Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel
It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerat...
Saved in:
Published in | International journal of smart and nano materials Vol. 13; no. 4; pp. 575 - 596 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.10.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m
-2
and ~1600 kJ m
-3
, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. |
---|---|
AbstractList | It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m
-2
and ~1600 kJ m
-3
, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. ABSTRACTIt remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. |
Author | Fu, Jimin Miu, Yan Xie, Yujie Xu, Mengda Huang, Xiaowen Zhao, Qiuhua Zhang, Lidong Tan, Huiyan Sun, Shengtong Yao, Haimin |
Author_xml | – sequence: 1 givenname: Xiaowen surname: Huang fullname: Huang, Xiaowen organization: East China Normal University – sequence: 2 givenname: Jimin surname: Fu fullname: Fu, Jimin organization: the Hong Kong Polytechnic University – sequence: 3 givenname: Huiyan surname: Tan fullname: Tan, Huiyan organization: East China Normal University – sequence: 4 givenname: Yan surname: Miu fullname: Miu, Yan organization: East China Normal University – sequence: 5 givenname: Mengda surname: Xu fullname: Xu, Mengda organization: East China Normal University – sequence: 6 givenname: Qiuhua surname: Zhao fullname: Zhao, Qiuhua organization: East China Normal University – sequence: 7 givenname: Yujie surname: Xie fullname: Xie, Yujie organization: the Hong Kong Polytechnic University – sequence: 8 givenname: Shengtong surname: Sun fullname: Sun, Shengtong organization: Center for Advanced Low-dimension Materials, Donghua University – sequence: 9 givenname: Haimin orcidid: 0000-0003-0549-2246 surname: Yao fullname: Yao, Haimin email: mmhyao@polyu.edu.hk organization: The Hong Kong Polytechnic University Shenzhen Research Institute – sequence: 10 givenname: Lidong surname: Zhang fullname: Zhang, Lidong email: ldzhang@chem.ecnu.edu.cn organization: East China Normal University |
BookMark | eNqFkUuLFDEUhQsZwXGcnyAEXFebd1XhRhl8DIy4UXAXblVuutOmkzZJK_3vTdszLlxoNgkn93ycy3naXcQUseueM7pidKQv2SQHJRlbccr5ijOmB6EedZcnvVeSf73482bsSXddypa2I_hElb7s3McUcDkEyGSXfuAOYy0kOVIzbiCkgsTH4i0SIMXHdUASsf5M-RvBCHNoUvvJsPc2HPuMS2PkpiOp6bDekM3R5rTG8Kx77CAUvL6_r7ov795-vvnQ3316f3vz5q5fpGK1B81nnEEqwR0MLSFMVllt3cJAgJgn7cbBtuAwiNlJ15bQWlEAJpgetRNX3e2ZaxNszT77HeSjSeDNbyHltYFc_RLQTI5alDBry6Rs-FFI6eRE6bzwaeDYWC_OrH1O3w9YqtmmQ44tvuGD5KMWA2Nt6tV5asmplIzOLL5C9SnWDD4YRs2pJ_PQkzn1ZO57am71l_sh8_98r88-H13KO2iNBGsqHEPKLkNcfDHi34hfMhGr9w |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2024_113149 crossref_primary_10_1021_acsami_4c07045 crossref_primary_10_1016_j_jmbbm_2023_106282 crossref_primary_10_1016_j_carbpol_2024_122040 crossref_primary_10_1016_j_compstruct_2024_117966 crossref_primary_10_1080_19475411_2024_2353312 |
Cites_doi | 10.1039/b701043e 10.1021/ja953094z 10.1016/j.carbpol.2013.02.049 10.1039/C5TB00123D 10.1021/acsmacrolett.5b00501 10.1126/sciadv.aaz9531 10.1002/adma.201600480 10.1038/nature11409 10.1039/b924290b 10.1002/adma.202102308 10.1021/acs.jpcb.6b10556 10.1038/ncomms12095 10.1016/j.carbpol.2019.114977 10.1021/acsmacrolett.8b00045 10.1002/adma.201907180 10.1039/c2jm32541a 10.1016/j.cej.2014.01.065 10.1021/jp0269975 10.1021/acsnano.1c01247 10.1126/science.aau9533 10.1039/C5RA27306D 10.1038/s41551-018-0335-6 10.1021/acsmaterialslett.0c00075 10.1073/pnas.1903019116 10.1038/s41467-020-17877-z 10.1073/pnas.1909860116 10.1002/anie.201803366 10.1007/s10853-019-03729-9 10.1002/adma.201801541 10.1021/ma3022376 10.1002/adma.201504152 10.1038/s41586-021-03212-z 10.1126/sciadv.aau8528 10.1016/j.cej.2021.130353 10.1098/rsta.1951.0004 10.1039/C9TA09170J 10.1021/ma1016693 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION DOA |
DOI | 10.1080/19475411.2022.2116735 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1947-542X |
EndPage | 596 |
ExternalDocumentID | oai_doaj_org_article_9f0de4ab6d1441a38344f4900bc2972e 10_1080_19475411_2022_2116735 2116735 |
Genre | Research Article |
GroupedDBID | .7F 0YH 2DF 4.4 5VS ABDBF ACGFO ACIWK ACUHS ADBBV ADCVX AIAGR ALMA_UNASSIGNED_HOLDINGS BCNDV CE4 EBS ESX FIJ GROUPED_DOAJ H13 HH5 I-F IPNFZ KQ8 M4Z MK~ OK1 P2P RDKPK RIG RNS TDBHL TFL TFMNY TFW TUS AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c451t-a62beba4532fa7905a9d5d6dfc1a3a3b96f87d056a73bf4f2906650aa131686f3 |
IEDL.DBID | 0YH |
ISSN | 1947-5411 |
IngestDate | Wed Aug 27 01:21:03 EDT 2025 Mon Jun 30 10:10:44 EDT 2025 Tue Jul 01 02:19:58 EDT 2025 Thu Apr 24 22:58:07 EDT 2025 Wed Dec 25 09:05:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-a62beba4532fa7905a9d5d6dfc1a3a3b96f87d056a73bf4f2906650aa131686f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0549-2246 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/19475411.2022.2116735 |
PQID | 2742863711 |
PQPubID | 436400 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1080_19475411_2022_2116735 proquest_journals_2742863711 doaj_primary_oai_doaj_org_article_9f0de4ab6d1441a38344f4900bc2972e informaworld_taylorfrancis_310_1080_19475411_2022_2116735 crossref_citationtrail_10_1080_19475411_2022_2116735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-02 |
PublicationDateYYYYMMDD | 2022-10-02 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of smart and nano materials |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 Lake GJ (cit0030) 1967; 300 cit0019 cit0017 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0031 doi: 10.1039/b701043e – ident: cit0036 doi: 10.1021/ja953094z – ident: cit0038 doi: 10.1016/j.carbpol.2013.02.049 – ident: cit0004 doi: 10.1039/C5TB00123D – ident: cit0022 doi: 10.1021/acsmacrolett.5b00501 – ident: cit0014 doi: 10.1126/sciadv.aaz9531 – ident: cit0015 doi: 10.1002/adma.201600480 – ident: cit0027 doi: 10.1038/nature11409 – ident: cit0005 doi: 10.1039/b924290b – ident: cit0018 doi: 10.1002/adma.202102308 – volume: 300 start-page: 108 year: 1967 ident: cit0030 publication-title: P Roy Soc A-Math Phy – ident: cit0019 doi: 10.1021/acs.jpcb.6b10556 – ident: cit0017 doi: 10.1038/ncomms12095 – ident: cit0001 doi: 10.1016/j.carbpol.2019.114977 – ident: cit0012 doi: 10.1021/acsmacrolett.8b00045 – ident: cit0024 doi: 10.1002/adma.201907180 – ident: cit0006 doi: 10.1039/c2jm32541a – ident: cit0003 doi: 10.1016/j.cej.2014.01.065 – ident: cit0034 doi: 10.1021/jp0269975 – ident: cit0023 doi: 10.1021/acsnano.1c01247 – ident: cit0010 doi: 10.1126/science.aau9533 – ident: cit0021 doi: 10.1039/C5RA27306D – ident: cit0025 doi: 10.1038/s41551-018-0335-6 – ident: cit0016 doi: 10.1021/acsmaterialslett.0c00075 – ident: cit0026 doi: 10.1073/pnas.1903019116 – ident: cit0013 doi: 10.1038/s41467-020-17877-z – ident: cit0035 doi: 10.1073/pnas.1909860116 – ident: cit0037 doi: 10.1002/anie.201803366 – ident: cit0011 doi: 10.1007/s10853-019-03729-9 – ident: cit0008 doi: 10.1002/adma.201801541 – ident: cit0032 doi: 10.1021/ma3022376 – ident: cit0002 doi: 10.1002/adma.201504152 – ident: cit0007 doi: 10.1038/s41586-021-03212-z – ident: cit0028 doi: 10.1126/sciadv.aau8528 – ident: cit0020 doi: 10.1016/j.cej.2021.130353 – ident: cit0029 doi: 10.1098/rsta.1951.0004 – ident: cit0009 doi: 10.1039/C9TA09170J – ident: cit0033 doi: 10.1021/ma1016693 |
SSID | ssj0000329056 |
Score | 2.2755845 |
Snippet | It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work... ABSTRACTIt remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics.... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 575 |
SubjectTerms | Actuators Bionics Chemical bonds Fracture toughness highly recoverable tough hydrogels Hydrogels Hydrogen bonding Kinetics molecular dynamics simulation molecular motility Polyacrylamide puncture resistance Recoverability Trehalose |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWANJLbj1CMgEEKCCSQ2y68DpNCgNgz99_icBCoYurBeYsX6fLHvbN_3EXIqwEEZwGVelhATFBUyy4LNuOXeSxc481g7fP8gb5_E3XP5vCD1hXfCOnrgDrhzBbkPwljpMfQ3HHUhQKg8t46pigWcfeOat5BMpTmYM5Un6daYpFdZKYpiKN8Z5-doQ1NMDxk7Y3gUkeTefhamxN__i730z2ydlqCbTbLRx470ouvzFlkJk22yvsAouEPgfpC7pe9NogJvZ7QB2k7Dq6mbWaBvSaCTGoqbBHWgk-4eOA1YRBVN8cnUfLz5ep5hshw9HYuraItqPvR17qfNS6h3ydPN9ePVbdZLKWROlEWbGclssEaUnIFBTi6jfOmlBxchNdwqCePKR8RMxS0IQBL4GLsZU6CwlQS-R1YnzSTsE2pdgXS2SOQlY7rkrBgHDpUvlbW5hHxExICjdj3POMpd1Lro6UgH-DXCr3v4R-Tsu9lHR7SxrMElDtL3y8iTnQzRe3TvPXqZ94yIWhxi3aZtEug0TTRf0oGjwR90_-PPNJ58jyWviuLgP_p3SNbwk-n2IDsiq-30MxzHKKi1J8nhvwAQrv41 priority: 102 providerName: Directory of Open Access Journals |
Title | Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel |
URI | https://www.tandfonline.com/doi/abs/10.1080/19475411.2022.2116735 https://www.proquest.com/docview/2742863711 https://doaj.org/article/9f0de4ab6d1441a38344f4900bc2972e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagvcABlZdYKCsfuKYkfmV97BZWK6RyohKcLL-mrRQ2VZIe-u_xOMmqgFAPHONkrGg8fsx45vsI-SDAg4zgi6AkJAdFx8Kx6ArueAjKR84C1g6ff1XbC_Hlu5yzCfsprRJ9aBiBIvJajZPbun7OiPuY_O5aigq9O8ZOGN4kcPmYHDK01mTS5Y_tPsxScqbLzOGKUgWKzXU8_-rptx0qA_n_AWP617Kd96LNEXk2HSLp6Tjqz8mjuHtBnt6DFnxJ4HzmvaU_24wJPvS0BTp08co2bR_pdWbqpJZitKCJdDcmhNOI1VSpKb3p7M11aO4K9JqTyWOVFR2Q1ode3YWuvYzNK3Kx-fztbFtMnAqFF7IaCquYi84KyRlYBOeyOsigAvjKcsudVrCqQ9KYrbkDAYgGnw5x1lbIcKWAvyYHu3YX3xDqfIW4tojopZLf5J1YRQ51kNq5UkG5IGLWo_ET4DjyXjSmmnBJZ_UbVL-Z1L8gJ3uxmxFx4yGBNQ7S_mMEzM4NbXdppvlnNJQhCutUQA_ScqQXAaHL0nmmaxYXRN8fYjPkeAmM5CaGP_ADx7M9mGkF6A1ega8Ur6vq7X90_Y48wcecPciOycHQ3cb36RQ0uGW28yU5PF1_Wm-WOZbwC288_bo |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADKi-x0BYfuKYkfmV9BES1lG5PrVROll_TVko3VTYc-u_xOMlqAaEeuNoZK5rxa8Yz30fIBwEeZARfBCUhOSg6Fo5FV3DHQ1A-chawdnh5qhbn4vhCXmzVwmBaJfrQMABF5L0aFzcGo6eUuI_J8a6lqNC9Y-yQ4VMClw_JI5kOX6RvKH8sNnGWkjNdZhJXlCpQbCrk-ddIvx1RGcn_DxzTv_btfBgd7ZJn4y2SfhrM_pw8iKsX5OkWtuBLAsuJ-JbetBkUvF_TFmjfxSvbtOtIrzNVJ7UUwwVNpKshI5xGLKdKTamns7fXobkr0G1Ocx7LrGiPvD706i507WVsXpHzo69nXxbFSKpQeCGrvrCKueiskJyBRXQuq4MMKoCvLLfcaQXzOiSN2Zo7EIBw8OkWZ22FFFcK-Guys2pX8Q2hzlcIbIuQXio5Tt6JeeRQB6mdKxWUMyImPRo_Io4j8UVjqhGYdFK_QfWbUf0zcrgRux0gN-4T-IxG2nyMiNm5oe0uzbgAjYYyRGGdCuhCWo78IiB0WTrPdM3ijOhtE5s-B0xgYDcx_J4f2Jvmgxm3gLXBN_C54nVVvf2Pod-Tx4uz5Yk5-Xb6_R15gl05lZDtkZ2--xn305Wodwd5zv8CU9_-xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOFU-xpYAPXFMSv7I-0pbV8mjFgUpwsvyatlLYrLLh0H9fj5OsCgj1wNXOWNHM-DH2zPcR8laABxnBF0FJSAGKjoVj0RXc8RCUj5wFrB0-OVXLM_Hpu5yyCTdjWiXG0DAAReS1Gif3OsCUEfcuxd21FBVGd4wdMHxJ4PIuuSfnaa9PLl3-WG6vWUrOdJk5XFGqQLGpjudfI_22Q2Ug_z9gTP9atvNetHhEdsdDJH0_WP0xuRNXT8jDG9CCTwmcTLy39GebMcH7DW2B9l28sE27ifQyM3VSS_G2oIl0NSSE04jVVKkp9XR2fRmaqwKj5uTyWGVFe6T1oRdXoWvPY_OMnC0-fDtaFiOnQuGFrPrCKuais0JyBhbBuawOMqgAvrLccqcVzOuQNGZr7kAAosGnQ5y1FTJcKeDPyc6qXcUXhDpfIa4tInqpFDd5J-aRQx2kdq5UUM6ImPRo_Ag4jrwXjalGXNJJ_QbVb0b1z8jBVmw9IG7cJnCIRtp-jIDZuaHtzs04_4yGMkRhnQoYQVqO9CIgdFk6z3TN4ozomyY2fb4vgYHcxPBbfmB_8gczrgAbg0_gc8Xrqtr7j6HfkPtfjxfmy8fTzy_JA-zJiYRsn-z03a_4Kh2Ievc6u_w1zob9-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+movements+of+trehalose+inside+a+single+network+enabling+a+rapidly-recoverable+tough+hydrogel&rft.jtitle=International+journal+of+smart+and+nano+materials&rft.au=Huang%2C+Xiaowen&rft.au=Fu%2C+Jimin&rft.au=Tan%2C+Huiyan&rft.au=Yan%2C+Miu&rft.date=2022-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1947-5411&rft.eissn=1947-542X&rft.volume=13&rft.issue=4&rft.spage=575&rft.epage=596&rft_id=info:doi/10.1080%2F19475411.2022.2116735&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5411&client=summon |