Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy
We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported...
Saved in:
Published in | Nano research Vol. 8; no. 4; pp. 1210 - 1221 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices. |
---|---|
AbstractList | We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS
2
grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E
2g
1
and A
1g
Raman modes. The first-order temperature coefficients of E
2g
1
and A
1g
modes in both supported and suspended WS
2
layers were extracted. The frequency shift of the A
1g
mode with temperature is larger than that of the E
2g
1
mode for 1L-WS
2
, which is attributed to stronger electron-phonon coupling for the A
1g
mode than that for the E
2g
1
mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m·K) for 1L- and 2L-WS
2
, respectively. Our results provide fundamental information about the thermal properties of WS
2
layers, which is crucial for developing applications of atomically-thin WS
2
devices. We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices. |
Author | Namphung Peimyoo Jingzhi Shang Weihuang Yang Yanlong wang Chunxiao Cong Ting Yu |
AuthorAffiliation | Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore Department of Physics, Faculty of Science, National University of Singapore, 117542 Singapore, Singapore Graphene Research Center, Faculty of Science, National University of Singapore, 117546 Singapore, Singapore |
Author_xml | – sequence: 1 givenname: Namphung surname: Peimyoo fullname: Peimyoo, Namphung organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 2 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 3 givenname: Weihuang surname: Yang fullname: Yang, Weihuang organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 4 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 5 givenname: Chunxiao surname: Cong fullname: Cong, Chunxiao organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 6 givenname: Ting surname: Yu fullname: Yu, Ting email: yuting@ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Department of Physics, Faculty of Science, National University of Singapore, Graphene Research Center, Faculty of Science, National University of Singapore |
BookMark | eNp9kM1OAyEUhYmpiW31AdwR96PAwDAsTeNf0sREa1y4IAww7TQzUGFqMm8vtdWFi96EXELOx7n3TMDIeWcBuMToGiPEbyImhNMM4XQKRDJ0AsZYiDJDqUa_d0zoGZjEuEaoIJiWY_CxWNnQqRZq78xW981X0w_Q2D69Nk71jXfQ1zBu48Y6Yw3svPMZVM7AqmnVYAN8fyWwGuCL6pSDSab74KP2m-EcnNaqjfbi0Kfg7f5uMXvM5s8PT7PbeaYpw32maloQahFnnCImirLAnFLBDaWMVUYxzYuKMFzSkgheMZ2zqlQEY5RzJYzIp4Dv_9XJOAZbS930P6P3QTWtxEjuMpL7jGTKSO4ykiiR-B-5CU2nwnCUIXsmJq1b2iDXfhtcWvAodHUwWnm3_Ezcn1NRMCQIFTT_BqAZhd8 |
CitedBy_id | crossref_primary_10_1039_D2CP05432A crossref_primary_10_7567_JJAP_57_06HE04 crossref_primary_10_1021_acs_jpcc_2c00732 crossref_primary_10_1002_adfm_201606469 crossref_primary_10_1007_s12274_021_3774_4 crossref_primary_10_1557_s43577_023_00557_w crossref_primary_10_1007_s12274_017_1941_4 crossref_primary_10_1021_acsomega_1c06963 crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_026 crossref_primary_10_1088_1674_1056_abd2a6 crossref_primary_10_1016_j_matlet_2017_04_062 crossref_primary_10_1103_PhysRevB_111_125411 crossref_primary_10_1016_j_snb_2019_04_016 crossref_primary_10_1039_D1NA00531F crossref_primary_10_34133_2021_8438614 crossref_primary_10_1021_acsnano_2c00956 crossref_primary_10_1063_1_4982819 crossref_primary_10_1063_1_4934181 crossref_primary_10_1088_1361_6528_abb107 crossref_primary_10_1039_C6NR01118G crossref_primary_10_1021_acsnano_3c05485 crossref_primary_10_1021_acsnano_7b06430 crossref_primary_10_1063_1_5118315 crossref_primary_10_1038_s41699_020_00168_y crossref_primary_10_3390_nano13121817 crossref_primary_10_1038_s41467_024_48888_9 crossref_primary_10_1038_srep43037 crossref_primary_10_1039_C8RA10601K crossref_primary_10_1007_s12274_021_3589_3 crossref_primary_10_1021_acsnano_9b08004 crossref_primary_10_1109_TED_2022_3224100 crossref_primary_10_1088_1361_648X_ab7f07 crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_065 crossref_primary_10_1063_5_0001863 crossref_primary_10_1002_advs_202001722 crossref_primary_10_1038_ncomms8636 crossref_primary_10_1021_acs_jpcc_6b06139 crossref_primary_10_1016_j_apsusc_2021_150226 crossref_primary_10_1016_j_cej_2024_155454 crossref_primary_10_1016_j_joule_2018_01_006 crossref_primary_10_1088_1361_6528_aaa923 crossref_primary_10_1016_j_apmt_2018_05_005 crossref_primary_10_1002_polb_24349 crossref_primary_10_1021_acsami_9b16866 crossref_primary_10_1002_adma_201808244 crossref_primary_10_3390_en12244632 crossref_primary_10_1016_j_triboint_2021_107363 crossref_primary_10_7567_JJAP_57_060309 crossref_primary_10_1021_acs_nanolett_0c01704 crossref_primary_10_1039_D1TC01392K crossref_primary_10_1039_D4NR02669A crossref_primary_10_3389_fmats_2020_578791 crossref_primary_10_1002_adma_201704850 crossref_primary_10_1007_s12274_021_3921_y crossref_primary_10_1016_j_jallcom_2018_09_335 crossref_primary_10_1002_lpor_202300850 crossref_primary_10_1007_s13391_016_6107_0 crossref_primary_10_1016_j_jallcom_2018_11_073 crossref_primary_10_1021_acsami_1c24368 crossref_primary_10_1039_D2RA06470G crossref_primary_10_1140_epjs_s11734_021_00389_2 crossref_primary_10_1016_j_commatsci_2017_12_005 crossref_primary_10_1021_acsami_8b05885 crossref_primary_10_1016_j_actamat_2019_06_011 crossref_primary_10_1063_1_5099010 crossref_primary_10_1002_jrs_5842 crossref_primary_10_1021_acs_jpclett_1c00947 crossref_primary_10_1038_s41467_024_47958_2 crossref_primary_10_1039_C6CP05952J crossref_primary_10_1016_j_mssp_2018_12_035 crossref_primary_10_1039_C9NR07586K crossref_primary_10_1016_j_scib_2017_10_022 crossref_primary_10_1021_acsnano_5b06678 crossref_primary_10_1088_2053_1583_ab20ea crossref_primary_10_1088_2053_1583_abb877 crossref_primary_10_1039_D0NR04591H crossref_primary_10_1088_1361_6528_ac8d9d crossref_primary_10_1039_D1RA03425A crossref_primary_10_1016_j_apsusc_2020_147479 crossref_primary_10_1002_aelm_202400244 crossref_primary_10_1002_pssr_202100166 crossref_primary_10_1002_smll_202106078 crossref_primary_10_1021_acsami_7b14853 crossref_primary_10_1016_j_vibspec_2016_08_004 crossref_primary_10_1021_acsnano_3c03795 crossref_primary_10_1063_5_0087862 crossref_primary_10_1103_PhysRevB_104_195304 crossref_primary_10_1016_j_matpr_2021_01_016 crossref_primary_10_1088_1361_6528_aa744d crossref_primary_10_1002_smll_202302289 crossref_primary_10_1364_OL_524772 crossref_primary_10_1016_j_matpr_2022_04_120 crossref_primary_10_1016_j_commatsci_2023_112345 crossref_primary_10_1002_adma_201804979 crossref_primary_10_1016_j_rinp_2017_11_017 crossref_primary_10_1016_j_mtcomm_2022_103815 crossref_primary_10_1063_5_0123628 crossref_primary_10_1063_1_5125169 crossref_primary_10_1088_2053_1583_3_2_025016 crossref_primary_10_1103_PhysRevB_98_245403 crossref_primary_10_1016_j_ijthermalsci_2022_107669 crossref_primary_10_1039_D0NA00844C crossref_primary_10_1088_0957_4484_27_5_055703 crossref_primary_10_31613_ceramist_2023_26_1_08 crossref_primary_10_1039_C6RA20623A crossref_primary_10_1039_D2CC02519A crossref_primary_10_1002_smll_202204595 crossref_primary_10_1038_s41528_022_00157_9 crossref_primary_10_1039_D2NA00495J crossref_primary_10_1016_j_physe_2018_06_007 crossref_primary_10_1016_j_physleta_2020_126676 crossref_primary_10_1063_5_0049368 crossref_primary_10_1039_D2CP02126A crossref_primary_10_1088_1674_1056_ac272f crossref_primary_10_1039_D3RA02952B crossref_primary_10_1039_C7NR01695F crossref_primary_10_1007_s10854_023_10831_x crossref_primary_10_1038_srep43886 crossref_primary_10_1063_5_0180404 crossref_primary_10_1103_PhysRevApplied_13_034059 crossref_primary_10_1002_jrs_5230 crossref_primary_10_1039_C7DT02407J crossref_primary_10_3390_nano11010175 crossref_primary_10_1002_inf2_12274 crossref_primary_10_1002_admi_202202013 crossref_primary_10_1039_D1NR08375A crossref_primary_10_1016_j_ijheatmasstransfer_2022_123307 crossref_primary_10_1021_acs_nanolett_3c05085 crossref_primary_10_1063_5_0142944 crossref_primary_10_1103_PhysRevMaterials_4_124006 crossref_primary_10_1002_adom_201801373 crossref_primary_10_1021_acsami_4c02629 crossref_primary_10_1039_C8TC04573A crossref_primary_10_1051_e3sconf_202337503002 crossref_primary_10_1021_acs_jpcc_4c07381 crossref_primary_10_1063_1_5123682 crossref_primary_10_1016_j_matlet_2016_03_050 crossref_primary_10_1002_inf2_12169 crossref_primary_10_1016_j_snb_2017_07_052 crossref_primary_10_1002_chem_201604787 crossref_primary_10_1021_acsnano_9b05574 crossref_primary_10_1007_s10765_020_02627_6 crossref_primary_10_1021_acs_jpcc_1c02842 crossref_primary_10_1063_5_0035413 crossref_primary_10_1016_j_apsusc_2022_153967 crossref_primary_10_1016_j_pmatsci_2020_100708 crossref_primary_10_1088_2053_1583_ab0c31 crossref_primary_10_1007_s12648_021_02045_w crossref_primary_10_1002_aenm_201902253 crossref_primary_10_1088_2053_1583_ab48d9 crossref_primary_10_1016_j_jmat_2018_08_001 crossref_primary_10_1016_j_jallcom_2017_11_058 crossref_primary_10_1088_1361_648X_aca8e4 crossref_primary_10_1021_am509056b crossref_primary_10_1021_acsami_7b16397 crossref_primary_10_1103_RevModPhys_90_041002 crossref_primary_10_1021_acs_jpcc_9b07553 crossref_primary_10_1088_2053_1583_4_1_011007 crossref_primary_10_35848_1882_0786_ab939d crossref_primary_10_1016_j_physe_2019_113683 crossref_primary_10_1039_D1NR07889E crossref_primary_10_2139_ssrn_4049703 crossref_primary_10_1039_D0CP00738B crossref_primary_10_3390_nano13010117 crossref_primary_10_1039_D4CP02793K crossref_primary_10_1002_adom_202302326 crossref_primary_10_2139_ssrn_4067909 crossref_primary_10_1016_j_ceramint_2019_04_248 crossref_primary_10_1021_acsnano_9b09839 crossref_primary_10_1016_j_optmat_2024_114872 crossref_primary_10_1021_acsami_0c21045 crossref_primary_10_1039_C7NR01894K crossref_primary_10_1063_5_0159517 crossref_primary_10_1021_acssuschemeng_3c02376 crossref_primary_10_1039_D3CP02896H crossref_primary_10_1016_j_ijheatmasstransfer_2025_126946 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124753 crossref_primary_10_1002_admi_202300794 crossref_primary_10_1021_acsomega_4c04431 crossref_primary_10_1038_s41598_019_40882_2 crossref_primary_10_1088_1361_6528_aca67b crossref_primary_10_3390_ma13235315 crossref_primary_10_1088_2053_1583_ac234f crossref_primary_10_1002_advs_202004712 crossref_primary_10_1016_j_apsusc_2024_159287 crossref_primary_10_1002_adma_202202479 crossref_primary_10_1103_PhysRevB_108_115406 crossref_primary_10_1002_adom_202302229 crossref_primary_10_1039_D1QI00390A crossref_primary_10_1103_PhysRevB_104_075418 crossref_primary_10_1039_D2NH00226D crossref_primary_10_1021_acs_jpcc_1c09603 crossref_primary_10_1088_2053_1583_ac3dd6 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118583 crossref_primary_10_1021_acsami_9b03608 crossref_primary_10_1016_j_surfin_2023_103253 crossref_primary_10_1016_j_mtchem_2024_102077 crossref_primary_10_3390_polym11020321 crossref_primary_10_1021_acsomega_9b01087 crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_1021_acsaem_3c01249 crossref_primary_10_1016_j_molliq_2024_124996 crossref_primary_10_1021_acs_nanolett_8b00583 crossref_primary_10_1039_C5RA19747C crossref_primary_10_1007_s11051_017_3865_z crossref_primary_10_1016_j_apsusc_2019_03_127 crossref_primary_10_1021_acsami_3c06134 crossref_primary_10_1021_acsami_2c18755 crossref_primary_10_1002_adfm_202000240 crossref_primary_10_1007_s12274_016_1224_5 crossref_primary_10_1021_acs_jpcc_1c02522 crossref_primary_10_1016_j_progpolymsci_2022_101505 crossref_primary_10_1021_acs_jpcc_1c00589 crossref_primary_10_1016_j_ceramint_2023_01_007 crossref_primary_10_3390_su13084155 crossref_primary_10_1021_acssuschemeng_8b03949 crossref_primary_10_1039_C7NR00284J crossref_primary_10_1063_1_4900816 crossref_primary_10_1063_5_0226632 crossref_primary_10_1002_app_48927 crossref_primary_10_1088_1674_1056_27_3_037802 crossref_primary_10_1080_23746149_2020_1734083 crossref_primary_10_1016_j_tsf_2020_138508 crossref_primary_10_1002_adfm_201604134 crossref_primary_10_1021_acsami_7b12151 crossref_primary_10_1007_s00339_022_05270_0 crossref_primary_10_1016_j_jallcom_2018_11_263 crossref_primary_10_1039_C6NR09484H crossref_primary_10_1007_s12274_022_4487_z crossref_primary_10_1007_s12274_015_0895_7 crossref_primary_10_1016_j_apsusc_2019_144192 crossref_primary_10_1038_srep15718 crossref_primary_10_1016_j_isci_2023_107174 crossref_primary_10_1039_D0TC00659A crossref_primary_10_1016_j_apsusc_2017_04_063 crossref_primary_10_1016_j_mtphys_2018_05_004 crossref_primary_10_1039_D1TC03248H crossref_primary_10_1088_1674_1056_27_3_034402 crossref_primary_10_1016_j_ssc_2019_04_013 crossref_primary_10_7498_aps_69_20200709 crossref_primary_10_1039_C8RA01527A crossref_primary_10_1016_j_mechmat_2025_105330 crossref_primary_10_1016_j_vibspec_2020_103034 crossref_primary_10_1038_ncomms10019 crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_041 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_012 crossref_primary_10_1088_0953_8984_27_28_285401 crossref_primary_10_1007_s12598_022_02209_5 crossref_primary_10_1021_acs_jpclett_9b03726 crossref_primary_10_1063_5_0054657 crossref_primary_10_6023_A21120616 crossref_primary_10_1038_srep32236 crossref_primary_10_1103_PhysRevB_100_035402 crossref_primary_10_1088_1361_648X_aaf53b crossref_primary_10_1007_s11433_022_1949_9 crossref_primary_10_1021_acsphotonics_2c01861 crossref_primary_10_1063_5_0130350 crossref_primary_10_1021_acs_jpcc_1c10192 crossref_primary_10_1016_j_vibspec_2020_103169 crossref_primary_10_1016_j_orgel_2021_106305 crossref_primary_10_1007_s12274_022_4560_7 crossref_primary_10_1088_1361_6528_ad6875 crossref_primary_10_1063_1_5118004 crossref_primary_10_1039_C5RA19698A crossref_primary_10_1021_jacs_1c08030 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125810 crossref_primary_10_1088_1361_6528_ad5a9f crossref_primary_10_1039_C8MH01072B crossref_primary_10_1063_1_4928931 crossref_primary_10_1088_1361_6528_ac12ec crossref_primary_10_1088_1402_4896_adb3de crossref_primary_10_1016_j_apsusc_2020_147406 crossref_primary_10_1021_acsami_1c14133 crossref_primary_10_1007_s11249_020_01294_w crossref_primary_10_1016_j_physe_2020_114312 crossref_primary_10_1016_j_ijhydene_2019_11_053 crossref_primary_10_1016_j_actamat_2022_118299 crossref_primary_10_1088_2053_1583_3_3_031013 |
Cites_doi | 10.1021/j100393a010 10.1088/0034-4885/74/8/082501 10.1021/nn302876w 10.1021/nl071033g 10.1103/PhysRevB.84.155413 10.1103/PhysRevB.85.161403 10.1021/nl304060g 10.1103/PhysRevB.89.125406 10.1038/ncomms5709 10.1063/1.123096 10.1021/nn4046002 10.1038/nnano.2012.96 10.1038/srep02593 10.1021/jp402509w 10.1103/RevModPhys.83.837 10.1021/nl302389d 10.1103/PhysRevB.83.245213 10.1002/adfm.201102111 10.1038/nnano.2012.193 10.1038/srep01755 10.1103/PhysRevB.87.115413 10.1038/nnano.2012.95 10.1021/nl403465v 10.1021/nn403454e 10.1063/1.4819337 10.1103/PhysRevB.87.125415 10.1021/nl3026357 10.1021/nl9041966 10.1038/nnano.2010.279 10.1038/nmat3633 10.1103/PhysRevLett.105.136805 10.1038/nmat3700 10.1021/nn405826k 10.1021/nn405194e 10.1126/science.1184014 10.1002/smll.201202876 10.1021/nl104156y 10.1021/nn1003937 10.1038/ncomms1882 10.1103/PhysRevB.7.2779 10.1002/adom.201300428 10.1016/0038-1098(80)90518-9 10.1016/0301-0104(91)80136-6 10.1021/am404847d 10.1021/nn305275h 10.1021/nl0731872 10.1021/nl903868w 10.1364/OE.21.004908 10.1038/nmat2753 10.1038/srep01608 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1007/s12274-014-0602-0 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy |
EISSN | 1998-0000 |
EndPage | 1221 |
ExternalDocumentID | 10_1007_s12274_014_0602_0 665092494 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP |
ID | FETCH-LOGICAL-c451t-af4624e07574059686174497d4455bda5c76b251848297b5c35b8a211037a9d93 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Tue Jul 01 01:46:44 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Fri Feb 21 02:35:32 EST 2025 Wed Feb 14 10:30:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | temperature dependence tungsten disulfide Raman thermal conductivity excitation power |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-af4624e07574059686174497d4455bda5c76b251848297b5c35b8a211037a9d93 |
Notes | 11-5974/O4 We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of temperature and excitation dependences of E2g^1 and A1g Raman modes. The first-order temperature coefficients of E2g^1 and Alg modes in both supported and suspended WS2 layers were extracted. The frequency shift of the A3g mode with temperature is larger than that of the E1 mode for 1L-WS2, which is 2g attributed to stronger electron-phonon coupling for the A1g mode than that for the E12g mode. Moreover, by use of the shift of the phonon mode induced by laser heating, the thermal conductivities at room temperature were estimated to be 32 and 53 W/(m.K) for 1L- and 2L-WS2, respectively. Our results provide fundamental information about the thermal properties of WS2 layers, which is crucial for developing applications of atomically-thin WS2 devices. thermal conductivity,tungsten disulfide,Raman,temperature dependence,excitation power |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1007_s12274_014_0602_0 crossref_primary_10_1007_s12274_014_0602_0 springer_journals_10_1007_s12274_014_0602_0 chongqing_primary_665092494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2015 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Gutiérrez, Perea-López, Elías, Berkdemir, Wang, Lv, López-Urías, Crespi, Terrones, Terrones (CR12) 2013; 13 Horzum, Sahin, Cahangirov, Cudazzo, Rubio, Serin, Peeters (CR44) 2013; 87 Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR13) 2014; 2 Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR29) 2012; 85 Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido (CR46) 2010; 328 Tonndorf, Schmidt, Böttger, Zhang, Börner, Liebig, Albrecht, Kloc, Gordan, Zahn (CR6) 2013; 21 Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (CR49) 2010; 9 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR1) 2012; 7 Calizo, Balandin, Bao, Miao, Lau (CR22) 2007; 7 Neto, Novoselov (CR3) 2011; 74 Zhang, Zhang, Ji, Ju, Yuan, Shi, Gao, Ma, Liu, Chen (CR14) 2013; 7 Sourisseau, Cruege, Fouassier, Alba (CR35) 1991; 150 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (CR24) 2008; 8 Cong, Yu (CR21) 2014; 5 Splendiani, Sun, Zhang, Li, Kim, Chim, Galli, Wang (CR5) 2010; 10 Sekine, Nakashizu, Toyoda, Uchinokura, Matsuura (CR36) 1980; 35 Jo, Pettes, Kim, Watanabe, Taniguchi, Yao, Shi (CR23) 2013; 13 Zhao, Ghorannevis, Chu, Toh, Kloc, Tan, Eda (CR7) 2013; 7 Van der Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR50) 2013; 12 Gong, Colombo, Wallace, Cho (CR47) 2014; 14 Peercy, Morosin (CR42) 1973; 7 Lee, Yan, Brus, Heinz, Hone, Ryu (CR40) 2010; 4 Lanzillo, Birdwell, Amani, Crowne, Shah, Najmaei, Liu, Ajayan, Lou, Dubey (CR41) 2013; 103 Molina-Sánchez, Wirtz (CR39) 2011; 84 Song, Park, Lee, Choi, Jung, Lee, Hwang, Myoung, Jung, Kim (CR16) 2013; 7 Kuc, Zibouche, Heine (CR9) 2011; 83 Li, Zhang, Yap, Tay, Edwin, Olivier, Baillargeat (CR27) 2012; 22 Zhang, Han, Wu, Milana, Lu, Li, Ferrari, Tan (CR38) 2013; 87 Mak, Lee, Hone, Shan, Heinz (CR4) 2010; 105 Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (CR25) 2010; 10 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR8) 2011; 6 Sahoo, Gaur, Ahmadi, Guinel, Katiyar (CR32) 2013; 117 Braga, Lezama, Berger, Morpurgo (CR17) 2012; 12 Novoselov (CR2) 2011; 83 Hajiyev, Cong, Qiu, Yu (CR28) 2013; 3 Kam, Parkinson (CR34) 1982; 86 Mak, He, Shan, Heinz (CR18) 2012; 7 Thripuranthaka, Late (CR33) 2014; 6 Zeng, Dai, Yao, Xiao, Cui (CR19) 2012; 7 Voiry, Yamaguchi, Li, Silva, Alves, Fujita, Chen, Asefa, Shenoy, Eda (CR11) 2013; 12 Wang, Cong, Qiu, Yu (CR31) 2013; 9 Pettes, Jo, Yao, Shi (CR48) 2011; 11 Zeng, Liu, Dai, Yan, Zhu, He, Xie, Xu, Chen, Yao (CR10) 2013; 3 Peimyoo, Li, Shang, Shen, Qiu, Xie, Huang, Yu (CR30) 2012; 6 Berkdemir, Gutiérrez, Botello-Méndez, Perea-López, Elías, Chia, Wang, Crespi, López-Urías, Charlier (CR37) 2013; 3 Tan, Deng, Zhao, Cheng (CR43) 1999; 74 Peimyoo, Shang, Cong, Shen, Wu, Yeow, Yu (CR15) 2013; 7 Scheuschner, Ochedowski, Kaulitz, Gillen, Schleberger, Maultzsch (CR45) 2014; 89 Cao, Wang, Han, Ye, Zhu, Shi, Niu, Tan, Wang, Liu (CR20) 2012; 3 Yan, Simpson, Bertolazzi, Brivio, Watson, Wu, Kis, Luo, Walker, Xing (CR26) 2014; 8 C X Cong (602_CR13) 2014; 2 P Tonndorf (602_CR6) 2013; 21 B Chakraborty (602_CR29) 2012; 85 S Sahoo (602_CR32) 2013; 117 N Scheuschner (602_CR45) 2014; 89 C Lee (602_CR40) 2010; 4 K F Mak (602_CR4) 2010; 105 H L Zeng (602_CR10) 2013; 3 Y Zhang (602_CR14) 2013; 7 H R Gutiérrez (602_CR12) 2013; 13 P H Tan (602_CR43) 1999; 74 T Cao (602_CR20) 2012; 3 H L Zeng (602_CR19) 2012; 7 N Peimyoo (602_CR15) 2013; 7 H Li (602_CR27) 2012; 22 M Thripuranthaka (602_CR33) 2014; 6 N A Lanzillo (602_CR41) 2013; 103 A Molina-Sánchez (602_CR39) 2011; 84 W W Cai (602_CR25) 2010; 10 W J Zhao (602_CR7) 2013; 7 D Braga (602_CR17) 2012; 12 C Sourisseau (602_CR35) 1991; 150 S Horzum (602_CR44) 2013; 87 C Gong (602_CR47) 2014; 14 A A Balandin (602_CR24) 2008; 8 S Ghosh (602_CR49) 2010; 9 D Voiry (602_CR11) 2013; 12 A M Zande Van der (602_CR50) 2013; 12 X Zhang (602_CR38) 2013; 87 R S Yan (602_CR26) 2014; 8 K F Mak (602_CR18) 2012; 7 C X Cong (602_CR21) 2014; 5 K S Novoselov (602_CR2) 2011; 83 J G Song (602_CR16) 2013; 7 M T Pettes (602_CR48) 2011; 11 I Jo (602_CR23) 2013; 13 T Sekine (602_CR36) 1980; 35 A Kuc (602_CR9) 2011; 83 A H C Neto (602_CR3) 2011; 74 I Calizo (602_CR22) 2007; 7 Y L Wang (602_CR31) 2013; 9 K K Kam (602_CR34) 1982; 86 P S Peercy (602_CR42) 1973; 7 N Peimyoo (602_CR30) 2012; 6 B Radisavljevic (602_CR8) 2011; 6 A Berkdemir (602_CR37) 2013; 3 Q H Wang (602_CR1) 2012; 7 A Splendiani (602_CR5) 2010; 10 P Hajiyev (602_CR28) 2013; 3 J H Seol (602_CR46) 2010; 328 |
References_xml | – volume: 86 start-page: 463 year: 1982 end-page: 467 ident: CR34 article-title: Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides publication-title: J. Phys. Chem. doi: 10.1021/j100393a010 – volume: 74 start-page: 082521 year: 2011 ident: CR3 article-title: New directions in science and technology: Two-dimensional crystals publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/8/082501 – volume: 6 start-page: 8878 year: 2012 end-page: 8886 ident: CR30 article-title: Photocontrolled molecular structural transition and doping in graphene publication-title: ACS Nano doi: 10.1021/nn302876w – volume: 7 start-page: 2645 year: 2007 end-page: 2649 ident: CR22 article-title: Temperature dependence of the Raman spectra of graphene and graphene multilayers publication-title: Nano Lett. doi: 10.1021/nl071033g – volume: 84 start-page: 155413 year: 2011 ident: CR39 article-title: Phonons in single-layer and few-layer MoS and WS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.155413 – volume: 85 start-page: 161403 year: 2012 ident: CR29 article-title: Symmetry-dependent phonon renormalization in monolayer MoS transistor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 13 start-page: 550 year: 2013 end-page: 554 ident: CR23 article-title: Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride publication-title: Nano Lett. doi: 10.1021/nl304060g – volume: 89 start-page: 125406 year: 2014 ident: CR45 article-title: Photoluminescence of freestanding single- and few-layer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.125406 – volume: 5 start-page: 4709 year: 2014 ident: CR21 article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers publication-title: Nat. Commun. doi: 10.1038/ncomms5709 – volume: 74 start-page: 1818 year: 1999 end-page: 1820 ident: CR43 article-title: The intrinsic temperature effect of the Raman spectra of graphite publication-title: Appl. Phys. Lett. doi: 10.1063/1.123096 – volume: 7 start-page: 10985 year: 2013 end-page: 10994 ident: CR15 article-title: Nonblinking, intense two-dimensional light emitter: Mono layer WS triangles publication-title: ACS Nano doi: 10.1021/nn4046002 – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR18 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 3 start-page: 2593 year: 2013 ident: CR28 article-title: Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe publication-title: Sci. Rep. doi: 10.1038/srep02593 – volume: 117 start-page: 9042 year: 2013 end-page: 9047 ident: CR32 article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS publication-title: J. Phys. Chem. C doi: 10.1021/jp402509w – volume: 83 start-page: 837 year: 2011 end-page: 849 ident: CR2 article-title: Nobel lecture: Graphene: Materials in the flatland publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.837 – volume: 12 start-page: 5218 year: 2012 end-page: 5223 ident: CR17 article-title: Quantitative determination of the band gap of WS with ambipolar ionic liquid-gated transistors publication-title: Nano Lett. doi: 10.1021/nl302389d – volume: 83 start-page: 245213 year: 2011 ident: CR9 article-title: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.245213 – volume: 22 start-page: 1385 year: 2012 end-page: 1390 ident: CR27 article-title: From bulk to monolayer MoS : Evolution of Raman scattering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102111 – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR1 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 3 start-page: 1755 year: 2013 ident: CR37 article-title: Identification of individual and few layers of WS using Raman spectroscopy publication-title: Sci. Rep. doi: 10.1038/srep01755 – volume: 87 start-page: 115413 year: 2013 ident: CR38 article-title: Raman spectroscopy of shear and layer breathing modes in multilayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.115413 – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: CR19 article-title: Valley polarization in MoS monolayers by optical pumping publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 14 start-page: 1714 year: 2014 end-page: 1720 ident: CR47 article-title: The unusual mechanism of partial Fermi level pinning at metal-MoS interfaces publication-title: Nano Lett. doi: 10.1021/nl403465v – volume: 7 start-page: 8963 year: 2013 end-page: 8971 ident: CR14 article-title: Controlled growth of high-quality monolayer WS layers on sapphire and imaging its grain boundary publication-title: ACS Nano doi: 10.1021/nn403454e – volume: 103 start-page: 93102 year: 2013 ident: CR41 article-title: Temperature-dependent phonon shifts in monolayer MoS publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819337 – volume: 87 start-page: 125415 year: 2013 ident: CR44 article-title: Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.125415 – volume: 13 start-page: 3447 year: 2013 end-page: 3454 ident: CR12 article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 10 start-page: 1645 year: 2010 end-page: 1651 ident: CR25 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl9041966 – volume: 6 start-page: 147 year: 2011 end-page: 150 ident: CR8 article-title: Single-layer MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 12 start-page: 554 year: 2013 end-page: 561 ident: CR50 article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 105 start-page: 136805 year: 2010 ident: CR4 article-title: Atomically thin Mos : A new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 12 start-page: 850 year: 2013 end-page: 855 ident: CR11 article-title: Enhanced catalytic activity in strained chemically exfoliated WS nanosheets for hydrogen evolution publication-title: Nat. Mater. doi: 10.1038/nmat3700 – volume: 8 start-page: 986 year: 2014 end-page: 993 ident: CR26 article-title: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy publication-title: ACS Nano doi: 10.1021/nn405826k – volume: 7 start-page: 11333 year: 2013 end-page: 11340 ident: CR16 article-title: Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition publication-title: ACS Nano doi: 10.1021/nn405194e – volume: 328 start-page: 213 year: 2010 end-page: 216 ident: CR46 article-title: Two-dimensional phonon transport in supported graphene publication-title: Science doi: 10.1126/science.1184014 – volume: 9 start-page: 2857 year: 2013 end-page: 2861 ident: CR31 article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain publication-title: Small doi: 10.1002/smll.201202876 – volume: 3 start-page: 1608 year: 2013 ident: CR10 article-title: Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides publication-title: Sci. Rep. – volume: 11 start-page: 1195 year: 2011 end-page: 1200 ident: CR48 article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene publication-title: Nano Lett. doi: 10.1021/nl104156y – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: CR40 article-title: Anomalous lattice vibrations of single- and few-layer MoS publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 3 start-page: 887 year: 2012 ident: CR20 article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 7 start-page: 2779 year: 1973 end-page: 2786 ident: CR42 article-title: Pressure and temperature dependences of Raman-active phonons in SnO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.7.2779 – volume: 2 start-page: 131 year: 2014 end-page: 136 ident: CR13 article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300428 – volume: 35 start-page: 371 year: 1980 end-page: 373 ident: CR36 article-title: Raman scattering in layered compound 2H-WS publication-title: Solid State Commun. doi: 10.1016/0038-1098(80)90518-9 – volume: 150 start-page: 281 year: 1991 end-page: 293 ident: CR35 article-title: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS publication-title: Chem. Phys. doi: 10.1016/0301-0104(91)80136-6 – volume: 6 start-page: 1158 year: 2014 end-page: 1163 ident: CR33 article-title: Temperature dependent phonon shifts in single-layer WS publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am404847d – volume: 7 start-page: 791 year: 2013 end-page: 797 ident: CR7 article-title: Evolution of Electronic Structure in Atomically Thin Sheets of WS and WSe publication-title: ACS Nano doi: 10.1021/nn305275h – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: CR24 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR5 article-title: Emerging photoluminescence in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 21 start-page: 4908 year: 2013 end-page: 4916 ident: CR6 article-title: Photoluminescence emission and Raman response of monolayer MoS , MoSe , and WSe publication-title: Opt. Exp. doi: 10.1364/OE.21.004908 – volume: 9 start-page: 555 year: 2010 end-page: 558 ident: CR49 article-title: Dimensional crossover of thermal transport in few-layer graphene publication-title: Nat. Mater. doi: 10.1038/nmat2753 – volume: 86 start-page: 463 year: 1982 ident: 602_CR34 publication-title: J. Phys. Chem. doi: 10.1021/j100393a010 – volume: 21 start-page: 4908 year: 2013 ident: 602_CR6 publication-title: Opt. Exp. doi: 10.1364/OE.21.004908 – volume: 74 start-page: 1818 year: 1999 ident: 602_CR43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123096 – volume: 13 start-page: 550 year: 2013 ident: 602_CR23 publication-title: Nano Lett. doi: 10.1021/nl304060g – volume: 35 start-page: 371 year: 1980 ident: 602_CR36 publication-title: Solid State Commun. doi: 10.1016/0038-1098(80)90518-9 – volume: 6 start-page: 147 year: 2011 ident: 602_CR8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 7 start-page: 494 year: 2012 ident: 602_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 8 start-page: 986 year: 2014 ident: 602_CR26 publication-title: ACS Nano doi: 10.1021/nn405826k – volume: 89 start-page: 125406 year: 2014 ident: 602_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.125406 – volume: 14 start-page: 1714 year: 2014 ident: 602_CR47 publication-title: Nano Lett. doi: 10.1021/nl403465v – volume: 6 start-page: 8878 year: 2012 ident: 602_CR30 publication-title: ACS Nano doi: 10.1021/nn302876w – volume: 12 start-page: 850 year: 2013 ident: 602_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3700 – volume: 8 start-page: 902 year: 2008 ident: 602_CR24 publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 7 start-page: 2779 year: 1973 ident: 602_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.7.2779 – volume: 74 start-page: 082521 year: 2011 ident: 602_CR3 publication-title: Rep. Prog. Phys. – volume: 83 start-page: 837 year: 2011 ident: 602_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.837 – volume: 7 start-page: 10985 year: 2013 ident: 602_CR15 publication-title: ACS Nano doi: 10.1021/nn4046002 – volume: 9 start-page: 2857 year: 2013 ident: 602_CR31 publication-title: Small doi: 10.1002/smll.201202876 – volume: 9 start-page: 555 year: 2010 ident: 602_CR49 publication-title: Nat. Mater. doi: 10.1038/nmat2753 – volume: 22 start-page: 1385 year: 2012 ident: 602_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102111 – volume: 84 start-page: 155413 year: 2011 ident: 602_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.155413 – volume: 3 start-page: 1608 year: 2013 ident: 602_CR10 publication-title: Sci. Rep. doi: 10.1038/srep01608 – volume: 13 start-page: 3447 year: 2013 ident: 602_CR12 publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 10 start-page: 1271 year: 2010 ident: 602_CR5 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 6 start-page: 1158 year: 2014 ident: 602_CR33 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am404847d – volume: 12 start-page: 554 year: 2013 ident: 602_CR50 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 85 start-page: 161403 year: 2012 ident: 602_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 87 start-page: 115413 year: 2013 ident: 602_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.115413 – volume: 117 start-page: 9042 year: 2013 ident: 602_CR32 publication-title: J. Phys. Chem. C doi: 10.1021/jp402509w – volume: 11 start-page: 1195 year: 2011 ident: 602_CR48 publication-title: Nano Lett. doi: 10.1021/nl104156y – volume: 7 start-page: 8963 year: 2013 ident: 602_CR14 publication-title: ACS Nano doi: 10.1021/nn403454e – volume: 2 start-page: 131 year: 2014 ident: 602_CR13 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300428 – volume: 5 start-page: 4709 year: 2014 ident: 602_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms5709 – volume: 83 start-page: 245213 year: 2011 ident: 602_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.245213 – volume: 3 start-page: 887 year: 2012 ident: 602_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 10 start-page: 1645 year: 2010 ident: 602_CR25 publication-title: Nano Lett. doi: 10.1021/nl9041966 – volume: 3 start-page: 1755 year: 2013 ident: 602_CR37 publication-title: Sci. Rep. doi: 10.1038/srep01755 – volume: 150 start-page: 281 year: 1991 ident: 602_CR35 publication-title: Chem. Phys. doi: 10.1016/0301-0104(91)80136-6 – volume: 3 start-page: 2593 year: 2013 ident: 602_CR28 publication-title: Sci. Rep. doi: 10.1038/srep02593 – volume: 12 start-page: 5218 year: 2012 ident: 602_CR17 publication-title: Nano Lett. doi: 10.1021/nl302389d – volume: 7 start-page: 699 year: 2012 ident: 602_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 103 start-page: 93102 year: 2013 ident: 602_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819337 – volume: 328 start-page: 213 year: 2010 ident: 602_CR46 publication-title: Science doi: 10.1126/science.1184014 – volume: 7 start-page: 11333 year: 2013 ident: 602_CR16 publication-title: ACS Nano doi: 10.1021/nn405194e – volume: 87 start-page: 125415 year: 2013 ident: 602_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.125415 – volume: 4 start-page: 2695 year: 2010 ident: 602_CR40 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 105 start-page: 136805 year: 2010 ident: 602_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 7 start-page: 791 year: 2013 ident: 602_CR7 publication-title: ACS Nano doi: 10.1021/nn305275h – volume: 7 start-page: 2645 year: 2007 ident: 602_CR22 publication-title: Nano Lett. doi: 10.1021/nl071033g – volume: 7 start-page: 490 year: 2012 ident: 602_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 |
SSID | ssj0062148 |
Score | 2.5553856 |
Snippet | We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS2 grown by chemical vapor deposition (CVD), which are determined by use of... We report the thermal conductivities of monolayer (1L) and bilayer (2L) WS 2 grown by chemical vapor deposition (CVD), which are determined by use of... |
SourceID | crossref springer chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1210 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Materials Science Nanotechnology Research Article WS2 化学气相沉积 发展中国家 声子耦合 拉曼光谱 海藻酸钠 激光诱导加热 热导率 |
Title | Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy |
URI | http://lib.cqvip.com/qk/71233X/201504/665092494.html https://link.springer.com/article/10.1007/s12274-014-0602-0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD-MRaLXvwpATSZDfZPRbpA0UParHiIewjUaEm1baH_ntn06S1oIKHwB52NzCzOzMfO_MNwJmmsSu4iB1lQgQoQuIoxnslcYGrlI792BY439wG_QG9GrJhUcc9KbPdyyfJ3FKvit08RFAIffELbNpsBWoMobvN4xp47dL8Bl4rb5m1qB1D71U-Zf60hSVUeM3Slw_83bpjWn8VzZ1Ndwe2iyiRtBdq3YWNON2DrW_cgfvwjApGozoiCGgtZ2veBIKYMrvFyptkCZnMJnmXW0PwvGUOkakh6m0kMdImj_ceUXNyJ99lSvKSS0ttmY3nBzDodh4u-07RKcHRlLWmjkxo4KHUQxZS20-HY1xCqQgNpYwpI5kOA4WRDKe2klYx7TPFpcV-fiiFEf4hVNMsjY-AGGGUdmkiZKhowrlsCaU59X3DE9UKdR0aS5FF4wUjRhRYHj4EcrQObinESBck47bXxSha0SNbHUSog8jqIHLrcL5cUu73x-SLUjNRcdkmv88-_tfsBmxiNMQWaTknUJ1-zuJTjDimqgkV3u01odbuPV13mvl5-wLTps6Z |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5ED-pBfOL6zEEvSqHbJm168LCoy_o8qIuCh5hXVVjb1V2R_T3-USfd1geo4MFDoYekpJnJzHxk5huADU2tn_DEesrECFASiW8Wz5XECb5S2obWFTifnEatNj28Ylcj8FrVwhTZ7tWVZGGpP4rdAkRQCH3xiVzabJlJeWQHL4jTejsHeyjUzSBo7l_stryylYCnKav3PZnSKMBlxSymruEMR8dNaRIbShlTRjIdRwpdPaeu1FQxHTLFpQNHYSwT4xiX0M6PYezB3dFpB43K3EdBvWjRNaxVQ29ZXZ1-t2RH4HCXZ7eP-HtfHeHXW9jCuTWnYaqMSkljqEYzMGKzWZj8xFU4B9eoUGjEOwQBtOOILZpOEFNl0zj5kjwlvede0VXXENTv3CMyM0TddyRG9uTyPCBqQM7kg8xIUeLpqDTz7mAe2v-ynQswmuWZXQRiEqO0T9NExoqmnMt6ojSnYWh4quqxrsHy-5aJ7pCBQ0SO9w-BI62BX22i0CWpueut0REfdMxOBgJlIJwMhF-Drfcp1fd-GbxdSUaUh7v38-ilP41eh_HWxcmxOD44PVqGCYzE2DAlaAVG-0_PdhWjnb5aK7SNwM1_q_cbdZgFvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EQfQgPnF95qAXpdhtkz4OHkRdfC6iLgoeYl5VYW1Xd0X2V_kXnfSxKqjgwUOhh6SkM5PMDJnvG4A1RY0bR7FxpA4xQYkFvhncVwInuFIq4xsLcD5tBgctenTNrofgrcLC5NXu1ZVkgWmwLE1pb6ujk60P4JuH2RSmwfgEtoS2rKo8Nv1XzNm624d7qOB1z2vsX-4eOGVbAUdRVu85IqGBh0sMWUht85kInTilcagpZUxqwVQYSHT7EbWwU8mUz2QkbKLkhyLWln0Jz_wRasHHuIFa3k519AdePW_XVeDW0HNW16jfLdmSOdxn6d0T_upXp_j1RjZ3dI1JmCgjVLJTmNQUDJl0GsY_8RbOwA0aFx7obYJSs3yxeQMKoqvKGqtrkiWk-9LNO-xqgraeOUSkmsiHtsAon1xdeET2ybl4FCnJ4Z6WVjPr9Geh9S_inIPhNEvNPBAda6lcmsQilDSJIlGPpYqo7-sokfVQ1WBxIDLeKdg4eGA5ADGJpDVwKyFyVRKc2z4bbf5BzWx1wFEH3OqAuzXYGEypvvfL4M1KM7zc6N2fRy_8afQqjJ7tNfjJYfN4EcYwKGNFddASDPeeX8wyBj49uZIbG4Hb_7budy4GCfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+conductivity+determination+of+suspended+mono-+and+bilayer+WS2+by+Raman+spectroscopy&rft.jtitle=Nano+research&rft.au=Peimyoo%2C+Namphung&rft.au=Shang%2C+Jingzhi&rft.au=Yang%2C+Weihuang&rft.au=Wang%2C+Yanlong&rft.date=2015-04-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=4&rft.spage=1210&rft.epage=1221&rft_id=info:doi/10.1007%2Fs12274-014-0602-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_014_0602_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |