Design of a Distance Learning Supervision System Based on Time-Series Data of Learning Behaviors

This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance featu...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Computational Intelligence and Intelligent Informatics Vol. 29; no. 2; pp. 337 - 348
Main Author Zhu, Yan
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Ltd 20.03.2025
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance feature diversity and clustering performance. Tests indicate that the proposed multi-scale full convolution algorithm model achieves a Precision of 0.887, an F1 score of 0.922, an area under the curve of 0.883, and a Recall of 0.960, outperforming benchmark algorithms such as Naive Bayes and chaotic lightning search algorithms in leak prediction. The improved unsupervised algorithm achieves a Precision of 0.888, a Recall of 0.944, an F1 score of 0.915, and an Accuracy of 0.861, surpassing benchmark algorithms. This study offers a high-precision solution for remote learning monitoring, which holds practical value in enhancing teaching quality, addressing learning challenges of students, and providing theoretical support for optimizing the learning environment. Future research will focus on further optimizing algorithm models.
AbstractList This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This method integrates multi-scale feature extraction, a variational information bottleneck module, and a variational autoencoder to enhance feature diversity and clustering performance. Tests indicate that the proposed multi-scale full convolution algorithm model achieves a Precision of 0.887, an F1 score of 0.922, an area under the curve of 0.883, and a Recall of 0.960, outperforming benchmark algorithms such as Naive Bayes and chaotic lightning search algorithms in leak prediction. The improved unsupervised algorithm achieves a Precision of 0.888, a Recall of 0.944, an F1 score of 0.915, and an Accuracy of 0.861, surpassing benchmark algorithms. This study offers a high-precision solution for remote learning monitoring, which holds practical value in enhancing teaching quality, addressing learning challenges of students, and providing theoretical support for optimizing the learning environment. Future research will focus on further optimizing algorithm models.
Author Zhu Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Zhu
  fullname: Zhu, Yan
  organization: School of Information Engineering, Yangzhou Polytechnic College, No.458 Wenchang West Road, Yangzhou, Jiangsu Province 225002, China
BackLink https://cir.nii.ac.jp/crid/1390303564741322752$$DView record in CiNii
BookMark eNo9kE1PAjEQhhuDiYj8AU9N9LrYr213jwJ-JSQewHPtbmexRLrYLiT8ewtrvMy8M3nfmeS5RgPfekDolpIJI6XMHzamds6lgeWTHeFcXaAhLQqeFYSKQdJc8IxQTq7QOMYNIUkzSQQdos85RLf2uG2wwXMXO-NrwAswwTu_xsv9DsLBRdd6vDzGDrZ4aiJYnOaV20K2hOAg4rnpzOnGf3AKX-bg2hBv0GVjviOM__oIfTw_rWav2eL95W32uMhqkdMuMyKXzFhOWUUgF8oaJaQlprCNsNSWUMmGsro2FaNlJZQRvKSCFGUjqQVF-Ajd9Xd3of3ZQ-z0pt0Hn15qTlWhWEIhk4v1rjq0MQZo9C64rQlHTYk-w9Q9TH2Cqc8wU-i-D_m0r92pUl4STnguhRKJJVM5478hR3RX
Cites_doi 10.1177/07356331211027300
10.1109/ACCESS.2020.3035687
10.26599/TST.2019.9010013
10.1080/10494820.2020.1802300
10.1007/s00500-021-05795-1
10.1609/aaai.v33i01.3301517
10.1007/s10639-022-11068-7
10.1016/j.compeleceng.2021.107315
10.1080/10494820.2022.2124425
10.37934/araset.45.2.168176
10.1016/j.compedu.2019.103728
10.47852/bonviewJCCE2202406
10.1016/j.jprocont.2024.103254
10.1109/ACCESS.2020.3045157
10.1016/j.knosys.2024.111555
10.1080/10494820.2020.1727529
10.1515/comp-2020-0153
10.47852/bonviewJCCE2202238
10.47852/bonviewJCCE512522514
10.1177/20427530221108027
10.1145/3388792
10.1088/1742-6596/1774/1/012065
10.47852/bonviewAIA2202303
10.47852/bonviewAIA2202354
10.1016/j.psep.2023.11.040
10.17081/invinno.10.1.5607
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID RYH
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p0337
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 348
ExternalDocumentID 10_20965_jaciii_2025_p0337
GroupedDBID AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RYH
RZJ
TUS
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c451t-a4562ad312b0e547da746d0a8df4d1d9eb6f12ccab219b47a43914089f61de703
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Fri Jul 25 21:23:58 EDT 2025
Tue Jul 01 05:19:30 EDT 2025
Thu Jun 26 22:05:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a4562ad312b0e547da746d0a8df4d1d9eb6f12ccab219b47a43914089f61de703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p0337
PQID 3178720146
PQPubID 4911628
PageCount 12
ParticipantIDs proquest_journals_3178720146
crossref_primary_10_20965_jaciii_2025_p0337
nii_cinii_1390303564741322752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-20
PublicationDateYYYYMMDD 2025-03-20
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitleAlternate J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitle_FL J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationYear 2025
Publisher Fuji Technology Press Ltd
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Publisher_xml – name: 富士技術出版株式会社
– name: Fuji Technology Press Ltd
– name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p0337-9
key-10.20965/jaciii.2025.p0337-8
key-10.20965/jaciii.2025.p0337-19
key-10.20965/jaciii.2025.p0337-15
key-10.20965/jaciii.2025.p0337-16
key-10.20965/jaciii.2025.p0337-17
key-10.20965/jaciii.2025.p0337-18
key-10.20965/jaciii.2025.p0337-11
key-10.20965/jaciii.2025.p0337-12
key-10.20965/jaciii.2025.p0337-13
key-10.20965/jaciii.2025.p0337-14
key-10.20965/jaciii.2025.p0337-7
key-10.20965/jaciii.2025.p0337-6
key-10.20965/jaciii.2025.p0337-5
key-10.20965/jaciii.2025.p0337-4
key-10.20965/jaciii.2025.p0337-10
key-10.20965/jaciii.2025.p0337-3
key-10.20965/jaciii.2025.p0337-2
key-10.20965/jaciii.2025.p0337-1
key-10.20965/jaciii.2025.p0337-26
key-10.20965/jaciii.2025.p0337-22
key-10.20965/jaciii.2025.p0337-23
key-10.20965/jaciii.2025.p0337-24
key-10.20965/jaciii.2025.p0337-25
key-10.20965/jaciii.2025.p0337-20
key-10.20965/jaciii.2025.p0337-21
References_xml – ident: key-10.20965/jaciii.2025.p0337-15
  doi: 10.1177/07356331211027300
– ident: key-10.20965/jaciii.2025.p0337-6
  doi: 10.1109/ACCESS.2020.3035687
– ident: key-10.20965/jaciii.2025.p0337-10
  doi: 10.26599/TST.2019.9010013
– ident: key-10.20965/jaciii.2025.p0337-13
  doi: 10.1080/10494820.2020.1802300
– ident: key-10.20965/jaciii.2025.p0337-8
  doi: 10.1007/s00500-021-05795-1
– ident: key-10.20965/jaciii.2025.p0337-16
  doi: 10.1609/aaai.v33i01.3301517
– ident: key-10.20965/jaciii.2025.p0337-2
  doi: 10.1007/s10639-022-11068-7
– ident: key-10.20965/jaciii.2025.p0337-5
  doi: 10.1016/j.compeleceng.2021.107315
– ident: key-10.20965/jaciii.2025.p0337-1
  doi: 10.1080/10494820.2022.2124425
– ident: key-10.20965/jaciii.2025.p0337-23
  doi: 10.37934/araset.45.2.168176
– ident: key-10.20965/jaciii.2025.p0337-17
  doi: 10.1016/j.compedu.2019.103728
– ident: key-10.20965/jaciii.2025.p0337-22
  doi: 10.47852/bonviewJCCE2202406
– ident: key-10.20965/jaciii.2025.p0337-25
  doi: 10.1016/j.jprocont.2024.103254
– ident: key-10.20965/jaciii.2025.p0337-9
  doi: 10.1109/ACCESS.2020.3045157
– ident: key-10.20965/jaciii.2025.p0337-26
  doi: 10.1016/j.knosys.2024.111555
– ident: key-10.20965/jaciii.2025.p0337-3
  doi: 10.1080/10494820.2020.1727529
– ident: key-10.20965/jaciii.2025.p0337-12
  doi: 10.1515/comp-2020-0153
– ident: key-10.20965/jaciii.2025.p0337-20
  doi: 10.47852/bonviewJCCE2202238
– ident: key-10.20965/jaciii.2025.p0337-21
  doi: 10.47852/bonviewJCCE512522514
– ident: key-10.20965/jaciii.2025.p0337-7
  doi: 10.1177/20427530221108027
– ident: key-10.20965/jaciii.2025.p0337-14
  doi: 10.1145/3388792
– ident: key-10.20965/jaciii.2025.p0337-11
  doi: 10.1088/1742-6596/1774/1/012065
– ident: key-10.20965/jaciii.2025.p0337-19
  doi: 10.47852/bonviewAIA2202303
– ident: key-10.20965/jaciii.2025.p0337-18
  doi: 10.47852/bonviewAIA2202354
– ident: key-10.20965/jaciii.2025.p0337-24
  doi: 10.1016/j.psep.2023.11.040
– ident: key-10.20965/jaciii.2025.p0337-4
  doi: 10.17081/invinno.10.1.5607
SSID ssj0001326041
ssib051641541
Score 2.3176897
Snippet This paper proposes a remote learning monitoring method based on learning behavior time series data to effectively monitor learning progress of students. This...
SourceID proquest
crossref
nii
SourceType Aggregation Database
Index Database
Publisher
StartPage 337
SubjectTerms Algorithms
Benchmarks
Clustering
Distance learning
Feature extraction
prediction of dropping out of school
Recall
Remote monitoring
Search algorithms
Students
temporal data of learning behavior
Time series
unsupervised methods
variable scoring information bottleneck
variable scoring self-encoder
Title Design of a Distance Learning Supervision System Based on Time-Series Data of Learning Behaviors
URI https://cir.nii.ac.jp/crid/1390303564741322752
https://www.proquest.com/docview/3178720146
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5YvXjxbazWZg_eDLrAsMDJWNvamGiMj8Qb7rKLqQeKbf3_zsCiJiZeSIAAybe73zzY-YaxEzS5Ba4h6UGeggdaaE8bjVGrJuURLdI4pXrn2zs5eYabl-jFJdwWbltly4k1UZtZTjnyc7RzSRyQ1MlF9eFR1yj6u-paaHTYGlJwgsHX2mB0d__QzqgIgwH0EfyfrAt6KwKaKAxoI1EomkqagFRQzt9VTpIOAToCZ5UIqTn6L2vVKafTP5Rd26HxFttwDiS_bEZ8m63Ycodtts0ZuFuru-x1WO_N4LOCKz4kLxEvcyen-sYfPytiCcqV8Ua1nA_QoBmO51QW4lHazC74UC0VveP7QSeoOF_ssefx6Olq4rl2Cl4Okb_0FAU7yoR-oIWNIDYqBmmESkwBxjep1bLwAxxRjSymIVZUlAsiSQvpG4vMsM9Wy1lpDxjPCxnrUPqykBKMDVUoQQNYkQYWUVdddtrCllWNakaG0UYNctaAnBHIWQ1ylx0jslk-pSN6pMg7YSQBfR1kmzgKuqzXYp65FbbIfubD4f-3j9g6fYr2jQWix1aX8097jI7EUvdZJxlf992c6dfh-BeFEMO2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOLSXAn2oy6P4UE4oxbEnzuZQVbTLspTHpSBxM3bsVNvD7sIuqvqn-hs7k0epVIkbl0hJlET5Mo9vJp4ZgPfkcivSIZNgWWCCXvrEB09Rq-fOI14WecH1zucXZnSFX6-z6yX43dXC8LLKzibWhjpMS86RH5Cf6-eKW518mt0mPDWK_652IzQasTiNv35SyDb_eDKg77un1PDo8ssoaacKJCVm6SJxzPld0KnyMmaYB5ejCdL1Q4UhDUX0pkoVvZgnZfaYO65NRdkvKpOGSApC912GVdS6YI3qD487-c0o9CBGkj7keIgbSWxiPuRlS1o2dTuKe64c_HAlN5BQRDs-zKTmUez_-MblyXj8n4Oovd5wHV60dFUcNvK1AUtx8hLWulEQorUMr-BmUK8EEdNKODFgTkqHRdu89bv4dj9jm8SZOdH0SBefyX0GQftchJJwki7OxcAtHN_j74Vt-8a7-Wu4ehKY38DKZDqJb0GUlcm9NqmpjMEQtdMGPWKUhYqEuuvBfgebnTU9OizFNjXItgHZMsi2BrkHO4SsLce8Jf5LVk5nBolZkW3LM9WD7Q5z2-rz3D5I3-bjp3fh2ejy_MyenVycbsFzfiyvWFNyG1YWd_dxhyjMwr-r5UbAzVML6h_XeP1Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+Distance+Learning+Supervision+System+Based+on+Time-Series+Data+of+Learning+Behaviors&rft.jtitle=Journal+of+Advanced+Computational+Intelligence+and+Intelligent+Informatics&rft.au=Zhu+Yan&rft.date=2025-03-20&rft.pub=Fuji+Technology+Press+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=2&rft.spage=337&rft.epage=348&rft_id=info:doi/10.20965%2Fjaciii.2025.p0337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon