Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model

Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 98; p. 109421
Main Authors Palazzi, Emanuele, Siegler, Sorin, Balakrishnan, Vishnuvardhan, Leardini, Alberto, Caravaggi, Paolo, Belvedere, Claudio
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 02.01.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model.
AbstractList Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models.Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified.On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation.The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model.
Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model.
Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ - a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one "representative" model.Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ - a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one "representative" model.
ArticleNumber 109421
Author Palazzi, Emanuele
Siegler, Sorin
Caravaggi, Paolo
Belvedere, Claudio
Balakrishnan, Vishnuvardhan
Leardini, Alberto
Author_xml – sequence: 1
  givenname: Emanuele
  surname: Palazzi
  fullname: Palazzi, Emanuele
  organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
– sequence: 2
  givenname: Sorin
  orcidid: 0000-0002-7312-5774
  surname: Siegler
  fullname: Siegler, Sorin
  email: sieglers@drexel.edu
  organization: Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
– sequence: 3
  givenname: Vishnuvardhan
  surname: Balakrishnan
  fullname: Balakrishnan, Vishnuvardhan
  organization: Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
– sequence: 4
  givenname: Alberto
  surname: Leardini
  fullname: Leardini, Alberto
  organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
– sequence: 5
  givenname: Paolo
  orcidid: 0000-0002-8994-8062
  surname: Caravaggi
  fullname: Caravaggi, Paolo
  organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
– sequence: 6
  givenname: Claudio
  orcidid: 0000-0003-4258-2267
  surname: Belvedere
  fullname: Belvedere, Claudio
  organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31653506$$D View this record in MEDLINE/PubMed
BookMark eNqNkctqGzEYhUVJaZy0rxAE3XQzri5zsaCUlpBeINBNuxYa6R9bE43kSpqAC333anC88Sbd6PqdI3HOFbrwwQNCN5SsKaHt-3E99jZMoHdrRqgoh6Jm9AVa0U3HK8Y35AKtCGG0EkyQS3SV0kgI6epOvEKXnLYNb0i7Qn_vUraTytZvcd4BTln11tk_y36Yvc42eBwGrPyDgzIanOY-K6cidnarJvA54UersMJTiPtdcGF7qNIetB2sLpYRoDK2cKk4KYfNwaup3EzBgHuNXg7KJXjzNF-jX1_uft5-q-5_fP1--_m-0nVDc6V4LShRzDQaagbNpmaMm1qLRim6MQPjomecDVD3hPeUCsIH3YqyYLURbODX6N3Rdx_D7xlSlpNNGpxTHsKcJOMlvo7XhBf07Rk6hjmWny8UK4asE22hbp6ouZ_AyH0sIcaDPAVbgA9HQMeQUoRBapvVkmaOyjpJiVx6lKM89SiXHuWxxyJvz-SnF54VfjoKocT5aCHKpC14DcZG0FmaYJ-3-HhmoZ31Viv3AIf_MfgH75TRCA
CitedBy_id crossref_primary_10_1186_s13018_025_05478_9
crossref_primary_10_1016_j_clinbiomech_2023_106006
crossref_primary_10_1097_CORR_0000000000002991
crossref_primary_10_3390_app12105087
crossref_primary_10_1002_jor_25652
crossref_primary_10_1016_j_cmpb_2022_106701
crossref_primary_10_1016_j_jbiomech_2024_112373
crossref_primary_10_3389_feart_2022_786247
crossref_primary_10_1016_j_clinbiomech_2021_105489
Cites_doi 10.1016/j.jbiomech.2004.09.031
10.2106/JBJS.I.01537
10.3109/17453678509154152
10.1016/j.piutam.2011.04.021
10.1016/S1672-6529(08)60138-9
10.1007/s10439-010-0234-9
10.1115/1.3108455
10.1136/bjsm.28.2.112
10.1016/j.jbiomech.2007.12.017
10.1115/1.1318904
10.1016/j.jbiomech.2018.05.026
10.1016/j.jbiomech.2004.05.035
10.3389/fbioe.2014.00054
10.3109/17453678909154185
10.1002/jor.22471
10.1177/107110078700700612
10.3109/17453678208992194
10.1016/j.jbiomech.2017.01.002
10.1002/ar.1091530102
10.1115/1.4000939
10.1115/1.429623
10.1016/S0021-9290(02)00425-6
10.1016/j.jbiomech.2009.04.024
10.1177/107110070002100411
10.1016/j.jbiomech.2005.04.010
10.3109/17453679708996259
10.1177/107110078800800502
10.1177/107110078400500307
10.1177/036354658501300502
10.1115/1.2891163
10.1016/j.jbiomech.2011.08.010
10.1080/10255842.2013.792809
10.1177/036354658801600514
10.1177/107110078800900201
10.1080/001401300750004122
10.1177/107110070602701117
10.1177/107110078300400206
10.1016/j.jmbbm.2016.09.010
10.3109/17453677908989760
10.1055/s-2008-1040041
10.1007/s10439-012-0607-3
10.1177/107110079101200206
10.1016/S0021-9290(98)00157-2
10.1177/107110070302400505
10.1177/0954411911406951
10.1115/1.2800763
10.1007/s10439-015-1359-7
10.1177/107110070002100715
10.1177/107110079201300304
10.1016/j.clinbiomech.2013.10.009
10.1002/jor.1100120315
10.2106/JBJS.15.00948
10.1007/BF00267558
10.1177/107110070202300909
10.1016/S0095-4543(21)00142-1
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2019.109421
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 31653506
10_1016_j_jbiomech_2019_109421
S0021929019306682
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-a34910a2d5ce42e584223d4c95aa18df239b232fe4b03b11903fc6911924d92f3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Mon Jul 21 11:13:43 EDT 2025
Wed Aug 13 09:23:51 EDT 2025
Wed Feb 19 02:32:16 EST 2025
Tue Jul 01 00:44:15 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Fri Feb 23 02:47:00 EST 2024
Tue Aug 26 17:09:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ligament stabilization
Subject specific
Dynamic ankle models
Ankle and subtalar ligaments
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a34910a2d5ce42e584223d4c95aa18df239b232fe4b03b11903fc6911924d92f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7312-5774
0000-0002-8994-8062
0000-0003-4258-2267
PMID 31653506
PQID 2329242796
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2309473403
proquest_journals_2329242796
pubmed_primary_31653506
crossref_citationtrail_10_1016_j_jbiomech_2019_109421
crossref_primary_10_1016_j_jbiomech_2019_109421
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109421
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Sancisi, Zannoli, Parenti-Castelli, Belvedere, Leardini (b0185) 2011; 225
Stagni, Leardini, O'Connor, Giannini (b0255) 2003; 24
Leardini, O'Connor, Catani, Giannini (b0105) 1999; 32
Wilkerson (b0300) 1992; 19
Pankovich, Shivaram (b0150) 1979; 50
Renstrom, Wertz, Incavo, Pope, Ostgaard, Arms, Haugh (b0180) 1988; 9
Quiles, Requena, Gomez, Garcia-Sancho (b0155) 1983; 4
Funk, Hall, Crandall, Pilkey (b0060) 2000; 122
Barbaix, Van Roy, Clarys (b0005) 2000; 43
Siegler, Chen, Schneck (b0215) 1990; 112
Spratley, Matheis, Hayes, Adelaar, Wayne (b0245) 2013; 31
Rasmussen, Jensen, Hedeboe (b0165) 1983; 7
Cawley, France (b0030) 1991; 12
Knudson, Kitaoka, Lu, Luo, An (b0100) 1997; 68
Liacouras, Wayne (b0120) 2007; 129
Kjaersgaard-Andersen, Wethelund, Helmig, Soballe (b0090) 1988; 16
Smith (b0235) 1958; 92
Corazza, Leardini, O'Connor, Parenti Castelli (b0040) 2005; 38
Imhauser, Siegler, Udupa, Toy (b0080) 2008; 41
Wei, Fong, Chan, Haut (b0295) 2015; 18
Yeung, Chan, So, Yuan (b0305) 1994; 28
Bruns, Rehder (b0015) 1993; 131
Galbusera, Freutel, Durselen, D'Aiuto, Croce, Villa, Sansone, Innocenti (b0065) 2014; 2
Wei, Braman, Weaver, Haut (b0285) 2011; 44
Kjaersgaard-Andersen, Wethelund, Nielsen (b0095) 1987; 7
Gefen, Megido-Ravid, Itzchak, Arcan (b0070) 2000; 122
Ozeki, Kitaoka, Uchiyama, Luo, Kaufman, An (b0140) 2006; 27
Wang, Wong, Zhang (b0275) 2016; 44
Wei, Hunley, Powell, Haut (b0290) 2011; 39
Lundberg (b0125) 1989; 233
Nie, Panzer, Mane, Mait, Donlon, Forman, Kent (b0130) 2017; 65
Li, Gollhofer, Lohrer, Dorn-Lange, Bonsignore, Gehring (b0115) 2019
Soavi, Girolami, Loreti, Bragonzoni, Monti, Visani, Marcacci (b0240) 2000; 21
Rasmussen, Tovborg-Jensen (b0170) 1982; 53
Corazza, O'Connor, Leardini, Parenti Castelli (b0045) 2003; 36
Leardini, O'Connor, Catani, Giannini (b0110) 2000; 21
Rasmussen (b0160) 1985; 211
Reggiani, Leardini, Corazza, Taylor (b0175) 2006; 39
Ozeki, Yasuda, Kaneda, Yamakoshi, Yamanoi (b0145) 2002; 23
Stephens, Sammarco (b0260) 1992; 13
Cahill (b0020) 1965; 153
Seth, Sherman, Reinbolt, Delp (b0195) 2011; 2
Tao, Wang, Wang, Wang, Liu, Nester, Howard (b0270) 2009; 6
Cass, Morrey, Chao (b0025) 1984; 5
Iaquinto, Wayne (b0075) 2010; 132
Cheung, Zhang, Leung, Fan (b0035) 2005; 38
Pellegrini, Glisson, Wurm, Ousema, Romash, Nunley, Easley (b9000) 2016; 98
Siegler, Toy, Damani, Pedowitz (b0220) 2014; 29
Siegler, Wang, Plasha, Berman (b0230) 1994; 12
Spratley, Matheis, Hayes, Adelaar, Wayne (b0250) 2014
Siegler, Block, Schneck (b0205) 1988; 8
Sarrafian (b0190) 1993
Siegler, Konow, Belvedere, Ensini, Kulkarni, Leardini (b0225) 2018; 76
Stormont, Morrey, An, Cass (b0265) 1985; 13
de Asla, Kozánek, Wan, Rubash, Li (b0050) 2009
Waterman, Owens, Davey, Zacchilli, Belmont (b0280) 2010; 92
Kelikian, Sarrafian (b0085) 2011
Shin, Yue, Untaroiu (b0200) 2012; 40
Belvedere, Siegler, Ensini, Toy, Caravaggi, Namani, Giannini, Durante, Leardini (b0010) 2017; 53
Franci, Parenti-Castelli, Belvedere, Leardini (b0055) 2009; 42
Siegler, Chen, Schneck (b0210) 1988; 110
Bruns (10.1016/j.jbiomech.2019.109421_b0015) 1993; 131
Siegler (10.1016/j.jbiomech.2019.109421_b0205) 1988; 8
Pellegrini (10.1016/j.jbiomech.2019.109421_b9000) 2016; 98
Smith (10.1016/j.jbiomech.2019.109421_b0235) 1958; 92
Sancisi (10.1016/j.jbiomech.2019.109421_b0185) 2011; 225
Wei (10.1016/j.jbiomech.2019.109421_b0285) 2011; 44
Kelikian (10.1016/j.jbiomech.2019.109421_b0085) 2011
Stormont (10.1016/j.jbiomech.2019.109421_b0265) 1985; 13
Quiles (10.1016/j.jbiomech.2019.109421_b0155) 1983; 4
Knudson (10.1016/j.jbiomech.2019.109421_b0100) 1997; 68
Siegler (10.1016/j.jbiomech.2019.109421_b0225) 2018; 76
Cheung (10.1016/j.jbiomech.2019.109421_b0035) 2005; 38
Li (10.1016/j.jbiomech.2019.109421_b0115) 2019
Stephens (10.1016/j.jbiomech.2019.109421_b0260) 1992; 13
Wang (10.1016/j.jbiomech.2019.109421_b0275) 2016; 44
Nie (10.1016/j.jbiomech.2019.109421_b0130) 2017; 65
Cass (10.1016/j.jbiomech.2019.109421_b0025) 1984; 5
Spratley (10.1016/j.jbiomech.2019.109421_b0250) 2014
de Asla (10.1016/j.jbiomech.2019.109421_b0050) 2009
Ozeki (10.1016/j.jbiomech.2019.109421_b0140) 2006; 27
Ozeki (10.1016/j.jbiomech.2019.109421_b0145) 2002; 23
Rasmussen (10.1016/j.jbiomech.2019.109421_b0170) 1982; 53
Cawley (10.1016/j.jbiomech.2019.109421_b0030) 1991; 12
Reggiani (10.1016/j.jbiomech.2019.109421_b0175) 2006; 39
Imhauser (10.1016/j.jbiomech.2019.109421_b0080) 2008; 41
Tao (10.1016/j.jbiomech.2019.109421_b0270) 2009; 6
Kjaersgaard-Andersen (10.1016/j.jbiomech.2019.109421_b0095) 1987; 7
Seth (10.1016/j.jbiomech.2019.109421_b0195) 2011; 2
Wei (10.1016/j.jbiomech.2019.109421_b0295) 2015; 18
Siegler (10.1016/j.jbiomech.2019.109421_b0215) 1990; 112
Siegler (10.1016/j.jbiomech.2019.109421_b0230) 1994; 12
Siegler (10.1016/j.jbiomech.2019.109421_b0210) 1988; 110
Yeung (10.1016/j.jbiomech.2019.109421_b0305) 1994; 28
Corazza (10.1016/j.jbiomech.2019.109421_b0040) 2005; 38
Belvedere (10.1016/j.jbiomech.2019.109421_b0010) 2017; 53
Barbaix (10.1016/j.jbiomech.2019.109421_b0005) 2000; 43
Franci (10.1016/j.jbiomech.2019.109421_b0055) 2009; 42
Cahill (10.1016/j.jbiomech.2019.109421_b0020) 1965; 153
Corazza (10.1016/j.jbiomech.2019.109421_b0045) 2003; 36
Lundberg (10.1016/j.jbiomech.2019.109421_b0125) 1989; 233
Gefen (10.1016/j.jbiomech.2019.109421_b0070) 2000; 122
Kjaersgaard-Andersen (10.1016/j.jbiomech.2019.109421_b0090) 1988; 16
Rasmussen (10.1016/j.jbiomech.2019.109421_b0165) 1983; 7
Liacouras (10.1016/j.jbiomech.2019.109421_b0120) 2007; 129
Waterman (10.1016/j.jbiomech.2019.109421_b0280) 2010; 92
Leardini (10.1016/j.jbiomech.2019.109421_b0105) 1999; 32
Leardini (10.1016/j.jbiomech.2019.109421_b0110) 2000; 21
Iaquinto (10.1016/j.jbiomech.2019.109421_b0075) 2010; 132
Siegler (10.1016/j.jbiomech.2019.109421_b0220) 2014; 29
Galbusera (10.1016/j.jbiomech.2019.109421_b0065) 2014; 2
Wilkerson (10.1016/j.jbiomech.2019.109421_b0300) 1992; 19
Stagni (10.1016/j.jbiomech.2019.109421_b0255) 2003; 24
Soavi (10.1016/j.jbiomech.2019.109421_b0240) 2000; 21
Rasmussen (10.1016/j.jbiomech.2019.109421_b0160) 1985; 211
Pankovich (10.1016/j.jbiomech.2019.109421_b0150) 1979; 50
Spratley (10.1016/j.jbiomech.2019.109421_b0245) 2013; 31
Renstrom (10.1016/j.jbiomech.2019.109421_b0180) 1988; 9
Shin (10.1016/j.jbiomech.2019.109421_b0200) 2012; 40
Wei (10.1016/j.jbiomech.2019.109421_b0290) 2011; 39
Sarrafian (10.1016/j.jbiomech.2019.109421_b0190) 1993
Funk (10.1016/j.jbiomech.2019.109421_b0060) 2000; 122
References_xml – volume: 40
  start-page: 2519
  year: 2012
  end-page: 2531
  ident: b0200
  article-title: A finite element model of the foot and ankle for automotive impact applications
  publication-title: Ann. Biomed. Eng.
– volume: 233
  start-page: 1
  year: 1989
  end-page: 24
  ident: b0125
  article-title: Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry
  publication-title: Acta Orthop. Scand. Suppl.
– volume: 32
  start-page: 111
  year: 1999
  end-page: 118
  ident: b0105
  article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system
  publication-title: J. Biomech.
– volume: 13
  start-page: 130
  year: 1992
  end-page: 136
  ident: b0260
  article-title: The stabilizing role of the lateral ligament complex around the ankle and subtalar joints
  publication-title: Foot Ankle
– volume: 153
  start-page: 1
  year: 1965
  end-page: 17
  ident: b0020
  article-title: The anatomy and function of the contents of the human tarsal sinus and canal
  publication-title: Anat. Rec.
– volume: 122
  start-page: 15
  year: 2000
  end-page: 22
  ident: b0060
  article-title: Linear and quasi-linear viscoelastic characterization of ankle ligaments
  publication-title: J. Biomech. Eng.
– volume: 24
  start-page: 402
  year: 2003
  end-page: 409
  ident: b0255
  article-title: Role of passive structures in the mobility and stability of the human subtalar joint: a literature review
  publication-title: Foot Ankle Int.
– volume: 4
  start-page: 73
  year: 1983
  end-page: 82
  ident: b0155
  article-title: Functional anatomy of the medial collateral ligament of the ankle joint
  publication-title: Foot Ankle
– start-page: 4
  year: 2009
  end-page: 7
  ident: b0050
  article-title: Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex
  publication-title: J. Orthopaedic Surg. Res.
– volume: 27
  start-page: 965
  year: 2006
  end-page: 969
  ident: b0140
  article-title: Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex
  publication-title: Foot Ankle Int.
– volume: 13
  start-page: 295
  year: 1985
  end-page: 300
  ident: b0265
  article-title: Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints
  publication-title: Am. J. Sports Med.
– volume: 50
  start-page: 225
  year: 1979
  end-page: 236
  ident: b0150
  article-title: Anatomical basis of variability in injuries of the medial malleolus and the deltoid ligament. II. Clinical studies
  publication-title: Acta Orthop. Scand.
– volume: 53
  start-page: 155
  year: 1982
  end-page: 160
  ident: b0170
  article-title: Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle
  publication-title: Acta Orthop. Scand.
– volume: 42
  start-page: 1403
  year: 2009
  end-page: 1408
  ident: b0055
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
– volume: 16
  start-page: 512
  year: 1988
  end-page: 516
  ident: b0090
  article-title: The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study
  publication-title: Am. J. Sports Med.
– volume: 8
  start-page: 234
  year: 1988
  end-page: 242
  ident: b0205
  article-title: The mechanical characteristics of the collateral ligaments of the human ankle joint
  publication-title: Foot Ankle
– volume: 44
  start-page: 213
  year: 2016
  end-page: 221
  ident: b0275
  article-title: Computational models of the foot and ankle for pathomechanics and clinical applications: a review
  publication-title: Ann. Biomed. Eng.
– volume: 132
  year: 2010
  ident: b0075
  article-title: Computational model of the lower leg and foot/ankle complex: application to arch stability
  publication-title: J. Biomech. Eng.
– volume: 112
  start-page: 129
  year: 1990
  end-page: 137
  ident: b0215
  article-title: The effect of damage to the lateral collateral ligaments on the mechanical characteristics of the ankle joint–an in-vitro study
  publication-title: J. Biomech. Eng.
– volume: 76
  start-page: 204
  year: 2018
  end-page: 211
  ident: b0225
  article-title: Analysis of surface-to-surface distance mapping during three-dimensional motion at the ankle and subtalar joints
  publication-title: J. Biomech.
– volume: 12
  start-page: 92
  year: 1991
  end-page: 99
  ident: b0030
  article-title: Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns
  publication-title: Foot Ankle
– volume: 6
  start-page: 387
  year: 2009
  end-page: 397
  ident: b0270
  article-title: An in vivo experimental validation of a computational model of human foot
  publication-title: J. Bionic Eng.
– volume: 211
  start-page: 1
  year: 1985
  end-page: 75
  ident: b0160
  article-title: Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments
  publication-title: Acta Orthop. Scand. Suppl.
– volume: 44
  start-page: 2636
  year: 2011
  end-page: 2641
  ident: b0285
  article-title: Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data
  publication-title: J. Biomech.
– volume: 2
  start-page: 54
  year: 2014
  ident: b0065
  article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review
  publication-title: Front. Bioeng. Biotechnol.
– volume: 129
  start-page: 811
  year: 2007
  end-page: 817
  ident: b0120
  article-title: Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 1861
  year: 2013
  end-page: 1868
  ident: b0245
  article-title: Validation of a population of patient-specific adult acquired flatfoot deformity models: validation of patient-specific flatfoot models
  publication-title: J. Orthop. Res.
– volume: 39
  start-page: 1435
  year: 2006
  end-page: 1443
  ident: b0175
  article-title: Finite element analysis of a total ankle replacement during the stance phase of gait
  publication-title: J. Biomech.
– volume: 5
  start-page: 142
  year: 1984
  end-page: 149
  ident: b0025
  article-title: Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments
  publication-title: Foot Ankle
– volume: 7
  start-page: 355
  year: 1987
  end-page: 361
  ident: b0095
  article-title: Lateral talocalcaneal instability following section of the calcaneofibular ligament: a kinesiologic study
  publication-title: Foot Ankle
– volume: 65
  start-page: 502
  year: 2017
  end-page: 512
  ident: b0130
  article-title: Determination of the in situ mechanical behavior of ankle ligaments
  publication-title: J. Mech. Behav. Biomed. Mater.
– start-page: 1
  year: 2014
  end-page: 10
  ident: b0250
  article-title: Effects of degree of surgical correction for flatfoot deformity in patient-specific computational models
  publication-title: Ann. Biomed. Eng.
– volume: 53
  start-page: 97
  year: 2017
  end-page: 104
  ident: b0010
  article-title: Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint”
  publication-title: J. Biomech.
– volume: 38
  start-page: 2118
  year: 2005
  end-page: 2123
  ident: b0040
  article-title: Mechanics of the anterior drawer test at the ankle: the effects of ligament viscoelasticity
  publication-title: J. Biomech.
– start-page: 17
  year: 1993
  end-page: 26
  ident: b0190
  article-title: Biomechanics of the subtalar joint complex
  publication-title: Clin. Orthop. Relat. Res.
– volume: 98
  start-page: 842
  year: 2016
  end-page: 848
  ident: b9000
  article-title: Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model
  publication-title: J. Bone Joint Surg. Am.
– volume: 19
  start-page: 377
  year: 1992
  end-page: 392
  ident: b0300
  article-title: Ankle injuries in athletes
  publication-title: Prime Care
– volume: 29
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0220
  article-title: New observations on the morphology of the talar dome and its relationship to ankle kinematics
  publication-title: J. Clin. Biomech.
– volume: 21
  start-page: 336
  year: 2000
  end-page: 342
  ident: b0240
  article-title: The mobility of the proximal tibio-fibular joint. A Roentgen Stereophotogrammetric Analysis on six cadaver specimens
  publication-title: Foot Ankle Int.
– volume: 28
  start-page: 112
  year: 1994
  end-page: 116
  ident: b0305
  article-title: An epidemiological survey on ankle sprains
  publication-title: Br. J. Sports Med.
– volume: 43
  start-page: 1718
  year: 2000
  end-page: 1725
  ident: b0005
  article-title: Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle?
  publication-title: Ergonomics
– volume: 9
  start-page: 59
  year: 1988
  end-page: 63
  ident: b0180
  article-title: Strain in the lateral ligaments of the ankle
  publication-title: Foot Ankle
– volume: 38
  start-page: 1045
  year: 2005
  end-page: 1054
  ident: b0035
  article-title: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study
  publication-title: J. Biomech.
– volume: 21
  start-page: 602
  year: 2000
  end-page: 615
  ident: b0110
  article-title: The role of the passive structures in the mobility and stability of the human ankle joint: a literature review
  publication-title: Foot Ankle Int.
– volume: 225
  start-page: 725
  year: 2011
  end-page: 735
  ident: b0185
  article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 39
  start-page: 756
  year: 2011
  end-page: 765
  ident: b0290
  article-title: Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 363
  year: 2003
  end-page: 372
  ident: b0045
  article-title: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint
  publication-title: J. Biomech.
– volume: 92
  start-page: 616
  year: 1958
  end-page: 620
  ident: b0235
  article-title: The ligamentous structures in the canalis and sinus tarsi
  publication-title: J. Anat.
– volume: 12
  start-page: 421
  year: 1994
  end-page: 431
  ident: b0230
  article-title: Technique for in vivo measurement of the three-dimensional kinematics and laxity characteristics of the ankle joint complex
  publication-title: J. Orthop. Res.
– volume: 68
  start-page: 442
  year: 1997
  end-page: 446
  ident: b0100
  article-title: Subtalar joint stability. Talocalcaneal interosseous ligament function studied in cadaver specimens
  publication-title: Acta Orthop. Scand.
– volume: 41
  start-page: 1341
  year: 2008
  end-page: 1349
  ident: b0080
  article-title: Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties
  publication-title: J. Biomech.
– volume: 23
  start-page: 825
  year: 2002
  end-page: 832
  ident: b0145
  article-title: Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle
  publication-title: Foot Ankle Int.
– volume: 122
  start-page: 630
  year: 2000
  end-page: 639
  ident: b0070
  article-title: Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications
  publication-title: J. Biomech. Eng.
– volume: 2
  start-page: 212
  year: 2011
  end-page: 232
  ident: b0195
  article-title: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange
  publication-title: Procedia IUTAM
– volume: 131
  start-page: 363
  year: 1993
  end-page: 369
  ident: b0015
  article-title: ligament kinematics of the ankle joint. An experimental study
  publication-title: Z. Orthop. Ihre Grenzgeb.
– year: 2011
  ident: b0085
  article-title: Sarrafian's Anatomy of the Foot and Ankle
– volume: 7
  start-page: 41
  year: 1983
  end-page: 48
  ident: b0165
  article-title: An analysis of the function of the posterior talofibular ligament
  publication-title: Int. Orthop.
– volume: 110
  start-page: 364
  year: 1988
  end-page: 373
  ident: b0210
  article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–Part I: Kinematics
  publication-title: J. Biomech. Eng.
– start-page: 12
  year: 2019
  end-page: 16
  ident: b0115
  article-title: Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement – an in vitro study
  publication-title: J. Foot Ankle Res.
– volume: 18
  start-page: 243
  year: 2015
  end-page: 248
  ident: b0295
  article-title: Estimation of ligament strains and joint moments in the ankle during a supination sprain injury
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 92
  start-page: 2279
  year: 2010
  end-page: 2284
  ident: b0280
  article-title: The epidemiology of ankle sprains in the United States
  publication-title: J. Bone Joint Surg. Am.
– volume: 38
  start-page: 2118
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109421_b0040
  article-title: Mechanics of the anterior drawer test at the ankle: the effects of ligament viscoelasticity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.09.031
– volume: 92
  start-page: 2279
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109421_b0280
  article-title: The epidemiology of ankle sprains in the United States
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.I.01537
– volume: 211
  start-page: 1
  year: 1985
  ident: 10.1016/j.jbiomech.2019.109421_b0160
  article-title: Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments
  publication-title: Acta Orthop. Scand. Suppl.
  doi: 10.3109/17453678509154152
– volume: 2
  start-page: 212
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109421_b0195
  article-title: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2011.04.021
– volume: 6
  start-page: 387
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109421_b0270
  article-title: An in vivo experimental validation of a computational model of human foot
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(08)60138-9
– volume: 39
  start-page: 756
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109421_b0290
  article-title: Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0234-9
– volume: 110
  start-page: 364
  year: 1988
  ident: 10.1016/j.jbiomech.2019.109421_b0210
  article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–Part I: Kinematics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3108455
– volume: 28
  start-page: 112
  year: 1994
  ident: 10.1016/j.jbiomech.2019.109421_b0305
  article-title: An epidemiological survey on ankle sprains
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsm.28.2.112
– volume: 41
  start-page: 1341
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109421_b0080
  article-title: Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.12.017
– volume: 122
  start-page: 630
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109421_b0070
  article-title: Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1318904
– volume: 76
  start-page: 204
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109421_b0225
  article-title: Analysis of surface-to-surface distance mapping during three-dimensional motion at the ankle and subtalar joints
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.05.026
– volume: 38
  start-page: 1045
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109421_b0035
  article-title: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.035
– volume: 2
  start-page: 54
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109421_b0065
  article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2014.00054
– volume: 233
  start-page: 1
  year: 1989
  ident: 10.1016/j.jbiomech.2019.109421_b0125
  article-title: Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry
  publication-title: Acta Orthop. Scand. Suppl.
  doi: 10.3109/17453678909154185
– volume: 31
  start-page: 1861
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109421_b0245
  article-title: Validation of a population of patient-specific adult acquired flatfoot deformity models: validation of patient-specific flatfoot models
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22471
– volume: 7
  start-page: 355
  year: 1987
  ident: 10.1016/j.jbiomech.2019.109421_b0095
  article-title: Lateral talocalcaneal instability following section of the calcaneofibular ligament: a kinesiologic study
  publication-title: Foot Ankle
  doi: 10.1177/107110078700700612
– volume: 53
  start-page: 155
  year: 1982
  ident: 10.1016/j.jbiomech.2019.109421_b0170
  article-title: Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453678208992194
– volume: 53
  start-page: 97
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109421_b0010
  article-title: Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint”
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.002
– volume: 153
  start-page: 1
  year: 1965
  ident: 10.1016/j.jbiomech.2019.109421_b0020
  article-title: The anatomy and function of the contents of the human tarsal sinus and canal
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1091530102
– volume: 132
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109421_b0075
  article-title: Computational model of the lower leg and foot/ankle complex: application to arch stability
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4000939
– volume: 122
  start-page: 15
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109421_b0060
  article-title: Linear and quasi-linear viscoelastic characterization of ankle ligaments
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.429623
– volume: 36
  start-page: 363
  year: 2003
  ident: 10.1016/j.jbiomech.2019.109421_b0045
  article-title: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00425-6
– volume: 42
  start-page: 1403
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109421_b0055
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.04.024
– volume: 21
  start-page: 336
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109421_b0240
  article-title: The mobility of the proximal tibio-fibular joint. A Roentgen Stereophotogrammetric Analysis on six cadaver specimens
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070002100411
– volume: 39
  start-page: 1435
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109421_b0175
  article-title: Finite element analysis of a total ankle replacement during the stance phase of gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.010
– year: 2011
  ident: 10.1016/j.jbiomech.2019.109421_b0085
– volume: 68
  start-page: 442
  year: 1997
  ident: 10.1016/j.jbiomech.2019.109421_b0100
  article-title: Subtalar joint stability. Talocalcaneal interosseous ligament function studied in cadaver specimens
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453679708996259
– start-page: 4
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109421_b0050
  article-title: Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex
  publication-title: J. Orthopaedic Surg. Res.
– volume: 92
  start-page: 616
  year: 1958
  ident: 10.1016/j.jbiomech.2019.109421_b0235
  article-title: The ligamentous structures in the canalis and sinus tarsi
  publication-title: J. Anat.
– volume: 8
  start-page: 234
  year: 1988
  ident: 10.1016/j.jbiomech.2019.109421_b0205
  article-title: The mechanical characteristics of the collateral ligaments of the human ankle joint
  publication-title: Foot Ankle
  doi: 10.1177/107110078800800502
– volume: 5
  start-page: 142
  year: 1984
  ident: 10.1016/j.jbiomech.2019.109421_b0025
  article-title: Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments
  publication-title: Foot Ankle
  doi: 10.1177/107110078400500307
– volume: 13
  start-page: 295
  year: 1985
  ident: 10.1016/j.jbiomech.2019.109421_b0265
  article-title: Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354658501300502
– start-page: 17
  year: 1993
  ident: 10.1016/j.jbiomech.2019.109421_b0190
  article-title: Biomechanics of the subtalar joint complex
  publication-title: Clin. Orthop. Relat. Res.
– volume: 112
  start-page: 129
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109421_b0215
  article-title: The effect of damage to the lateral collateral ligaments on the mechanical characteristics of the ankle joint–an in-vitro study
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2891163
– volume: 44
  start-page: 2636
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109421_b0285
  article-title: Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.08.010
– volume: 18
  start-page: 243
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109421_b0295
  article-title: Estimation of ligament strains and joint moments in the ankle during a supination sprain injury
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.792809
– start-page: 12
  year: 2019
  ident: 10.1016/j.jbiomech.2019.109421_b0115
  article-title: Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement – an in vitro study
  publication-title: J. Foot Ankle Res.
– volume: 16
  start-page: 512
  year: 1988
  ident: 10.1016/j.jbiomech.2019.109421_b0090
  article-title: The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354658801600514
– volume: 9
  start-page: 59
  year: 1988
  ident: 10.1016/j.jbiomech.2019.109421_b0180
  article-title: Strain in the lateral ligaments of the ankle
  publication-title: Foot Ankle
  doi: 10.1177/107110078800900201
– volume: 43
  start-page: 1718
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109421_b0005
  article-title: Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle?
  publication-title: Ergonomics
  doi: 10.1080/001401300750004122
– volume: 27
  start-page: 965
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109421_b0140
  article-title: Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070602701117
– volume: 4
  start-page: 73
  year: 1983
  ident: 10.1016/j.jbiomech.2019.109421_b0155
  article-title: Functional anatomy of the medial collateral ligament of the ankle joint
  publication-title: Foot Ankle
  doi: 10.1177/107110078300400206
– volume: 65
  start-page: 502
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109421_b0130
  article-title: Determination of the in situ mechanical behavior of ankle ligaments
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.09.010
– volume: 50
  start-page: 225
  year: 1979
  ident: 10.1016/j.jbiomech.2019.109421_b0150
  article-title: Anatomical basis of variability in injuries of the medial malleolus and the deltoid ligament. II. Clinical studies
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453677908989760
– volume: 131
  start-page: 363
  year: 1993
  ident: 10.1016/j.jbiomech.2019.109421_b0015
  article-title: ligament kinematics of the ankle joint. An experimental study
  publication-title: Z. Orthop. Ihre Grenzgeb.
  doi: 10.1055/s-2008-1040041
– volume: 40
  start-page: 2519
  year: 2012
  ident: 10.1016/j.jbiomech.2019.109421_b0200
  article-title: A finite element model of the foot and ankle for automotive impact applications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0607-3
– volume: 12
  start-page: 92
  year: 1991
  ident: 10.1016/j.jbiomech.2019.109421_b0030
  article-title: Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns
  publication-title: Foot Ankle
  doi: 10.1177/107110079101200206
– volume: 32
  start-page: 111
  year: 1999
  ident: 10.1016/j.jbiomech.2019.109421_b0105
  article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00157-2
– volume: 24
  start-page: 402
  year: 2003
  ident: 10.1016/j.jbiomech.2019.109421_b0255
  article-title: Role of passive structures in the mobility and stability of the human subtalar joint: a literature review
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070302400505
– volume: 225
  start-page: 725
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109421_b0185
  article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411911406951
– volume: 129
  start-page: 811
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109421_b0120
  article-title: Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2800763
– volume: 44
  start-page: 213
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109421_b0275
  article-title: Computational models of the foot and ankle for pathomechanics and clinical applications: a review
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1359-7
– volume: 21
  start-page: 602
  year: 2000
  ident: 10.1016/j.jbiomech.2019.109421_b0110
  article-title: The role of the passive structures in the mobility and stability of the human ankle joint: a literature review
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070002100715
– volume: 13
  start-page: 130
  year: 1992
  ident: 10.1016/j.jbiomech.2019.109421_b0260
  article-title: The stabilizing role of the lateral ligament complex around the ankle and subtalar joints
  publication-title: Foot Ankle
  doi: 10.1177/107110079201300304
– volume: 29
  start-page: 1
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109421_b0220
  article-title: New observations on the morphology of the talar dome and its relationship to ankle kinematics
  publication-title: J. Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2013.10.009
– start-page: 1
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109421_b0250
  article-title: Effects of degree of surgical correction for flatfoot deformity in patient-specific computational models
  publication-title: Ann. Biomed. Eng.
– volume: 12
  start-page: 421
  year: 1994
  ident: 10.1016/j.jbiomech.2019.109421_b0230
  article-title: Technique for in vivo measurement of the three-dimensional kinematics and laxity characteristics of the ankle joint complex
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100120315
– volume: 98
  start-page: 842
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109421_b9000
  article-title: Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.15.00948
– volume: 7
  start-page: 41
  year: 1983
  ident: 10.1016/j.jbiomech.2019.109421_b0165
  article-title: An analysis of the function of the posterior talofibular ligament
  publication-title: Int. Orthop.
  doi: 10.1007/BF00267558
– volume: 23
  start-page: 825
  year: 2002
  ident: 10.1016/j.jbiomech.2019.109421_b0145
  article-title: Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070202300909
– volume: 19
  start-page: 377
  year: 1992
  ident: 10.1016/j.jbiomech.2019.109421_b0300
  article-title: Ankle injuries in athletes
  publication-title: Prime Care
  doi: 10.1016/S0095-4543(21)00142-1
SSID ssj0007479
Score 2.3785295
Snippet Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109421
SubjectTerms Ankle
Ankle and subtalar ligaments
Bones
Calcaneus
Cartilage
Cartilage (articular)
Computer applications
Computer simulation
Dynamic ankle models
Dynamic models
Fibula
Kinematics
Legs
Ligament stabilization
Ligaments
Mathematical models
Mechanical properties
Morphology
Rotation
Sectioning
Software
Subject specific
Three dimensional models
Tibia
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA_ioeihtGtrt7USQbzFncnXzBxFFCnYUwVvIckksovOyrpbaKH92_teJrO1B1HoZWBm8maSvOS9X5L3Qcghj1URysazWofIpPOKWVgVMO8cPAYFz2t0Tr78qi-u5Jdrdb1BTgdfGDSrzLK_l-lJWucnk9ybk_vpFH18YbbhMWADsFfXKIelrHCUH__-a-YBcDmbeZQMSz_yEp4dz5KPezqUKBuMrCR5-ZSCegqAJkV0_oa8zgiSnvSVfEs2QjciOycdrJ7vftAjmmw602b5iGw_Cjc4Iq8u80H6Dvl1BlMbwWp3QwECUsCIaCX7E-9R1SG76DxSzOge4NrSh5UDnG4X9HZ6Y5NfHP0-tdTSuzmwKv2Podsmmh7BJxchsBYzB_RRP2jbZ76nKfPOO3J1fvbt9ILlTAzMS1UumRUSYIXlrfJB8gCgBVBFK32jrC3rNnLROIBmMUhXCFcCyBDRa2A1rO7ahkfxnmx28y58ILTWFqhBd_KiltEX1upWWu2EU8LKqMdEDd1vfA5Tjtkybs1gjzYzA9sMss30bBuTyZruvg_U8SxFNXDXDG6oIDgN6JJnKZs15T-D9UW0e8NAMllcPBjoO-gpXjXQ_IP1a5joeHpjuzBfYRmgr4QsxJjs9gNw3VBRaiVUoT_-R8U-kS2Oewm4vcT3yOZysQqfAXAt3X6aUX8AmmspXg
  priority: 102
  providerName: Elsevier
Title Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306682
https://dx.doi.org/10.1016/j.jbiomech.2019.109421
https://www.ncbi.nlm.nih.gov/pubmed/31653506
https://www.proquest.com/docview/2329242796
https://www.proquest.com/docview/2309473403
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RVkJwQLDlsVBWRkLc3Ca24yQntKCtFlBXCFFpb5HjOFVXbVL2gQQS_HZmHGfppZRLojwmUfLZns_jeQC8FnUauTi3PNOu5qq0CTc4K-C2LPE0KniRUXDyyUxPT9XHeTIPBrdVcKvsx0Q_UFetJRv5EWp-nCqINNdvr75xqhpFq6uhhMYO7FHqMnLpSufbCRflhg8uHjFHGhBdixBeHC58fLtfkIhzyqqkRHyTcrqJfHoldPwQHgT2yMYd3I_gjmsGsD9ucOZ8-YO9Yd6f0xvKB3D_WqrBAdw9CYvo-_Brgt2aiGpzxpD-MeSH5CH7k45JzRFUrK0ZVXN3uK3YalMiRzdLdnF-ZnxMHPt-bphhly3C5N_HKWST3I7wkUvneEVVA7qMH6zqqt4zX3XnMZweT76-n_JQhYFblcRrbqRCSmFElVinhEPCgoyiUjZPjImzqhYyLxGc2qkykiXCEMnaaoQZ4apyUcsnsNu0jXsGLNMGpVFviihTtY2M0ZUyupRlIo2q9RCS_vcXNqQop0oZF0Xvi7YoetgKgq3oYBvC0VbuqkvScatE2qNb9CGoOGgWqEdulcy3koGkdOTjv2QP-oZUhKFiVfxt2EN4tb2MnZxWbkzj2g3dg_KpVJEcwtOuAW4_VMY6kUmkn__74S_gniBTAVmPxAHsrpcb9xL51Locwc7h73jku84I9sYfPk1nuH83mX3-8gesZiM9
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJDyCBRYJOC21N5dO_YBoQKpUtpECLVSb-7uel01auySByhI_CV-IzN-0Uspl14iJc7s2p7Z-WZ25wHwSmR9z_mx5VHoMq6MDbhGr4BbY_BnBHgRUXLyaBwOD9Xno-BoDX43uTAUVtnoxFJRp4WlPfItRH50FUQ_Dt-ff-PUNYpOV5sWGpVY7LnVD3TZ5u92PyF_XwuxMzj4OOR1VwFuVeAvuJYKIVKLNLBOCYcAjAiZKhsHWvtRmgkZG5wsc8p40vgImDKzId42Tp_GIpM47g1YVxJdmQ6sfxiMv3xtdT8a53VQic_R8PAu5CRP3k7KjPryCMSPqY6TEv5lcHiZuVvC3s49uFvbq2y7ErD7sObyLmxs5-irT1fsDSsjSMut-S7cuVDcsAs3R_Wx_Qb8GqAiIdM4P2FocDK0SCkm9yd9J2Al4WBFxqh_vMPPlM2XBr0CPWNnpye6zMJj308102xaoGCU83FKEqVAJxxy5hxPqU9BVWOEpatcT_FK2efnARxeC4ceQicvcvcYWBRqpEakFl6kMutpHaZKh0aaQGqVhT0Imtef2LooOvXmOEua6LdJ0rAtIbYlFdt6sNXSnVdlQa6k6DfcTZqkV1TTCSLXlZRxS1mbRZW581-0m40gJbVymid_l1IPXraXUa3QWZHOXbGk_yB9XypP9uBRJYDtg0o_DGTghU_-PfgLuDU8GO0n-7vjvadwW9BGBe1diU3oLGZL9wytuYV5Xi8hBsfXvWr_ALSgW84
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJBCCRQwEnAz2bW9rwNCFW3UUlpxoFJuxvZ6q0bNbskDFCT-GL-OmX2EXkq59BIp2Yw3m3l8M_Y8AF6JIgl8mDmexr7gyrqIG4wKuLMWP0aAFykVJx8dx_sn6uMoGq3B764WhtIqO5tYG-q8crRHPkDkx1BBJFk8KNq0iM-7w_cX3zhNkKKT1m6cRiMih375A8O32buDXeT1ayGGe18-7PN2wgB3Kgrn3EiFcGlEHjmvhEcwRrTMlcsiY8I0L4TMLN648MoG0oYInrJwMT4C_pQ8E4XEdW_B7URGIelYMloFe9SXvk0vCTm6IMGl6uTx23FdW18fhoQZdXRSIrwKGK9yfGsAHN6He63nynYaUXsAa77sweZOiVH7ZMnesDqXtN6k78HdS20Oe7Bx1B7gb8KvPTQp5CSXpwxdT4a-KWXn_qT3BLEkJqwqGE2S9_ias9nCYnxgpuz87NTU9Xjs-5lhhk0qFJH6fpzKRSnlCZeces9zmljQdBth-bI0E7xST_x5CCc3wp9HsF5WpX8MLI0NUiNmiyBVhQuMiXNlYittJI0q4j5E3d-vXdsenaZ0nOsuD26sO7ZpYptu2NaHwYruomkQci1F0nFXd-WvaLA1Yti1lNmKsnWQGsfnv2i3O0HSrZma6b9K1YeXq8toYOjUyJS-WtB3kD6RKpB92GoEcPWgMowjGQXxk38v_gI2UFf1p4Pjw6dwR9COBW1iiW1Yn08X_hm6dXP7vNYfBl9vWmH_AA8DXp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+stabilizing+function+of+ankle+and+subtalar+ligaments+via+a+morphology-specific+three-dimensional+dynamic+model&rft.jtitle=Journal+of+biomechanics&rft.au=Palazzi%2C+Emanuele&rft.au=Siegler%2C+Sorin&rft.au=Balakrishnan%2C+Vishnuvardhan&rft.au=Leardini%2C+Alberto&rft.date=2020-01-02&rft.issn=0021-9290&rft.volume=98&rft.spage=109421&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109421&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2019_109421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon