Design of a Distance Learning Supervision System Based on Time-Series Data of Learning Behaviors
This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance featu...
Saved in:
Published in | Journal of Advanced Computational Intelligence and Intelligent Informatics Vol. 29; no. 2; pp. 337 - 348 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Ltd
20.03.2025
富士技術出版株式会社 Fuji Technology Press Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance feature diversity and clustering performance. Tests indicate that the proposed multi-scale full convolution algorithm model achieves a Precision of 0.887, an F1 score of 0.922, an area under the curve of 0.883, and a Recall of 0.960, outperforming benchmark algorithms such as Naive Bayes and chaotic lightning search algorithms in leak prediction. The improved unsupervised algorithm achieves a Precision of 0.888, a Recall of 0.944, an F1 score of 0.915, and an Accuracy of 0.861, surpassing benchmark algorithms. This study offers a high-precision solution for remote learning monitoring, which holds practical value in enhancing teaching quality, addressing learning challenges of students, and providing theoretical support for optimizing the learning environment. Future research will focus on further optimizing algorithm models. |
---|---|
AbstractList | This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance feature diversity and clustering performance. Tests indicate that the proposed multi-scale full convolution algorithm model achieves a Precision of 0.887, an F1 score of 0.922, an area under the curve of 0.883, and a Recall of 0.960, outperforming benchmark algorithms such as Naive Bayes and chaotic lightning search algorithms in leak prediction. The improved unsupervised algorithm achieves a Precision of 0.888, a Recall of 0.944, an F1 score of 0.915, and an Accuracy of 0.861, surpassing benchmark algorithms. This study offers a high-precision solution for remote learning monitoring, which holds practical value in enhancing teaching quality, addressing learning challenges of students, and providing theoretical support for optimizing the learning environment. Future research will focus on further optimizing algorithm models. |
Author | Zhu Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Zhu fullname: Zhu, Yan organization: School of Information Engineering, Yangzhou Polytechnic College, No.458 Wenchang West Road, Yangzhou, Jiangsu Province 225002, China |
BackLink | https://cir.nii.ac.jp/crid/1390303564741322752$$DView record in CiNii |
BookMark | eNo9kE1PAjEQhhuDiYj8AU9N9LrYr213jwJ-JSQewHPtbmexRLrYLiT8ewtrvMy8M3nfmeS5RgPfekDolpIJI6XMHzamds6lgeWTHeFcXaAhLQqeFYSKQdJc8IxQTq7QOMYNIUkzSQQdos85RLf2uG2wwXMXO-NrwAswwTu_xsv9DsLBRdd6vDzGDrZ4aiJYnOaV20K2hOAg4rnpzOnGf3AKX-bg2hBv0GVjviOM__oIfTw_rWav2eL95W32uMhqkdMuMyKXzFhOWUUgF8oaJaQlprCNsNSWUMmGsro2FaNlJZQRvKSCFGUjqQVF-Ajd9Xd3of3ZQ-z0pt0Hn15qTlWhWEIhk4v1rjq0MQZo9C64rQlHTYk-w9Q9TH2Cqc8wU-i-D_m0r92pUl4STnguhRKJJVM5478hR3RX |
Cites_doi | 10.1177/07356331211027300 10.1109/ACCESS.2020.3035687 10.26599/TST.2019.9010013 10.1080/10494820.2020.1802300 10.1007/s00500-021-05795-1 10.1609/aaai.v33i01.3301517 10.1007/s10639-022-11068-7 10.1016/j.compeleceng.2021.107315 10.1080/10494820.2022.2124425 10.37934/araset.45.2.168176 10.1016/j.compedu.2019.103728 10.47852/bonviewJCCE2202406 10.1016/j.jprocont.2024.103254 10.1109/ACCESS.2020.3045157 10.1016/j.knosys.2024.111555 10.1080/10494820.2020.1727529 10.1515/comp-2020-0153 10.47852/bonviewJCCE2202238 10.47852/bonviewJCCE512522514 10.1177/20427530221108027 10.1145/3388792 10.1088/1742-6596/1774/1/012065 10.47852/bonviewAIA2202303 10.47852/bonviewAIA2202354 10.1016/j.psep.2023.11.040 10.17081/invinno.10.1.5607 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | RYH AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.20965/jaciii.2025.p0337 |
DatabaseName | CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 348 |
ExternalDocumentID | 10_20965_jaciii_2025_p0337 |
GroupedDBID | AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT RJT RYH RZJ TUS AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c451t-a4562ad312b0e547da746d0a8df4d1d9eb6f12ccab219b47a43914089f61de703 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Fri Jul 25 21:23:58 EDT 2025 Tue Jul 01 05:19:30 EDT 2025 Thu Jun 26 22:05:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-a4562ad312b0e547da746d0a8df4d1d9eb6f12ccab219b47a43914089f61de703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0337 |
PQID | 3178720146 |
PQPubID | 4911628 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3178720146 crossref_primary_10_20965_jaciii_2025_p0337 nii_cinii_1390303564741322752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-20 |
PublicationDateYYYYMMDD | 2025-03-20 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationTitleAlternate | J. Adv. Comput. Intell. Intell. Inform Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationTitle_FL | J. Adv. Comput. Intell. Intell. Inform Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Ltd 富士技術出版株式会社 Fuji Technology Press Co. Ltd |
Publisher_xml | – name: 富士技術出版株式会社 – name: Fuji Technology Press Ltd – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2025.p0337-9 key-10.20965/jaciii.2025.p0337-8 key-10.20965/jaciii.2025.p0337-19 key-10.20965/jaciii.2025.p0337-15 key-10.20965/jaciii.2025.p0337-16 key-10.20965/jaciii.2025.p0337-17 key-10.20965/jaciii.2025.p0337-18 key-10.20965/jaciii.2025.p0337-11 key-10.20965/jaciii.2025.p0337-12 key-10.20965/jaciii.2025.p0337-13 key-10.20965/jaciii.2025.p0337-14 key-10.20965/jaciii.2025.p0337-7 key-10.20965/jaciii.2025.p0337-6 key-10.20965/jaciii.2025.p0337-5 key-10.20965/jaciii.2025.p0337-4 key-10.20965/jaciii.2025.p0337-10 key-10.20965/jaciii.2025.p0337-3 key-10.20965/jaciii.2025.p0337-2 key-10.20965/jaciii.2025.p0337-1 key-10.20965/jaciii.2025.p0337-26 key-10.20965/jaciii.2025.p0337-22 key-10.20965/jaciii.2025.p0337-23 key-10.20965/jaciii.2025.p0337-24 key-10.20965/jaciii.2025.p0337-25 key-10.20965/jaciii.2025.p0337-20 key-10.20965/jaciii.2025.p0337-21 |
References_xml | – ident: key-10.20965/jaciii.2025.p0337-15 doi: 10.1177/07356331211027300 – ident: key-10.20965/jaciii.2025.p0337-6 doi: 10.1109/ACCESS.2020.3035687 – ident: key-10.20965/jaciii.2025.p0337-10 doi: 10.26599/TST.2019.9010013 – ident: key-10.20965/jaciii.2025.p0337-13 doi: 10.1080/10494820.2020.1802300 – ident: key-10.20965/jaciii.2025.p0337-8 doi: 10.1007/s00500-021-05795-1 – ident: key-10.20965/jaciii.2025.p0337-16 doi: 10.1609/aaai.v33i01.3301517 – ident: key-10.20965/jaciii.2025.p0337-2 doi: 10.1007/s10639-022-11068-7 – ident: key-10.20965/jaciii.2025.p0337-5 doi: 10.1016/j.compeleceng.2021.107315 – ident: key-10.20965/jaciii.2025.p0337-1 doi: 10.1080/10494820.2022.2124425 – ident: key-10.20965/jaciii.2025.p0337-23 doi: 10.37934/araset.45.2.168176 – ident: key-10.20965/jaciii.2025.p0337-17 doi: 10.1016/j.compedu.2019.103728 – ident: key-10.20965/jaciii.2025.p0337-22 doi: 10.47852/bonviewJCCE2202406 – ident: key-10.20965/jaciii.2025.p0337-25 doi: 10.1016/j.jprocont.2024.103254 – ident: key-10.20965/jaciii.2025.p0337-9 doi: 10.1109/ACCESS.2020.3045157 – ident: key-10.20965/jaciii.2025.p0337-26 doi: 10.1016/j.knosys.2024.111555 – ident: key-10.20965/jaciii.2025.p0337-3 doi: 10.1080/10494820.2020.1727529 – ident: key-10.20965/jaciii.2025.p0337-12 doi: 10.1515/comp-2020-0153 – ident: key-10.20965/jaciii.2025.p0337-20 doi: 10.47852/bonviewJCCE2202238 – ident: key-10.20965/jaciii.2025.p0337-21 doi: 10.47852/bonviewJCCE512522514 – ident: key-10.20965/jaciii.2025.p0337-7 doi: 10.1177/20427530221108027 – ident: key-10.20965/jaciii.2025.p0337-14 doi: 10.1145/3388792 – ident: key-10.20965/jaciii.2025.p0337-11 doi: 10.1088/1742-6596/1774/1/012065 – ident: key-10.20965/jaciii.2025.p0337-19 doi: 10.47852/bonviewAIA2202303 – ident: key-10.20965/jaciii.2025.p0337-18 doi: 10.47852/bonviewAIA2202354 – ident: key-10.20965/jaciii.2025.p0337-24 doi: 10.1016/j.psep.2023.11.040 – ident: key-10.20965/jaciii.2025.p0337-4 doi: 10.17081/invinno.10.1.5607 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.3176897 |
Snippet | This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This... |
SourceID | proquest crossref nii |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 337 |
SubjectTerms | Algorithms Benchmarks Clustering Distance learning Feature extraction prediction of dropping out of school Recall Remote monitoring Search algorithms Students temporal data of learning behavior Time series unsupervised methods variable scoring information bottleneck variable scoring self-encoder |
Title | Design of a Distance Learning Supervision System Based on Time-Series Data of Learning Behaviors |
URI | https://cir.nii.ac.jp/crid/1390303564741322752 https://www.proquest.com/docview/3178720146 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5YvXjxbazWZg_eDLrAsMDJWNvamGiMj8Qb7rKLqQeKbf3_zsCiJiZeSIAAybe73zzY-YaxEzS5Ba4h6UGeggdaaE8bjVGrJuURLdI4pXrn2zs5eYabl-jFJdwWbltly4k1UZtZTjnyc7RzSRyQ1MlF9eFR1yj6u-paaHTYGlJwgsHX2mB0d__QzqgIgwH0EfyfrAt6KwKaKAxoI1EomkqagFRQzt9VTpIOAToCZ5UIqTn6L2vVKafTP5Rd26HxFttwDiS_bEZ8m63Ycodtts0ZuFuru-x1WO_N4LOCKz4kLxEvcyen-sYfPytiCcqV8Ua1nA_QoBmO51QW4lHazC74UC0VveP7QSeoOF_ssefx6Olq4rl2Cl4Okb_0FAU7yoR-oIWNIDYqBmmESkwBxjep1bLwAxxRjSymIVZUlAsiSQvpG4vMsM9Wy1lpDxjPCxnrUPqykBKMDVUoQQNYkQYWUVdddtrCllWNakaG0UYNctaAnBHIWQ1ylx0jslk-pSN6pMg7YSQBfR1kmzgKuqzXYp65FbbIfubD4f-3j9g6fYr2jQWix1aX8097jI7EUvdZJxlf992c6dfh-BeFEMO2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOLSXAn2oy6P4UE4oxbEnzuZQVbTLspTHpSBxM3bsVNvD7sIuqvqn-hs7k0epVIkbl0hJlET5Mo9vJp4ZgPfkcivSIZNgWWCCXvrEB09Rq-fOI14WecH1zucXZnSFX6-z6yX43dXC8LLKzibWhjpMS86RH5Cf6-eKW518mt0mPDWK_652IzQasTiNv35SyDb_eDKg77un1PDo8ssoaacKJCVm6SJxzPld0KnyMmaYB5ejCdL1Q4UhDUX0pkoVvZgnZfaYO65NRdkvKpOGSApC912GVdS6YI3qD487-c0o9CBGkj7keIgbSWxiPuRlS1o2dTuKe64c_HAlN5BQRDs-zKTmUez_-MblyXj8n4Oovd5wHV60dFUcNvK1AUtx8hLWulEQorUMr-BmUK8EEdNKODFgTkqHRdu89bv4dj9jm8SZOdH0SBefyX0GQftchJJwki7OxcAtHN_j74Vt-8a7-Wu4ehKY38DKZDqJb0GUlcm9NqmpjMEQtdMGPWKUhYqEuuvBfgebnTU9OizFNjXItgHZMsi2BrkHO4SsLce8Jf5LVk5nBolZkW3LM9WD7Q5z2-rz3D5I3-bjp3fh2ejy_MyenVycbsFzfiyvWFNyG1YWd_dxhyjMwr-r5UbAzVML6h_XeP1Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+Distance+Learning+Supervision+System+Based+on+Time-Series+Data+of+Learning+Behaviors&rft.jtitle=Journal+of+Advanced+Computational+Intelligence+and+Intelligent+Informatics&rft.au=Zhu+Yan&rft.date=2025-03-20&rft.pub=Fuji+Technology+Press+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=2&rft.spage=337&rft.epage=348&rft_id=info:doi/10.20965%2Fjaciii.2025.p0337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |