Remote sensing-based estimation of rice yields using various models: A critical review

Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects...

Full description

Saved in:
Bibliographic Details
Published inGeo-spatial information science Vol. 24; no. 4; pp. 580 - 603
Main Authors dela Torre, Daniel Marc G, Gao, Jay, Macinnis-Ng, Cate
Format Journal Article
LanguageEnglish
Published Wuhan Taylor & Francis 02.10.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1009-5020
1993-5153
DOI10.1080/10095020.2021.1936656

Cover

Loading…
Abstract Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects on farm-scale yield. Remote Sensing (RS) is a useful tool to upscale yield estimates from farm scales to regional levels. Much research used RS with rice models for reliable yield estimation. As several countries start to operationalize rice monitoring systems, it is needed to synthesize current literature to identify knowledge gaps, to improve estimation accuracies, and to optimize processing. This paper critically reviewed significant developments in using geospatial methods, imagery, and quantitative models to estimate rice yield. First, essential characteristics of rice were discussed as detected by optical and radar sensors, band selection, sensor configuration, spatial resolution, mapping methods, and biophysical variables of rice derivable from RS data. Second, various empirical, process-based, and semi-empirical models that used RS data for spatial estimation of yield were critically assessed - discussing how major types of models, RS platforms, data assimilation algorithms, canopy state variables, and RS variables can be integrated for yield estimation. Lastly, to overcome current constraints and to improve accuracies, several possibilities were suggested - adding new modeling modules, using alternative canopy variables, and adopting novel modeling approaches. As rice yields are expected to decrease due to global warming, geospatial rice yield estimation techniques are indispensable tools for climate change assessments. Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars, by incorporating dynamic harvesting indices based on climatic drivers, using innovative modeling approaches with machine learning.
AbstractList Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects on farm-scale yield. Remote Sensing (RS) is a useful tool to upscale yield estimates from farm scales to regional levels. Much research used RS with rice models for reliable yield estimation. As several countries start to operationalize rice monitoring systems, it is needed to synthesize current literature to identify knowledge gaps, to improve estimation accuracies, and to optimize processing. This paper critically reviewed significant developments in using geospatial methods, imagery, and quantitative models to estimate rice yield. First, essential characteristics of rice were discussed as detected by optical and radar sensors, band selection, sensor configuration, spatial resolution, mapping methods, and biophysical variables of rice derivable from RS data. Second, various empirical, process-based, and semi-empirical models that used RS data for spatial estimation of yield were critically assessed - discussing how major types of models, RS platforms, data assimilation algorithms, canopy state variables, and RS variables can be integrated for yield estimation. Lastly, to overcome current constraints and to improve accuracies, several possibilities were suggested - adding new modeling modules, using alternative canopy variables, and adopting novel modeling approaches. As rice yields are expected to decrease due to global warming, geospatial rice yield estimation techniques are indispensable tools for climate change assessments. Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars, by incorporating dynamic harvesting indices based on climatic drivers, using innovative modeling approaches with machine learning.
Author dela Torre, Daniel Marc G
Gao, Jay
Macinnis-Ng, Cate
Author_xml – sequence: 1
  givenname: Daniel Marc G
  orcidid: 0000-0003-4598-224X
  surname: dela Torre
  fullname: dela Torre, Daniel Marc G
  email: d.delatorre@auckland.ac.nz
  organization: University of Auckland
– sequence: 2
  givenname: Jay
  orcidid: 0000-0003-2760-523X
  surname: Gao
  fullname: Gao, Jay
  organization: University of Auckland
– sequence: 3
  givenname: Cate
  orcidid: 0000-0003-3935-9814
  surname: Macinnis-Ng
  fullname: Macinnis-Ng, Cate
  organization: University of Auckland
BookMark eNqFkU9r3DAQxUVJIcm2HyEg6Nlb_bFkq700hLQJBAKh7VWMpVHQ4rVSyZuw375yNrnk0F40Yvi9mce8U3I0pQkJOeNszVnPPnPGjGKCrQUTfM2N1Frpd-SEGyMbxZU8qv_KNAt0TE5L2TAmTSvVCfl9h9s0Iy04lTjdNwMU9BTLHLcwxzTRFGiODuk-4ugL3S0UfYQc067QbfI4li_0nLoc5-hgpBkfIz59IO8DjAU_vtQV-fX98ufFVXNz--P64vymca3icwMDaOGlZkYqwz1g1w196AVIDAI1U66v_W7gEqBC3hntOGgQQgcWfC9X5Pow1yfY2IdcXee9TRDtcyPlewu5GhvRtt3gjZMOgUErXF2Gy9tjZ2RQdeWKfDrMesjpz66ewG7SLk_VvhWaC6Vb1vNKfT1QLqdSMgbr4vx8qjlDHC1ndgnFvoZil1DsSyhVrd6oXz3_T_ftoItTSHkLTymP3s6wH1MOGSYXi5X_HvEXyTaluQ
CitedBy_id crossref_primary_10_3390_agronomy14112674
crossref_primary_10_1016_j_compag_2022_107232
crossref_primary_10_1016_j_jag_2022_102997
crossref_primary_10_3390_agronomy13092441
crossref_primary_10_1145_3698589
crossref_primary_10_1080_10095020_2022_2118624
crossref_primary_10_3390_rs16060954
crossref_primary_10_34133_plantphenomics_0213
crossref_primary_10_1080_10095020_2022_2122875
crossref_primary_10_3390_math9192383
crossref_primary_10_3389_ffgc_2023_1172220
crossref_primary_10_1007_s11042_023_17098_8
crossref_primary_10_1016_j_compag_2023_108417
crossref_primary_10_3390_rs14215337
crossref_primary_10_1080_10095020_2023_2178339
crossref_primary_10_3390_ijgi13030076
crossref_primary_10_3390_agriculture15010064
crossref_primary_10_1016_j_ecoinf_2024_102622
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_1038_s41598_024_62623_w
crossref_primary_10_3390_ijgi11050284
crossref_primary_10_3390_rs14205087
crossref_primary_10_1186_s13007_024_01142_1
crossref_primary_10_1016_j_isprsjprs_2024_04_002
crossref_primary_10_1109_ACCESS_2024_3500215
crossref_primary_10_3390_rs16010125
crossref_primary_10_1371_journal_pone_0309982
crossref_primary_10_1038_s41598_024_72624_4
crossref_primary_10_1080_10095020_2023_2275616
crossref_primary_10_1016_j_jssas_2022_07_006
crossref_primary_10_1016_j_acags_2025_100223
crossref_primary_10_1016_j_fcr_2025_109745
crossref_primary_10_3390_math9182321
crossref_primary_10_1016_j_scitotenv_2022_158499
crossref_primary_10_1016_j_rsase_2023_100962
crossref_primary_10_1007_s00521_022_06906_1
crossref_primary_10_1016_j_rsase_2025_101456
crossref_primary_10_3389_fpls_2023_1214006
crossref_primary_10_1016_j_isprsjprs_2024_09_035
crossref_primary_10_1016_j_scitotenv_2024_173974
crossref_primary_10_3390_agriculture13071417
crossref_primary_10_1080_10095020_2022_2068385
crossref_primary_10_1016_j_rsase_2022_100820
crossref_primary_10_3390_s22155683
crossref_primary_10_1109_JSTARS_2024_3357141
crossref_primary_10_1016_j_agrformet_2024_110055
crossref_primary_10_1117_1_JRS_18_024505
crossref_primary_10_3390_drones7050325
crossref_primary_10_1016_j_compag_2024_108653
crossref_primary_10_56124_sapientiae_v7i14_0003
crossref_primary_10_1080_10095020_2022_2124129
crossref_primary_10_1016_j_ecolind_2023_110326
crossref_primary_10_1016_j_jhydrol_2022_128716
Cites_doi 10.1016/0924-2716(92)90030-D
10.1515/intag-2017-0010
10.1016/j.fcr.2013.09.023
10.3390/rs9050509
10.1080/01431161.2018.1425567
10.1051/agro/2009005
10.1080/01431168608948944
10.3390/rs12101622
10.1080/10095020.2020.1712265
10.1016/0034-4257(94)90016-7
10.1626/pps.1.269
10.3390/rs10020293
10.1098/rstb.1977.0140
10.1016/j.jag.2018.08.011
10.1146/annurev.environ.041008.093740
10.3390/rs12162655
10.1109/ICII.2001.982729
10.1016/j.rse.2015.04.021
10.1016/j.rse.2018.09.003
10.1109/TGRS.1995.8746029
10.1007/s12524-016-0596-z
10.1016/j.agwat.2018.08.029
10.3390/rs10050805
10.1109/TGRS.2009.2014944
10.1080/22797254.2018.1556568
10.1016/S0378-4290(97)00064-6
10.1007/s11430-009-0094-z
10.3390/rs9090931
10.1016/S1161-0301(02)00108-9
10.3390/rs8100878
10.1016/j.compag.2015.08.017
10.1109/TGRS.2008.2007963
10.1556/CRC.35.2007.4.18
10.3390/ijgi7020073
10.1016/0034-4257(88)90106-X
10.1016/j.isprsjprs.2009.06.004
10.1016/S0034-4257(02)00096-2
10.1080/01431160802632249
10.1080/10095020.2019.1613776
10.1080/01431161.2010.508800
10.2480/agrmet.D-14-00023
10.1016/j.jag.2006.05.003
10.1080/10496505.2015.985546
10.1016/j.agrformet.2018.03.014
10.1080/01431169208904047
10.1016/j.isprsjprs.2013.09.014
10.3390/rs12122012
10.1080/01431161.2013.876117
10.1007/978-3-642-85193-3_29
10.1016/j.agrformet.2019.06.008
10.1117/12.929252
10.1109/36.551933
10.3390/rs61110773
10.1016/j.isprsjprs.2016.05.010
10.1016/j.jag.2015.04.023
10.1016/j.eja.2006.01.001
10.1016/0308-521X(92)90022-G
10.1371/journal.pone.0073048
10.3390/rs11030268
10.1016/j.rse.2017.04.014
10.1016/j.agrformet.2017.08.001
10.1007/978-3-540-77058-9_4
10.1117/1.JRS.9.095986
10.1080/01431160802609700
10.3390/rs11141699
10.1016/j.rse.2013.09.001
10.1016/j.jag.2018.07.022
10.1080/01431160500421507
10.1007/s11119-016-9433-1
10.1016/j.eja.2017.11.002
10.1016/j.njas.2009.12.003
10.3390/s150100769
10.21273/HORTSCI.43.2.333
10.1111/j.1365-2435.2005.00983.x
10.3389/fpls.2017.01111
10.1023/A:1005810616885
10.3390/su11030864
10.3390/rs9030248
10.1016/j.rse.2013.02.029
10.1016/S0034-4257(00)00212-1
10.3390/rs10010008
10.2307/2401901
10.1016/S0034-4257(97)00004-7
10.1016/j.agrformet.2019.05.018
10.3390/agronomy10060858
10.3390/rs10111745
10.1016/j.asr.2018.09.018
10.1080/014311698215586
10.34218/IJCET.10.3.2019.013
10.1109/TGRS.2009.2014053
10.3390/jimaging4040052
10.1104/pp.47.5.656
10.1016/j.jag.2016.12.014
10.1016/S1161-0301(02)00101-6
10.1117/1.JRS.9.096067
10.1016/j.rse.2018.08.001
10.5194/isprsarchives-XL-7-W3-85-2015
10.1109/JSTARS.2014.2371058
10.1007/s00271-007-0064-1
10.1016/j.eja.2018.12.003
10.1016/j.eja.2006.10.007
10.1117/1.JRS.9.097091
10.1016/j.fcr.2012.09.009
10.1038/ng.3071
10.1016/S1161-0301(02)00107-7
10.1016/j.agsy.2018.05.007
10.1080/01431161.2010.494639
10.1016/0034-4257(85)90097-5
10.1080/0143116031000095970
10.1016/j.agrformet.2014.06.007
10.1109/LGRS.2011.2174772
10.1117/12.568106
10.1080/014311699213172
10.1109/JSTARS.2018.2834383
10.2134/agronj1993.00021962008500020034x
10.2134/agronj2008.0139s
10.1080/15481603.2017.1291783
10.1109/JSTARS.2016.2639043
10.1016/j.isprsjprs.2019.04.015
10.5194/acp-18-10419-2018
10.1016/j.agrformet.2017.02.025
10.3390/rs8110931
10.1080/10095020.2019.1637075
10.3389/fpls.2016.01131
10.1080/17538947.2010.505664
10.1073/pnas.0403720101
10.1016/j.fcr.2005.04.008
10.1117/1.JRS.8.083674
10.1016/S0034-4257(01)00343-1
10.1111/gcb.13967
10.2134/agronj2004.0162
10.3390/rs8070597
10.1080/01431161.2018.1547457
10.1002/ird.1961
10.1016/S0308-521X(95)00060-I
10.3390/rs12132099
10.1016/j.jag.2013.04.002
10.1016/j.rse.2015.04.032
10.1080/01431161.2020.1766148
10.3390/rs10101665
10.1109/IGARSS.1995.524142
10.2134/agronj1993.00021962008500020035x
10.1016/j.agsy.2018.06.018
10.3390/rs10030447
10.1109/JSTARS.2015.2440439
10.1109/JSTARS.2017.2676343
10.1080/01431161.2012.738946
10.1109/MGRS.2015.2434351
10.1016/j.isprsjprs.2017.05.003
10.1016/j.agsy.2004.09.011
10.1016/j.agrformet.2010.07.008
10.1016/S0034-4257(97)00104-1
10.1073/pnas.1109936109
10.1002/joc.5473
10.3390/rs6064764
10.3390/rs61212789
10.1016/S1672-6308(11)60020-6
10.1016/j.agrformet.2003.08.027
10.1007/s10584-015-1487-y
10.3390/rs11222673
10.1631/jzus.2002.0461
10.3390/rs10101642
ContentType Journal Article
Copyright 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2021
2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2021
– notice: 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
JQ2
KR7
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1080/10095020.2021.1936656
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Sustainability
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1993-5153
EndPage 603
ExternalDocumentID oai_doaj_org_article_47bd9c3cea0a42cdaee2cda8e793f52a
10_1080_10095020_2021_1936656
1936656
Genre Review
GroupedDBID -5A
-5G
-BR
.86
.QJ
0YH
188
29H
4.4
5GY
5VR
6NX
8G5
8TC
AAFWJ
AAXDM
ABFIM
ABPEM
ABTAI
ABUWG
ACGFS
ADCVX
ADINQ
AEUYN
AFBBN
AFKRA
AFPKN
AGMYJ
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AVBZW
AZQEC
BA0
BENPR
BPHCQ
CCEZO
CCPQU
CCVFK
CHBEP
CS3
CUBFJ
CW9
DWQXO
EBS
E~A
E~B
FA0
FIJ
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HF~
HG6
HLICF
HZ~
H~P
IPNFZ
I~X
J.P
M2O
M4Z
O9-
OK1
PIMPY
PQQKQ
PROAC
QOS
R9I
RDKPK
RIG
RPX
RSV
S-T
S27
SDH
SEV
SOJ
T13
TCJ
TDBHL
TEI
TFL
TFW
TGP
U2A
UT5
VC2
WK8
~S~
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
3V.
7SC
7XB
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c451t-aba62d36093591dae77b8f82a3ef2e605c85917b13aa609dc96c1a6a226f0fd83
IEDL.DBID 0YH
ISSN 1009-5020
IngestDate Wed Aug 27 01:31:15 EDT 2025
Sat Jul 26 03:32:44 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 02:28:27 EDT 2025
Wed Dec 25 09:07:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-aba62d36093591dae77b8f82a3ef2e605c85917b13aa609dc96c1a6a226f0fd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2760-523X
0000-0003-3935-9814
0000-0003-4598-224X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10095020.2021.1936656
PQID 2612564081
PQPubID 3933171
PageCount 24
ParticipantIDs proquest_journals_2612564081
informaworld_taylorfrancis_310_1080_10095020_2021_1936656
crossref_primary_10_1080_10095020_2021_1936656
doaj_primary_oai_doaj_org_article_47bd9c3cea0a42cdaee2cda8e793f52a
crossref_citationtrail_10_1080_10095020_2021_1936656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-02
PublicationDateYYYYMMDD 2021-10-02
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle Geo-spatial information science
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0077
cit0078
cit0076
cit0073
cit0194
cit0195
cit0192
cit0072
cit0193
Li T. (cit0089) 2017; 237
cit0190
cit0070
Dela Torre D. M. G. (cit0030) 2019
Filho H. C. de C. (cit0037) 2020; 12
cit0079
cit0066
cit0067
cit0064
Palanivel K. (cit0125) 2019; 10
cit0185
cit0065
cit0062
cit0183
cit0184
cit0060
cit0061
cit0180
Wu L. (cit0178) 2013; 25
Boschetti M. (cit0010) 2004
Pazhanivelan S. (cit0128) 2015; 40
cit0189
cit0069
cit0099
cit0097
cit0098
cit0095
cit0096
cit0093
Maas S. J. (cit0102) 1993; 85
Horie T. (cit0050) 1987; 25
cit0092
Guo Y. (cit0046) 2019
cit0090
Boschetti M. (cit0012) 2011; 43
cit0088
cit0086
cit0087
cit0085
cit0082
cit0080
cit0081
Guo J. (cit0045) 2012
cit0033
cit0154
cit0034
cit0155
cit0031
cit0152
cit0032
cit0153
cit0151
De Wit A. (cit0029) 2019; 168
cit0039
cit0159
cit0035
cit0036
cit0157
cit0022
cit0143
cit0023
cit0144
cit0020
cit0021
cit0142
Batchelor W. D. (cit0007) 2002; 18
Mitchell P. L. (cit0110) 1998
Martin R. D. (cit0106) 1986; 52
Gandhi N. (cit0038) 2016
Zhang J. (cit0188) 2010; 1
Kang Y. (cit0075) 2016; 8
Steinhausen M. J. (cit0156) 2018; 73
cit0027
cit0148
cit0024
Liu F. (cit0094) 2014; 8
cit0145
cit0025
cit0146
cit0055
cit0056
cit0177
Huang J. (cit0053) 2001; 1
cit0174
cit0175
cit0052
Inoue S. (cit0059) 2020; 12
cit0173
Bouman B. (cit0014) 2006; 87
cit0171
Ndikumana E. (cit0119) 2018; 10
Siyal A. A. (cit0149) 2015; 9
Wang H. (cit0172) 2014; 8
cit0057
Li W. (cit0091) 2011; 18
cit0058
cit0179
cit0044
cit0165
Yang S. (cit0181) 2012; 8513
cit0042
cit0164
cit0040
cit0161
Bouman B. (cit0013) 1995; 43
cit0041
cit0162
cit0160
Roxburgh S. H. (cit0140) 2005; 19
Raksapatcharawong M. (cit0137) 2020; 12
Zhang X. (cit0191) 2018; 10
Campos-Taberner M. (cit0017) 2017; 9
cit0169
cit0049
cit0167
cit0047
cit0168
Blaschke T. (cit0009) 2014; 87
Basso B. (cit0005) 2013
cit0118
cit0116
cit0117
Huang J. (cit0054) 2002; 3
cit0114
cit0115
cit0112
Ko J. (cit0083) 2015; 9
cit0113
cit0100
Yoshida S. (cit0187) 1976
Confalonieri R. (cit0026) 2009; 29
Brady N. C. (cit0016) 1981
Van Tricht K. (cit0170) 2018; 10
Son N. T. (cit0150) 2016; 8
cit0109
cit0107
cit0108
cit0105
cit0103
cit0104
cit0011
cit0132
cit0130
cit0131
Salas E. A. L. (cit0141) 2020
Tan L. (cit0158) 2015; 9
Singh H. (cit0147) 2007; 35
Aschbacher J. (cit0001) 1995; 3
cit0019
cit0138
cit0018
cit0139
cit0015
cit0134
cit0121
cit0122
cit0120
Yoshida S. (cit0186) 1981
Jin Z. (cit0071) 2017; 247
Kamthonkiat D. (cit0074) 2010; 1
Purugganan M. D. (cit0136) 2014; 46
cit0008
cit0129
cit0127
cit0004
cit0126
cit0002
cit0123
cit0003
cit0124
Horie T. (cit0051) 1992; 40
Ujoh F. (cit0166) 2019; 22
Moeckel T. (cit0111) 2018; 10
Prins A. J. (cit0135) 2020
Maas S. J. (cit0101) 1993; 85
Prasetyo Y. (cit0133) 2018; 165
De Datta S. K. (cit0028) 1981
IPCC (cit0063) 2018
GRiSP (cit0043) 2013
Basso B. (cit0006) 2019; 154
He Y. (cit0048) 2010; 3
Wittamperuma I. (cit0176) 2012; 8
Yang Z. (cit0182) 2016; 8
Krishna G. (cit0084) 2019; 213
Jin M. (cit0068) 2015; 41
Tucker C. J. (cit0163) 1979; 8
References_xml – ident: cit0031
  doi: 10.1016/0924-2716(92)90030-D
– ident: cit0126
  doi: 10.1515/intag-2017-0010
– ident: cit0042
  doi: 10.1016/j.fcr.2013.09.023
– ident: cit0146
  doi: 10.3390/rs9050509
– ident: cit0065
  doi: 10.1080/01431161.2018.1425567
– volume: 29
  start-page: 463
  issue: 3
  year: 2009
  ident: cit0026
  publication-title: Agronomy for Sustainable Development
  doi: 10.1051/agro/2009005
– ident: cit0164
  doi: 10.1080/01431168608948944
– volume: 12
  issue: 10
  year: 2020
  ident: cit0059
  publication-title: Remote Sensing
  doi: 10.3390/rs12101622
– start-page: 471
  volume-title: Climate and Rice
  year: 1976
  ident: cit0187
– ident: cit0109
  doi: 10.1080/10095020.2020.1712265
– ident: cit0118
  doi: 10.1016/0034-4257(94)90016-7
– ident: cit0061
  doi: 10.1626/pps.1.269
– ident: cit0142
  doi: 10.3390/rs10020293
– ident: cit0113
  doi: 10.1098/rstb.1977.0140
– volume: 43
  start-page: 63
  issue: 3
  year: 2011
  ident: cit0012
  publication-title: Italian Journal of Remote Sensing
– volume: 73
  year: 2018
  ident: cit0156
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2018.08.011
– ident: cit0096
  doi: 10.1146/annurev.environ.041008.093740
– volume: 12
  start-page: 2655
  issue: 16
  year: 2020
  ident: cit0037
  publication-title: Remote Sensing
  doi: 10.3390/rs12162655
– volume: 1
  start-page: 101
  volume-title: 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479)
  year: 2001
  ident: cit0053
  doi: 10.1109/ICII.2001.982729
– ident: cit0097
  doi: 10.1016/j.rse.2015.04.021
– ident: cit0130
  doi: 10.1016/j.rse.2018.09.003
– ident: cit0117
  doi: 10.1109/TGRS.1995.8746029
– ident: cit0183
  doi: 10.1007/s12524-016-0596-z
– volume: 213
  year: 2019
  ident: cit0084
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2018.08.029
– volume: 10
  start-page: 1
  issue: 5
  year: 2018
  ident: cit0111
  publication-title: Remote Sensing
  doi: 10.3390/rs10050805
– ident: cit0082
  doi: 10.1109/TGRS.2009.2014944
– ident: cit0148
  doi: 10.1080/22797254.2018.1556568
– ident: cit0019
  doi: 10.1016/S0378-4290(97)00064-6
– ident: cit0145
  doi: 10.1007/s11430-009-0094-z
– start-page: 105
  volume-title: Proceedings - 2016 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2016, no. Tiar
  year: 2016
  ident: cit0038
– volume: 154
  volume-title: Seasonal Crop Yield Forecast: Methods, Applications, and Accuracies. Advances in Agronomy
  year: 2019
  ident: cit0006
– ident: cit0070
  doi: 10.3390/rs9090931
– volume: 1
  start-page: 372
  volume-title: American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies
  year: 2010
  ident: cit0074
– ident: cit0078
  doi: 10.1016/S1161-0301(02)00108-9
– volume: 8
  start-page: 10
  issue: 10
  year: 2016
  ident: cit0182
  publication-title: Remote Sensing
  doi: 10.3390/rs8100878
– ident: cit0184
  doi: 10.1016/j.compag.2015.08.017
– ident: cit0015
  doi: 10.1109/TGRS.2008.2007963
– volume: 43
  start-page: 143
  issue: 2
  year: 1995
  ident: cit0013
  publication-title: Wageningen Journal of Life Sciences
– volume: 35
  start-page: 1723
  issue: 4
  year: 2007
  ident: cit0147
  publication-title: Cereal Research Communications
  doi: 10.1556/CRC.35.2007.4.18
– ident: cit0167
– ident: cit0134
  doi: 10.3390/ijgi7020073
– ident: cit0057
  doi: 10.1016/0034-4257(88)90106-X
– ident: cit0008
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 3
  start-page: 31
  issue: 2
  year: 2010
  ident: cit0048
  publication-title: International Journal of Agricultural and Biological Engineering
– volume: 25
  start-page: 62
  issue: 1
  year: 1987
  ident: cit0050
  publication-title: Southeast Asian Studies
– ident: cit0058
  doi: 10.1016/S0034-4257(02)00096-2
– ident: cit0011
  doi: 10.1080/01431160802632249
– ident: cit0122
  doi: 10.1080/10095020.2019.1613776
– ident: cit0175
  doi: 10.1080/01431161.2010.508800
– ident: cit0104
  doi: 10.2480/agrmet.D-14-00023
– volume-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
  year: 2019
  ident: cit0030
– ident: cit0033
  doi: 10.1016/j.jag.2006.05.003
– ident: cit0034
  doi: 10.1080/10496505.2015.985546
– ident: cit0056
  doi: 10.1016/j.agrformet.2018.03.014
– ident: cit0161
  doi: 10.1080/01431169208904047
– volume: 87
  year: 2014
  ident: cit0009
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2013.09.014
– ident: cit0157
– ident: cit0085
  doi: 10.3390/rs12122012
– volume-title: Fundamentals of Rice Crop Science
  year: 1981
  ident: cit0186
– ident: cit0067
  doi: 10.1080/01431161.2013.876117
– ident: cit0107
  doi: 10.1007/978-3-642-85193-3_29
– ident: cit0052
  doi: 10.1016/j.agrformet.2019.06.008
– volume: 8513
  volume-title: Remote Sensing and Modeling of Ecosystems for Sustainability IX
  year: 2012
  ident: cit0181
  doi: 10.1117/12.929252
– ident: cit0088
  doi: 10.1109/36.551933
– ident: cit0120
  doi: 10.3390/rs61110773
– ident: cit0032
  doi: 10.1016/j.isprsjprs.2016.05.010
– volume: 41
  start-page: 118
  year: 2015
  ident: cit0068
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2015.04.023
– ident: cit0121
  doi: 10.1016/j.eja.2006.01.001
– volume: 40
  start-page: 211
  issue: 1
  year: 1992
  ident: cit0051
  publication-title: Agricultural Systems
  doi: 10.1016/0308-521X(92)90022-G
– ident: cit0055
  doi: 10.1371/journal.pone.0073048
– ident: cit0194
  doi: 10.3390/rs11030268
– ident: cit0004
  doi: 10.1016/j.rse.2017.04.014
– volume: 247
  start-page: 207
  year: 2017
  ident: cit0071
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2017.08.001
– ident: cit0047
  doi: 10.1007/978-3-540-77058-9_4
– volume: 9
  start-page: 095986
  issue: 1
  year: 2015
  ident: cit0149
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.9.095986
– ident: cit0023
  doi: 10.1080/01431160802609700
– ident: cit0185
  doi: 10.3390/rs11141699
– ident: cit0062
  doi: 10.1016/j.rse.2013.09.001
– ident: cit0024
  doi: 10.1016/j.jag.2018.07.022
– ident: cit0036
– volume: 8
  volume-title: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment
  year: 1979
  ident: cit0163
– ident: cit0021
  doi: 10.1080/01431160500421507
– ident: cit0076
  doi: 10.1007/s11119-016-9433-1
– start-page: 1
  year: 1981
  ident: cit0016
  publication-title: Proceedings of Symposium on Paddy Soils
– ident: cit0069
  doi: 10.1016/j.eja.2017.11.002
– ident: cit0159
  doi: 10.1016/j.njas.2009.12.003
– ident: cit0115
  doi: 10.3390/s150100769
– ident: cit0162
  doi: 10.21273/HORTSCI.43.2.333
– ident: cit0098
– volume: 19
  start-page: 378
  issue: 3
  year: 2005
  ident: cit0140
  publication-title: Functional Ecology
  doi: 10.1111/j.1365-2435.2005.00983.x
– ident: cit0180
  doi: 10.3389/fpls.2017.01111
– ident: cit0079
  doi: 10.1023/A:1005810616885
– ident: cit0190
  doi: 10.3390/su11030864
– volume: 9
  start-page: 1
  issue: 3
  year: 2017
  ident: cit0017
  publication-title: Remote Sensing
  doi: 10.3390/rs9030248
– ident: cit0064
  doi: 10.1016/j.rse.2013.02.029
– ident: cit0144
  doi: 10.1016/S0034-4257(00)00212-1
– volume: 10
  start-page: 8
  year: 2018
  ident: cit0191
  publication-title: Remote Sensing
  doi: 10.3390/rs10010008
– ident: cit0112
  doi: 10.2307/2401901
– ident: cit0025
  doi: 10.1016/S0034-4257(97)00004-7
– ident: cit0035
  doi: 10.1016/j.agrformet.2019.05.018
– ident: cit0171
  doi: 10.3390/agronomy10060858
– volume: 165
  issue: 1
  year: 2018
  ident: cit0133
  publication-title: IOP Conference Series: Earth and Environmental Science
– year: 2020
  ident: cit0135
  publication-title: Geo-Spatial Information Science
– ident: cit0027
  doi: 10.3390/rs10111745
– ident: cit0189
  doi: 10.1016/j.asr.2018.09.018
– ident: cit0116
  doi: 10.1080/014311698215586
– volume: 10
  start-page: 110
  issue: 3
  year: 2019
  ident: cit0125
  publication-title: International Journal of Computer Engineering and Technology
  doi: 10.34218/IJCET.10.3.2019.013
– ident: cit0123
  doi: 10.1109/TGRS.2009.2014053
– ident: cit0077
  doi: 10.3390/jimaging4040052
– ident: cit0177
  doi: 10.1104/pp.47.5.656
– volume: 10
  start-page: 8
  year: 2018
  ident: cit0119
  publication-title: Remote Sensing
– ident: cit0192
  doi: 10.1016/j.jag.2016.12.014
– volume-title: Proc. SPIE 8513, Remote Sensing and Modeling of Ecosystems for Sustainability IX 85130F (October)
  year: 2012
  ident: cit0045
– volume: 18
  start-page: 141
  issue: 1
  year: 2002
  ident: cit0007
  publication-title: European Journal of Agronomy
  doi: 10.1016/S1161-0301(02)00101-6
– volume: 9
  start-page: 096067
  issue: 1
  year: 2015
  ident: cit0083
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.9.096067
– ident: cit0105
  doi: 10.1016/j.rse.2018.08.001
– volume: 40
  start-page: 85
  issue: 7
  year: 2015
  ident: cit0128
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
  doi: 10.5194/isprsarchives-XL-7-W3-85-2015
– volume-title: Global Warming of 1.5°C
  year: 2018
  ident: cit0063
– volume: 8
  start-page: 1330
  issue: 3
  year: 2014
  ident: cit0094
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2371058
– ident: cit0153
  doi: 10.1007/s00271-007-0064-1
– ident: cit0041
  doi: 10.1016/j.eja.2018.12.003
– ident: cit0114
  doi: 10.1016/j.eja.2006.10.007
– volume: 9
  start-page: 097091
  issue: 1
  year: 2015
  ident: cit0158
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.9.097091
– ident: cit0168
  doi: 10.1016/j.fcr.2012.09.009
– volume: 46
  start-page: 931
  issue: 9
  year: 2014
  ident: cit0136
  publication-title: Nature Genetics
  doi: 10.1038/ng.3071
– ident: cit0073
  doi: 10.1016/S1161-0301(02)00107-7
– ident: cit0124
  doi: 10.1016/j.agsy.2018.05.007
– ident: cit0022
  doi: 10.1080/01431161.2010.494639
– ident: cit0165
  doi: 10.1016/0034-4257(85)90097-5
– volume: 1
  issue: 1
  year: 2010
  ident: cit0188
  publication-title: International Journal of Image and Data Fusion
– ident: cit0092
  doi: 10.1080/0143116031000095970
– ident: cit0152
  doi: 10.1016/j.agrformet.2014.06.007
– start-page: 1
  year: 2013
  ident: cit0005
  publication-title: The First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics
– ident: cit0081
  doi: 10.1109/LGRS.2011.2174772
– start-page: 46
  volume-title: Remote Sensing for Agriculture, Ecosystems, and Hydrology VI
  year: 2004
  ident: cit0010
  doi: 10.1117/12.568106
– volume-title: Rice Almanac
  year: 2013
  ident: cit0043
– ident: cit0139
  doi: 10.1080/014311699213172
– ident: cit0044
  doi: 10.1109/JSTARS.2018.2834383
– volume: 85
  start-page: 348
  issue: 2
  year: 1993
  ident: cit0101
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1993.00021962008500020034x
– volume: 52
  start-page: 1885
  issue: 12
  year: 1986
  ident: cit0106
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0154
  doi: 10.2134/agronj2008.0139s
– ident: cit0080
  doi: 10.1080/15481603.2017.1291783
– ident: cit0155
  doi: 10.1109/JSTARS.2016.2639043
– ident: cit0099
  doi: 10.1016/j.isprsjprs.2019.04.015
– ident: cit0173
  doi: 10.5194/acp-18-10419-2018
– ident: cit0100
– volume: 237
  start-page: 246
  year: 2017
  ident: cit0089
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2017.02.025
– ident: cit0174
  doi: 10.3390/rs8110931
– volume: 22
  issue: 4
  year: 2019
  ident: cit0166
  publication-title: Geo-Spatial Information Science
  doi: 10.1080/10095020.2019.1637075
– volume: 8
  start-page: 367
  year: 2012
  ident: cit0176
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B8
– volume-title: Potential Yields and the Efficiency of Radiation Use in Rice
  year: 1998
  ident: cit0110
– ident: cit0160
  doi: 10.3389/fpls.2016.01131
– ident: cit0003
  doi: 10.1080/17538947.2010.505664
– year: 2020
  ident: cit0141
  publication-title: Geo-Spatial Information Science
– ident: cit0129
  doi: 10.1073/pnas.0403720101
– ident: cit0040
– ident: cit0132
  doi: 10.1016/j.fcr.2005.04.008
– volume: 8
  start-page: 083674
  issue: 1
  year: 2014
  ident: cit0172
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.8.083674
– ident: cit0060
  doi: 10.1016/S0034-4257(01)00343-1
– ident: cit0169
  doi: 10.1111/gcb.13967
– ident: cit0020
  doi: 10.2134/agronj2004.0162
– volume: 8
  start-page: 7
  issue: 7
  year: 2016
  ident: cit0075
  publication-title: Remote Sensing
  doi: 10.3390/rs8070597
– ident: cit0143
  doi: 10.1080/01431161.2018.1547457
– ident: cit0138
  doi: 10.1002/ird.1961
– volume: 8
  start-page: 993
  year: 2016
  ident: cit0150
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8
– ident: cit0108
  doi: 10.1016/S0308-521X(95)00060-I
– volume: 12
  start-page: 13
  year: 2020
  ident: cit0137
  publication-title: Remote Sensing
  doi: 10.3390/rs12132099
– volume: 25
  start-page: 66
  issue: 1
  year: 2013
  ident: cit0178
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2013.04.002
– ident: cit0093
  doi: 10.1016/j.rse.2015.04.032
– volume-title: Principles and Practices of Rice Production
  year: 1981
  ident: cit0028
– ident: cit0151
  doi: 10.1080/01431161.2020.1766148
– ident: cit0066
  doi: 10.3390/rs10101665
– volume: 3
  start-page: 2183
  volume-title: 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications
  year: 1995
  ident: cit0001
  doi: 10.1109/IGARSS.1995.524142
– volume: 85
  start-page: 354
  issue: 2
  year: 1993
  ident: cit0102
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1993.00021962008500020035x
– volume: 168
  start-page: 154
  year: 2019
  ident: cit0029
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2018.06.018
– ident: cit0127
  doi: 10.3390/rs10030447
– ident: cit0087
  doi: 10.1109/JSTARS.2015.2440439
– volume-title: 2018 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2018
  year: 2019
  ident: cit0046
– ident: cit0131
  doi: 10.1109/JSTARS.2017.2676343
– ident: cit0086
  doi: 10.1080/01431161.2012.738946
– ident: cit0039
  doi: 10.1109/MGRS.2015.2434351
– ident: cit0195
  doi: 10.1016/j.isprsjprs.2017.05.003
– volume: 87
  start-page: 249
  issue: 3
  year: 2006
  ident: cit0014
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2004.09.011
– ident: cit0095
  doi: 10.1016/j.agrformet.2010.07.008
– ident: cit0018
  doi: 10.1016/S0034-4257(97)00104-1
– ident: cit0049
  doi: 10.1073/pnas.1109936109
– ident: cit0179
  doi: 10.1002/joc.5473
– ident: cit0103
  doi: 10.3390/rs6064764
– ident: cit0002
  doi: 10.3390/rs61212789
– volume: 18
  start-page: 142
  issue: 2
  year: 2011
  ident: cit0091
  publication-title: Rice Science
  doi: 10.1016/S1672-6308(11)60020-6
– ident: cit0072
  doi: 10.1016/j.agrformet.2003.08.027
– ident: cit0090
  doi: 10.1007/s10584-015-1487-y
– ident: cit0193
  doi: 10.3390/rs11222673
– volume: 3
  start-page: 461
  issue: 4
  year: 2002
  ident: cit0054
  publication-title: Journal of Zhejiang University – SCIENCE A
  doi: 10.1631/jzus.2002.0461
– volume: 10
  start-page: 1
  issue: 10
  year: 2018
  ident: cit0170
  publication-title: Remote Sensing
  doi: 10.3390/rs10101642
SSID ssj0039435
Score 2.4520137
SecondaryResourceType review_article
Snippet Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 580
SubjectTerms Agricultural management
Algorithms
Canopies
Climate change
Crop yield
Cultivars
data assimilation
Data collection
empirical model
Environmental assessment
Environmental conditions
Food security
geospatial applications
Global warming
Harvesting
Machine learning
Modelling
Monitoring systems
Process-based crop model
Remote sensing
Rice
rice yield mapping
Scale models
Spatial data
Spatial resolution
yield estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1EoyANrIP5MzFYQVYUEAwLEZtmOXQbUIlqQ-u_xOQ6qYOjCksGyFet8sd85d-8hdMYk49ayEJEbEwV3NSlURX1BjeTSMRGUgnrnu3s5euK3L-JlSeoLcsJaeuDWcBe8so1yzHlTGk5dY7yHZ-2jYwVBEzSKZ14XTLV7MFM8SWsSuPoXERF1tTt1eQFt0BRjQ0rOI36REtSrl06lRN7_i7r0z1adzp_hNtrKwBEP2gnvoDU_2UUbWcP8dbGHnh98NLvHM0hJn4wLOJ8aDCQabXUingYMDEJ4AUlrMwwZ72P8FWPlGPzjpIgzu8QD7LL4AW6rWvbR0_Dm8XpUZNWEwnFB5oWxRtKGSfjDqUi0V1XZOtTUMB-oj9GLA8q6yhJmTOzUOCUdMdJEHBbK0NTsAK1PphN_iLALBEQHS2UC4SJYW9UmBBYqYoRqyqqHeGc17TKlOChbvGmSmUc7Y2swts7G7qHzn2HvLafGqgFXsCQ_nYESOzVER9HZUfQqR-khtbygep5uREIrX6LZign0u9XX-RufaSBfE5JHTHX0H_M7RpvwypQoSPtoff7x6U8i4Jnb0-Tb373S-Kw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-DnoRn7i-yMFrtXm28SIqigiKiIq3kKTJepDtalfBf2-mTVUU9NJDmpR2Jp3MJDPfh9Auk4xby0L03JjIuCtJpgrqM2okl46JoBTUO19eyfM7fvEgHtKGW5PSKnub2BrqqnawR74PUFdC8riCHY6fM2CNgtPVRKExjWajCS5j8DV7fHp1fdPbYqZ4S7FJ4AhARM-or-Ep831og6YYI1KyF_0YKYHF-tvq1IL4_4Aw_WWy23XobBEtJAcSH3UaX0JTfrSM5hKX-eP7Crq_8VH8HjeQmj4aZrBOVRjANLoqRVwHDEhC-B2S1xoMme9D_BZj5vq1wS0zTnOAj7BLJAi4q25ZRXdnp7cn51liT8gcF2SSGWskrZiEk05FKuOLwpahpIb5QH2MYhxA1xWWMGNip8op6YiRJvpjIQ9VydbQzKge-XWEXSBAPpgrEwgXwdqiNCGwUBAjVJUXA8R7qWmXoMWB4eJJk4RA2gtbg7B1EvYA7X0OG3fYGv8NOAaVfHYGaOy2oX4Z6vSnaV7YSjnmvMkNpy5-uIdr6aMlCoKaAVLfFaon7c5I6GhMNPvnBbZ67ev0rzf6a2Zu_H17E83Dw9pUQLqFZiYvr347ujQTu5Pm7QcWRu87
  priority: 102
  providerName: ProQuest
Title Remote sensing-based estimation of rice yields using various models: A critical review
URI https://www.tandfonline.com/doi/abs/10.1080/10095020.2021.1936656
https://www.proquest.com/docview/2612564081
https://doaj.org/article/47bd9c3cea0a42cdaee2cda8e793f52a
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHNpLRR-IbWHlQ69B8SNO3NtuxWpVqasKQVVOlu3YywHtIrIg8e874ziogBAHLrES2VYy48c3zsw3hHwTSkjnRATkJqpC-oYVuuah4FZJ5UUVtcZ4518LNT-TP_9Wgzdhl90q0YaOPVFEWqtxclvXDR5xUAIuAJgD1h1nR4BAFICSN2SH42iFIV2ez4fFWGiZcmxikwLbDEE8z3XzYHtKLP6POEyfrNlpI5rtkvcZQdJJr_IPZCusPpK3OZn5xd0n8uckgPwD7dA3fbUscKNqKbJp9GGKdB0pUgnRO_Re6yi6vi_pLRjN65uOptQ43Xc6oT5nQaB9eMtncjY7Pv0xL3L6hMLLim0K66zirVD4q1Oz1oa6dk1suBUh8gBmjEfuutoxYS1Uar1WnlllAZDFMraN2CPbq_Uq7BPqI8Psg6W2kckqOlc3NkYRa2Yr3Zb1iMhBasZnbnFMcXFpWKYgHYRtUNgmC3tEju6bXfXkGi81mKJK7isjN3Z6sL5emjzVjKxdq73wwZZWcg8fHvDaBFiKYsXtiOj_FWo26Wgk9nlMjHjhBQ4G7Zs82TuDLGyVkgCuvryi66_kHd4mR0F-QLY31zfhEADPxo3TkB6TnclsOl1AOT1e_D4Zp-ODf0dV9y0
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiKdYWsAHOKaNH3HiSgi10GpL2xWqWtSbsR17e0Cb0mxB-6f4jXgSp1Qg0VMvOTiJlczYM2N75vsA3nDJhbU8xMiNF5lwFc1UyXzGjBTS8SIohfXORxM5PhWfzoqzJfg11MJgWuVgEztDXTcO98g3EeqqkCJ6sPcX3zNkjcLT1YFCox8WB37xMy7Z2nf7H6N-3zK2t3vyYZwlVoHMiYLOM2ONZDWXeAKoaG18WdoqVMxwH5iP0b1DSLfSUm5MfKh2SjpqpIlxSshDXfHY7z1YEbGHaAhWdnYnn48H28-V6Cg9KR45FDESG2qGqnwT27AprkkZ3Yhxk5TImn3DG3akAX9Bpv7jIjq_t_cQHqSAlWz3I-wRLPnZY1hN3Onniyfw5dhHdXvSYir8bJqhX6wJgnf0VZGkCQSRi8gCk-Vagpn2U_IjrtGbq5Z0TDztFtkmLpEukL6a5imc3olcn8HyrJn550BcoEh2mCsTqCiCtWVlQuChpKZQdV6OQAxS0y5BmSOjxjdNE-LpIGyNwtZJ2CPYuH7tosfyuO2FHVTJ9cMIxd01NJdTnWa2FqWtlePOm9wI5uKPe7xWPlq-UDAzAnVToXre7cSEnjZF81s-YH3Qvk62pdV_ZsKL_99-Davjk6NDfbg_OViD-9hxl4bI1mF5fnnlX8Zwam5fpTFM4OtdT5vf580sRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKwGXivIQWwr1gWuq-Jm4tz5YLS1UVUURnCzbsZcD2q2aLVL_PTOOU_EQ6oFLIiW2lYztmc_J-PsIeSu0kN6LBMhNqEqGllWm4bHiTksdhErG4H7nj2d6dilPvqgxm7AvaZW4hk4DUUT21Ti5r7o0ZsTBGXABwBxY3XG2BwhEAyh5QDZUC7EehnT9dTY6Y2Fk1tjEKhXWGTfx_KuZ38JTZvH_g8P0L5-dA9H0CdksCJIeDF2-Rdbi4il5VMTMv90-I58vItg_0h5z0xfzCgNVR5FNY9imSJeJIpUQvcXstZ5i6vuc_oBF8_Kmp1kap9-nBzQUFQQ6bG95Ti6n7z4dzaoin1AFqdiqct5p3gmNvzoN61xsGt-mljsRE4-wjAnIXdd4JpyDQl0wOjCnHQCyVKeuFS_I-mK5iC8JDYmh-mBtXGJSJe-b1qUkUsOcMl3dTIgcrWZD4RZHiYvvlhUK0tHYFo1ti7EnZO-u2tVArnFfhUPskrvCyI2dLyyv57ZMNSsb35kgQnS1kzzAi0c8thFcUVLcTYj5tUPtKn8aSYOOiRX3PMDO2Pu2TPbeIgub0hLA1fZ_NL1LHp4fT-2H92enr8hjvJNzBvkOWV9d38TXgH1W_k0e3T8BCLr1yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+sensing-based+estimation+of+rice+yields+using+various+models%3A+A+critical+review&rft.jtitle=Geo-spatial+information+science&rft.au=dela+Torre%2C+Daniel+Marc+G&rft.au=Gao%2C+Jay&rft.au=Macinnis-Ng%2C+Cate&rft.date=2021-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=24&rft.issue=4&rft.spage=580&rft.epage=603&rft_id=info:doi/10.1080%2F10095020.2021.1936656&rft.externalDBID=0YH&rft.externalDocID=1936656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon