul 11 09:30:19 EDT 2025
Mon Jul 21 05:44:53 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 03:50:43 EDT 2025
Sat Sep 21 15:59:48 EDT 2024
Tue Aug 26 16:33:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Glaucoma
ViT
CNN
Generative AI
AI
Data scarcity
AUC
Language English
License This is an open access article under the CC BY license.
2024 by the American Academy of Ophthalmology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-b8054c2c6a1b5c8c45b3eab2aa90e2f6b2b107f1541f85bbc9e54e62dc8235b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1596-6700
0000-0003-0590-9937
OpenAccessLink http://dx.doi.org/10.1016/j.xops.2024.100531
PMID 39071920
PQID 3085689848
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3085689848
pubmed_primary_39071920
crossref_citationtrail_10_1016_j_xops_2024_100531
crossref_primary_10_1016_j_xops_2024_100531
elsevier_sciencedirect_doi_10_1016_j_xops_2024_100531
elsevier_clinicalkey_doi_10_1016_j_xops_2024_100531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September-October 2024
2024-09-00
2024 Sep-Oct
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September-October 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ophthalmology science (Online)
PublicationTitleAlternate Ophthalmol Sci
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Poplin, Varadarajan, Blumer (bib39) 2018; 2
Chen, Zhu, Papandreou (bib43) 2018
Luo, Tian, Shi (bib31) 2023
Bommakanti, Zhou, Ehrlich (bib35) 2020; 138
Yu, Xiao, Frost, Kanagasingam (bib7) 2019; 74
Fang, Li, Wu (bib18) 2022
Wang, Feng, Xue (bib17) 2023; 12464
Parikh, Teeple, Navathe (bib33) 2019; 322
He, Zhang, Ren, Sun (bib29) 2016
Shan, Li, Ma (bib12) 2024; 7
Korot, Pontikos, Liu (bib40) 2021; 11
Wu, Nishida, Weinreb, Lin (bib4) 2022; 237
Deng (bib37) 2009
Fan, Alipour, Bowd (bib10) 2023; 3
Sivaswamy, Krishnadas, Joshi (bib19) 2014
Rajpurkar, Jia, Liang (bib26) 2018
Yu, Guo, Zhang (bib34) 2022
Xu, Chiang, Chaudhary (bib11) 2019; 208
Rajpurkar, Chen, Banerjee, Topol (bib30) 2022; 28
Hwang, Chen, Han (bib44) 2023; 10
Chiang, Sommer, Rich (bib36) 2018; 125
Liao, Zou, Zhao (bib6) 2019; 24
Thompson, Jammal, Medeiros (bib2) 2020; 9
Carion, Massa, Synnaeve (bib15) 2020
Zheng, Lu, Zhao (bib16) 2021
Burlina, Joshi, Pacheco (bib24) 2019; 137
(bib23) 2022
Lo, Timothy, Ma (bib41) 2021; 1
Fumero, Alayón, Sanchez (bib21) 2011
Mehrabi, Morstatter, Saxena (bib32) 2021; 54
Christopher, Nakahara, Bowd (bib8) 2020; 9
Dosovitskiy, Beyer, Kolesnikove (bib13) 2020
Diaz-Pinto, Moralles, Naranjo (bib9) 2019; 18
Tham, Li, Wong (bib1) 2014; 121
Soh, Yu, Betzler (bib3) 2021; 128
(bib22) 2016
Ho, Jain, Abbeel (bib27) 2020; 33
Hugo, Cord, Douze (bib14) 2021; 139
Goodfellow, Pouget-Abadie, Mirza (bib25) 2014; 27
Budai, Bock, Maier (bib20) 2013; 2013
Kingma, Welling (bib28) 2019; 12
Hu, Chen, Ho, Shi (bib38) 2023
Zhang, Yin, Liu (bib42) 2010
Christopher, Belghith, Bowd (bib5) 2018; 8
Sivaswamy (10.1016/j.xops.2024.100531_bib19) 2014
Hugo (10.1016/j.xops.2024.100531_bib14) 2021; 139
Hwang (10.1016/j.xops.2024.100531_bib44) 2023; 10
Budai (10.1016/j.xops.2024.100531_bib20) 2013; 2013
Christopher (10.1016/j.xops.2024.100531_bib5) 2018; 8
Dosovitskiy (10.1016/j.xops.2024.100531_bib13) 2020
(10.1016/j.xops.2024.100531_bib23) 2022
Rajpurkar (10.1016/j.xops.2024.100531_bib30) 2022; 28
Bommakanti (10.1016/j.xops.2024.100531_bib35) 2020; 138
Thompson (10.1016/j.xops.2024.100531_bib2) 2020; 9
Yu (10.1016/j.xops.2024.100531_bib7) 2019; 74
Zheng (10.1016/j.xops.2024.100531_bib16) 2021
Chiang (10.1016/j.xops.2024.100531_bib36) 2018; 125
He (10.1016/j.xops.2024.100531_bib29) 2016
Rajpurkar (10.1016/j.xops.2024.100531_bib26) 2018
Yu (10.1016/j.xops.2024.100531_bib34) 2022
Wang (10.1016/j.xops.2024.100531_bib17) 2023; 12464
Zhang (10.1016/j.xops.2024.100531_bib42) 2010
Chen (10.1016/j.xops.2024.100531_bib43) 2018
Fan (10.1016/j.xops.2024.100531_bib10) 2023; 3
Deng (10.1016/j.xops.2024.100531_bib37) 2009
Ho (10.1016/j.xops.2024.100531_bib27) 2020; 33
Korot (10.1016/j.xops.2024.100531_bib40) 2021; 11
Fumero (10.1016/j.xops.2024.100531_bib21) 2011
Hu (10.1016/j.xops.2024.100531_bib38) 2023
Soh (10.1016/j.xops.2024.100531_bib3) 2021; 128
Lo (10.1016/j.xops.2024.100531_bib41) 2021; 1
Tham (10.1016/j.xops.2024.100531_bib1) 2014; 121
Carion (10.1016/j.xops.2024.100531_bib15) 2020
Burlina (10.1016/j.xops.2024.100531_bib24) 2019; 137
Goodfellow (10.1016/j.xops.2024.100531_bib25) 2014; 27
Fang (10.1016/j.xops.2024.100531_bib18) 2022
Luo (10.1016/j.xops.2024.100531_bib31) 2023
Mehrabi (10.1016/j.xops.2024.100531_bib32) 2021; 54
Wu (10.1016/j.xops.2024.100531_bib4) 2022; 237
Kingma (10.1016/j.xops.2024.100531_bib28) 2019; 12
Poplin (10.1016/j.xops.2024.100531_bib39) 2018; 2
Christopher (10.1016/j.xops.2024.100531_bib8) 2020; 9
Xu (10.1016/j.xops.2024.100531_bib11) 2019; 208
Diaz-Pinto (10.1016/j.xops.2024.100531_bib9) 2019; 18
Parikh (10.1016/j.xops.2024.100531_bib33) 2019; 322
Liao (10.1016/j.xops.2024.100531_bib6) 2019; 24
Shan (10.1016/j.xops.2024.100531_bib12) 2024; 7
References_xml – volume: 11
  start-page: 10286
  year: 2021
  ident: bib40
  article-title: Predicting sex from retinal fundus photographs using automated deep learning
  publication-title: Sci Rep
– volume: 2013
  year: 2013
  ident: bib20
  article-title: Robust vessel segmentation in fundus images
  publication-title: Int J Biomed Imaging
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: bib28
  article-title: An introduction to variational autoencoders
  publication-title: Found Trends Mach Learn
– year: 2020
  ident: bib13
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: arXiv
– year: 2022
  ident: bib23
  article-title: Improving Representation in Clinical Trials and Research: Building Research Equity for Women and Underrepresented Groups
– volume: 9
  start-page: 27
  year: 2020
  ident: bib8
  article-title: Effects of study population, labeling and training on glaucoma detection using deep learning algorithms
  publication-title: Transl Vis Sci Technol
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: bib27
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv Neural Inf Process Syst
– year: 2023
  ident: bib31
  article-title: Harvard glaucoma fairness: a retinal nerve disease dataset for fairness learning and fair identity normalization
  publication-title: arXiv
– start-page: 3065
  year: 2010
  end-page: 3068
  ident: bib42
  article-title: Origa-light: an online retinal fundus image database for glaucoma analysis and research
– year: 2018
  ident: bib26
  article-title: Know what you don't know: unanswerable questions for SQuAD
  publication-title: arXiv
– volume: 10
  start-page: 1266
  year: 2023
  ident: bib44
  article-title: Multi-dataset Comparison of vision transformers and convolutional neural networks for detecting glaucomatous optic neuropathy from fundus photographs
  publication-title: Bioengineering (Basel)
– volume: 8
  start-page: 16685
  year: 2018
  ident: bib5
  article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs
  publication-title: Sci Rep
– volume: 24
  start-page: 1405
  year: 2019
  end-page: 1412
  ident: bib6
  article-title: Clinical interpretable deep learning model for glaucoma diagnosis
  publication-title: IEEE J Biomed Health Inform
– start-page: 801
  year: 2018
  end-page: 818
  ident: bib43
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 7
  start-page: 8
  year: 2024
  end-page: 15
  ident: bib12
  article-title: Deep learning classification of angle closure based on anterior segment optical coherence tomography
  publication-title: Ophthalmol Glaucoma
– volume: 27
  year: 2014
  ident: bib25
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 74
  start-page: 61
  year: 2019
  end-page: 71
  ident: bib7
  article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection
  publication-title: Comput Med Imaging Graph
– year: 2021
  ident: bib16
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 53
  year: 2014
  end-page: 56
  ident: bib19
  article-title: Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: bib39
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
– year: 2022
  ident: bib18
  article-title: REFUGE2 challenge: a treasure trove for multi-dimension analysis and evaluation in glaucoma screening
  publication-title: arXiv
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib37
  article-title: Imagenet: a large-scale hierarchical image database
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib21
  article-title: RIM-ONE: an open retinal image database for optic nerve evaluation
  publication-title: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS)
– volume: 322
  start-page: 2377
  year: 2019
  end-page: 2378
  ident: bib33
  article-title: Addressing bias in artificial intelligence in health care
  publication-title: JAMA
– year: 2016
  ident: bib22
  article-title: sjchoi86: sjchoi86-HRF database. GitHub
– volume: 128
  start-page: 1393
  year: 2021
  end-page: 1404
  ident: bib3
  article-title: The global extent of undetected glaucoma in adults: a systematic review and meta-analysis
  publication-title: Ophthalmology
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib29
  article-title: Deep residual learning for image recognition
– volume: 18
  start-page: 1
  year: 2019
  end-page: 19
  ident: bib9
  article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation
  publication-title: Biomed Eng Online
– volume: 125
  start-page: 1143
  year: 2018
  end-page: 1148
  ident: bib36
  article-title: The 2016 American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) database: characteristics and methods
  publication-title: Ophthalmology
– volume: 139
  start-page: 10347
  year: 2021
  end-page: 10357
  ident: bib14
  article-title: Training data-efficient image transformers & distillation through attention. Proceedings of the 38th International Conference on Machine Learning
  publication-title: PMLR
– start-page: 70
  year: 2022
  end-page: 79
  ident: bib34
  article-title: A re-balancing strategy for class-imbalanced classification based on instance difficulty
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 9
  start-page: 42
  year: 2020
  ident: bib2
  article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression
  publication-title: Transl Vis Sci Technol
– volume: 137
  start-page: 258
  year: 2019
  end-page: 264
  ident: bib24
  article-title: Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration
  publication-title: JAMA Ophthalmol
– volume: 54
  start-page: 1
  year: 2021
  end-page: 35
  ident: bib32
  article-title: A survey on bias and fairness in machine learning
  publication-title: ACM Comput Surv
– start-page: 213
  year: 2020
  end-page: 229
  ident: bib15
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision
– volume: 1
  start-page: 100069
  year: 2021
  ident: bib41
  article-title: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data
  publication-title: Ophthalmol Sci
– volume: 138
  start-page: 974
  year: 2020
  end-page: 980
  ident: bib35
  article-title: Application of the sight outcomes research collaborative ophthalmology data repository for triaging patients with glaucoma and clinic appointments during pandemics such as COVID-19
  publication-title: JAMA Ophthalmol
– volume: 237
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib4
  article-title: Performances of machine learning in detecting glaucoma using fundus and retinal optical coherence tomography images: a meta-analysis
  publication-title: Am J Ophthalmol
– volume: 208
  start-page: 273
  year: 2019
  end-page: 280
  ident: bib11
  article-title: Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images
  publication-title: Am J Ophthalmol
– volume: 12464
  start-page: 565
  year: 2023
  end-page: 570
  ident: bib17
  article-title: Investigation of probability maps in deep-learning-based brain ventricle parcellation
– volume: 121
  start-page: 2081
  year: 2014
  end-page: 2090
  ident: bib1
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
– volume: 3
  start-page: 100233
  year: 2023
  ident: bib10
  article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization
  publication-title: Ophthalmol Sci
– volume: 28
  start-page: 31
  year: 2022
  end-page: 38
  ident: bib30
  article-title: AI in health and medicine
  publication-title: Nat Med
– year: 2023
  ident: bib38
  article-title: Conditional diffusion models for weakly supervised medical image segmentation
  publication-title: arXiv
– start-page: 248
  year: 2009
  ident: 10.1016/j.xops.2024.100531_bib37
– volume: 11
  start-page: 10286
  year: 2021
  ident: 10.1016/j.xops.2024.100531_bib40
  article-title: Predicting sex from retinal fundus photographs using automated deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89743-x
– volume: 121
  start-page: 2081
  year: 2014
  ident: 10.1016/j.xops.2024.100531_bib1
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.05.013
– volume: 7
  start-page: 8
  year: 2024
  ident: 10.1016/j.xops.2024.100531_bib12
  article-title: Deep learning classification of angle closure based on anterior segment optical coherence tomography
  publication-title: Ophthalmol Glaucoma
  doi: 10.1016/j.ogla.2023.06.011
– volume: 54
  start-page: 1
  year: 2021
  ident: 10.1016/j.xops.2024.100531_bib32
  article-title: A survey on bias and fairness in machine learning
  publication-title: ACM Comput Surv
  doi: 10.1145/3457607
– volume: 128
  start-page: 1393
  year: 2021
  ident: 10.1016/j.xops.2024.100531_bib3
  article-title: The global extent of undetected glaucoma in adults: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.009
– volume: 24
  start-page: 1405
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib6
  article-title: Clinical interpretable deep learning model for glaucoma diagnosis
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2949075
– start-page: 53
  year: 2014
  ident: 10.1016/j.xops.2024.100531_bib19
– volume: 125
  start-page: 1143
  year: 2018
  ident: 10.1016/j.xops.2024.100531_bib36
  article-title: The 2016 American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) database: characteristics and methods
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.12.001
– year: 2023
  ident: 10.1016/j.xops.2024.100531_bib38
  article-title: Conditional diffusion models for weakly supervised medical image segmentation
  publication-title: arXiv
– volume: 27
  year: 2014
  ident: 10.1016/j.xops.2024.100531_bib25
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 9
  start-page: 27
  year: 2020
  ident: 10.1016/j.xops.2024.100531_bib8
  article-title: Effects of study population, labeling and training on glaucoma detection using deep learning algorithms
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.9.2.27
– volume: 1
  start-page: 100069
  year: 2021
  ident: 10.1016/j.xops.2024.100531_bib41
  article-title: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data
  publication-title: Ophthalmol Sci
  doi: 10.1016/j.xops.2021.100069
– year: 2022
  ident: 10.1016/j.xops.2024.100531_bib18
  article-title: REFUGE2 challenge: a treasure trove for multi-dimension analysis and evaluation in glaucoma screening
  publication-title: arXiv
– volume: 28
  start-page: 31
  year: 2022
  ident: 10.1016/j.xops.2024.100531_bib30
  article-title: AI in health and medicine
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01614-0
– volume: 18
  start-page: 1
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib9
  article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-019-0649-y
– year: 2021
  ident: 10.1016/j.xops.2024.100531_bib16
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
– volume: 139
  start-page: 10347
  year: 2021
  ident: 10.1016/j.xops.2024.100531_bib14
  article-title: Training data-efficient image transformers & distillation through attention. Proceedings of the 38th International Conference on Machine Learning
  publication-title: PMLR
– volume: 137
  start-page: 258
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib24
  article-title: Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2018.6156
– volume: 2
  start-page: 158
  year: 2018
  ident: 10.1016/j.xops.2024.100531_bib39
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0195-0
– year: 2020
  ident: 10.1016/j.xops.2024.100531_bib13
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: arXiv
– volume: 74
  start-page: 61
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib7
  article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.02.005
– volume: 12464
  start-page: 565
  year: 2023
  ident: 10.1016/j.xops.2024.100531_bib17
  article-title: Investigation of probability maps in deep-learning-based brain ventricle parcellation
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.xops.2024.100531_bib27
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv Neural Inf Process Syst
– volume: 8
  start-page: 16685
  year: 2018
  ident: 10.1016/j.xops.2024.100531_bib5
  article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-35044-9
– volume: 322
  start-page: 2377
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib33
  article-title: Addressing bias in artificial intelligence in health care
  publication-title: JAMA
  doi: 10.1001/jama.2019.18058
– start-page: 801
  year: 2018
  ident: 10.1016/j.xops.2024.100531_bib43
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– start-page: 213
  year: 2020
  ident: 10.1016/j.xops.2024.100531_bib15
  article-title: End-to-end object detection with transformers
– volume: 10
  start-page: 1266
  year: 2023
  ident: 10.1016/j.xops.2024.100531_bib44
  article-title: Multi-dataset Comparison of vision transformers and convolutional neural networks for detecting glaucomatous optic neuropathy from fundus photographs
  publication-title: Bioengineering (Basel)
  doi: 10.3390/bioengineering10111266
– year: 2022
  ident: 10.1016/j.xops.2024.100531_bib23
– start-page: 3065
  year: 2010
  ident: 10.1016/j.xops.2024.100531_bib42
– volume: 9
  start-page: 42
  year: 2020
  ident: 10.1016/j.xops.2024.100531_bib2
  article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.9.2.42
– year: 2023
  ident: 10.1016/j.xops.2024.100531_bib31
  article-title: Harvard glaucoma fairness: a retinal nerve disease dataset for fairness learning and fair identity normalization
  publication-title: arXiv
– volume: 12
  start-page: 307
  issue: 4
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib28
  article-title: An introduction to variational autoencoders
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000056
– start-page: 1
  year: 2011
  ident: 10.1016/j.xops.2024.100531_bib21
  article-title: RIM-ONE: an open retinal image database for optic nerve evaluation
– year: 2018
  ident: 10.1016/j.xops.2024.100531_bib26
  article-title: Know what you don't know: unanswerable questions for SQuAD
  publication-title: arXiv
– start-page: 70
  year: 2022
  ident: 10.1016/j.xops.2024.100531_bib34
  article-title: A re-balancing strategy for class-imbalanced classification based on instance difficulty
– start-page: 770
  year: 2016
  ident: 10.1016/j.xops.2024.100531_bib29
– volume: 3
  start-page: 100233
  year: 2023
  ident: 10.1016/j.xops.2024.100531_bib10
  article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization
  publication-title: Ophthalmol Sci
  doi: 10.1016/j.xops.2022.100233
– volume: 208
  start-page: 273
  year: 2019
  ident: 10.1016/j.xops.2024.100531_bib11
  article-title: Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2019.08.004
– volume: 2013
  year: 2013
  ident: 10.1016/j.xops.2024.100531_bib20
  article-title: Robust vessel segmentation in fundus images
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2013/154860
– volume: 138
  start-page: 974
  year: 2020
  ident: 10.1016/j.xops.2024.100531_bib35
  article-title: Application of the sight outcomes research collaborative ophthalmology data repository for triaging patients with glaucoma and clinic appointments during pandemics such as COVID-19
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2020.2974
– volume: 237
  start-page: 1
  year: 2022
  ident: 10.1016/j.xops.2024.100531_bib4
  article-title: Performances of machine learning in detecting glaucoma using fundus and retinal optical coherence tomography images: a meta-analysis
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2021.12.008
SSID ssj0002513241
Score 2.273486
Snippet Training data fuel and shape the development of artificial intelligence (AI) models. Intensive data requirements are a major bottleneck limiting the success of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100531
SubjectTerms Data scarcity
Generative AI
Glaucoma
Title Generative Artificial Intelligence Enhancements for Reducing Image-based Training Data Requirements
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666914524000678
https://dx.doi.org/10.1016/j.xops.2024.100531
https://www.ncbi.nlm.nih.gov/pubmed/39071920
https://www.proquest.com/docview/3085689848
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB2MvY_dll6LB3oZDrIsvj2WklJK1MBLInoSkSISudULnwtiv39HN9kradXsxQeg4Rufz0ZH8nU8IfVQKliaK5JnNjckYp2WmKGUZp8QSqhSjyqt9nhRHC3a85MuebuurS1o11r921pX8j1ehDfzqqmT_wbPdTaEBfoN_4QoehuudfBw0oz355-DSk36CdMZAZXParJ1fQyGboxR-dVqtniZwAaEkc7PYykmc-4MiAASthC6OHhxshsnr6XbdruX5RZBtSgVB1_RKI1kgRjP5vQdO2Gr9lubKkD3r0HosdWB_BzpPYPDOoip43JQgrGNdxdgF034BcTQoRY7NjrYYfNkAY3wQSHMfHXbG-LDdcDb-udk6vXXCxn3nPwW1T07F4WI2E_Ppcn4fPSBl6b_kpw0dN1lDegcppVuWd48XS6sCC_D6n9yUvty0PPFpyvwJehzXF_gggOUpumeaZ-jhl8igeI50jxncYwYPMYOHmMGAGZwwgweYwQkz2GEGDzHzAi0Op_PPR1k8aCPTjOdtpipI3DXRhcwV1xU0KmqkIlLWE0NsoYjKJ6WFbDu3FVdK14YzU5CVrgjlitOXaK_ZNOY1wrKm1pZ2xYl2967qlckhTlCm9IQYK0coT-MndFShd4ehnItENzwTbsyFG3MRxnyEPnU226DBcmtvmtwiUnUxzIcC4HOrFe-s4vsTcsq_2n1InhcQmN3XNtmYzdUPQWExU1R1xaoRehUg0T09rSGzr8nkzR2s36JH_Rv2Du21l1fmPSTCrdr3G0j7HtC_AZZItUQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Artificial+Intelligence+Enhancements+for+Reducing+Image-based+Training+Data+Requirements&rft.jtitle=Ophthalmology+science+%28Online%29&rft.au=Chen%2C+Dake&rft.au=Han%2C+Ying&rft.au=Duncan%2C+Jacque&rft.au=Jia%2C+Lin&rft.date=2024-09-01&rft.issn=2666-9145&rft.eissn=2666-9145&rft.volume=4&rft.issue=5&rft.spage=100531&rft_id=info:doi/10.1016%2Fj.xops.2024.100531&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9145&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9145&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9145&client=summon