Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel

It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of smart and nano materials Vol. 13; no. 4; pp. 575 - 596
Main Authors Huang, Xiaowen, Fu, Jimin, Tan, Huiyan, Miu, Yan, Xu, Mengda, Zhao, Qiuhua, Xie, Yujie, Sun, Shengtong, Yao, Haimin, Zhang, Lidong
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.10.2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m -2 and ~1600 kJ m -3 , respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics.
AbstractList It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m -2 and ~1600 kJ m -3 , respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics.
It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics.
ABSTRACTIt remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics.
Author Fu, Jimin
Miu, Yan
Xie, Yujie
Xu, Mengda
Huang, Xiaowen
Zhao, Qiuhua
Zhang, Lidong
Tan, Huiyan
Sun, Shengtong
Yao, Haimin
Author_xml – sequence: 1
  givenname: Xiaowen
  surname: Huang
  fullname: Huang, Xiaowen
  organization: East China Normal University
– sequence: 2
  givenname: Jimin
  surname: Fu
  fullname: Fu, Jimin
  organization: the Hong Kong Polytechnic University
– sequence: 3
  givenname: Huiyan
  surname: Tan
  fullname: Tan, Huiyan
  organization: East China Normal University
– sequence: 4
  givenname: Yan
  surname: Miu
  fullname: Miu, Yan
  organization: East China Normal University
– sequence: 5
  givenname: Mengda
  surname: Xu
  fullname: Xu, Mengda
  organization: East China Normal University
– sequence: 6
  givenname: Qiuhua
  surname: Zhao
  fullname: Zhao, Qiuhua
  organization: East China Normal University
– sequence: 7
  givenname: Yujie
  surname: Xie
  fullname: Xie, Yujie
  organization: the Hong Kong Polytechnic University
– sequence: 8
  givenname: Shengtong
  surname: Sun
  fullname: Sun, Shengtong
  organization: Center for Advanced Low-dimension Materials, Donghua University
– sequence: 9
  givenname: Haimin
  orcidid: 0000-0003-0549-2246
  surname: Yao
  fullname: Yao, Haimin
  email: mmhyao@polyu.edu.hk
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 10
  givenname: Lidong
  surname: Zhang
  fullname: Zhang, Lidong
  email: ldzhang@chem.ecnu.edu.cn
  organization: East China Normal University
BookMark eNqFkUuLFDEUhQsZwXGcnyAEXFebd1XhRhl8DIy4UXAXblVuutOmkzZJK_3vTdszLlxoNgkn93ycy3naXcQUseueM7pidKQv2SQHJRlbccr5ijOmB6EedZcnvVeSf73482bsSXddypa2I_hElb7s3McUcDkEyGSXfuAOYy0kOVIzbiCkgsTH4i0SIMXHdUASsf5M-RvBCHNoUvvJsPc2HPuMS2PkpiOp6bDekM3R5rTG8Kx77CAUvL6_r7ov795-vvnQ3316f3vz5q5fpGK1B81nnEEqwR0MLSFMVllt3cJAgJgn7cbBtuAwiNlJ15bQWlEAJpgetRNX3e2ZaxNszT77HeSjSeDNbyHltYFc_RLQTI5alDBry6Rs-FFI6eRE6bzwaeDYWC_OrH1O3w9YqtmmQ44tvuGD5KMWA2Nt6tV5asmplIzOLL5C9SnWDD4YRs2pJ_PQkzn1ZO57am71l_sh8_98r88-H13KO2iNBGsqHEPKLkNcfDHi34hfMhGr9w
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2024_113149
crossref_primary_10_1021_acsami_4c07045
crossref_primary_10_1016_j_jmbbm_2023_106282
crossref_primary_10_1016_j_carbpol_2024_122040
crossref_primary_10_1016_j_compstruct_2024_117966
crossref_primary_10_1080_19475411_2024_2353312
Cites_doi 10.1039/b701043e
10.1021/ja953094z
10.1016/j.carbpol.2013.02.049
10.1039/C5TB00123D
10.1021/acsmacrolett.5b00501
10.1126/sciadv.aaz9531
10.1002/adma.201600480
10.1038/nature11409
10.1039/b924290b
10.1002/adma.202102308
10.1021/acs.jpcb.6b10556
10.1038/ncomms12095
10.1016/j.carbpol.2019.114977
10.1021/acsmacrolett.8b00045
10.1002/adma.201907180
10.1039/c2jm32541a
10.1016/j.cej.2014.01.065
10.1021/jp0269975
10.1021/acsnano.1c01247
10.1126/science.aau9533
10.1039/C5RA27306D
10.1038/s41551-018-0335-6
10.1021/acsmaterialslett.0c00075
10.1073/pnas.1903019116
10.1038/s41467-020-17877-z
10.1073/pnas.1909860116
10.1002/anie.201803366
10.1007/s10853-019-03729-9
10.1002/adma.201801541
10.1021/ma3022376
10.1002/adma.201504152
10.1038/s41586-021-03212-z
10.1126/sciadv.aau8528
10.1016/j.cej.2021.130353
10.1098/rsta.1951.0004
10.1039/C9TA09170J
10.1021/ma1016693
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
– notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/19475411.2022.2116735
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1947-542X
EndPage 596
ExternalDocumentID oai_doaj_org_article_9f0de4ab6d1441a38344f4900bc2972e
10_1080_19475411_2022_2116735
2116735
Genre Research Article
GroupedDBID .7F
0YH
2DF
4.4
5VS
ABDBF
ACGFO
ACIWK
ACUHS
ADBBV
ADCVX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CE4
EBS
ESX
FIJ
GROUPED_DOAJ
H13
HH5
I-F
IPNFZ
KQ8
M4Z
MK~
OK1
P2P
RDKPK
RIG
RNS
TDBHL
TFL
TFMNY
TFW
TUS
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c451t-a62beba4532fa7905a9d5d6dfc1a3a3b96f87d056a73bf4f2906650aa131686f3
IEDL.DBID 0YH
ISSN 1947-5411
IngestDate Wed Aug 27 01:21:03 EDT 2025
Mon Jun 30 10:10:44 EDT 2025
Tue Jul 01 02:19:58 EDT 2025
Thu Apr 24 22:58:07 EDT 2025
Wed Dec 25 09:05:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a62beba4532fa7905a9d5d6dfc1a3a3b96f87d056a73bf4f2906650aa131686f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0549-2246
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/19475411.2022.2116735
PQID 2742863711
PQPubID 436400
PageCount 22
ParticipantIDs crossref_primary_10_1080_19475411_2022_2116735
proquest_journals_2742863711
doaj_primary_oai_doaj_org_article_9f0de4ab6d1441a38344f4900bc2972e
informaworld_taylorfrancis_310_1080_19475411_2022_2116735
crossref_citationtrail_10_1080_19475411_2022_2116735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-02
PublicationDateYYYYMMDD 2022-10-02
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of smart and nano materials
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
Lake GJ (cit0030) 1967; 300
cit0019
cit0017
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0031
  doi: 10.1039/b701043e
– ident: cit0036
  doi: 10.1021/ja953094z
– ident: cit0038
  doi: 10.1016/j.carbpol.2013.02.049
– ident: cit0004
  doi: 10.1039/C5TB00123D
– ident: cit0022
  doi: 10.1021/acsmacrolett.5b00501
– ident: cit0014
  doi: 10.1126/sciadv.aaz9531
– ident: cit0015
  doi: 10.1002/adma.201600480
– ident: cit0027
  doi: 10.1038/nature11409
– ident: cit0005
  doi: 10.1039/b924290b
– ident: cit0018
  doi: 10.1002/adma.202102308
– volume: 300
  start-page: 108
  year: 1967
  ident: cit0030
  publication-title: P Roy Soc A-Math Phy
– ident: cit0019
  doi: 10.1021/acs.jpcb.6b10556
– ident: cit0017
  doi: 10.1038/ncomms12095
– ident: cit0001
  doi: 10.1016/j.carbpol.2019.114977
– ident: cit0012
  doi: 10.1021/acsmacrolett.8b00045
– ident: cit0024
  doi: 10.1002/adma.201907180
– ident: cit0006
  doi: 10.1039/c2jm32541a
– ident: cit0003
  doi: 10.1016/j.cej.2014.01.065
– ident: cit0034
  doi: 10.1021/jp0269975
– ident: cit0023
  doi: 10.1021/acsnano.1c01247
– ident: cit0010
  doi: 10.1126/science.aau9533
– ident: cit0021
  doi: 10.1039/C5RA27306D
– ident: cit0025
  doi: 10.1038/s41551-018-0335-6
– ident: cit0016
  doi: 10.1021/acsmaterialslett.0c00075
– ident: cit0026
  doi: 10.1073/pnas.1903019116
– ident: cit0013
  doi: 10.1038/s41467-020-17877-z
– ident: cit0035
  doi: 10.1073/pnas.1909860116
– ident: cit0037
  doi: 10.1002/anie.201803366
– ident: cit0011
  doi: 10.1007/s10853-019-03729-9
– ident: cit0008
  doi: 10.1002/adma.201801541
– ident: cit0032
  doi: 10.1021/ma3022376
– ident: cit0002
  doi: 10.1002/adma.201504152
– ident: cit0007
  doi: 10.1038/s41586-021-03212-z
– ident: cit0028
  doi: 10.1126/sciadv.aau8528
– ident: cit0020
  doi: 10.1016/j.cej.2021.130353
– ident: cit0029
  doi: 10.1098/rsta.1951.0004
– ident: cit0009
  doi: 10.1039/C9TA09170J
– ident: cit0033
  doi: 10.1021/ma1016693
SSID ssj0000329056
Score 2.2755845
Snippet It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work...
ABSTRACTIt remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics....
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 575
SubjectTerms Actuators
Bionics
Chemical bonds
Fracture toughness
highly recoverable tough hydrogels
Hydrogels
Hydrogen bonding
Kinetics
molecular dynamics simulation
molecular motility
Polyacrylamide
puncture resistance
Recoverability
Trehalose
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWANJLbj1CMgEEKCCSQ2y68DpNCgNgz99_icBCoYurBeYsX6fLHvbN_3EXIqwEEZwGVelhATFBUyy4LNuOXeSxc481g7fP8gb5_E3XP5vCD1hXfCOnrgDrhzBbkPwljpMfQ3HHUhQKg8t46pigWcfeOat5BMpTmYM5Un6daYpFdZKYpiKN8Z5-doQ1NMDxk7Y3gUkeTefhamxN__i730z2ydlqCbTbLRx470ouvzFlkJk22yvsAouEPgfpC7pe9NogJvZ7QB2k7Dq6mbWaBvSaCTGoqbBHWgk-4eOA1YRBVN8cnUfLz5ep5hshw9HYuraItqPvR17qfNS6h3ydPN9ePVbdZLKWROlEWbGclssEaUnIFBTi6jfOmlBxchNdwqCePKR8RMxS0IQBL4GLsZU6CwlQS-R1YnzSTsE2pdgXS2SOQlY7rkrBgHDpUvlbW5hHxExICjdj3POMpd1Lro6UgH-DXCr3v4R-Tsu9lHR7SxrMElDtL3y8iTnQzRe3TvPXqZ94yIWhxi3aZtEug0TTRf0oGjwR90_-PPNJ58jyWviuLgP_p3SNbwk-n2IDsiq-30MxzHKKi1J8nhvwAQrv41
  priority: 102
  providerName: Directory of Open Access Journals
Title Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel
URI https://www.tandfonline.com/doi/abs/10.1080/19475411.2022.2116735
https://www.proquest.com/docview/2742863711
https://doaj.org/article/9f0de4ab6d1441a38344f4900bc2972e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagvcABlZdYKCsfuKYkfmV97BZWK6RyohKcLL-mrRQ2VZIe-u_xOMmqgFAPHONkrGg8fsx45vsI-SDAg4zgi6AkJAdFx8Kx6ArueAjKR84C1g6ff1XbC_Hlu5yzCfsprRJ9aBiBIvJajZPbun7OiPuY_O5aigq9O8ZOGN4kcPmYHDK01mTS5Y_tPsxScqbLzOGKUgWKzXU8_-rptx0qA_n_AWP617Kd96LNEXk2HSLp6Tjqz8mjuHtBnt6DFnxJ4HzmvaU_24wJPvS0BTp08co2bR_pdWbqpJZitKCJdDcmhNOI1VSpKb3p7M11aO4K9JqTyWOVFR2Q1ode3YWuvYzNK3Kx-fztbFtMnAqFF7IaCquYi84KyRlYBOeyOsigAvjKcsudVrCqQ9KYrbkDAYgGnw5x1lbIcKWAvyYHu3YX3xDqfIW4tojopZLf5J1YRQ51kNq5UkG5IGLWo_ET4DjyXjSmmnBJZ_UbVL-Z1L8gJ3uxmxFx4yGBNQ7S_mMEzM4NbXdppvlnNJQhCutUQA_ScqQXAaHL0nmmaxYXRN8fYjPkeAmM5CaGP_ADx7M9mGkF6A1ega8Ur6vq7X90_Y48wcecPciOycHQ3cb36RQ0uGW28yU5PF1_Wm-WOZbwC288_bo
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADKi-x0BYfuKYkfmV9BES1lG5PrVROll_TVko3VTYc-u_xOMlqAaEeuNoZK5rxa8Yz30fIBwEeZARfBCUhOSg6Fo5FV3DHQ1A-chawdnh5qhbn4vhCXmzVwmBaJfrQMABF5L0aFzcGo6eUuI_J8a6lqNC9Y-yQ4VMClw_JI5kOX6RvKH8sNnGWkjNdZhJXlCpQbCrk-ddIvx1RGcn_DxzTv_btfBgd7ZJn4y2SfhrM_pw8iKsX5OkWtuBLAsuJ-JbetBkUvF_TFmjfxSvbtOtIrzNVJ7UUwwVNpKshI5xGLKdKTamns7fXobkr0G1Ocx7LrGiPvD706i507WVsXpHzo69nXxbFSKpQeCGrvrCKueiskJyBRXQuq4MMKoCvLLfcaQXzOiSN2Zo7EIBw8OkWZ22FFFcK-Guys2pX8Q2hzlcIbIuQXio5Tt6JeeRQB6mdKxWUMyImPRo_Io4j8UVjqhGYdFK_QfWbUf0zcrgRux0gN-4T-IxG2nyMiNm5oe0uzbgAjYYyRGGdCuhCWo78IiB0WTrPdM3ijOhtE5s-B0xgYDcx_J4f2Jvmgxm3gLXBN_C54nVVvf2Pod-Tx4uz5Yk5-Xb6_R15gl05lZDtkZ2--xn305Wodwd5zv8CU9_-xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOFU-xpYAPXFMSv7I-0pbV8mjFgUpwsvyatlLYrLLh0H9fj5OsCgj1wNXOWNHM-DH2zPcR8laABxnBF0FJSAGKjoVj0RXc8RCUj5wFrB0-OVXLM_Hpu5yyCTdjWiXG0DAAReS1Gif3OsCUEfcuxd21FBVGd4wdMHxJ4PIuuSfnaa9PLl3-WG6vWUrOdJk5XFGqQLGpjudfI_22Q2Ug_z9gTP9atvNetHhEdsdDJH0_WP0xuRNXT8jDG9CCTwmcTLy39GebMcH7DW2B9l28sE27ifQyM3VSS_G2oIl0NSSE04jVVKkp9XR2fRmaqwKj5uTyWGVFe6T1oRdXoWvPY_OMnC0-fDtaFiOnQuGFrPrCKuais0JyBhbBuawOMqgAvrLccqcVzOuQNGZr7kAAosGnQ5y1FTJcKeDPyc6qXcUXhDpfIa4tInqpFDd5J-aRQx2kdq5UUM6ImPRo_Ag4jrwXjalGXNJJ_QbVb0b1z8jBVmw9IG7cJnCIRtp-jIDZuaHtzs04_4yGMkRhnQoYQVqO9CIgdFk6z3TN4ozomyY2fb4vgYHcxPBbfmB_8gczrgAbg0_gc8Xrqtr7j6HfkPtfjxfmy8fTzy_JA-zJiYRsn-z03a_4Kh2Ievc6u_w1zob9-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+movements+of+trehalose+inside+a+single+network+enabling+a+rapidly-recoverable+tough+hydrogel&rft.jtitle=International+journal+of+smart+and+nano+materials&rft.au=Huang%2C+Xiaowen&rft.au=Fu%2C+Jimin&rft.au=Tan%2C+Huiyan&rft.au=Yan%2C+Miu&rft.date=2022-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1947-5411&rft.eissn=1947-542X&rft.volume=13&rft.issue=4&rft.spage=575&rft.epage=596&rft_id=info:doi/10.1080%2F19475411.2022.2116735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5411&client=summon