Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy

We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 8; no. 4; pp. 1210 - 1221
Main Authors Peimyoo, Namphung, Shang, Jingzhi, Yang, Weihuang, Wang, Yanlong, Cong, Chunxiao, Yu, Ting
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices.
AbstractList We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS 2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E 2g 1 and A 1g Raman modes. The first-order temperature coefficients of E 2g 1 and A 1g modes in both supported and suspended WS 2 layers were extracted. The frequency shift of the A 1g mode with temperature is larger than that of the E 2g 1 mode for 1L-WS 2 , which is attributed to stronger electron-phonon coupling for the A 1g mode than that for the E 2g 1 mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m·K) for 1L- and 2L-WS 2 , respectively. Our results provide fundamental information about the thermal properties of WS 2 layers, which is crucial for developing applications of atomically-thin WS 2 devices.
We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices.
Author Namphung Peimyoo Jingzhi Shang Weihuang Yang Yanlong wang Chunxiao Cong Ting Yu
AuthorAffiliation Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore Department of Physics, Faculty of Science, National University of Singapore, 117542 Singapore, Singapore Graphene Research Center, Faculty of Science, National University of Singapore, 117546 Singapore, Singapore
Author_xml – sequence: 1
  givenname: Namphung
  surname: Peimyoo
  fullname: Peimyoo, Namphung
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 2
  givenname: Jingzhi
  surname: Shang
  fullname: Shang, Jingzhi
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 3
  givenname: Weihuang
  surname: Yang
  fullname: Yang, Weihuang
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 4
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 5
  givenname: Chunxiao
  surname: Cong
  fullname: Cong, Chunxiao
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 6
  givenname: Ting
  surname: Yu
  fullname: Yu, Ting
  email: yuting@ntu.edu.sg
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Department of Physics, Faculty of Science, National University of Singapore, Graphene Research Center, Faculty of Science, National University of Singapore
BookMark eNp9kM1OAyEUhYmpiW31AdwR96PAwDAsTeNf0sREa1y4IAww7TQzUGFqMm8vtdWFi96EXELOx7n3TMDIeWcBuMToGiPEbyImhNMM4XQKRDJ0AsZYiDJDqUa_d0zoGZjEuEaoIJiWY_CxWNnQqRZq78xW981X0w_Q2D69Nk71jXfQ1zBu48Y6Yw3svPMZVM7AqmnVYAN8fyWwGuCL6pSDSab74KP2m-EcnNaqjfbi0Kfg7f5uMXvM5s8PT7PbeaYpw32maloQahFnnCImirLAnFLBDaWMVUYxzYuKMFzSkgheMZ2zqlQEY5RzJYzIp4Dv_9XJOAZbS930P6P3QTWtxEjuMpL7jGTKSO4ykiiR-B-5CU2nwnCUIXsmJq1b2iDXfhtcWvAodHUwWnm3_Ezcn1NRMCQIFTT_BqAZhd8
CitedBy_id crossref_primary_10_1039_D2CP05432A
crossref_primary_10_7567_JJAP_57_06HE04
crossref_primary_10_1021_acs_jpcc_2c00732
crossref_primary_10_1002_adfm_201606469
crossref_primary_10_1007_s12274_021_3774_4
crossref_primary_10_1557_s43577_023_00557_w
crossref_primary_10_1007_s12274_017_1941_4
crossref_primary_10_1021_acsomega_1c06963
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_026
crossref_primary_10_1088_1674_1056_abd2a6
crossref_primary_10_1016_j_matlet_2017_04_062
crossref_primary_10_1103_PhysRevB_111_125411
crossref_primary_10_1016_j_snb_2019_04_016
crossref_primary_10_1039_D1NA00531F
crossref_primary_10_34133_2021_8438614
crossref_primary_10_1021_acsnano_2c00956
crossref_primary_10_1063_1_4982819
crossref_primary_10_1063_1_4934181
crossref_primary_10_1088_1361_6528_abb107
crossref_primary_10_1039_C6NR01118G
crossref_primary_10_1021_acsnano_3c05485
crossref_primary_10_1021_acsnano_7b06430
crossref_primary_10_1063_1_5118315
crossref_primary_10_1038_s41699_020_00168_y
crossref_primary_10_3390_nano13121817
crossref_primary_10_1038_s41467_024_48888_9
crossref_primary_10_1038_srep43037
crossref_primary_10_1039_C8RA10601K
crossref_primary_10_1007_s12274_021_3589_3
crossref_primary_10_1021_acsnano_9b08004
crossref_primary_10_1109_TED_2022_3224100
crossref_primary_10_1088_1361_648X_ab7f07
crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_065
crossref_primary_10_1063_5_0001863
crossref_primary_10_1002_advs_202001722
crossref_primary_10_1038_ncomms8636
crossref_primary_10_1021_acs_jpcc_6b06139
crossref_primary_10_1016_j_apsusc_2021_150226
crossref_primary_10_1016_j_cej_2024_155454
crossref_primary_10_1016_j_joule_2018_01_006
crossref_primary_10_1088_1361_6528_aaa923
crossref_primary_10_1016_j_apmt_2018_05_005
crossref_primary_10_1002_polb_24349
crossref_primary_10_1021_acsami_9b16866
crossref_primary_10_1002_adma_201808244
crossref_primary_10_3390_en12244632
crossref_primary_10_1016_j_triboint_2021_107363
crossref_primary_10_7567_JJAP_57_060309
crossref_primary_10_1021_acs_nanolett_0c01704
crossref_primary_10_1039_D1TC01392K
crossref_primary_10_1039_D4NR02669A
crossref_primary_10_3389_fmats_2020_578791
crossref_primary_10_1002_adma_201704850
crossref_primary_10_1007_s12274_021_3921_y
crossref_primary_10_1016_j_jallcom_2018_09_335
crossref_primary_10_1002_lpor_202300850
crossref_primary_10_1007_s13391_016_6107_0
crossref_primary_10_1016_j_jallcom_2018_11_073
crossref_primary_10_1021_acsami_1c24368
crossref_primary_10_1039_D2RA06470G
crossref_primary_10_1140_epjs_s11734_021_00389_2
crossref_primary_10_1016_j_commatsci_2017_12_005
crossref_primary_10_1021_acsami_8b05885
crossref_primary_10_1016_j_actamat_2019_06_011
crossref_primary_10_1063_1_5099010
crossref_primary_10_1002_jrs_5842
crossref_primary_10_1021_acs_jpclett_1c00947
crossref_primary_10_1038_s41467_024_47958_2
crossref_primary_10_1039_C6CP05952J
crossref_primary_10_1016_j_mssp_2018_12_035
crossref_primary_10_1039_C9NR07586K
crossref_primary_10_1016_j_scib_2017_10_022
crossref_primary_10_1021_acsnano_5b06678
crossref_primary_10_1088_2053_1583_ab20ea
crossref_primary_10_1088_2053_1583_abb877
crossref_primary_10_1039_D0NR04591H
crossref_primary_10_1088_1361_6528_ac8d9d
crossref_primary_10_1039_D1RA03425A
crossref_primary_10_1016_j_apsusc_2020_147479
crossref_primary_10_1002_aelm_202400244
crossref_primary_10_1002_pssr_202100166
crossref_primary_10_1002_smll_202106078
crossref_primary_10_1021_acsami_7b14853
crossref_primary_10_1016_j_vibspec_2016_08_004
crossref_primary_10_1021_acsnano_3c03795
crossref_primary_10_1063_5_0087862
crossref_primary_10_1103_PhysRevB_104_195304
crossref_primary_10_1016_j_matpr_2021_01_016
crossref_primary_10_1088_1361_6528_aa744d
crossref_primary_10_1002_smll_202302289
crossref_primary_10_1364_OL_524772
crossref_primary_10_1016_j_matpr_2022_04_120
crossref_primary_10_1016_j_commatsci_2023_112345
crossref_primary_10_1002_adma_201804979
crossref_primary_10_1016_j_rinp_2017_11_017
crossref_primary_10_1016_j_mtcomm_2022_103815
crossref_primary_10_1063_5_0123628
crossref_primary_10_1063_1_5125169
crossref_primary_10_1088_2053_1583_3_2_025016
crossref_primary_10_1103_PhysRevB_98_245403
crossref_primary_10_1016_j_ijthermalsci_2022_107669
crossref_primary_10_1039_D0NA00844C
crossref_primary_10_1088_0957_4484_27_5_055703
crossref_primary_10_31613_ceramist_2023_26_1_08
crossref_primary_10_1039_C6RA20623A
crossref_primary_10_1039_D2CC02519A
crossref_primary_10_1002_smll_202204595
crossref_primary_10_1038_s41528_022_00157_9
crossref_primary_10_1039_D2NA00495J
crossref_primary_10_1016_j_physe_2018_06_007
crossref_primary_10_1016_j_physleta_2020_126676
crossref_primary_10_1063_5_0049368
crossref_primary_10_1039_D2CP02126A
crossref_primary_10_1088_1674_1056_ac272f
crossref_primary_10_1039_D3RA02952B
crossref_primary_10_1039_C7NR01695F
crossref_primary_10_1007_s10854_023_10831_x
crossref_primary_10_1038_srep43886
crossref_primary_10_1063_5_0180404
crossref_primary_10_1103_PhysRevApplied_13_034059
crossref_primary_10_1002_jrs_5230
crossref_primary_10_1039_C7DT02407J
crossref_primary_10_3390_nano11010175
crossref_primary_10_1002_inf2_12274
crossref_primary_10_1002_admi_202202013
crossref_primary_10_1039_D1NR08375A
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123307
crossref_primary_10_1021_acs_nanolett_3c05085
crossref_primary_10_1063_5_0142944
crossref_primary_10_1103_PhysRevMaterials_4_124006
crossref_primary_10_1002_adom_201801373
crossref_primary_10_1021_acsami_4c02629
crossref_primary_10_1039_C8TC04573A
crossref_primary_10_1051_e3sconf_202337503002
crossref_primary_10_1021_acs_jpcc_4c07381
crossref_primary_10_1063_1_5123682
crossref_primary_10_1016_j_matlet_2016_03_050
crossref_primary_10_1002_inf2_12169
crossref_primary_10_1016_j_snb_2017_07_052
crossref_primary_10_1002_chem_201604787
crossref_primary_10_1021_acsnano_9b05574
crossref_primary_10_1007_s10765_020_02627_6
crossref_primary_10_1021_acs_jpcc_1c02842
crossref_primary_10_1063_5_0035413
crossref_primary_10_1016_j_apsusc_2022_153967
crossref_primary_10_1016_j_pmatsci_2020_100708
crossref_primary_10_1088_2053_1583_ab0c31
crossref_primary_10_1007_s12648_021_02045_w
crossref_primary_10_1002_aenm_201902253
crossref_primary_10_1088_2053_1583_ab48d9
crossref_primary_10_1016_j_jmat_2018_08_001
crossref_primary_10_1016_j_jallcom_2017_11_058
crossref_primary_10_1088_1361_648X_aca8e4
crossref_primary_10_1021_am509056b
crossref_primary_10_1021_acsami_7b16397
crossref_primary_10_1103_RevModPhys_90_041002
crossref_primary_10_1021_acs_jpcc_9b07553
crossref_primary_10_1088_2053_1583_4_1_011007
crossref_primary_10_35848_1882_0786_ab939d
crossref_primary_10_1016_j_physe_2019_113683
crossref_primary_10_1039_D1NR07889E
crossref_primary_10_2139_ssrn_4049703
crossref_primary_10_1039_D0CP00738B
crossref_primary_10_3390_nano13010117
crossref_primary_10_1039_D4CP02793K
crossref_primary_10_1002_adom_202302326
crossref_primary_10_2139_ssrn_4067909
crossref_primary_10_1016_j_ceramint_2019_04_248
crossref_primary_10_1021_acsnano_9b09839
crossref_primary_10_1016_j_optmat_2024_114872
crossref_primary_10_1021_acsami_0c21045
crossref_primary_10_1039_C7NR01894K
crossref_primary_10_1063_5_0159517
crossref_primary_10_1021_acssuschemeng_3c02376
crossref_primary_10_1039_D3CP02896H
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126946
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124753
crossref_primary_10_1002_admi_202300794
crossref_primary_10_1021_acsomega_4c04431
crossref_primary_10_1038_s41598_019_40882_2
crossref_primary_10_1088_1361_6528_aca67b
crossref_primary_10_3390_ma13235315
crossref_primary_10_1088_2053_1583_ac234f
crossref_primary_10_1002_advs_202004712
crossref_primary_10_1016_j_apsusc_2024_159287
crossref_primary_10_1002_adma_202202479
crossref_primary_10_1103_PhysRevB_108_115406
crossref_primary_10_1002_adom_202302229
crossref_primary_10_1039_D1QI00390A
crossref_primary_10_1103_PhysRevB_104_075418
crossref_primary_10_1039_D2NH00226D
crossref_primary_10_1021_acs_jpcc_1c09603
crossref_primary_10_1088_2053_1583_ac3dd6
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118583
crossref_primary_10_1021_acsami_9b03608
crossref_primary_10_1016_j_surfin_2023_103253
crossref_primary_10_1016_j_mtchem_2024_102077
crossref_primary_10_3390_polym11020321
crossref_primary_10_1021_acsomega_9b01087
crossref_primary_10_1088_1361_6463_acc9d0
crossref_primary_10_1021_acsaem_3c01249
crossref_primary_10_1016_j_molliq_2024_124996
crossref_primary_10_1021_acs_nanolett_8b00583
crossref_primary_10_1039_C5RA19747C
crossref_primary_10_1007_s11051_017_3865_z
crossref_primary_10_1016_j_apsusc_2019_03_127
crossref_primary_10_1021_acsami_3c06134
crossref_primary_10_1021_acsami_2c18755
crossref_primary_10_1002_adfm_202000240
crossref_primary_10_1007_s12274_016_1224_5
crossref_primary_10_1021_acs_jpcc_1c02522
crossref_primary_10_1016_j_progpolymsci_2022_101505
crossref_primary_10_1021_acs_jpcc_1c00589
crossref_primary_10_1016_j_ceramint_2023_01_007
crossref_primary_10_3390_su13084155
crossref_primary_10_1021_acssuschemeng_8b03949
crossref_primary_10_1039_C7NR00284J
crossref_primary_10_1063_1_4900816
crossref_primary_10_1063_5_0226632
crossref_primary_10_1002_app_48927
crossref_primary_10_1088_1674_1056_27_3_037802
crossref_primary_10_1080_23746149_2020_1734083
crossref_primary_10_1016_j_tsf_2020_138508
crossref_primary_10_1002_adfm_201604134
crossref_primary_10_1021_acsami_7b12151
crossref_primary_10_1007_s00339_022_05270_0
crossref_primary_10_1016_j_jallcom_2018_11_263
crossref_primary_10_1039_C6NR09484H
crossref_primary_10_1007_s12274_022_4487_z
crossref_primary_10_1007_s12274_015_0895_7
crossref_primary_10_1016_j_apsusc_2019_144192
crossref_primary_10_1038_srep15718
crossref_primary_10_1016_j_isci_2023_107174
crossref_primary_10_1039_D0TC00659A
crossref_primary_10_1016_j_apsusc_2017_04_063
crossref_primary_10_1016_j_mtphys_2018_05_004
crossref_primary_10_1039_D1TC03248H
crossref_primary_10_1088_1674_1056_27_3_034402
crossref_primary_10_1016_j_ssc_2019_04_013
crossref_primary_10_7498_aps_69_20200709
crossref_primary_10_1039_C8RA01527A
crossref_primary_10_1016_j_mechmat_2025_105330
crossref_primary_10_1016_j_vibspec_2020_103034
crossref_primary_10_1038_ncomms10019
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_041
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_012
crossref_primary_10_1088_0953_8984_27_28_285401
crossref_primary_10_1007_s12598_022_02209_5
crossref_primary_10_1021_acs_jpclett_9b03726
crossref_primary_10_1063_5_0054657
crossref_primary_10_6023_A21120616
crossref_primary_10_1038_srep32236
crossref_primary_10_1103_PhysRevB_100_035402
crossref_primary_10_1088_1361_648X_aaf53b
crossref_primary_10_1007_s11433_022_1949_9
crossref_primary_10_1021_acsphotonics_2c01861
crossref_primary_10_1063_5_0130350
crossref_primary_10_1021_acs_jpcc_1c10192
crossref_primary_10_1016_j_vibspec_2020_103169
crossref_primary_10_1016_j_orgel_2021_106305
crossref_primary_10_1007_s12274_022_4560_7
crossref_primary_10_1088_1361_6528_ad6875
crossref_primary_10_1063_1_5118004
crossref_primary_10_1039_C5RA19698A
crossref_primary_10_1021_jacs_1c08030
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125810
crossref_primary_10_1088_1361_6528_ad5a9f
crossref_primary_10_1039_C8MH01072B
crossref_primary_10_1063_1_4928931
crossref_primary_10_1088_1361_6528_ac12ec
crossref_primary_10_1088_1402_4896_adb3de
crossref_primary_10_1016_j_apsusc_2020_147406
crossref_primary_10_1021_acsami_1c14133
crossref_primary_10_1007_s11249_020_01294_w
crossref_primary_10_1016_j_physe_2020_114312
crossref_primary_10_1016_j_ijhydene_2019_11_053
crossref_primary_10_1016_j_actamat_2022_118299
crossref_primary_10_1088_2053_1583_3_3_031013
Cites_doi 10.1021/j100393a010
10.1088/0034-4885/74/8/082501
10.1021/nn302876w
10.1021/nl071033g
10.1103/PhysRevB.84.155413
10.1103/PhysRevB.85.161403
10.1021/nl304060g
10.1103/PhysRevB.89.125406
10.1038/ncomms5709
10.1063/1.123096
10.1021/nn4046002
10.1038/nnano.2012.96
10.1038/srep02593
10.1021/jp402509w
10.1103/RevModPhys.83.837
10.1021/nl302389d
10.1103/PhysRevB.83.245213
10.1002/adfm.201102111
10.1038/nnano.2012.193
10.1038/srep01755
10.1103/PhysRevB.87.115413
10.1038/nnano.2012.95
10.1021/nl403465v
10.1021/nn403454e
10.1063/1.4819337
10.1103/PhysRevB.87.125415
10.1021/nl3026357
10.1021/nl9041966
10.1038/nnano.2010.279
10.1038/nmat3633
10.1103/PhysRevLett.105.136805
10.1038/nmat3700
10.1021/nn405826k
10.1021/nn405194e
10.1126/science.1184014
10.1002/smll.201202876
10.1021/nl104156y
10.1021/nn1003937
10.1038/ncomms1882
10.1103/PhysRevB.7.2779
10.1002/adom.201300428
10.1016/0038-1098(80)90518-9
10.1016/0301-0104(91)80136-6
10.1021/am404847d
10.1021/nn305275h
10.1021/nl0731872
10.1021/nl903868w
10.1364/OE.21.004908
10.1038/nmat2753
10.1038/srep01608
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1007/s12274-014-0602-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy
EISSN 1998-0000
EndPage 1221
ExternalDocumentID 10_1007_s12274_014_0602_0
665092494
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
ID FETCH-LOGICAL-c451t-af4624e07574059686174497d4455bda5c76b251848297b5c35b8a211037a9d93
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Tue Jul 01 01:46:44 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Fri Feb 21 02:35:32 EST 2025
Wed Feb 14 10:30:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords temperature dependence
tungsten disulfide
Raman
thermal conductivity
excitation power
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-af4624e07574059686174497d4455bda5c76b251848297b5c35b8a211037a9d93
Notes 11-5974/O4
We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices.
thermal conductivity,tungsten disulfide,Raman,temperature dependence,excitation power
PageCount 12
ParticipantIDs crossref_citationtrail_10_1007_s12274_014_0602_0
crossref_primary_10_1007_s12274_014_0602_0
springer_journals_10_1007_s12274_014_0602_0
chongqing_primary_665092494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2015
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Gutiérrez, Perea-López, Elías, Berkdemir, Wang, Lv, López-Urías, Crespi, Terrones, Terrones (CR12) 2013; 13
Horzum, Sahin, Cahangirov, Cudazzo, Rubio, Serin, Peeters (CR44) 2013; 87
Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR13) 2014; 2
Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR29) 2012; 85
Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido (CR46) 2010; 328
Tonndorf, Schmidt, Böttger, Zhang, Börner, Liebig, Albrecht, Kloc, Gordan, Zahn (CR6) 2013; 21
Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (CR49) 2010; 9
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR1) 2012; 7
Calizo, Balandin, Bao, Miao, Lau (CR22) 2007; 7
Neto, Novoselov (CR3) 2011; 74
Zhang, Zhang, Ji, Ju, Yuan, Shi, Gao, Ma, Liu, Chen (CR14) 2013; 7
Sourisseau, Cruege, Fouassier, Alba (CR35) 1991; 150
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (CR24) 2008; 8
Cong, Yu (CR21) 2014; 5
Splendiani, Sun, Zhang, Li, Kim, Chim, Galli, Wang (CR5) 2010; 10
Sekine, Nakashizu, Toyoda, Uchinokura, Matsuura (CR36) 1980; 35
Jo, Pettes, Kim, Watanabe, Taniguchi, Yao, Shi (CR23) 2013; 13
Zhao, Ghorannevis, Chu, Toh, Kloc, Tan, Eda (CR7) 2013; 7
Van der Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR50) 2013; 12
Gong, Colombo, Wallace, Cho (CR47) 2014; 14
Peercy, Morosin (CR42) 1973; 7
Lee, Yan, Brus, Heinz, Hone, Ryu (CR40) 2010; 4
Lanzillo, Birdwell, Amani, Crowne, Shah, Najmaei, Liu, Ajayan, Lou, Dubey (CR41) 2013; 103
Molina-Sánchez, Wirtz (CR39) 2011; 84
Song, Park, Lee, Choi, Jung, Lee, Hwang, Myoung, Jung, Kim (CR16) 2013; 7
Kuc, Zibouche, Heine (CR9) 2011; 83
Li, Zhang, Yap, Tay, Edwin, Olivier, Baillargeat (CR27) 2012; 22
Zhang, Han, Wu, Milana, Lu, Li, Ferrari, Tan (CR38) 2013; 87
Mak, Lee, Hone, Shan, Heinz (CR4) 2010; 105
Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (CR25) 2010; 10
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR8) 2011; 6
Sahoo, Gaur, Ahmadi, Guinel, Katiyar (CR32) 2013; 117
Braga, Lezama, Berger, Morpurgo (CR17) 2012; 12
Novoselov (CR2) 2011; 83
Hajiyev, Cong, Qiu, Yu (CR28) 2013; 3
Kam, Parkinson (CR34) 1982; 86
Mak, He, Shan, Heinz (CR18) 2012; 7
Thripuranthaka, Late (CR33) 2014; 6
Zeng, Dai, Yao, Xiao, Cui (CR19) 2012; 7
Voiry, Yamaguchi, Li, Silva, Alves, Fujita, Chen, Asefa, Shenoy, Eda (CR11) 2013; 12
Wang, Cong, Qiu, Yu (CR31) 2013; 9
Pettes, Jo, Yao, Shi (CR48) 2011; 11
Zeng, Liu, Dai, Yan, Zhu, He, Xie, Xu, Chen, Yao (CR10) 2013; 3
Peimyoo, Li, Shang, Shen, Qiu, Xie, Huang, Yu (CR30) 2012; 6
Berkdemir, Gutiérrez, Botello-Méndez, Perea-López, Elías, Chia, Wang, Crespi, López-Urías, Charlier (CR37) 2013; 3
Tan, Deng, Zhao, Cheng (CR43) 1999; 74
Peimyoo, Shang, Cong, Shen, Wu, Yeow, Yu (CR15) 2013; 7
Scheuschner, Ochedowski, Kaulitz, Gillen, Schleberger, Maultzsch (CR45) 2014; 89
Cao, Wang, Han, Ye, Zhu, Shi, Niu, Tan, Wang, Liu (CR20) 2012; 3
Yan, Simpson, Bertolazzi, Brivio, Watson, Wu, Kis, Luo, Walker, Xing (CR26) 2014; 8
C X Cong (602_CR13) 2014; 2
P Tonndorf (602_CR6) 2013; 21
B Chakraborty (602_CR29) 2012; 85
S Sahoo (602_CR32) 2013; 117
N Scheuschner (602_CR45) 2014; 89
C Lee (602_CR40) 2010; 4
K F Mak (602_CR4) 2010; 105
H L Zeng (602_CR10) 2013; 3
Y Zhang (602_CR14) 2013; 7
H R Gutiérrez (602_CR12) 2013; 13
P H Tan (602_CR43) 1999; 74
T Cao (602_CR20) 2012; 3
H L Zeng (602_CR19) 2012; 7
N Peimyoo (602_CR15) 2013; 7
H Li (602_CR27) 2012; 22
M Thripuranthaka (602_CR33) 2014; 6
N A Lanzillo (602_CR41) 2013; 103
A Molina-Sánchez (602_CR39) 2011; 84
W W Cai (602_CR25) 2010; 10
W J Zhao (602_CR7) 2013; 7
D Braga (602_CR17) 2012; 12
C Sourisseau (602_CR35) 1991; 150
S Horzum (602_CR44) 2013; 87
C Gong (602_CR47) 2014; 14
A A Balandin (602_CR24) 2008; 8
S Ghosh (602_CR49) 2010; 9
D Voiry (602_CR11) 2013; 12
A M Zande Van der (602_CR50) 2013; 12
X Zhang (602_CR38) 2013; 87
R S Yan (602_CR26) 2014; 8
K F Mak (602_CR18) 2012; 7
C X Cong (602_CR21) 2014; 5
K S Novoselov (602_CR2) 2011; 83
J G Song (602_CR16) 2013; 7
M T Pettes (602_CR48) 2011; 11
I Jo (602_CR23) 2013; 13
T Sekine (602_CR36) 1980; 35
A Kuc (602_CR9) 2011; 83
A H C Neto (602_CR3) 2011; 74
I Calizo (602_CR22) 2007; 7
Y L Wang (602_CR31) 2013; 9
K K Kam (602_CR34) 1982; 86
P S Peercy (602_CR42) 1973; 7
N Peimyoo (602_CR30) 2012; 6
B Radisavljevic (602_CR8) 2011; 6
A Berkdemir (602_CR37) 2013; 3
Q H Wang (602_CR1) 2012; 7
A Splendiani (602_CR5) 2010; 10
P Hajiyev (602_CR28) 2013; 3
J H Seol (602_CR46) 2010; 328
References_xml – volume: 86
  start-page: 463
  year: 1982
  end-page: 467
  ident: CR34
  article-title: Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100393a010
– volume: 74
  start-page: 082521
  year: 2011
  ident: CR3
  article-title: New directions in science and technology: Two-dimensional crystals
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/8/082501
– volume: 6
  start-page: 8878
  year: 2012
  end-page: 8886
  ident: CR30
  article-title: Photocontrolled molecular structural transition and doping in graphene
  publication-title: ACS Nano
  doi: 10.1021/nn302876w
– volume: 7
  start-page: 2645
  year: 2007
  end-page: 2649
  ident: CR22
  article-title: Temperature dependence of the Raman spectra of graphene and graphene multilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl071033g
– volume: 84
  start-page: 155413
  year: 2011
  ident: CR39
  article-title: Phonons in single-layer and few-layer MoS and WS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.155413
– volume: 85
  start-page: 161403
  year: 2012
  ident: CR29
  article-title: Symmetry-dependent phonon renormalization in monolayer MoS transistor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 13
  start-page: 550
  year: 2013
  end-page: 554
  ident: CR23
  article-title: Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride
  publication-title: Nano Lett.
  doi: 10.1021/nl304060g
– volume: 89
  start-page: 125406
  year: 2014
  ident: CR45
  article-title: Photoluminescence of freestanding single- and few-layer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.125406
– volume: 5
  start-page: 4709
  year: 2014
  ident: CR21
  article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5709
– volume: 74
  start-page: 1818
  year: 1999
  end-page: 1820
  ident: CR43
  article-title: The intrinsic temperature effect of the Raman spectra of graphite
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123096
– volume: 7
  start-page: 10985
  year: 2013
  end-page: 10994
  ident: CR15
  article-title: Nonblinking, intense two-dimensional light emitter: Mono layer WS triangles
  publication-title: ACS Nano
  doi: 10.1021/nn4046002
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR18
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 3
  start-page: 2593
  year: 2013
  ident: CR28
  article-title: Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe
  publication-title: Sci. Rep.
  doi: 10.1038/srep02593
– volume: 117
  start-page: 9042
  year: 2013
  end-page: 9047
  ident: CR32
  article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402509w
– volume: 83
  start-page: 837
  year: 2011
  end-page: 849
  ident: CR2
  article-title: Nobel lecture: Graphene: Materials in the flatland
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.837
– volume: 12
  start-page: 5218
  year: 2012
  end-page: 5223
  ident: CR17
  article-title: Quantitative determination of the band gap of WS with ambipolar ionic liquid-gated transistors
  publication-title: Nano Lett.
  doi: 10.1021/nl302389d
– volume: 83
  start-page: 245213
  year: 2011
  ident: CR9
  article-title: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245213
– volume: 22
  start-page: 1385
  year: 2012
  end-page: 1390
  ident: CR27
  article-title: From bulk to monolayer MoS : Evolution of Raman scattering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102111
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR1
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 3
  start-page: 1755
  year: 2013
  ident: CR37
  article-title: Identification of individual and few layers of WS using Raman spectroscopy
  publication-title: Sci. Rep.
  doi: 10.1038/srep01755
– volume: 87
  start-page: 115413
  year: 2013
  ident: CR38
  article-title: Raman spectroscopy of shear and layer breathing modes in multilayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115413
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: CR19
  article-title: Valley polarization in MoS monolayers by optical pumping
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 14
  start-page: 1714
  year: 2014
  end-page: 1720
  ident: CR47
  article-title: The unusual mechanism of partial Fermi level pinning at metal-MoS interfaces
  publication-title: Nano Lett.
  doi: 10.1021/nl403465v
– volume: 7
  start-page: 8963
  year: 2013
  end-page: 8971
  ident: CR14
  article-title: Controlled growth of high-quality monolayer WS layers on sapphire and imaging its grain boundary
  publication-title: ACS Nano
  doi: 10.1021/nn403454e
– volume: 103
  start-page: 93102
  year: 2013
  ident: CR41
  article-title: Temperature-dependent phonon shifts in monolayer MoS
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819337
– volume: 87
  start-page: 125415
  year: 2013
  ident: CR44
  article-title: Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.125415
– volume: 13
  start-page: 3447
  year: 2013
  end-page: 3454
  ident: CR12
  article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
– volume: 10
  start-page: 1645
  year: 2010
  end-page: 1651
  ident: CR25
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl9041966
– volume: 6
  start-page: 147
  year: 2011
  end-page: 150
  ident: CR8
  article-title: Single-layer MoS transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 12
  start-page: 554
  year: 2013
  end-page: 561
  ident: CR50
  article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR4
  article-title: Atomically thin Mos : A new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 12
  start-page: 850
  year: 2013
  end-page: 855
  ident: CR11
  article-title: Enhanced catalytic activity in strained chemically exfoliated WS nanosheets for hydrogen evolution
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
– volume: 8
  start-page: 986
  year: 2014
  end-page: 993
  ident: CR26
  article-title: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy
  publication-title: ACS Nano
  doi: 10.1021/nn405826k
– volume: 7
  start-page: 11333
  year: 2013
  end-page: 11340
  ident: CR16
  article-title: Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition
  publication-title: ACS Nano
  doi: 10.1021/nn405194e
– volume: 328
  start-page: 213
  year: 2010
  end-page: 216
  ident: CR46
  article-title: Two-dimensional phonon transport in supported graphene
  publication-title: Science
  doi: 10.1126/science.1184014
– volume: 9
  start-page: 2857
  year: 2013
  end-page: 2861
  ident: CR31
  article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 3
  start-page: 1608
  year: 2013
  ident: CR10
  article-title: Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
  publication-title: Sci. Rep.
– volume: 11
  start-page: 1195
  year: 2011
  end-page: 1200
  ident: CR48
  article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl104156y
– volume: 4
  start-page: 2695
  year: 2010
  end-page: 2700
  ident: CR40
  article-title: Anomalous lattice vibrations of single- and few-layer MoS
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 3
  start-page: 887
  year: 2012
  ident: CR20
  article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 7
  start-page: 2779
  year: 1973
  end-page: 2786
  ident: CR42
  article-title: Pressure and temperature dependences of Raman-active phonons in SnO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.2779
– volume: 2
  start-page: 131
  year: 2014
  end-page: 136
  ident: CR13
  article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300428
– volume: 35
  start-page: 371
  year: 1980
  end-page: 373
  ident: CR36
  article-title: Raman scattering in layered compound 2H-WS
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(80)90518-9
– volume: 150
  start-page: 281
  year: 1991
  end-page: 293
  ident: CR35
  article-title: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(91)80136-6
– volume: 6
  start-page: 1158
  year: 2014
  end-page: 1163
  ident: CR33
  article-title: Temperature dependent phonon shifts in single-layer WS
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am404847d
– volume: 7
  start-page: 791
  year: 2013
  end-page: 797
  ident: CR7
  article-title: Evolution of Electronic Structure in Atomically Thin Sheets of WS and WSe
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: CR24
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR5
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 21
  start-page: 4908
  year: 2013
  end-page: 4916
  ident: CR6
  article-title: Photoluminescence emission and Raman response of monolayer MoS , MoSe , and WSe
  publication-title: Opt. Exp.
  doi: 10.1364/OE.21.004908
– volume: 9
  start-page: 555
  year: 2010
  end-page: 558
  ident: CR49
  article-title: Dimensional crossover of thermal transport in few-layer graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2753
– volume: 86
  start-page: 463
  year: 1982
  ident: 602_CR34
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100393a010
– volume: 21
  start-page: 4908
  year: 2013
  ident: 602_CR6
  publication-title: Opt. Exp.
  doi: 10.1364/OE.21.004908
– volume: 74
  start-page: 1818
  year: 1999
  ident: 602_CR43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123096
– volume: 13
  start-page: 550
  year: 2013
  ident: 602_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl304060g
– volume: 35
  start-page: 371
  year: 1980
  ident: 602_CR36
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(80)90518-9
– volume: 6
  start-page: 147
  year: 2011
  ident: 602_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 7
  start-page: 494
  year: 2012
  ident: 602_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 8
  start-page: 986
  year: 2014
  ident: 602_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn405826k
– volume: 89
  start-page: 125406
  year: 2014
  ident: 602_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.125406
– volume: 14
  start-page: 1714
  year: 2014
  ident: 602_CR47
  publication-title: Nano Lett.
  doi: 10.1021/nl403465v
– volume: 6
  start-page: 8878
  year: 2012
  ident: 602_CR30
  publication-title: ACS Nano
  doi: 10.1021/nn302876w
– volume: 12
  start-page: 850
  year: 2013
  ident: 602_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
– volume: 8
  start-page: 902
  year: 2008
  ident: 602_CR24
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 7
  start-page: 2779
  year: 1973
  ident: 602_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.2779
– volume: 74
  start-page: 082521
  year: 2011
  ident: 602_CR3
  publication-title: Rep. Prog. Phys.
– volume: 83
  start-page: 837
  year: 2011
  ident: 602_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.837
– volume: 7
  start-page: 10985
  year: 2013
  ident: 602_CR15
  publication-title: ACS Nano
  doi: 10.1021/nn4046002
– volume: 9
  start-page: 2857
  year: 2013
  ident: 602_CR31
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 9
  start-page: 555
  year: 2010
  ident: 602_CR49
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2753
– volume: 22
  start-page: 1385
  year: 2012
  ident: 602_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102111
– volume: 84
  start-page: 155413
  year: 2011
  ident: 602_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.155413
– volume: 3
  start-page: 1608
  year: 2013
  ident: 602_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep01608
– volume: 13
  start-page: 3447
  year: 2013
  ident: 602_CR12
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
– volume: 10
  start-page: 1271
  year: 2010
  ident: 602_CR5
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 6
  start-page: 1158
  year: 2014
  ident: 602_CR33
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am404847d
– volume: 12
  start-page: 554
  year: 2013
  ident: 602_CR50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 85
  start-page: 161403
  year: 2012
  ident: 602_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 87
  start-page: 115413
  year: 2013
  ident: 602_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115413
– volume: 117
  start-page: 9042
  year: 2013
  ident: 602_CR32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402509w
– volume: 11
  start-page: 1195
  year: 2011
  ident: 602_CR48
  publication-title: Nano Lett.
  doi: 10.1021/nl104156y
– volume: 7
  start-page: 8963
  year: 2013
  ident: 602_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn403454e
– volume: 2
  start-page: 131
  year: 2014
  ident: 602_CR13
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300428
– volume: 5
  start-page: 4709
  year: 2014
  ident: 602_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5709
– volume: 83
  start-page: 245213
  year: 2011
  ident: 602_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245213
– volume: 3
  start-page: 887
  year: 2012
  ident: 602_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 10
  start-page: 1645
  year: 2010
  ident: 602_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl9041966
– volume: 3
  start-page: 1755
  year: 2013
  ident: 602_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/srep01755
– volume: 150
  start-page: 281
  year: 1991
  ident: 602_CR35
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(91)80136-6
– volume: 3
  start-page: 2593
  year: 2013
  ident: 602_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/srep02593
– volume: 12
  start-page: 5218
  year: 2012
  ident: 602_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl302389d
– volume: 7
  start-page: 699
  year: 2012
  ident: 602_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 103
  start-page: 93102
  year: 2013
  ident: 602_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819337
– volume: 328
  start-page: 213
  year: 2010
  ident: 602_CR46
  publication-title: Science
  doi: 10.1126/science.1184014
– volume: 7
  start-page: 11333
  year: 2013
  ident: 602_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn405194e
– volume: 87
  start-page: 125415
  year: 2013
  ident: 602_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.125415
– volume: 4
  start-page: 2695
  year: 2010
  ident: 602_CR40
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 105
  start-page: 136805
  year: 2010
  ident: 602_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 7
  start-page: 791
  year: 2013
  ident: 602_CR7
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume: 7
  start-page: 2645
  year: 2007
  ident: 602_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl071033g
– volume: 7
  start-page: 490
  year: 2012
  ident: 602_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
SSID ssj0062148
Score 2.5553856
Snippet We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of...
We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS 2 grown by chemical vapor deposition (CVD), which are determined by use of...
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 1210
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Materials Science
Nanotechnology
Research Article
WS2
化学气相沉积
发展中国家
声子耦合
拉曼光谱
海藻酸钠
激光诱导加热
热导率
Title Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy
URI http://lib.cqvip.com/qk/71233X/201504/665092494.html
https://link.springer.com/article/10.1007/s12274-014-0602-0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD-MRaLXvwpATSZDfZPRbpA0UParHiIewjUaEm1baH_ntn06S1oIKHwB52NzCzOzMfO_MNwJmmsSu4iB1lQgQoQuIoxnslcYGrlI792BY439wG_QG9GrJhUcc9KbPdyyfJ3FKvit08RFAIffELbNpsBWoMobvN4xp47dL8Bl4rb5m1qB1D71U-Zf60hSVUeM3Slw_83bpjWn8VzZ1Ndwe2iyiRtBdq3YWNON2DrW_cgfvwjApGozoiCGgtZ2veBIKYMrvFyptkCZnMJnmXW0PwvGUOkakh6m0kMdImj_ceUXNyJ99lSvKSS0ttmY3nBzDodh4u-07RKcHRlLWmjkxo4KHUQxZS20-HY1xCqQgNpYwpI5kOA4WRDKe2klYx7TPFpcV-fiiFEf4hVNMsjY-AGGGUdmkiZKhowrlsCaU59X3DE9UKdR0aS5FF4wUjRhRYHj4EcrQObinESBck47bXxSha0SNbHUSog8jqIHLrcL5cUu73x-SLUjNRcdkmv88-_tfsBmxiNMQWaTknUJ1-zuJTjDimqgkV3u01odbuPV13mvl5-wLTps6Z
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5ED-pBfOL6zEEvSqHbJm168LCoy_o8qIuCh5hXVVjb1V2R_T3-USfd1geo4MFDoYekpJnJzHxk5huADU2tn_DEesrECFASiW8Wz5XECb5S2obWFTifnEatNj28Ylcj8FrVwhTZ7tWVZGGpP4rdAkRQCH3xiVzabJlJeWQHL4jTejsHeyjUzSBo7l_stryylYCnKav3PZnSKMBlxSymruEMR8dNaRIbShlTRjIdRwpdPaeu1FQxHTLFpQNHYSwT4xiX0M6PYezB3dFpB43K3EdBvWjRNaxVQ29ZXZ1-t2RH4HCXZ7eP-HtfHeHXW9jCuTWnYaqMSkljqEYzMGKzWZj8xFU4B9eoUGjEOwQBtOOILZpOEFNl0zj5kjwlvede0VXXENTv3CMyM0TddyRG9uTyPCBqQM7kg8xIUeLpqDTz7mAe2v-ynQswmuWZXQRiEqO0T9NExoqmnMt6ojSnYWh4quqxrsHy-5aJ7pCBQ0SO9w-BI62BX22i0CWpueut0REfdMxOBgJlIJwMhF-Drfcp1fd-GbxdSUaUh7v38-ilP41eh_HWxcmxOD44PVqGCYzE2DAlaAVG-0_PdhWjnb5aK7SNwM1_q_cbdZgFvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EQfQgPnF95qAXpdhtkz4OHkRdfC6iLgoeYl5VYW1Xd0X2V_kXnfSxKqjgwUOhh6SkM5PMDJnvG4A1RY0bR7FxpA4xQYkFvhncVwInuFIq4xsLcD5tBgctenTNrofgrcLC5NXu1ZVkgWmwLE1pb6ujk60P4JuH2RSmwfgEtoS2rKo8Nv1XzNm624d7qOB1z2vsX-4eOGVbAUdRVu85IqGBh0sMWUht85kInTilcagpZUxqwVQYSHT7EbWwU8mUz2QkbKLkhyLWln0Jz_wRasHHuIFa3k519AdePW_XVeDW0HNW16jfLdmSOdxn6d0T_upXp_j1RjZ3dI1JmCgjVLJTmNQUDJl0GsY_8RbOwA0aFx7obYJSs3yxeQMKoqvKGqtrkiWk-9LNO-xqgraeOUSkmsiHtsAon1xdeET2ybl4FCnJ4Z6WVjPr9Geh9S_inIPhNEvNPBAda6lcmsQilDSJIlGPpYqo7-sokfVQ1WBxIDLeKdg4eGA5ADGJpDVwKyFyVRKc2z4bbf5BzWx1wFEH3OqAuzXYGEypvvfL4M1KM7zc6N2fRy_8afQqjJ7tNfjJYfN4EcYwKGNFddASDPeeX8wyBj49uZIbG4Hb_7budy4GCfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+conductivity+determination+of+suspended+mono-+and+bilayer+WS2+by+Raman+spectroscopy&rft.jtitle=Nano+research&rft.au=Peimyoo%2C+Namphung&rft.au=Shang%2C+Jingzhi&rft.au=Yang%2C+Weihuang&rft.au=Wang%2C+Yanlong&rft.date=2015-04-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=4&rft.spage=1210&rft.epage=1221&rft_id=info:doi/10.1007%2Fs12274-014-0602-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_014_0602_0
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg