Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model
Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the...
Saved in:
Published in | Journal of biomechanics Vol. 98; p. 109421 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
02.01.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models.
Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified.
On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation.
The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model. |
---|---|
AbstractList | Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models.Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified.On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation.The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model. Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ – a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one “representative” model. Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ - a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one "representative" model.Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ - a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one "representative" model. |
ArticleNumber | 109421 |
Author | Palazzi, Emanuele Siegler, Sorin Caravaggi, Paolo Belvedere, Claudio Balakrishnan, Vishnuvardhan Leardini, Alberto |
Author_xml | – sequence: 1 givenname: Emanuele surname: Palazzi fullname: Palazzi, Emanuele organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy – sequence: 2 givenname: Sorin orcidid: 0000-0002-7312-5774 surname: Siegler fullname: Siegler, Sorin email: sieglers@drexel.edu organization: Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA – sequence: 3 givenname: Vishnuvardhan surname: Balakrishnan fullname: Balakrishnan, Vishnuvardhan organization: Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA – sequence: 4 givenname: Alberto surname: Leardini fullname: Leardini, Alberto organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy – sequence: 5 givenname: Paolo orcidid: 0000-0002-8994-8062 surname: Caravaggi fullname: Caravaggi, Paolo organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy – sequence: 6 givenname: Claudio orcidid: 0000-0003-4258-2267 surname: Belvedere fullname: Belvedere, Claudio organization: Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31653506$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctqGzEYhUVJaZy0rxAE3XQzri5zsaCUlpBeINBNuxYa6R9bE43kSpqAC333anC88Sbd6PqdI3HOFbrwwQNCN5SsKaHt-3E99jZMoHdrRqgoh6Jm9AVa0U3HK8Y35AKtCGG0EkyQS3SV0kgI6epOvEKXnLYNb0i7Qn_vUraTytZvcd4BTln11tk_y36Yvc42eBwGrPyDgzIanOY-K6cidnarJvA54UersMJTiPtdcGF7qNIetB2sLpYRoDK2cKk4KYfNwaup3EzBgHuNXg7KJXjzNF-jX1_uft5-q-5_fP1--_m-0nVDc6V4LShRzDQaagbNpmaMm1qLRim6MQPjomecDVD3hPeUCsIH3YqyYLURbODX6N3Rdx_D7xlSlpNNGpxTHsKcJOMlvo7XhBf07Rk6hjmWny8UK4asE22hbp6ouZ_AyH0sIcaDPAVbgA9HQMeQUoRBapvVkmaOyjpJiVx6lKM89SiXHuWxxyJvz-SnF54VfjoKocT5aCHKpC14DcZG0FmaYJ-3-HhmoZ31Viv3AIf_MfgH75TRCA |
CitedBy_id | crossref_primary_10_1186_s13018_025_05478_9 crossref_primary_10_1016_j_clinbiomech_2023_106006 crossref_primary_10_1097_CORR_0000000000002991 crossref_primary_10_3390_app12105087 crossref_primary_10_1002_jor_25652 crossref_primary_10_1016_j_cmpb_2022_106701 crossref_primary_10_1016_j_jbiomech_2024_112373 crossref_primary_10_3389_feart_2022_786247 crossref_primary_10_1016_j_clinbiomech_2021_105489 |
Cites_doi | 10.1016/j.jbiomech.2004.09.031 10.2106/JBJS.I.01537 10.3109/17453678509154152 10.1016/j.piutam.2011.04.021 10.1016/S1672-6529(08)60138-9 10.1007/s10439-010-0234-9 10.1115/1.3108455 10.1136/bjsm.28.2.112 10.1016/j.jbiomech.2007.12.017 10.1115/1.1318904 10.1016/j.jbiomech.2018.05.026 10.1016/j.jbiomech.2004.05.035 10.3389/fbioe.2014.00054 10.3109/17453678909154185 10.1002/jor.22471 10.1177/107110078700700612 10.3109/17453678208992194 10.1016/j.jbiomech.2017.01.002 10.1002/ar.1091530102 10.1115/1.4000939 10.1115/1.429623 10.1016/S0021-9290(02)00425-6 10.1016/j.jbiomech.2009.04.024 10.1177/107110070002100411 10.1016/j.jbiomech.2005.04.010 10.3109/17453679708996259 10.1177/107110078800800502 10.1177/107110078400500307 10.1177/036354658501300502 10.1115/1.2891163 10.1016/j.jbiomech.2011.08.010 10.1080/10255842.2013.792809 10.1177/036354658801600514 10.1177/107110078800900201 10.1080/001401300750004122 10.1177/107110070602701117 10.1177/107110078300400206 10.1016/j.jmbbm.2016.09.010 10.3109/17453677908989760 10.1055/s-2008-1040041 10.1007/s10439-012-0607-3 10.1177/107110079101200206 10.1016/S0021-9290(98)00157-2 10.1177/107110070302400505 10.1177/0954411911406951 10.1115/1.2800763 10.1007/s10439-015-1359-7 10.1177/107110070002100715 10.1177/107110079201300304 10.1016/j.clinbiomech.2013.10.009 10.1002/jor.1100120315 10.2106/JBJS.15.00948 10.1007/BF00267558 10.1177/107110070202300909 10.1016/S0095-4543(21)00142-1 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2019.109421 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 31653506 10_1016_j_jbiomech_2019_109421 S0021929019306682 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-a34910a2d5ce42e584223d4c95aa18df239b232fe4b03b11903fc6911924d92f3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Mon Jul 21 11:13:43 EDT 2025 Wed Aug 13 09:23:51 EDT 2025 Wed Feb 19 02:32:16 EST 2025 Tue Jul 01 00:44:15 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Fri Feb 23 02:47:00 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ligament stabilization Subject specific Dynamic ankle models Ankle and subtalar ligaments |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-a34910a2d5ce42e584223d4c95aa18df239b232fe4b03b11903fc6911924d92f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7312-5774 0000-0002-8994-8062 0000-0003-4258-2267 |
PMID | 31653506 |
PQID | 2329242796 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2309473403 proquest_journals_2329242796 pubmed_primary_31653506 crossref_citationtrail_10_1016_j_jbiomech_2019_109421 crossref_primary_10_1016_j_jbiomech_2019_109421 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109421 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Sancisi, Zannoli, Parenti-Castelli, Belvedere, Leardini (b0185) 2011; 225 Stagni, Leardini, O'Connor, Giannini (b0255) 2003; 24 Leardini, O'Connor, Catani, Giannini (b0105) 1999; 32 Wilkerson (b0300) 1992; 19 Pankovich, Shivaram (b0150) 1979; 50 Renstrom, Wertz, Incavo, Pope, Ostgaard, Arms, Haugh (b0180) 1988; 9 Quiles, Requena, Gomez, Garcia-Sancho (b0155) 1983; 4 Funk, Hall, Crandall, Pilkey (b0060) 2000; 122 Barbaix, Van Roy, Clarys (b0005) 2000; 43 Siegler, Chen, Schneck (b0215) 1990; 112 Spratley, Matheis, Hayes, Adelaar, Wayne (b0245) 2013; 31 Rasmussen, Jensen, Hedeboe (b0165) 1983; 7 Cawley, France (b0030) 1991; 12 Knudson, Kitaoka, Lu, Luo, An (b0100) 1997; 68 Liacouras, Wayne (b0120) 2007; 129 Kjaersgaard-Andersen, Wethelund, Helmig, Soballe (b0090) 1988; 16 Smith (b0235) 1958; 92 Corazza, Leardini, O'Connor, Parenti Castelli (b0040) 2005; 38 Imhauser, Siegler, Udupa, Toy (b0080) 2008; 41 Wei, Fong, Chan, Haut (b0295) 2015; 18 Yeung, Chan, So, Yuan (b0305) 1994; 28 Bruns, Rehder (b0015) 1993; 131 Galbusera, Freutel, Durselen, D'Aiuto, Croce, Villa, Sansone, Innocenti (b0065) 2014; 2 Wei, Braman, Weaver, Haut (b0285) 2011; 44 Kjaersgaard-Andersen, Wethelund, Nielsen (b0095) 1987; 7 Gefen, Megido-Ravid, Itzchak, Arcan (b0070) 2000; 122 Ozeki, Kitaoka, Uchiyama, Luo, Kaufman, An (b0140) 2006; 27 Wang, Wong, Zhang (b0275) 2016; 44 Wei, Hunley, Powell, Haut (b0290) 2011; 39 Lundberg (b0125) 1989; 233 Nie, Panzer, Mane, Mait, Donlon, Forman, Kent (b0130) 2017; 65 Li, Gollhofer, Lohrer, Dorn-Lange, Bonsignore, Gehring (b0115) 2019 Soavi, Girolami, Loreti, Bragonzoni, Monti, Visani, Marcacci (b0240) 2000; 21 Rasmussen, Tovborg-Jensen (b0170) 1982; 53 Corazza, O'Connor, Leardini, Parenti Castelli (b0045) 2003; 36 Leardini, O'Connor, Catani, Giannini (b0110) 2000; 21 Rasmussen (b0160) 1985; 211 Reggiani, Leardini, Corazza, Taylor (b0175) 2006; 39 Ozeki, Yasuda, Kaneda, Yamakoshi, Yamanoi (b0145) 2002; 23 Stephens, Sammarco (b0260) 1992; 13 Cahill (b0020) 1965; 153 Seth, Sherman, Reinbolt, Delp (b0195) 2011; 2 Tao, Wang, Wang, Wang, Liu, Nester, Howard (b0270) 2009; 6 Cass, Morrey, Chao (b0025) 1984; 5 Iaquinto, Wayne (b0075) 2010; 132 Cheung, Zhang, Leung, Fan (b0035) 2005; 38 Pellegrini, Glisson, Wurm, Ousema, Romash, Nunley, Easley (b9000) 2016; 98 Siegler, Toy, Damani, Pedowitz (b0220) 2014; 29 Siegler, Wang, Plasha, Berman (b0230) 1994; 12 Spratley, Matheis, Hayes, Adelaar, Wayne (b0250) 2014 Siegler, Block, Schneck (b0205) 1988; 8 Sarrafian (b0190) 1993 Siegler, Konow, Belvedere, Ensini, Kulkarni, Leardini (b0225) 2018; 76 Stormont, Morrey, An, Cass (b0265) 1985; 13 de Asla, Kozánek, Wan, Rubash, Li (b0050) 2009 Waterman, Owens, Davey, Zacchilli, Belmont (b0280) 2010; 92 Kelikian, Sarrafian (b0085) 2011 Shin, Yue, Untaroiu (b0200) 2012; 40 Belvedere, Siegler, Ensini, Toy, Caravaggi, Namani, Giannini, Durante, Leardini (b0010) 2017; 53 Franci, Parenti-Castelli, Belvedere, Leardini (b0055) 2009; 42 Siegler, Chen, Schneck (b0210) 1988; 110 Bruns (10.1016/j.jbiomech.2019.109421_b0015) 1993; 131 Siegler (10.1016/j.jbiomech.2019.109421_b0205) 1988; 8 Pellegrini (10.1016/j.jbiomech.2019.109421_b9000) 2016; 98 Smith (10.1016/j.jbiomech.2019.109421_b0235) 1958; 92 Sancisi (10.1016/j.jbiomech.2019.109421_b0185) 2011; 225 Wei (10.1016/j.jbiomech.2019.109421_b0285) 2011; 44 Kelikian (10.1016/j.jbiomech.2019.109421_b0085) 2011 Stormont (10.1016/j.jbiomech.2019.109421_b0265) 1985; 13 Quiles (10.1016/j.jbiomech.2019.109421_b0155) 1983; 4 Knudson (10.1016/j.jbiomech.2019.109421_b0100) 1997; 68 Siegler (10.1016/j.jbiomech.2019.109421_b0225) 2018; 76 Cheung (10.1016/j.jbiomech.2019.109421_b0035) 2005; 38 Li (10.1016/j.jbiomech.2019.109421_b0115) 2019 Stephens (10.1016/j.jbiomech.2019.109421_b0260) 1992; 13 Wang (10.1016/j.jbiomech.2019.109421_b0275) 2016; 44 Nie (10.1016/j.jbiomech.2019.109421_b0130) 2017; 65 Cass (10.1016/j.jbiomech.2019.109421_b0025) 1984; 5 Spratley (10.1016/j.jbiomech.2019.109421_b0250) 2014 de Asla (10.1016/j.jbiomech.2019.109421_b0050) 2009 Ozeki (10.1016/j.jbiomech.2019.109421_b0140) 2006; 27 Ozeki (10.1016/j.jbiomech.2019.109421_b0145) 2002; 23 Rasmussen (10.1016/j.jbiomech.2019.109421_b0170) 1982; 53 Cawley (10.1016/j.jbiomech.2019.109421_b0030) 1991; 12 Reggiani (10.1016/j.jbiomech.2019.109421_b0175) 2006; 39 Imhauser (10.1016/j.jbiomech.2019.109421_b0080) 2008; 41 Tao (10.1016/j.jbiomech.2019.109421_b0270) 2009; 6 Kjaersgaard-Andersen (10.1016/j.jbiomech.2019.109421_b0095) 1987; 7 Seth (10.1016/j.jbiomech.2019.109421_b0195) 2011; 2 Wei (10.1016/j.jbiomech.2019.109421_b0295) 2015; 18 Siegler (10.1016/j.jbiomech.2019.109421_b0215) 1990; 112 Siegler (10.1016/j.jbiomech.2019.109421_b0230) 1994; 12 Siegler (10.1016/j.jbiomech.2019.109421_b0210) 1988; 110 Yeung (10.1016/j.jbiomech.2019.109421_b0305) 1994; 28 Corazza (10.1016/j.jbiomech.2019.109421_b0040) 2005; 38 Belvedere (10.1016/j.jbiomech.2019.109421_b0010) 2017; 53 Barbaix (10.1016/j.jbiomech.2019.109421_b0005) 2000; 43 Franci (10.1016/j.jbiomech.2019.109421_b0055) 2009; 42 Cahill (10.1016/j.jbiomech.2019.109421_b0020) 1965; 153 Corazza (10.1016/j.jbiomech.2019.109421_b0045) 2003; 36 Lundberg (10.1016/j.jbiomech.2019.109421_b0125) 1989; 233 Gefen (10.1016/j.jbiomech.2019.109421_b0070) 2000; 122 Kjaersgaard-Andersen (10.1016/j.jbiomech.2019.109421_b0090) 1988; 16 Rasmussen (10.1016/j.jbiomech.2019.109421_b0165) 1983; 7 Liacouras (10.1016/j.jbiomech.2019.109421_b0120) 2007; 129 Waterman (10.1016/j.jbiomech.2019.109421_b0280) 2010; 92 Leardini (10.1016/j.jbiomech.2019.109421_b0105) 1999; 32 Leardini (10.1016/j.jbiomech.2019.109421_b0110) 2000; 21 Iaquinto (10.1016/j.jbiomech.2019.109421_b0075) 2010; 132 Siegler (10.1016/j.jbiomech.2019.109421_b0220) 2014; 29 Galbusera (10.1016/j.jbiomech.2019.109421_b0065) 2014; 2 Wilkerson (10.1016/j.jbiomech.2019.109421_b0300) 1992; 19 Stagni (10.1016/j.jbiomech.2019.109421_b0255) 2003; 24 Soavi (10.1016/j.jbiomech.2019.109421_b0240) 2000; 21 Rasmussen (10.1016/j.jbiomech.2019.109421_b0160) 1985; 211 Pankovich (10.1016/j.jbiomech.2019.109421_b0150) 1979; 50 Spratley (10.1016/j.jbiomech.2019.109421_b0245) 2013; 31 Renstrom (10.1016/j.jbiomech.2019.109421_b0180) 1988; 9 Shin (10.1016/j.jbiomech.2019.109421_b0200) 2012; 40 Wei (10.1016/j.jbiomech.2019.109421_b0290) 2011; 39 Sarrafian (10.1016/j.jbiomech.2019.109421_b0190) 1993 Funk (10.1016/j.jbiomech.2019.109421_b0060) 2000; 122 |
References_xml | – volume: 40 start-page: 2519 year: 2012 end-page: 2531 ident: b0200 article-title: A finite element model of the foot and ankle for automotive impact applications publication-title: Ann. Biomed. Eng. – volume: 233 start-page: 1 year: 1989 end-page: 24 ident: b0125 article-title: Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry publication-title: Acta Orthop. Scand. Suppl. – volume: 32 start-page: 111 year: 1999 end-page: 118 ident: b0105 article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system publication-title: J. Biomech. – volume: 13 start-page: 130 year: 1992 end-page: 136 ident: b0260 article-title: The stabilizing role of the lateral ligament complex around the ankle and subtalar joints publication-title: Foot Ankle – volume: 153 start-page: 1 year: 1965 end-page: 17 ident: b0020 article-title: The anatomy and function of the contents of the human tarsal sinus and canal publication-title: Anat. Rec. – volume: 122 start-page: 15 year: 2000 end-page: 22 ident: b0060 article-title: Linear and quasi-linear viscoelastic characterization of ankle ligaments publication-title: J. Biomech. Eng. – volume: 24 start-page: 402 year: 2003 end-page: 409 ident: b0255 article-title: Role of passive structures in the mobility and stability of the human subtalar joint: a literature review publication-title: Foot Ankle Int. – volume: 4 start-page: 73 year: 1983 end-page: 82 ident: b0155 article-title: Functional anatomy of the medial collateral ligament of the ankle joint publication-title: Foot Ankle – start-page: 4 year: 2009 end-page: 7 ident: b0050 article-title: Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex publication-title: J. Orthopaedic Surg. Res. – volume: 27 start-page: 965 year: 2006 end-page: 969 ident: b0140 article-title: Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex publication-title: Foot Ankle Int. – volume: 13 start-page: 295 year: 1985 end-page: 300 ident: b0265 article-title: Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints publication-title: Am. J. Sports Med. – volume: 50 start-page: 225 year: 1979 end-page: 236 ident: b0150 article-title: Anatomical basis of variability in injuries of the medial malleolus and the deltoid ligament. II. Clinical studies publication-title: Acta Orthop. Scand. – volume: 53 start-page: 155 year: 1982 end-page: 160 ident: b0170 article-title: Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle publication-title: Acta Orthop. Scand. – volume: 42 start-page: 1403 year: 2009 end-page: 1408 ident: b0055 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. – volume: 16 start-page: 512 year: 1988 end-page: 516 ident: b0090 article-title: The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study publication-title: Am. J. Sports Med. – volume: 8 start-page: 234 year: 1988 end-page: 242 ident: b0205 article-title: The mechanical characteristics of the collateral ligaments of the human ankle joint publication-title: Foot Ankle – volume: 44 start-page: 213 year: 2016 end-page: 221 ident: b0275 article-title: Computational models of the foot and ankle for pathomechanics and clinical applications: a review publication-title: Ann. Biomed. Eng. – volume: 132 year: 2010 ident: b0075 article-title: Computational model of the lower leg and foot/ankle complex: application to arch stability publication-title: J. Biomech. Eng. – volume: 112 start-page: 129 year: 1990 end-page: 137 ident: b0215 article-title: The effect of damage to the lateral collateral ligaments on the mechanical characteristics of the ankle joint–an in-vitro study publication-title: J. Biomech. Eng. – volume: 76 start-page: 204 year: 2018 end-page: 211 ident: b0225 article-title: Analysis of surface-to-surface distance mapping during three-dimensional motion at the ankle and subtalar joints publication-title: J. Biomech. – volume: 12 start-page: 92 year: 1991 end-page: 99 ident: b0030 article-title: Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns publication-title: Foot Ankle – volume: 6 start-page: 387 year: 2009 end-page: 397 ident: b0270 article-title: An in vivo experimental validation of a computational model of human foot publication-title: J. Bionic Eng. – volume: 211 start-page: 1 year: 1985 end-page: 75 ident: b0160 article-title: Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments publication-title: Acta Orthop. Scand. Suppl. – volume: 44 start-page: 2636 year: 2011 end-page: 2641 ident: b0285 article-title: Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data publication-title: J. Biomech. – volume: 2 start-page: 54 year: 2014 ident: b0065 article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review publication-title: Front. Bioeng. Biotechnol. – volume: 129 start-page: 811 year: 2007 end-page: 817 ident: b0120 article-title: Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies publication-title: J. Biomech. Eng. – volume: 31 start-page: 1861 year: 2013 end-page: 1868 ident: b0245 article-title: Validation of a population of patient-specific adult acquired flatfoot deformity models: validation of patient-specific flatfoot models publication-title: J. Orthop. Res. – volume: 39 start-page: 1435 year: 2006 end-page: 1443 ident: b0175 article-title: Finite element analysis of a total ankle replacement during the stance phase of gait publication-title: J. Biomech. – volume: 5 start-page: 142 year: 1984 end-page: 149 ident: b0025 article-title: Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments publication-title: Foot Ankle – volume: 7 start-page: 355 year: 1987 end-page: 361 ident: b0095 article-title: Lateral talocalcaneal instability following section of the calcaneofibular ligament: a kinesiologic study publication-title: Foot Ankle – volume: 65 start-page: 502 year: 2017 end-page: 512 ident: b0130 article-title: Determination of the in situ mechanical behavior of ankle ligaments publication-title: J. Mech. Behav. Biomed. Mater. – start-page: 1 year: 2014 end-page: 10 ident: b0250 article-title: Effects of degree of surgical correction for flatfoot deformity in patient-specific computational models publication-title: Ann. Biomed. Eng. – volume: 53 start-page: 97 year: 2017 end-page: 104 ident: b0010 article-title: Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint” publication-title: J. Biomech. – volume: 38 start-page: 2118 year: 2005 end-page: 2123 ident: b0040 article-title: Mechanics of the anterior drawer test at the ankle: the effects of ligament viscoelasticity publication-title: J. Biomech. – start-page: 17 year: 1993 end-page: 26 ident: b0190 article-title: Biomechanics of the subtalar joint complex publication-title: Clin. Orthop. Relat. Res. – volume: 98 start-page: 842 year: 2016 end-page: 848 ident: b9000 article-title: Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model publication-title: J. Bone Joint Surg. Am. – volume: 19 start-page: 377 year: 1992 end-page: 392 ident: b0300 article-title: Ankle injuries in athletes publication-title: Prime Care – volume: 29 start-page: 1 year: 2014 end-page: 6 ident: b0220 article-title: New observations on the morphology of the talar dome and its relationship to ankle kinematics publication-title: J. Clin. Biomech. – volume: 21 start-page: 336 year: 2000 end-page: 342 ident: b0240 article-title: The mobility of the proximal tibio-fibular joint. A Roentgen Stereophotogrammetric Analysis on six cadaver specimens publication-title: Foot Ankle Int. – volume: 28 start-page: 112 year: 1994 end-page: 116 ident: b0305 article-title: An epidemiological survey on ankle sprains publication-title: Br. J. Sports Med. – volume: 43 start-page: 1718 year: 2000 end-page: 1725 ident: b0005 article-title: Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle? publication-title: Ergonomics – volume: 9 start-page: 59 year: 1988 end-page: 63 ident: b0180 article-title: Strain in the lateral ligaments of the ankle publication-title: Foot Ankle – volume: 38 start-page: 1045 year: 2005 end-page: 1054 ident: b0035 article-title: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study publication-title: J. Biomech. – volume: 21 start-page: 602 year: 2000 end-page: 615 ident: b0110 article-title: The role of the passive structures in the mobility and stability of the human ankle joint: a literature review publication-title: Foot Ankle Int. – volume: 225 start-page: 725 year: 2011 end-page: 735 ident: b0185 article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling publication-title: Proc. Inst. Mech. Eng. H – volume: 39 start-page: 756 year: 2011 end-page: 765 ident: b0290 article-title: Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation publication-title: Ann. Biomed. Eng. – volume: 36 start-page: 363 year: 2003 end-page: 372 ident: b0045 article-title: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint publication-title: J. Biomech. – volume: 92 start-page: 616 year: 1958 end-page: 620 ident: b0235 article-title: The ligamentous structures in the canalis and sinus tarsi publication-title: J. Anat. – volume: 12 start-page: 421 year: 1994 end-page: 431 ident: b0230 article-title: Technique for in vivo measurement of the three-dimensional kinematics and laxity characteristics of the ankle joint complex publication-title: J. Orthop. Res. – volume: 68 start-page: 442 year: 1997 end-page: 446 ident: b0100 article-title: Subtalar joint stability. Talocalcaneal interosseous ligament function studied in cadaver specimens publication-title: Acta Orthop. Scand. – volume: 41 start-page: 1341 year: 2008 end-page: 1349 ident: b0080 article-title: Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties publication-title: J. Biomech. – volume: 23 start-page: 825 year: 2002 end-page: 832 ident: b0145 article-title: Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle publication-title: Foot Ankle Int. – volume: 122 start-page: 630 year: 2000 end-page: 639 ident: b0070 article-title: Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications publication-title: J. Biomech. Eng. – volume: 2 start-page: 212 year: 2011 end-page: 232 ident: b0195 article-title: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange publication-title: Procedia IUTAM – volume: 131 start-page: 363 year: 1993 end-page: 369 ident: b0015 article-title: ligament kinematics of the ankle joint. An experimental study publication-title: Z. Orthop. Ihre Grenzgeb. – year: 2011 ident: b0085 article-title: Sarrafian's Anatomy of the Foot and Ankle – volume: 7 start-page: 41 year: 1983 end-page: 48 ident: b0165 article-title: An analysis of the function of the posterior talofibular ligament publication-title: Int. Orthop. – volume: 110 start-page: 364 year: 1988 end-page: 373 ident: b0210 article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–Part I: Kinematics publication-title: J. Biomech. Eng. – start-page: 12 year: 2019 end-page: 16 ident: b0115 article-title: Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement – an in vitro study publication-title: J. Foot Ankle Res. – volume: 18 start-page: 243 year: 2015 end-page: 248 ident: b0295 article-title: Estimation of ligament strains and joint moments in the ankle during a supination sprain injury publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 92 start-page: 2279 year: 2010 end-page: 2284 ident: b0280 article-title: The epidemiology of ankle sprains in the United States publication-title: J. Bone Joint Surg. Am. – volume: 38 start-page: 2118 year: 2005 ident: 10.1016/j.jbiomech.2019.109421_b0040 article-title: Mechanics of the anterior drawer test at the ankle: the effects of ligament viscoelasticity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.09.031 – volume: 92 start-page: 2279 year: 2010 ident: 10.1016/j.jbiomech.2019.109421_b0280 article-title: The epidemiology of ankle sprains in the United States publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.I.01537 – volume: 211 start-page: 1 year: 1985 ident: 10.1016/j.jbiomech.2019.109421_b0160 article-title: Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments publication-title: Acta Orthop. Scand. Suppl. doi: 10.3109/17453678509154152 – volume: 2 start-page: 212 year: 2011 ident: 10.1016/j.jbiomech.2019.109421_b0195 article-title: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange publication-title: Procedia IUTAM doi: 10.1016/j.piutam.2011.04.021 – volume: 6 start-page: 387 year: 2009 ident: 10.1016/j.jbiomech.2019.109421_b0270 article-title: An in vivo experimental validation of a computational model of human foot publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(08)60138-9 – volume: 39 start-page: 756 year: 2011 ident: 10.1016/j.jbiomech.2019.109421_b0290 article-title: Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0234-9 – volume: 110 start-page: 364 year: 1988 ident: 10.1016/j.jbiomech.2019.109421_b0210 article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–Part I: Kinematics publication-title: J. Biomech. Eng. doi: 10.1115/1.3108455 – volume: 28 start-page: 112 year: 1994 ident: 10.1016/j.jbiomech.2019.109421_b0305 article-title: An epidemiological survey on ankle sprains publication-title: Br. J. Sports Med. doi: 10.1136/bjsm.28.2.112 – volume: 41 start-page: 1341 year: 2008 ident: 10.1016/j.jbiomech.2019.109421_b0080 article-title: Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.12.017 – volume: 122 start-page: 630 year: 2000 ident: 10.1016/j.jbiomech.2019.109421_b0070 article-title: Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications publication-title: J. Biomech. Eng. doi: 10.1115/1.1318904 – volume: 76 start-page: 204 year: 2018 ident: 10.1016/j.jbiomech.2019.109421_b0225 article-title: Analysis of surface-to-surface distance mapping during three-dimensional motion at the ankle and subtalar joints publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.05.026 – volume: 38 start-page: 1045 year: 2005 ident: 10.1016/j.jbiomech.2019.109421_b0035 article-title: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.035 – volume: 2 start-page: 54 year: 2014 ident: 10.1016/j.jbiomech.2019.109421_b0065 article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2014.00054 – volume: 233 start-page: 1 year: 1989 ident: 10.1016/j.jbiomech.2019.109421_b0125 article-title: Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry publication-title: Acta Orthop. Scand. Suppl. doi: 10.3109/17453678909154185 – volume: 31 start-page: 1861 year: 2013 ident: 10.1016/j.jbiomech.2019.109421_b0245 article-title: Validation of a population of patient-specific adult acquired flatfoot deformity models: validation of patient-specific flatfoot models publication-title: J. Orthop. Res. doi: 10.1002/jor.22471 – volume: 7 start-page: 355 year: 1987 ident: 10.1016/j.jbiomech.2019.109421_b0095 article-title: Lateral talocalcaneal instability following section of the calcaneofibular ligament: a kinesiologic study publication-title: Foot Ankle doi: 10.1177/107110078700700612 – volume: 53 start-page: 155 year: 1982 ident: 10.1016/j.jbiomech.2019.109421_b0170 article-title: Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle publication-title: Acta Orthop. Scand. doi: 10.3109/17453678208992194 – volume: 53 start-page: 97 year: 2017 ident: 10.1016/j.jbiomech.2019.109421_b0010 article-title: Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint” publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.002 – volume: 153 start-page: 1 year: 1965 ident: 10.1016/j.jbiomech.2019.109421_b0020 article-title: The anatomy and function of the contents of the human tarsal sinus and canal publication-title: Anat. Rec. doi: 10.1002/ar.1091530102 – volume: 132 year: 2010 ident: 10.1016/j.jbiomech.2019.109421_b0075 article-title: Computational model of the lower leg and foot/ankle complex: application to arch stability publication-title: J. Biomech. Eng. doi: 10.1115/1.4000939 – volume: 122 start-page: 15 year: 2000 ident: 10.1016/j.jbiomech.2019.109421_b0060 article-title: Linear and quasi-linear viscoelastic characterization of ankle ligaments publication-title: J. Biomech. Eng. doi: 10.1115/1.429623 – volume: 36 start-page: 363 year: 2003 ident: 10.1016/j.jbiomech.2019.109421_b0045 article-title: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00425-6 – volume: 42 start-page: 1403 year: 2009 ident: 10.1016/j.jbiomech.2019.109421_b0055 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.04.024 – volume: 21 start-page: 336 year: 2000 ident: 10.1016/j.jbiomech.2019.109421_b0240 article-title: The mobility of the proximal tibio-fibular joint. A Roentgen Stereophotogrammetric Analysis on six cadaver specimens publication-title: Foot Ankle Int. doi: 10.1177/107110070002100411 – volume: 39 start-page: 1435 year: 2006 ident: 10.1016/j.jbiomech.2019.109421_b0175 article-title: Finite element analysis of a total ankle replacement during the stance phase of gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.010 – year: 2011 ident: 10.1016/j.jbiomech.2019.109421_b0085 – volume: 68 start-page: 442 year: 1997 ident: 10.1016/j.jbiomech.2019.109421_b0100 article-title: Subtalar joint stability. Talocalcaneal interosseous ligament function studied in cadaver specimens publication-title: Acta Orthop. Scand. doi: 10.3109/17453679708996259 – start-page: 4 year: 2009 ident: 10.1016/j.jbiomech.2019.109421_b0050 article-title: Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex publication-title: J. Orthopaedic Surg. Res. – volume: 92 start-page: 616 year: 1958 ident: 10.1016/j.jbiomech.2019.109421_b0235 article-title: The ligamentous structures in the canalis and sinus tarsi publication-title: J. Anat. – volume: 8 start-page: 234 year: 1988 ident: 10.1016/j.jbiomech.2019.109421_b0205 article-title: The mechanical characteristics of the collateral ligaments of the human ankle joint publication-title: Foot Ankle doi: 10.1177/107110078800800502 – volume: 5 start-page: 142 year: 1984 ident: 10.1016/j.jbiomech.2019.109421_b0025 article-title: Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments publication-title: Foot Ankle doi: 10.1177/107110078400500307 – volume: 13 start-page: 295 year: 1985 ident: 10.1016/j.jbiomech.2019.109421_b0265 article-title: Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints publication-title: Am. J. Sports Med. doi: 10.1177/036354658501300502 – start-page: 17 year: 1993 ident: 10.1016/j.jbiomech.2019.109421_b0190 article-title: Biomechanics of the subtalar joint complex publication-title: Clin. Orthop. Relat. Res. – volume: 112 start-page: 129 year: 1990 ident: 10.1016/j.jbiomech.2019.109421_b0215 article-title: The effect of damage to the lateral collateral ligaments on the mechanical characteristics of the ankle joint–an in-vitro study publication-title: J. Biomech. Eng. doi: 10.1115/1.2891163 – volume: 44 start-page: 2636 year: 2011 ident: 10.1016/j.jbiomech.2019.109421_b0285 article-title: Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.08.010 – volume: 18 start-page: 243 year: 2015 ident: 10.1016/j.jbiomech.2019.109421_b0295 article-title: Estimation of ligament strains and joint moments in the ankle during a supination sprain injury publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2013.792809 – start-page: 12 year: 2019 ident: 10.1016/j.jbiomech.2019.109421_b0115 article-title: Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement – an in vitro study publication-title: J. Foot Ankle Res. – volume: 16 start-page: 512 year: 1988 ident: 10.1016/j.jbiomech.2019.109421_b0090 article-title: The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study publication-title: Am. J. Sports Med. doi: 10.1177/036354658801600514 – volume: 9 start-page: 59 year: 1988 ident: 10.1016/j.jbiomech.2019.109421_b0180 article-title: Strain in the lateral ligaments of the ankle publication-title: Foot Ankle doi: 10.1177/107110078800900201 – volume: 43 start-page: 1718 year: 2000 ident: 10.1016/j.jbiomech.2019.109421_b0005 article-title: Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle? publication-title: Ergonomics doi: 10.1080/001401300750004122 – volume: 27 start-page: 965 year: 2006 ident: 10.1016/j.jbiomech.2019.109421_b0140 article-title: Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex publication-title: Foot Ankle Int. doi: 10.1177/107110070602701117 – volume: 4 start-page: 73 year: 1983 ident: 10.1016/j.jbiomech.2019.109421_b0155 article-title: Functional anatomy of the medial collateral ligament of the ankle joint publication-title: Foot Ankle doi: 10.1177/107110078300400206 – volume: 65 start-page: 502 year: 2017 ident: 10.1016/j.jbiomech.2019.109421_b0130 article-title: Determination of the in situ mechanical behavior of ankle ligaments publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.09.010 – volume: 50 start-page: 225 year: 1979 ident: 10.1016/j.jbiomech.2019.109421_b0150 article-title: Anatomical basis of variability in injuries of the medial malleolus and the deltoid ligament. II. Clinical studies publication-title: Acta Orthop. Scand. doi: 10.3109/17453677908989760 – volume: 131 start-page: 363 year: 1993 ident: 10.1016/j.jbiomech.2019.109421_b0015 article-title: ligament kinematics of the ankle joint. An experimental study publication-title: Z. Orthop. Ihre Grenzgeb. doi: 10.1055/s-2008-1040041 – volume: 40 start-page: 2519 year: 2012 ident: 10.1016/j.jbiomech.2019.109421_b0200 article-title: A finite element model of the foot and ankle for automotive impact applications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0607-3 – volume: 12 start-page: 92 year: 1991 ident: 10.1016/j.jbiomech.2019.109421_b0030 article-title: Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns publication-title: Foot Ankle doi: 10.1177/107110079101200206 – volume: 32 start-page: 111 year: 1999 ident: 10.1016/j.jbiomech.2019.109421_b0105 article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00157-2 – volume: 24 start-page: 402 year: 2003 ident: 10.1016/j.jbiomech.2019.109421_b0255 article-title: Role of passive structures in the mobility and stability of the human subtalar joint: a literature review publication-title: Foot Ankle Int. doi: 10.1177/107110070302400505 – volume: 225 start-page: 725 year: 2011 ident: 10.1016/j.jbiomech.2019.109421_b0185 article-title: A one-degree-of-freedom spherical mechanism for human knee joint modelling publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411911406951 – volume: 129 start-page: 811 year: 2007 ident: 10.1016/j.jbiomech.2019.109421_b0120 article-title: Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies publication-title: J. Biomech. Eng. doi: 10.1115/1.2800763 – volume: 44 start-page: 213 year: 2016 ident: 10.1016/j.jbiomech.2019.109421_b0275 article-title: Computational models of the foot and ankle for pathomechanics and clinical applications: a review publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1359-7 – volume: 21 start-page: 602 year: 2000 ident: 10.1016/j.jbiomech.2019.109421_b0110 article-title: The role of the passive structures in the mobility and stability of the human ankle joint: a literature review publication-title: Foot Ankle Int. doi: 10.1177/107110070002100715 – volume: 13 start-page: 130 year: 1992 ident: 10.1016/j.jbiomech.2019.109421_b0260 article-title: The stabilizing role of the lateral ligament complex around the ankle and subtalar joints publication-title: Foot Ankle doi: 10.1177/107110079201300304 – volume: 29 start-page: 1 year: 2014 ident: 10.1016/j.jbiomech.2019.109421_b0220 article-title: New observations on the morphology of the talar dome and its relationship to ankle kinematics publication-title: J. Clin. Biomech. doi: 10.1016/j.clinbiomech.2013.10.009 – start-page: 1 year: 2014 ident: 10.1016/j.jbiomech.2019.109421_b0250 article-title: Effects of degree of surgical correction for flatfoot deformity in patient-specific computational models publication-title: Ann. Biomed. Eng. – volume: 12 start-page: 421 year: 1994 ident: 10.1016/j.jbiomech.2019.109421_b0230 article-title: Technique for in vivo measurement of the three-dimensional kinematics and laxity characteristics of the ankle joint complex publication-title: J. Orthop. Res. doi: 10.1002/jor.1100120315 – volume: 98 start-page: 842 year: 2016 ident: 10.1016/j.jbiomech.2019.109421_b9000 article-title: Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.15.00948 – volume: 7 start-page: 41 year: 1983 ident: 10.1016/j.jbiomech.2019.109421_b0165 article-title: An analysis of the function of the posterior talofibular ligament publication-title: Int. Orthop. doi: 10.1007/BF00267558 – volume: 23 start-page: 825 year: 2002 ident: 10.1016/j.jbiomech.2019.109421_b0145 article-title: Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle publication-title: Foot Ankle Int. doi: 10.1177/107110070202300909 – volume: 19 start-page: 377 year: 1992 ident: 10.1016/j.jbiomech.2019.109421_b0300 article-title: Ankle injuries in athletes publication-title: Prime Care doi: 10.1016/S0095-4543(21)00142-1 |
SSID | ssj0007479 |
Score | 2.3785295 |
Snippet | Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109421 |
SubjectTerms | Ankle Ankle and subtalar ligaments Bones Calcaneus Cartilage Cartilage (articular) Computer applications Computer simulation Dynamic ankle models Dynamic models Fibula Kinematics Legs Ligament stabilization Ligaments Mathematical models Mechanical properties Morphology Rotation Sectioning Software Subject specific Three dimensional models Tibia |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA_ioeihtGtrt7USQbzFncnXzBxFFCnYUwVvIckksovOyrpbaKH92_teJrO1B1HoZWBm8maSvOS9X5L3Qcghj1URysazWofIpPOKWVgVMO8cPAYFz2t0Tr78qi-u5Jdrdb1BTgdfGDSrzLK_l-lJWucnk9ybk_vpFH18YbbhMWADsFfXKIelrHCUH__-a-YBcDmbeZQMSz_yEp4dz5KPezqUKBuMrCR5-ZSCegqAJkV0_oa8zgiSnvSVfEs2QjciOycdrJ7vftAjmmw602b5iGw_Cjc4Iq8u80H6Dvl1BlMbwWp3QwECUsCIaCX7E-9R1SG76DxSzOge4NrSh5UDnG4X9HZ6Y5NfHP0-tdTSuzmwKv2Podsmmh7BJxchsBYzB_RRP2jbZ76nKfPOO3J1fvbt9ILlTAzMS1UumRUSYIXlrfJB8gCgBVBFK32jrC3rNnLROIBmMUhXCFcCyBDRa2A1rO7ahkfxnmx28y58ILTWFqhBd_KiltEX1upWWu2EU8LKqMdEDd1vfA5Tjtkybs1gjzYzA9sMss30bBuTyZruvg_U8SxFNXDXDG6oIDgN6JJnKZs15T-D9UW0e8NAMllcPBjoO-gpXjXQ_IP1a5joeHpjuzBfYRmgr4QsxJjs9gNw3VBRaiVUoT_-R8U-kS2Oewm4vcT3yOZysQqfAXAt3X6aUX8AmmspXg priority: 102 providerName: Elsevier |
Title | Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306682 https://dx.doi.org/10.1016/j.jbiomech.2019.109421 https://www.ncbi.nlm.nih.gov/pubmed/31653506 https://www.proquest.com/docview/2329242796 https://www.proquest.com/docview/2309473403 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RVkJwQLDlsVBWRkLc3Ca24yQntKCtFlBXCFFpb5HjOFVXbVL2gQQS_HZmHGfppZRLojwmUfLZns_jeQC8FnUauTi3PNOu5qq0CTc4K-C2LPE0KniRUXDyyUxPT9XHeTIPBrdVcKvsx0Q_UFetJRv5EWp-nCqINNdvr75xqhpFq6uhhMYO7FHqMnLpSufbCRflhg8uHjFHGhBdixBeHC58fLtfkIhzyqqkRHyTcrqJfHoldPwQHgT2yMYd3I_gjmsGsD9ucOZ8-YO9Yd6f0xvKB3D_WqrBAdw9CYvo-_Brgt2aiGpzxpD-MeSH5CH7k45JzRFUrK0ZVXN3uK3YalMiRzdLdnF-ZnxMHPt-bphhly3C5N_HKWST3I7wkUvneEVVA7qMH6zqqt4zX3XnMZweT76-n_JQhYFblcRrbqRCSmFElVinhEPCgoyiUjZPjImzqhYyLxGc2qkykiXCEMnaaoQZ4apyUcsnsNu0jXsGLNMGpVFviihTtY2M0ZUyupRlIo2q9RCS_vcXNqQop0oZF0Xvi7YoetgKgq3oYBvC0VbuqkvScatE2qNb9CGoOGgWqEdulcy3koGkdOTjv2QP-oZUhKFiVfxt2EN4tb2MnZxWbkzj2g3dg_KpVJEcwtOuAW4_VMY6kUmkn__74S_gniBTAVmPxAHsrpcb9xL51Locwc7h73jku84I9sYfPk1nuH83mX3-8gesZiM9 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJDyCBRYJOC21N5dO_YBoQKpUtpECLVSb-7uel01auySByhI_CV-IzN-0Uspl14iJc7s2p7Z-WZ25wHwSmR9z_mx5VHoMq6MDbhGr4BbY_BnBHgRUXLyaBwOD9Xno-BoDX43uTAUVtnoxFJRp4WlPfItRH50FUQ_Dt-ff-PUNYpOV5sWGpVY7LnVD3TZ5u92PyF_XwuxMzj4OOR1VwFuVeAvuJYKIVKLNLBOCYcAjAiZKhsHWvtRmgkZG5wsc8p40vgImDKzId42Tp_GIpM47g1YVxJdmQ6sfxiMv3xtdT8a53VQic_R8PAu5CRP3k7KjPryCMSPqY6TEv5lcHiZuVvC3s49uFvbq2y7ErD7sObyLmxs5-irT1fsDSsjSMut-S7cuVDcsAs3R_Wx_Qb8GqAiIdM4P2FocDK0SCkm9yd9J2Al4WBFxqh_vMPPlM2XBr0CPWNnpye6zMJj308102xaoGCU83FKEqVAJxxy5hxPqU9BVWOEpatcT_FK2efnARxeC4ceQicvcvcYWBRqpEakFl6kMutpHaZKh0aaQGqVhT0Imtef2LooOvXmOEua6LdJ0rAtIbYlFdt6sNXSnVdlQa6k6DfcTZqkV1TTCSLXlZRxS1mbRZW581-0m40gJbVymid_l1IPXraXUa3QWZHOXbGk_yB9XypP9uBRJYDtg0o_DGTghU_-PfgLuDU8GO0n-7vjvadwW9BGBe1diU3oLGZL9wytuYV5Xi8hBsfXvWr_ALSgW84 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJBCCRQwEnAz2bW9rwNCFW3UUlpxoFJuxvZ6q0bNbskDFCT-GL-OmX2EXkq59BIp2Yw3m3l8M_Y8AF6JIgl8mDmexr7gyrqIG4wKuLMWP0aAFykVJx8dx_sn6uMoGq3B764WhtIqO5tYG-q8crRHPkDkx1BBJFk8KNq0iM-7w_cX3zhNkKKT1m6cRiMih375A8O32buDXeT1ayGGe18-7PN2wgB3Kgrn3EiFcGlEHjmvhEcwRrTMlcsiY8I0L4TMLN648MoG0oYInrJwMT4C_pQ8E4XEdW_B7URGIelYMloFe9SXvk0vCTm6IMGl6uTx23FdW18fhoQZdXRSIrwKGK9yfGsAHN6He63nynYaUXsAa77sweZOiVH7ZMnesDqXtN6k78HdS20Oe7Bx1B7gb8KvPTQp5CSXpwxdT4a-KWXn_qT3BLEkJqwqGE2S9_ias9nCYnxgpuz87NTU9Xjs-5lhhk0qFJH6fpzKRSnlCZeces9zmljQdBth-bI0E7xST_x5CCc3wp9HsF5WpX8MLI0NUiNmiyBVhQuMiXNlYittJI0q4j5E3d-vXdsenaZ0nOsuD26sO7ZpYptu2NaHwYruomkQci1F0nFXd-WvaLA1Yti1lNmKsnWQGsfnv2i3O0HSrZma6b9K1YeXq8toYOjUyJS-WtB3kD6RKpB92GoEcPWgMowjGQXxk38v_gI2UFf1p4Pjw6dwR9COBW1iiW1Yn08X_hm6dXP7vNYfBl9vWmH_AA8DXp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+stabilizing+function+of+ankle+and+subtalar+ligaments+via+a+morphology-specific+three-dimensional+dynamic+model&rft.jtitle=Journal+of+biomechanics&rft.au=Palazzi%2C+Emanuele&rft.au=Siegler%2C+Sorin&rft.au=Balakrishnan%2C+Vishnuvardhan&rft.au=Leardini%2C+Alberto&rft.date=2020-01-02&rft.issn=0021-9290&rft.volume=98&rft.spage=109421&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109421&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2019_109421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |