Remote sensing-based estimation of rice yields using various models: A critical review
Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects...
Saved in:
Published in | Geo-spatial information science Vol. 24; no. 4; pp. 580 - 603 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wuhan
Taylor & Francis
02.10.2021
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1009-5020 1993-5153 |
DOI | 10.1080/10095020.2021.1936656 |
Cover
Loading…
Abstract | Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects on farm-scale yield. Remote Sensing (RS) is a useful tool to upscale yield estimates from farm scales to regional levels. Much research used RS with rice models for reliable yield estimation. As several countries start to operationalize rice monitoring systems, it is needed to synthesize current literature to identify knowledge gaps, to improve estimation accuracies, and to optimize processing. This paper critically reviewed significant developments in using geospatial methods, imagery, and quantitative models to estimate rice yield. First, essential characteristics of rice were discussed as detected by optical and radar sensors, band selection, sensor configuration, spatial resolution, mapping methods, and biophysical variables of rice derivable from RS data. Second, various empirical, process-based, and semi-empirical models that used RS data for spatial estimation of yield were critically assessed - discussing how major types of models, RS platforms, data assimilation algorithms, canopy state variables, and RS variables can be integrated for yield estimation. Lastly, to overcome current constraints and to improve accuracies, several possibilities were suggested - adding new modeling modules, using alternative canopy variables, and adopting novel modeling approaches. As rice yields are expected to decrease due to global warming, geospatial rice yield estimation techniques are indispensable tools for climate change assessments. Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars, by incorporating dynamic harvesting indices based on climatic drivers, using innovative modeling approaches with machine learning. |
---|---|
AbstractList | Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions. However, they offer little information on spatial variability effects on farm-scale yield. Remote Sensing (RS) is a useful tool to upscale yield estimates from farm scales to regional levels. Much research used RS with rice models for reliable yield estimation. As several countries start to operationalize rice monitoring systems, it is needed to synthesize current literature to identify knowledge gaps, to improve estimation accuracies, and to optimize processing. This paper critically reviewed significant developments in using geospatial methods, imagery, and quantitative models to estimate rice yield. First, essential characteristics of rice were discussed as detected by optical and radar sensors, band selection, sensor configuration, spatial resolution, mapping methods, and biophysical variables of rice derivable from RS data. Second, various empirical, process-based, and semi-empirical models that used RS data for spatial estimation of yield were critically assessed - discussing how major types of models, RS platforms, data assimilation algorithms, canopy state variables, and RS variables can be integrated for yield estimation. Lastly, to overcome current constraints and to improve accuracies, several possibilities were suggested - adding new modeling modules, using alternative canopy variables, and adopting novel modeling approaches. As rice yields are expected to decrease due to global warming, geospatial rice yield estimation techniques are indispensable tools for climate change assessments. Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars, by incorporating dynamic harvesting indices based on climatic drivers, using innovative modeling approaches with machine learning. |
Author | dela Torre, Daniel Marc G Gao, Jay Macinnis-Ng, Cate |
Author_xml | – sequence: 1 givenname: Daniel Marc G orcidid: 0000-0003-4598-224X surname: dela Torre fullname: dela Torre, Daniel Marc G email: d.delatorre@auckland.ac.nz organization: University of Auckland – sequence: 2 givenname: Jay orcidid: 0000-0003-2760-523X surname: Gao fullname: Gao, Jay organization: University of Auckland – sequence: 3 givenname: Cate orcidid: 0000-0003-3935-9814 surname: Macinnis-Ng fullname: Macinnis-Ng, Cate organization: University of Auckland |
BookMark | eNqFkU9r3DAQxUVJIcm2HyEg6Nlb_bFkq700hLQJBAKh7VWMpVHQ4rVSyZuw375yNrnk0F40Yvi9mce8U3I0pQkJOeNszVnPPnPGjGKCrQUTfM2N1Frpd-SEGyMbxZU8qv_KNAt0TE5L2TAmTSvVCfl9h9s0Iy04lTjdNwMU9BTLHLcwxzTRFGiODuk-4ugL3S0UfYQc067QbfI4li_0nLoc5-hgpBkfIz59IO8DjAU_vtQV-fX98ufFVXNz--P64vymca3icwMDaOGlZkYqwz1g1w196AVIDAI1U66v_W7gEqBC3hntOGgQQgcWfC9X5Pow1yfY2IdcXee9TRDtcyPlewu5GhvRtt3gjZMOgUErXF2Gy9tjZ2RQdeWKfDrMesjpz66ewG7SLk_VvhWaC6Vb1vNKfT1QLqdSMgbr4vx8qjlDHC1ndgnFvoZil1DsSyhVrd6oXz3_T_ftoItTSHkLTymP3s6wH1MOGSYXi5X_HvEXyTaluQ |
CitedBy_id | crossref_primary_10_3390_agronomy14112674 crossref_primary_10_1016_j_compag_2022_107232 crossref_primary_10_1016_j_jag_2022_102997 crossref_primary_10_3390_agronomy13092441 crossref_primary_10_1145_3698589 crossref_primary_10_1080_10095020_2022_2118624 crossref_primary_10_3390_rs16060954 crossref_primary_10_34133_plantphenomics_0213 crossref_primary_10_1080_10095020_2022_2122875 crossref_primary_10_3390_math9192383 crossref_primary_10_3389_ffgc_2023_1172220 crossref_primary_10_1007_s11042_023_17098_8 crossref_primary_10_1016_j_compag_2023_108417 crossref_primary_10_3390_rs14215337 crossref_primary_10_1080_10095020_2023_2178339 crossref_primary_10_3390_ijgi13030076 crossref_primary_10_3390_agriculture15010064 crossref_primary_10_1016_j_ecoinf_2024_102622 crossref_primary_10_1080_10095020_2021_2017237 crossref_primary_10_1038_s41598_024_62623_w crossref_primary_10_3390_ijgi11050284 crossref_primary_10_3390_rs14205087 crossref_primary_10_1186_s13007_024_01142_1 crossref_primary_10_1016_j_isprsjprs_2024_04_002 crossref_primary_10_1109_ACCESS_2024_3500215 crossref_primary_10_3390_rs16010125 crossref_primary_10_1371_journal_pone_0309982 crossref_primary_10_1038_s41598_024_72624_4 crossref_primary_10_1080_10095020_2023_2275616 crossref_primary_10_1016_j_jssas_2022_07_006 crossref_primary_10_1016_j_acags_2025_100223 crossref_primary_10_1016_j_fcr_2025_109745 crossref_primary_10_3390_math9182321 crossref_primary_10_1016_j_scitotenv_2022_158499 crossref_primary_10_1016_j_rsase_2023_100962 crossref_primary_10_1007_s00521_022_06906_1 crossref_primary_10_1016_j_rsase_2025_101456 crossref_primary_10_3389_fpls_2023_1214006 crossref_primary_10_1016_j_isprsjprs_2024_09_035 crossref_primary_10_1016_j_scitotenv_2024_173974 crossref_primary_10_3390_agriculture13071417 crossref_primary_10_1080_10095020_2022_2068385 crossref_primary_10_1016_j_rsase_2022_100820 crossref_primary_10_3390_s22155683 crossref_primary_10_1109_JSTARS_2024_3357141 crossref_primary_10_1016_j_agrformet_2024_110055 crossref_primary_10_1117_1_JRS_18_024505 crossref_primary_10_3390_drones7050325 crossref_primary_10_1016_j_compag_2024_108653 crossref_primary_10_56124_sapientiae_v7i14_0003 crossref_primary_10_1080_10095020_2022_2124129 crossref_primary_10_1016_j_ecolind_2023_110326 crossref_primary_10_1016_j_jhydrol_2022_128716 |
Cites_doi | 10.1016/0924-2716(92)90030-D 10.1515/intag-2017-0010 10.1016/j.fcr.2013.09.023 10.3390/rs9050509 10.1080/01431161.2018.1425567 10.1051/agro/2009005 10.1080/01431168608948944 10.3390/rs12101622 10.1080/10095020.2020.1712265 10.1016/0034-4257(94)90016-7 10.1626/pps.1.269 10.3390/rs10020293 10.1098/rstb.1977.0140 10.1016/j.jag.2018.08.011 10.1146/annurev.environ.041008.093740 10.3390/rs12162655 10.1109/ICII.2001.982729 10.1016/j.rse.2015.04.021 10.1016/j.rse.2018.09.003 10.1109/TGRS.1995.8746029 10.1007/s12524-016-0596-z 10.1016/j.agwat.2018.08.029 10.3390/rs10050805 10.1109/TGRS.2009.2014944 10.1080/22797254.2018.1556568 10.1016/S0378-4290(97)00064-6 10.1007/s11430-009-0094-z 10.3390/rs9090931 10.1016/S1161-0301(02)00108-9 10.3390/rs8100878 10.1016/j.compag.2015.08.017 10.1109/TGRS.2008.2007963 10.1556/CRC.35.2007.4.18 10.3390/ijgi7020073 10.1016/0034-4257(88)90106-X 10.1016/j.isprsjprs.2009.06.004 10.1016/S0034-4257(02)00096-2 10.1080/01431160802632249 10.1080/10095020.2019.1613776 10.1080/01431161.2010.508800 10.2480/agrmet.D-14-00023 10.1016/j.jag.2006.05.003 10.1080/10496505.2015.985546 10.1016/j.agrformet.2018.03.014 10.1080/01431169208904047 10.1016/j.isprsjprs.2013.09.014 10.3390/rs12122012 10.1080/01431161.2013.876117 10.1007/978-3-642-85193-3_29 10.1016/j.agrformet.2019.06.008 10.1117/12.929252 10.1109/36.551933 10.3390/rs61110773 10.1016/j.isprsjprs.2016.05.010 10.1016/j.jag.2015.04.023 10.1016/j.eja.2006.01.001 10.1016/0308-521X(92)90022-G 10.1371/journal.pone.0073048 10.3390/rs11030268 10.1016/j.rse.2017.04.014 10.1016/j.agrformet.2017.08.001 10.1007/978-3-540-77058-9_4 10.1117/1.JRS.9.095986 10.1080/01431160802609700 10.3390/rs11141699 10.1016/j.rse.2013.09.001 10.1016/j.jag.2018.07.022 10.1080/01431160500421507 10.1007/s11119-016-9433-1 10.1016/j.eja.2017.11.002 10.1016/j.njas.2009.12.003 10.3390/s150100769 10.21273/HORTSCI.43.2.333 10.1111/j.1365-2435.2005.00983.x 10.3389/fpls.2017.01111 10.1023/A:1005810616885 10.3390/su11030864 10.3390/rs9030248 10.1016/j.rse.2013.02.029 10.1016/S0034-4257(00)00212-1 10.3390/rs10010008 10.2307/2401901 10.1016/S0034-4257(97)00004-7 10.1016/j.agrformet.2019.05.018 10.3390/agronomy10060858 10.3390/rs10111745 10.1016/j.asr.2018.09.018 10.1080/014311698215586 10.34218/IJCET.10.3.2019.013 10.1109/TGRS.2009.2014053 10.3390/jimaging4040052 10.1104/pp.47.5.656 10.1016/j.jag.2016.12.014 10.1016/S1161-0301(02)00101-6 10.1117/1.JRS.9.096067 10.1016/j.rse.2018.08.001 10.5194/isprsarchives-XL-7-W3-85-2015 10.1109/JSTARS.2014.2371058 10.1007/s00271-007-0064-1 10.1016/j.eja.2018.12.003 10.1016/j.eja.2006.10.007 10.1117/1.JRS.9.097091 10.1016/j.fcr.2012.09.009 10.1038/ng.3071 10.1016/S1161-0301(02)00107-7 10.1016/j.agsy.2018.05.007 10.1080/01431161.2010.494639 10.1016/0034-4257(85)90097-5 10.1080/0143116031000095970 10.1016/j.agrformet.2014.06.007 10.1109/LGRS.2011.2174772 10.1117/12.568106 10.1080/014311699213172 10.1109/JSTARS.2018.2834383 10.2134/agronj1993.00021962008500020034x 10.2134/agronj2008.0139s 10.1080/15481603.2017.1291783 10.1109/JSTARS.2016.2639043 10.1016/j.isprsjprs.2019.04.015 10.5194/acp-18-10419-2018 10.1016/j.agrformet.2017.02.025 10.3390/rs8110931 10.1080/10095020.2019.1637075 10.3389/fpls.2016.01131 10.1080/17538947.2010.505664 10.1073/pnas.0403720101 10.1016/j.fcr.2005.04.008 10.1117/1.JRS.8.083674 10.1016/S0034-4257(01)00343-1 10.1111/gcb.13967 10.2134/agronj2004.0162 10.3390/rs8070597 10.1080/01431161.2018.1547457 10.1002/ird.1961 10.1016/S0308-521X(95)00060-I 10.3390/rs12132099 10.1016/j.jag.2013.04.002 10.1016/j.rse.2015.04.032 10.1080/01431161.2020.1766148 10.3390/rs10101665 10.1109/IGARSS.1995.524142 10.2134/agronj1993.00021962008500020035x 10.1016/j.agsy.2018.06.018 10.3390/rs10030447 10.1109/JSTARS.2015.2440439 10.1109/JSTARS.2017.2676343 10.1080/01431161.2012.738946 10.1109/MGRS.2015.2434351 10.1016/j.isprsjprs.2017.05.003 10.1016/j.agsy.2004.09.011 10.1016/j.agrformet.2010.07.008 10.1016/S0034-4257(97)00104-1 10.1073/pnas.1109936109 10.1002/joc.5473 10.3390/rs6064764 10.3390/rs61212789 10.1016/S1672-6308(11)60020-6 10.1016/j.agrformet.2003.08.027 10.1007/s10584-015-1487-y 10.3390/rs11222673 10.1631/jzus.2002.0461 10.3390/rs10101642 |
ContentType | Journal Article |
Copyright | 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2021 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2021 – notice: 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7SC 7XB 8FD 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO FR3 GNUQQ GUQSH JQ2 KR7 L7M L~C L~D M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U DOA |
DOI | 10.1080/10095020.2021.1936656 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Sustainability ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1993-5153 |
EndPage | 603 |
ExternalDocumentID | oai_doaj_org_article_47bd9c3cea0a42cdaee2cda8e793f52a 10_1080_10095020_2021_1936656 1936656 |
Genre | Review |
GroupedDBID | -5A -5G -BR .86 .QJ 0YH 188 29H 4.4 5GY 5VR 6NX 8G5 8TC AAFWJ AAXDM ABFIM ABPEM ABTAI ABUWG ACGFS ADCVX ADINQ AEUYN AFBBN AFKRA AFPKN AGMYJ AHBYD ALMA_UNASSIGNED_HOLDINGS AVBZW AZQEC BA0 BENPR BPHCQ CCEZO CCPQU CCVFK CHBEP CS3 CUBFJ CW9 DWQXO EBS E~A E~B FA0 FIJ GNUQQ GROUPED_DOAJ GTTXZ GUQSH H13 HF~ HG6 HLICF HZ~ H~P IPNFZ I~X J.P M2O M4Z O9- OK1 PIMPY PQQKQ PROAC QOS R9I RDKPK RIG RPX RSV S-T S27 SDH SEV SOJ T13 TCJ TDBHL TEI TFL TFW TGP U2A UT5 VC2 WK8 ~S~ AAYXX ADMLS CITATION PHGZM PHGZT 3V. 7SC 7XB 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-aba62d36093591dae77b8f82a3ef2e605c85917b13aa609dc96c1a6a226f0fd83 |
IEDL.DBID | 0YH |
ISSN | 1009-5020 |
IngestDate | Wed Aug 27 01:31:15 EDT 2025 Sat Jul 26 03:32:44 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 02:28:27 EDT 2025 Wed Dec 25 09:07:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-aba62d36093591dae77b8f82a3ef2e605c85917b13aa609dc96c1a6a226f0fd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2760-523X 0000-0003-3935-9814 0000-0003-4598-224X |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10095020.2021.1936656 |
PQID | 2612564081 |
PQPubID | 3933171 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2612564081 informaworld_taylorfrancis_310_1080_10095020_2021_1936656 crossref_primary_10_1080_10095020_2021_1936656 doaj_primary_oai_doaj_org_article_47bd9c3cea0a42cdaee2cda8e793f52a crossref_citationtrail_10_1080_10095020_2021_1936656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-02 |
PublicationDateYYYYMMDD | 2021-10-02 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan |
PublicationTitle | Geo-spatial information science |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0077 cit0078 cit0076 cit0073 cit0194 cit0195 cit0192 cit0072 cit0193 Li T. (cit0089) 2017; 237 cit0190 cit0070 Dela Torre D. M. G. (cit0030) 2019 Filho H. C. de C. (cit0037) 2020; 12 cit0079 cit0066 cit0067 cit0064 Palanivel K. (cit0125) 2019; 10 cit0185 cit0065 cit0062 cit0183 cit0184 cit0060 cit0061 cit0180 Wu L. (cit0178) 2013; 25 Boschetti M. (cit0010) 2004 Pazhanivelan S. (cit0128) 2015; 40 cit0189 cit0069 cit0099 cit0097 cit0098 cit0095 cit0096 cit0093 Maas S. J. (cit0102) 1993; 85 Horie T. (cit0050) 1987; 25 cit0092 Guo Y. (cit0046) 2019 cit0090 Boschetti M. (cit0012) 2011; 43 cit0088 cit0086 cit0087 cit0085 cit0082 cit0080 cit0081 Guo J. (cit0045) 2012 cit0033 cit0154 cit0034 cit0155 cit0031 cit0152 cit0032 cit0153 cit0151 De Wit A. (cit0029) 2019; 168 cit0039 cit0159 cit0035 cit0036 cit0157 cit0022 cit0143 cit0023 cit0144 cit0020 cit0021 cit0142 Batchelor W. D. (cit0007) 2002; 18 Mitchell P. L. (cit0110) 1998 Martin R. D. (cit0106) 1986; 52 Gandhi N. (cit0038) 2016 Zhang J. (cit0188) 2010; 1 Kang Y. (cit0075) 2016; 8 Steinhausen M. J. (cit0156) 2018; 73 cit0027 cit0148 cit0024 Liu F. (cit0094) 2014; 8 cit0145 cit0025 cit0146 cit0055 cit0056 cit0177 Huang J. (cit0053) 2001; 1 cit0174 cit0175 cit0052 Inoue S. (cit0059) 2020; 12 cit0173 Bouman B. (cit0014) 2006; 87 cit0171 Ndikumana E. (cit0119) 2018; 10 Siyal A. A. (cit0149) 2015; 9 Wang H. (cit0172) 2014; 8 cit0057 Li W. (cit0091) 2011; 18 cit0058 cit0179 cit0044 cit0165 Yang S. (cit0181) 2012; 8513 cit0042 cit0164 cit0040 cit0161 Bouman B. (cit0013) 1995; 43 cit0041 cit0162 cit0160 Roxburgh S. H. (cit0140) 2005; 19 Raksapatcharawong M. (cit0137) 2020; 12 Zhang X. (cit0191) 2018; 10 Campos-Taberner M. (cit0017) 2017; 9 cit0169 cit0049 cit0167 cit0047 cit0168 Blaschke T. (cit0009) 2014; 87 Basso B. (cit0005) 2013 cit0118 cit0116 cit0117 Huang J. (cit0054) 2002; 3 cit0114 cit0115 cit0112 Ko J. (cit0083) 2015; 9 cit0113 cit0100 Yoshida S. (cit0187) 1976 Confalonieri R. (cit0026) 2009; 29 Brady N. C. (cit0016) 1981 Van Tricht K. (cit0170) 2018; 10 Son N. T. (cit0150) 2016; 8 cit0109 cit0107 cit0108 cit0105 cit0103 cit0104 cit0011 cit0132 cit0130 cit0131 Salas E. A. L. (cit0141) 2020 Tan L. (cit0158) 2015; 9 Singh H. (cit0147) 2007; 35 Aschbacher J. (cit0001) 1995; 3 cit0019 cit0138 cit0018 cit0139 cit0015 cit0134 cit0121 cit0122 cit0120 Yoshida S. (cit0186) 1981 Jin Z. (cit0071) 2017; 247 Kamthonkiat D. (cit0074) 2010; 1 Purugganan M. D. (cit0136) 2014; 46 cit0008 cit0129 cit0127 cit0004 cit0126 cit0002 cit0123 cit0003 cit0124 Horie T. (cit0051) 1992; 40 Ujoh F. (cit0166) 2019; 22 Moeckel T. (cit0111) 2018; 10 Prins A. J. (cit0135) 2020 Maas S. J. (cit0101) 1993; 85 Prasetyo Y. (cit0133) 2018; 165 De Datta S. K. (cit0028) 1981 IPCC (cit0063) 2018 GRiSP (cit0043) 2013 Basso B. (cit0006) 2019; 154 He Y. (cit0048) 2010; 3 Wittamperuma I. (cit0176) 2012; 8 Yang Z. (cit0182) 2016; 8 Krishna G. (cit0084) 2019; 213 Jin M. (cit0068) 2015; 41 Tucker C. J. (cit0163) 1979; 8 |
References_xml | – ident: cit0031 doi: 10.1016/0924-2716(92)90030-D – ident: cit0126 doi: 10.1515/intag-2017-0010 – ident: cit0042 doi: 10.1016/j.fcr.2013.09.023 – ident: cit0146 doi: 10.3390/rs9050509 – ident: cit0065 doi: 10.1080/01431161.2018.1425567 – volume: 29 start-page: 463 issue: 3 year: 2009 ident: cit0026 publication-title: Agronomy for Sustainable Development doi: 10.1051/agro/2009005 – ident: cit0164 doi: 10.1080/01431168608948944 – volume: 12 issue: 10 year: 2020 ident: cit0059 publication-title: Remote Sensing doi: 10.3390/rs12101622 – start-page: 471 volume-title: Climate and Rice year: 1976 ident: cit0187 – ident: cit0109 doi: 10.1080/10095020.2020.1712265 – ident: cit0118 doi: 10.1016/0034-4257(94)90016-7 – ident: cit0061 doi: 10.1626/pps.1.269 – ident: cit0142 doi: 10.3390/rs10020293 – ident: cit0113 doi: 10.1098/rstb.1977.0140 – volume: 43 start-page: 63 issue: 3 year: 2011 ident: cit0012 publication-title: Italian Journal of Remote Sensing – volume: 73 year: 2018 ident: cit0156 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2018.08.011 – ident: cit0096 doi: 10.1146/annurev.environ.041008.093740 – volume: 12 start-page: 2655 issue: 16 year: 2020 ident: cit0037 publication-title: Remote Sensing doi: 10.3390/rs12162655 – volume: 1 start-page: 101 volume-title: 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479) year: 2001 ident: cit0053 doi: 10.1109/ICII.2001.982729 – ident: cit0097 doi: 10.1016/j.rse.2015.04.021 – ident: cit0130 doi: 10.1016/j.rse.2018.09.003 – ident: cit0117 doi: 10.1109/TGRS.1995.8746029 – ident: cit0183 doi: 10.1007/s12524-016-0596-z – volume: 213 year: 2019 ident: cit0084 publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2018.08.029 – volume: 10 start-page: 1 issue: 5 year: 2018 ident: cit0111 publication-title: Remote Sensing doi: 10.3390/rs10050805 – ident: cit0082 doi: 10.1109/TGRS.2009.2014944 – ident: cit0148 doi: 10.1080/22797254.2018.1556568 – ident: cit0019 doi: 10.1016/S0378-4290(97)00064-6 – ident: cit0145 doi: 10.1007/s11430-009-0094-z – start-page: 105 volume-title: Proceedings - 2016 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2016, no. Tiar year: 2016 ident: cit0038 – volume: 154 volume-title: Seasonal Crop Yield Forecast: Methods, Applications, and Accuracies. Advances in Agronomy year: 2019 ident: cit0006 – ident: cit0070 doi: 10.3390/rs9090931 – volume: 1 start-page: 372 volume-title: American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies year: 2010 ident: cit0074 – ident: cit0078 doi: 10.1016/S1161-0301(02)00108-9 – volume: 8 start-page: 10 issue: 10 year: 2016 ident: cit0182 publication-title: Remote Sensing doi: 10.3390/rs8100878 – ident: cit0184 doi: 10.1016/j.compag.2015.08.017 – ident: cit0015 doi: 10.1109/TGRS.2008.2007963 – volume: 43 start-page: 143 issue: 2 year: 1995 ident: cit0013 publication-title: Wageningen Journal of Life Sciences – volume: 35 start-page: 1723 issue: 4 year: 2007 ident: cit0147 publication-title: Cereal Research Communications doi: 10.1556/CRC.35.2007.4.18 – ident: cit0167 – ident: cit0134 doi: 10.3390/ijgi7020073 – ident: cit0057 doi: 10.1016/0034-4257(88)90106-X – ident: cit0008 doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 3 start-page: 31 issue: 2 year: 2010 ident: cit0048 publication-title: International Journal of Agricultural and Biological Engineering – volume: 25 start-page: 62 issue: 1 year: 1987 ident: cit0050 publication-title: Southeast Asian Studies – ident: cit0058 doi: 10.1016/S0034-4257(02)00096-2 – ident: cit0011 doi: 10.1080/01431160802632249 – ident: cit0122 doi: 10.1080/10095020.2019.1613776 – ident: cit0175 doi: 10.1080/01431161.2010.508800 – ident: cit0104 doi: 10.2480/agrmet.D-14-00023 – volume-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives year: 2019 ident: cit0030 – ident: cit0033 doi: 10.1016/j.jag.2006.05.003 – ident: cit0034 doi: 10.1080/10496505.2015.985546 – ident: cit0056 doi: 10.1016/j.agrformet.2018.03.014 – ident: cit0161 doi: 10.1080/01431169208904047 – volume: 87 year: 2014 ident: cit0009 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2013.09.014 – ident: cit0157 – ident: cit0085 doi: 10.3390/rs12122012 – volume-title: Fundamentals of Rice Crop Science year: 1981 ident: cit0186 – ident: cit0067 doi: 10.1080/01431161.2013.876117 – ident: cit0107 doi: 10.1007/978-3-642-85193-3_29 – ident: cit0052 doi: 10.1016/j.agrformet.2019.06.008 – volume: 8513 volume-title: Remote Sensing and Modeling of Ecosystems for Sustainability IX year: 2012 ident: cit0181 doi: 10.1117/12.929252 – ident: cit0088 doi: 10.1109/36.551933 – ident: cit0120 doi: 10.3390/rs61110773 – ident: cit0032 doi: 10.1016/j.isprsjprs.2016.05.010 – volume: 41 start-page: 118 year: 2015 ident: cit0068 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2015.04.023 – ident: cit0121 doi: 10.1016/j.eja.2006.01.001 – volume: 40 start-page: 211 issue: 1 year: 1992 ident: cit0051 publication-title: Agricultural Systems doi: 10.1016/0308-521X(92)90022-G – ident: cit0055 doi: 10.1371/journal.pone.0073048 – ident: cit0194 doi: 10.3390/rs11030268 – ident: cit0004 doi: 10.1016/j.rse.2017.04.014 – volume: 247 start-page: 207 year: 2017 ident: cit0071 publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2017.08.001 – ident: cit0047 doi: 10.1007/978-3-540-77058-9_4 – volume: 9 start-page: 095986 issue: 1 year: 2015 ident: cit0149 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.095986 – ident: cit0023 doi: 10.1080/01431160802609700 – ident: cit0185 doi: 10.3390/rs11141699 – ident: cit0062 doi: 10.1016/j.rse.2013.09.001 – ident: cit0024 doi: 10.1016/j.jag.2018.07.022 – ident: cit0036 – volume: 8 volume-title: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment year: 1979 ident: cit0163 – ident: cit0021 doi: 10.1080/01431160500421507 – ident: cit0076 doi: 10.1007/s11119-016-9433-1 – start-page: 1 year: 1981 ident: cit0016 publication-title: Proceedings of Symposium on Paddy Soils – ident: cit0069 doi: 10.1016/j.eja.2017.11.002 – ident: cit0159 doi: 10.1016/j.njas.2009.12.003 – ident: cit0115 doi: 10.3390/s150100769 – ident: cit0162 doi: 10.21273/HORTSCI.43.2.333 – ident: cit0098 – volume: 19 start-page: 378 issue: 3 year: 2005 ident: cit0140 publication-title: Functional Ecology doi: 10.1111/j.1365-2435.2005.00983.x – ident: cit0180 doi: 10.3389/fpls.2017.01111 – ident: cit0079 doi: 10.1023/A:1005810616885 – ident: cit0190 doi: 10.3390/su11030864 – volume: 9 start-page: 1 issue: 3 year: 2017 ident: cit0017 publication-title: Remote Sensing doi: 10.3390/rs9030248 – ident: cit0064 doi: 10.1016/j.rse.2013.02.029 – ident: cit0144 doi: 10.1016/S0034-4257(00)00212-1 – volume: 10 start-page: 8 year: 2018 ident: cit0191 publication-title: Remote Sensing doi: 10.3390/rs10010008 – ident: cit0112 doi: 10.2307/2401901 – ident: cit0025 doi: 10.1016/S0034-4257(97)00004-7 – ident: cit0035 doi: 10.1016/j.agrformet.2019.05.018 – ident: cit0171 doi: 10.3390/agronomy10060858 – volume: 165 issue: 1 year: 2018 ident: cit0133 publication-title: IOP Conference Series: Earth and Environmental Science – year: 2020 ident: cit0135 publication-title: Geo-Spatial Information Science – ident: cit0027 doi: 10.3390/rs10111745 – ident: cit0189 doi: 10.1016/j.asr.2018.09.018 – ident: cit0116 doi: 10.1080/014311698215586 – volume: 10 start-page: 110 issue: 3 year: 2019 ident: cit0125 publication-title: International Journal of Computer Engineering and Technology doi: 10.34218/IJCET.10.3.2019.013 – ident: cit0123 doi: 10.1109/TGRS.2009.2014053 – ident: cit0077 doi: 10.3390/jimaging4040052 – ident: cit0177 doi: 10.1104/pp.47.5.656 – volume: 10 start-page: 8 year: 2018 ident: cit0119 publication-title: Remote Sensing – ident: cit0192 doi: 10.1016/j.jag.2016.12.014 – volume-title: Proc. SPIE 8513, Remote Sensing and Modeling of Ecosystems for Sustainability IX 85130F (October) year: 2012 ident: cit0045 – volume: 18 start-page: 141 issue: 1 year: 2002 ident: cit0007 publication-title: European Journal of Agronomy doi: 10.1016/S1161-0301(02)00101-6 – volume: 9 start-page: 096067 issue: 1 year: 2015 ident: cit0083 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.096067 – ident: cit0105 doi: 10.1016/j.rse.2018.08.001 – volume: 40 start-page: 85 issue: 7 year: 2015 ident: cit0128 publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives doi: 10.5194/isprsarchives-XL-7-W3-85-2015 – volume-title: Global Warming of 1.5°C year: 2018 ident: cit0063 – volume: 8 start-page: 1330 issue: 3 year: 2014 ident: cit0094 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2371058 – ident: cit0153 doi: 10.1007/s00271-007-0064-1 – ident: cit0041 doi: 10.1016/j.eja.2018.12.003 – ident: cit0114 doi: 10.1016/j.eja.2006.10.007 – volume: 9 start-page: 097091 issue: 1 year: 2015 ident: cit0158 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.097091 – ident: cit0168 doi: 10.1016/j.fcr.2012.09.009 – volume: 46 start-page: 931 issue: 9 year: 2014 ident: cit0136 publication-title: Nature Genetics doi: 10.1038/ng.3071 – ident: cit0073 doi: 10.1016/S1161-0301(02)00107-7 – ident: cit0124 doi: 10.1016/j.agsy.2018.05.007 – ident: cit0022 doi: 10.1080/01431161.2010.494639 – ident: cit0165 doi: 10.1016/0034-4257(85)90097-5 – volume: 1 issue: 1 year: 2010 ident: cit0188 publication-title: International Journal of Image and Data Fusion – ident: cit0092 doi: 10.1080/0143116031000095970 – ident: cit0152 doi: 10.1016/j.agrformet.2014.06.007 – start-page: 1 year: 2013 ident: cit0005 publication-title: The First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics – ident: cit0081 doi: 10.1109/LGRS.2011.2174772 – start-page: 46 volume-title: Remote Sensing for Agriculture, Ecosystems, and Hydrology VI year: 2004 ident: cit0010 doi: 10.1117/12.568106 – volume-title: Rice Almanac year: 2013 ident: cit0043 – ident: cit0139 doi: 10.1080/014311699213172 – ident: cit0044 doi: 10.1109/JSTARS.2018.2834383 – volume: 85 start-page: 348 issue: 2 year: 1993 ident: cit0101 publication-title: Agronomy Journal doi: 10.2134/agronj1993.00021962008500020034x – volume: 52 start-page: 1885 issue: 12 year: 1986 ident: cit0106 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0154 doi: 10.2134/agronj2008.0139s – ident: cit0080 doi: 10.1080/15481603.2017.1291783 – ident: cit0155 doi: 10.1109/JSTARS.2016.2639043 – ident: cit0099 doi: 10.1016/j.isprsjprs.2019.04.015 – ident: cit0173 doi: 10.5194/acp-18-10419-2018 – ident: cit0100 – volume: 237 start-page: 246 year: 2017 ident: cit0089 publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2017.02.025 – ident: cit0174 doi: 10.3390/rs8110931 – volume: 22 issue: 4 year: 2019 ident: cit0166 publication-title: Geo-Spatial Information Science doi: 10.1080/10095020.2019.1637075 – volume: 8 start-page: 367 year: 2012 ident: cit0176 publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B8 – volume-title: Potential Yields and the Efficiency of Radiation Use in Rice year: 1998 ident: cit0110 – ident: cit0160 doi: 10.3389/fpls.2016.01131 – ident: cit0003 doi: 10.1080/17538947.2010.505664 – year: 2020 ident: cit0141 publication-title: Geo-Spatial Information Science – ident: cit0129 doi: 10.1073/pnas.0403720101 – ident: cit0040 – ident: cit0132 doi: 10.1016/j.fcr.2005.04.008 – volume: 8 start-page: 083674 issue: 1 year: 2014 ident: cit0172 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.8.083674 – ident: cit0060 doi: 10.1016/S0034-4257(01)00343-1 – ident: cit0169 doi: 10.1111/gcb.13967 – ident: cit0020 doi: 10.2134/agronj2004.0162 – volume: 8 start-page: 7 issue: 7 year: 2016 ident: cit0075 publication-title: Remote Sensing doi: 10.3390/rs8070597 – ident: cit0143 doi: 10.1080/01431161.2018.1547457 – ident: cit0138 doi: 10.1002/ird.1961 – volume: 8 start-page: 993 year: 2016 ident: cit0150 publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 – ident: cit0108 doi: 10.1016/S0308-521X(95)00060-I – volume: 12 start-page: 13 year: 2020 ident: cit0137 publication-title: Remote Sensing doi: 10.3390/rs12132099 – volume: 25 start-page: 66 issue: 1 year: 2013 ident: cit0178 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2013.04.002 – ident: cit0093 doi: 10.1016/j.rse.2015.04.032 – volume-title: Principles and Practices of Rice Production year: 1981 ident: cit0028 – ident: cit0151 doi: 10.1080/01431161.2020.1766148 – ident: cit0066 doi: 10.3390/rs10101665 – volume: 3 start-page: 2183 volume-title: 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications year: 1995 ident: cit0001 doi: 10.1109/IGARSS.1995.524142 – volume: 85 start-page: 354 issue: 2 year: 1993 ident: cit0102 publication-title: Agronomy Journal doi: 10.2134/agronj1993.00021962008500020035x – volume: 168 start-page: 154 year: 2019 ident: cit0029 publication-title: Agricultural Systems doi: 10.1016/j.agsy.2018.06.018 – ident: cit0127 doi: 10.3390/rs10030447 – ident: cit0087 doi: 10.1109/JSTARS.2015.2440439 – volume-title: 2018 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2018 year: 2019 ident: cit0046 – ident: cit0131 doi: 10.1109/JSTARS.2017.2676343 – ident: cit0086 doi: 10.1080/01431161.2012.738946 – ident: cit0039 doi: 10.1109/MGRS.2015.2434351 – ident: cit0195 doi: 10.1016/j.isprsjprs.2017.05.003 – volume: 87 start-page: 249 issue: 3 year: 2006 ident: cit0014 publication-title: Agricultural Systems doi: 10.1016/j.agsy.2004.09.011 – ident: cit0095 doi: 10.1016/j.agrformet.2010.07.008 – ident: cit0018 doi: 10.1016/S0034-4257(97)00104-1 – ident: cit0049 doi: 10.1073/pnas.1109936109 – ident: cit0179 doi: 10.1002/joc.5473 – ident: cit0103 doi: 10.3390/rs6064764 – ident: cit0002 doi: 10.3390/rs61212789 – volume: 18 start-page: 142 issue: 2 year: 2011 ident: cit0091 publication-title: Rice Science doi: 10.1016/S1672-6308(11)60020-6 – ident: cit0072 doi: 10.1016/j.agrformet.2003.08.027 – ident: cit0090 doi: 10.1007/s10584-015-1487-y – ident: cit0193 doi: 10.3390/rs11222673 – volume: 3 start-page: 461 issue: 4 year: 2002 ident: cit0054 publication-title: Journal of Zhejiang University – SCIENCE A doi: 10.1631/jzus.2002.0461 – volume: 10 start-page: 1 issue: 10 year: 2018 ident: cit0170 publication-title: Remote Sensing doi: 10.3390/rs10101642 |
SSID | ssj0039435 |
Score | 2.4520137 |
SecondaryResourceType | review_article |
Snippet | Reliable estimation of region-wide rice yield is vital for food security and agricultural management. Field-scale models have increased our understanding of... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 580 |
SubjectTerms | Agricultural management Algorithms Canopies Climate change Crop yield Cultivars data assimilation Data collection empirical model Environmental assessment Environmental conditions Food security geospatial applications Global warming Harvesting Machine learning Modelling Monitoring systems Process-based crop model Remote sensing Rice rice yield mapping Scale models Spatial data Spatial resolution yield estimation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1EoyANrIP5MzFYQVYUEAwLEZtmOXQbUIlqQ-u_xOQ6qYOjCksGyFet8sd85d-8hdMYk49ayEJEbEwV3NSlURX1BjeTSMRGUgnrnu3s5euK3L-JlSeoLcsJaeuDWcBe8so1yzHlTGk5dY7yHZ-2jYwVBEzSKZ14XTLV7MFM8SWsSuPoXERF1tTt1eQFt0BRjQ0rOI36REtSrl06lRN7_i7r0z1adzp_hNtrKwBEP2gnvoDU_2UUbWcP8dbGHnh98NLvHM0hJn4wLOJ8aDCQabXUingYMDEJ4AUlrMwwZ72P8FWPlGPzjpIgzu8QD7LL4AW6rWvbR0_Dm8XpUZNWEwnFB5oWxRtKGSfjDqUi0V1XZOtTUMB-oj9GLA8q6yhJmTOzUOCUdMdJEHBbK0NTsAK1PphN_iLALBEQHS2UC4SJYW9UmBBYqYoRqyqqHeGc17TKlOChbvGmSmUc7Y2swts7G7qHzn2HvLafGqgFXsCQ_nYESOzVER9HZUfQqR-khtbygep5uREIrX6LZign0u9XX-RufaSBfE5JHTHX0H_M7RpvwypQoSPtoff7x6U8i4Jnb0-Tb373S-Kw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-DnoRn7i-yMFrtXm28SIqigiKiIq3kKTJepDtalfBf2-mTVUU9NJDmpR2Jp3MJDPfh9Auk4xby0L03JjIuCtJpgrqM2okl46JoBTUO19eyfM7fvEgHtKGW5PSKnub2BrqqnawR74PUFdC8riCHY6fM2CNgtPVRKExjWajCS5j8DV7fHp1fdPbYqZ4S7FJ4AhARM-or-Ep831og6YYI1KyF_0YKYHF-tvq1IL4_4Aw_WWy23XobBEtJAcSH3UaX0JTfrSM5hKX-eP7Crq_8VH8HjeQmj4aZrBOVRjANLoqRVwHDEhC-B2S1xoMme9D_BZj5vq1wS0zTnOAj7BLJAi4q25ZRXdnp7cn51liT8gcF2SSGWskrZiEk05FKuOLwpahpIb5QH2MYhxA1xWWMGNip8op6YiRJvpjIQ9VydbQzKge-XWEXSBAPpgrEwgXwdqiNCGwUBAjVJUXA8R7qWmXoMWB4eJJk4RA2gtbg7B1EvYA7X0OG3fYGv8NOAaVfHYGaOy2oX4Z6vSnaV7YSjnmvMkNpy5-uIdr6aMlCoKaAVLfFaon7c5I6GhMNPvnBbZ67ev0rzf6a2Zu_H17E83Dw9pUQLqFZiYvr347ujQTu5Pm7QcWRu87 priority: 102 providerName: ProQuest |
Title | Remote sensing-based estimation of rice yields using various models: A critical review |
URI | https://www.tandfonline.com/doi/abs/10.1080/10095020.2021.1936656 https://www.proquest.com/docview/2612564081 https://doaj.org/article/47bd9c3cea0a42cdaee2cda8e793f52a |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHNpLRR-IbWHlQ69B8SNO3NtuxWpVqasKQVVOlu3YywHtIrIg8e874ziogBAHLrES2VYy48c3zsw3hHwTSkjnRATkJqpC-oYVuuah4FZJ5UUVtcZ4518LNT-TP_9Wgzdhl90q0YaOPVFEWqtxclvXDR5xUAIuAJgD1h1nR4BAFICSN2SH42iFIV2ez4fFWGiZcmxikwLbDEE8z3XzYHtKLP6POEyfrNlpI5rtkvcZQdJJr_IPZCusPpK3OZn5xd0n8uckgPwD7dA3fbUscKNqKbJp9GGKdB0pUgnRO_Re6yi6vi_pLRjN65uOptQ43Xc6oT5nQaB9eMtncjY7Pv0xL3L6hMLLim0K66zirVD4q1Oz1oa6dk1suBUh8gBmjEfuutoxYS1Uar1WnlllAZDFMraN2CPbq_Uq7BPqI8Psg6W2kckqOlc3NkYRa2Yr3Zb1iMhBasZnbnFMcXFpWKYgHYRtUNgmC3tEju6bXfXkGi81mKJK7isjN3Z6sL5emjzVjKxdq73wwZZWcg8fHvDaBFiKYsXtiOj_FWo26Wgk9nlMjHjhBQ4G7Zs82TuDLGyVkgCuvryi66_kHd4mR0F-QLY31zfhEADPxo3TkB6TnclsOl1AOT1e_D4Zp-ODf0dV9y0 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiKdYWsAHOKaNH3HiSgi10GpL2xWqWtSbsR17e0Cb0mxB-6f4jXgSp1Qg0VMvOTiJlczYM2N75vsA3nDJhbU8xMiNF5lwFc1UyXzGjBTS8SIohfXORxM5PhWfzoqzJfg11MJgWuVgEztDXTcO98g3EeqqkCJ6sPcX3zNkjcLT1YFCox8WB37xMy7Z2nf7H6N-3zK2t3vyYZwlVoHMiYLOM2ONZDWXeAKoaG18WdoqVMxwH5iP0b1DSLfSUm5MfKh2SjpqpIlxSshDXfHY7z1YEbGHaAhWdnYnn48H28-V6Cg9KR45FDESG2qGqnwT27AprkkZ3Yhxk5TImn3DG3akAX9Bpv7jIjq_t_cQHqSAlWz3I-wRLPnZY1hN3Onniyfw5dhHdXvSYir8bJqhX6wJgnf0VZGkCQSRi8gCk-Vagpn2U_IjrtGbq5Z0TDztFtkmLpEukL6a5imc3olcn8HyrJn550BcoEh2mCsTqCiCtWVlQuChpKZQdV6OQAxS0y5BmSOjxjdNE-LpIGyNwtZJ2CPYuH7tosfyuO2FHVTJ9cMIxd01NJdTnWa2FqWtlePOm9wI5uKPe7xWPlq-UDAzAnVToXre7cSEnjZF81s-YH3Qvk62pdV_ZsKL_99-Davjk6NDfbg_OViD-9hxl4bI1mF5fnnlX8Zwam5fpTFM4OtdT5vf580sRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKwGXivIQWwr1gWuq-Jm4tz5YLS1UVUURnCzbsZcD2q2aLVL_PTOOU_EQ6oFLIiW2lYztmc_J-PsIeSu0kN6LBMhNqEqGllWm4bHiTksdhErG4H7nj2d6dilPvqgxm7AvaZW4hk4DUUT21Ti5r7o0ZsTBGXABwBxY3XG2BwhEAyh5QDZUC7EehnT9dTY6Y2Fk1tjEKhXWGTfx_KuZ38JTZvH_g8P0L5-dA9H0CdksCJIeDF2-Rdbi4il5VMTMv90-I58vItg_0h5z0xfzCgNVR5FNY9imSJeJIpUQvcXstZ5i6vuc_oBF8_Kmp1kap9-nBzQUFQQ6bG95Ti6n7z4dzaoin1AFqdiqct5p3gmNvzoN61xsGt-mljsRE4-wjAnIXdd4JpyDQl0wOjCnHQCyVKeuFS_I-mK5iC8JDYmh-mBtXGJSJe-b1qUkUsOcMl3dTIgcrWZD4RZHiYvvlhUK0tHYFo1ti7EnZO-u2tVArnFfhUPskrvCyI2dLyyv57ZMNSsb35kgQnS1kzzAi0c8thFcUVLcTYj5tUPtKn8aSYOOiRX3PMDO2Pu2TPbeIgub0hLA1fZ_NL1LHp4fT-2H92enr8hjvJNzBvkOWV9d38TXgH1W_k0e3T8BCLr1yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+sensing-based+estimation+of+rice+yields+using+various+models%3A+A+critical+review&rft.jtitle=Geo-spatial+information+science&rft.au=dela+Torre%2C+Daniel+Marc+G&rft.au=Gao%2C+Jay&rft.au=Macinnis-Ng%2C+Cate&rft.date=2021-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=24&rft.issue=4&rft.spage=580&rft.epage=603&rft_id=info:doi/10.1080%2F10095020.2021.1936656&rft.externalDBID=0YH&rft.externalDocID=1936656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon |