The structure of infinitesimal homeostasis in input–output networks

Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 82; no. 7; p. 62
Main Authors Wang, Yangyang, Huang, Zhengyuan, Antoneli, Fernando, Golubitsky, Martin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs G with a distinguished input node ι , a different distinguished output node o , and a number of regulatory nodes ρ 1 , … , ρ n . In these models the input–output map x o ( I ) is defined by a stable equilibrium X 0 at I 0 . Stability implies that there is a stable equilibrium X ( I ) for each I near I 0 and infinitesimal homeostasis occurs at I 0 when ( d x o / d I ) ( I 0 ) = 0 . We show that there is an ( n + 1 ) × ( n + 1 ) homeostasis matrix H ( I ) for which d x o / d I = 0 if and only if det ( H ) = 0 . We note that the entries in H are linearized couplings and det ( H ) is a homogeneous polynomial of degree n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph G . Specifically, we prove that each factor corresponds to a subnetwork of G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
AbstractList Abstract Homeostasis refers to a phenomenon whereby the output $$x_o$$ x o of a system is approximately constant on variation of an input $${{\mathcal {I}}}$$ I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs $${{\mathcal {G}}}$$ G with a distinguished input node $$\iota $$ ι , a different distinguished output node o , and a number of regulatory nodes $$\rho _1,\ldots ,\rho _n$$ ρ 1 , … , ρ n . In these models the input–output map $$x_o({{\mathcal {I}}})$$ x o ( I ) is defined by a stable equilibrium $$X_0$$ X 0 at $${{\mathcal {I}}}_0$$ I 0 . Stability implies that there is a stable equilibrium $$X({{\mathcal {I}}})$$ X ( I ) for each $${{\mathcal {I}}}$$ I near $${{\mathcal {I}}}_0$$ I 0 and infinitesimal homeostasis occurs at $${{\mathcal {I}}}_0$$ I 0 when $$(dx_o/d{{\mathcal {I}}})({{\mathcal {I}}}_0) = 0$$ ( d x o / d I ) ( I 0 ) = 0 . We show that there is an $$(n+1)\times (n+1)$$ ( n + 1 ) × ( n + 1 ) homeostasis matrix $$H({{\mathcal {I}}})$$ H ( I ) for which $$dx_o/d{{\mathcal {I}}}= 0$$ d x o / d I = 0 if and only if $$\det (H) = 0$$ det ( H ) = 0 . We note that the entries in H are linearized couplings and $$\det (H)$$ det ( H ) is a homogeneous polynomial of degree $$n+1$$ n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial $$\det (H)$$ det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph $${{\mathcal {G}}}$$ G . Specifically, we prove that each factor corresponds to a subnetwork of $${{\mathcal {G}}}$$ G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of $$\det (H)$$ det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of $$\det (H)$$ det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
Homeostasis refers to a phenomenon whereby the output xo of a system is approximately constant on variation of an input I. Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs G with a distinguished input node ι, a different distinguished output node o, and a number of regulatory nodes ρ1,…,ρn. In these models the input–output map xo(I) is defined by a stable equilibrium X0 at I0. Stability implies that there is a stable equilibrium X(I) for each I near I0 and infinitesimal homeostasis occurs at I0 when (dxo/dI)(I0)=0. We show that there is an (n+1)×(n+1)homeostasis matrixH(I) for which dxo/dI=0 if and only if det(H)=0. We note that the entries in H are linearized couplings and det(H) is a homogeneous polynomial of degree n+1 in these entries. We use combinatorial matrix theory to factor the polynomial det(H) and thereby determine a menu of different types of possible homeostasis associated with each digraph G. Specifically, we prove that each factor corresponds to a subnetwork of G. The factors divide into two combinatorially defined classes: structural and appendage. Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of det(H) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of det(H). There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
Homeostasis refers to a phenomenon whereby the output \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_o$$\end{document} x o of a system is approximately constant on variation of an input \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document} I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G with a distinguished input node \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota $$\end{document} ι , a different distinguished output node o , and a number of regulatory nodes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1,\ldots ,\rho _n$$\end{document} ρ 1 , … , ρ n . In these models the input–output map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_o({{\mathcal {I}}})$$\end{document} x o ( I ) is defined by a stable equilibrium \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_0$$\end{document} X 0 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 . Stability implies that there is a stable equilibrium \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({{\mathcal {I}}})$$\end{document} X ( I ) for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document} I near \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 and infinitesimal homeostasis occurs at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(dx_o/d{{\mathcal {I}}})({{\mathcal {I}}}_0) = 0$$\end{document} ( d x o / d I ) ( I 0 ) = 0 . We show that there is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)\times (n+1)$$\end{document} ( n + 1 ) × ( n + 1 ) homeostasis matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({{\mathcal {I}}})$$\end{document} H ( I ) for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx_o/d{{\mathcal {I}}}= 0$$\end{document} d x o / d I = 0 if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H) = 0$$\end{document} det ( H ) = 0 . We note that the entries in H are linearized couplings and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) is a homogeneous polynomial of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G . Specifically, we prove that each factor corresponds to a subnetwork of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs G with a distinguished input node ι , a different distinguished output node o , and a number of regulatory nodes ρ 1 , … , ρ n . In these models the input–output map x o ( I ) is defined by a stable equilibrium X 0 at I 0 . Stability implies that there is a stable equilibrium X ( I ) for each I near I 0 and infinitesimal homeostasis occurs at I 0 when ( d x o / d I ) ( I 0 ) = 0 . We show that there is an ( n + 1 ) × ( n + 1 ) homeostasis matrix H ( I ) for which d x o / d I = 0 if and only if det ( H ) = 0 . We note that the entries in H are linearized couplings and det ( H ) is a homogeneous polynomial of degree n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph G . Specifically, we prove that each factor corresponds to a subnetwork of G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
ArticleNumber 62
Author Wang, Yangyang
Golubitsky, Martin
Huang, Zhengyuan
Antoneli, Fernando
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Wang
  fullname: Wang, Yangyang
  organization: Department of Mathematics, The University of Iowa
– sequence: 2
  givenname: Zhengyuan
  surname: Huang
  fullname: Huang, Zhengyuan
  organization: The Ohio State University
– sequence: 3
  givenname: Fernando
  surname: Antoneli
  fullname: Antoneli, Fernando
  organization: Escola Paulista de Medicina, Universidade Federal de São Paulo
– sequence: 4
  givenname: Martin
  orcidid: 0000-0002-6176-8756
  surname: Golubitsky
  fullname: Golubitsky, Martin
  email: golubitsky.4@osu.edu
  organization: Department of Mathematics, The Ohio State University
BookMark eNp9kU1OHDEQha0IFAaSC2TVEhs2TVy22z8bJIT4iYSUDVlbPd3lmZ702IPtBmWXO3BDThJPBgWRBZIlW6rvvaryOyR7Pngk5AvQU6BUfU2UMt3UlEFNQYKo4QOZgeCsBgFyj8wop7yWGtgBOUxpRSmoxsBHcsBFEXGjZ-TybolVynHq8hSxCq4avBv8kDEN63aslmGNIeU2DalUytlM-fn3U5hyeVQe82OIP9Mnsu_aMeHnl_uI_Li6vLu4qW-_X3-7OL-tO9FAro1zhqIrzeeibxxIw8VcoZOq0ZqicEbOlTKy74TrXSMMst5o6FkrDVBEfkTOdr6bab7GvkOfYzvaTSyzxl82tIN9W_HD0i7Cg9XbbbUqBicvBjHcT5iyXQ-pw3FsPYYpWdZwYMC0gYIe_4euwhR9WW9LUSaVUaJQbEd1MaQU0f0bBqjdpmR3Kdny4fZvSnZrzXeiVGC_wPhq_Y7qDyXpl2g
CitedBy_id crossref_primary_10_1007_s00285_024_02117_5
crossref_primary_10_3389_fphys_2023_1234214
crossref_primary_10_1007_s12038_022_00293_4
crossref_primary_10_1073_pnas_2207802119
crossref_primary_10_1007_s11538_024_01318_9
crossref_primary_10_1007_s00285_022_01724_4
crossref_primary_10_1007_s00285_022_01727_1
crossref_primary_10_1007_s00332_022_09793_x
crossref_primary_10_1016_j_mbs_2023_108984
crossref_primary_10_1371_journal_pcbi_1009769
crossref_primary_10_1007_s00285_022_01795_3
Cites_doi 10.1074/jbc.M410818200
10.1016/j.jtbi.2016.06.036
10.1016/j.cell.2009.06.013
10.1016/j.jtbi.2018.02.026
10.1038/s41586-019-1321-1
10.1038/s41467-018-04151-6
10.1016/0024-3795(77)90070-2
10.1186/s12915-015-0189-2
10.1016/j.cels.2016.02.006
10.1016/j.bpj.2012.12.015
10.1016/j.cell.2013.08.053
10.1017/CBO9781107325708
10.1093/icb/icu010
10.1007/s00285-016-1024-2
10.1016/j.mbs.2014.08.015
10.1002/bies.200900167
10.1090/S0273-0979-06-01108-6
10.1016/j.arcontrol.2018.04.007
10.1007/s00285-019-01457-x
10.1002/wsbm.1440
10.1186/1742-4682-6-21
10.1098/rsif.2017.0902
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
M7Z
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s00285-021-01614-1
DatabaseName Springer_OA刊
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biochemistry Abstracts 1
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Computer Science Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1432-1416
EndPage 62
ExternalDocumentID 10_1007_s00285_021_01614_1
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1440386
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: ;
  grantid: DMS-1440386
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G8K
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
ZXP
~EX
~KM
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CITATION
H13
7TK
7TM
7U9
7XB
8FD
8FK
AAYZH
AZQEC
DWQXO
FR3
GNUQQ
H94
JQ2
K9.
M7N
M7Z
P64
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c451t-9ff90ef402b4d5f16934b7ef675880e4f96b7796dc4fdf549e2d981d2a6910ee3
IEDL.DBID AGYKE
ISSN 0303-6812
IngestDate Tue Sep 17 21:22:39 EDT 2024
Fri Oct 25 11:45:19 EDT 2024
Mon Nov 04 02:19:01 EST 2024
Thu Sep 12 16:40:23 EDT 2024
Sat Dec 16 12:09:37 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Biochemical networks
Coupled systems
92C42
34C99
94C15
Homeostasis
Input–output networks
Combinatorial matrix theory
92C40
Perfect adaptation
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-9ff90ef402b4d5f16934b7ef675880e4f96b7796dc4fdf549e2d981d2a6910ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6176-8756
OpenAccessLink https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00285-021-01614-1
PMID 34021398
PQID 2530267974
PQPubID 54026
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139887
proquest_miscellaneous_2531212891
proquest_journals_2530267974
crossref_primary_10_1007_s00285_021_01614_1
springer_journals_10_1007_s00285_021_01614_1
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of mathematical biology
PublicationTitleAbbrev J. Math. Biol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Brualdi, Cvetkoić (CR6) 2009
Reed, Best, Golubitsky, Stewart, Nijhout (CR22) 2017; 79
Reed, Lieb, Nijhout (CR21) 2010; 32
CR19
Tang, McMillen (CR24) 2016; 408
Brualdi, Ryser (CR7) 1991
CR11
Ferrell (CR8) 2016; 2
Haldane (CR12) 1965
Nijhout, Best, Reed (CR17) 2014; 257
Golubitsky, Stewart (CR10) 2017; 74
Antoneli, Golubitsky, Stewart (CR2) 2018; 445
Araujo, Liota (CR4) 2018; 9
Nijhout, Reed (CR15) 2014; 54
Nijhout, Reed, Budu, Ulrich (CR16) 2004; 279
CR5
Ang, McMillen (CR1) 2013; 104
Aoki, Lillacci, Gupta, Baumschlager, Schweingruber, Khammash (CR3) 2019; 570
Nijhout, Best, Reed (CR18) 2015; 13
Wyatt, Cecco, Czeisler, Dijk (CR26) 1999; 277
Lloyd (CR13) 2013; 154
Ma, Trusina, El-Samad, Lim, Tang (CR14) 2009; 138
CR20
Schneider (CR23) 1977; 18
Golubitsky, Stewart (CR9) 2006; 43
Vecchio, Qian, Murray, Sontag (CR25) 2018; 45
SK Aoki (1614_CR3) 2019; 570
M Golubitsky (1614_CR10) 2017; 74
1614_CR20
DD Vecchio (1614_CR25) 2018; 45
HF Nijhout (1614_CR15) 2014; 54
MC Reed (1614_CR21) 2010; 32
J Ang (1614_CR1) 2013; 104
JBS Haldane (1614_CR12) 1965
AC Lloyd (1614_CR13) 2013; 154
H Schneider (1614_CR23) 1977; 18
ZF Tang (1614_CR24) 2016; 408
M Golubitsky (1614_CR9) 2006; 43
RA Brualdi (1614_CR7) 1991
HF Nijhout (1614_CR18) 2015; 13
F Antoneli (1614_CR2) 2018; 445
JK Wyatt (1614_CR26) 1999; 277
RP Araujo (1614_CR4) 2018; 9
1614_CR11
W Ma (1614_CR14) 2009; 138
HF Nijhout (1614_CR17) 2014; 257
1614_CR19
JE Ferrell (1614_CR8) 2016; 2
RA Brualdi (1614_CR6) 2009
HF Nijhout (1614_CR16) 2004; 279
1614_CR5
M Reed (1614_CR22) 2017; 79
References_xml – volume: 279
  start-page: 55008
  year: 2004
  end-page: 55016
  ident: CR16
  article-title: A mathematical model of the folate cycle: new insights into folate homeostasis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M410818200
  contributor:
    fullname: Ulrich
– volume: 408
  start-page: 274
  year: 2016
  end-page: 289
  ident: CR24
  article-title: Design principles for the analysis and construction of robustly homeostatic biological networks
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.06.036
  contributor:
    fullname: McMillen
– year: 2009
  ident: CR6
  publication-title: A combinatorial approach to matrix theory and its applications
  contributor:
    fullname: Cvetkoić
– volume: 138
  start-page: 760
  year: 2009
  end-page: 773
  ident: CR14
  article-title: Defining network topologies that can achieve biochemical adaptation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.013
  contributor:
    fullname: Tang
– volume: 445
  start-page: 103
  year: 2018
  end-page: 109
  ident: CR2
  article-title: Homeostasis in a feed forward loop gene regulatory network motif
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.02.026
  contributor:
    fullname: Stewart
– volume: 570
  start-page: 533
  year: 2019
  end-page: 537
  ident: CR3
  article-title: A universal biomolecular integral feedback controller for robust perfect adaptation
  publication-title: Nature
  doi: 10.1038/s41586-019-1321-1
  contributor:
    fullname: Khammash
– volume: 9
  start-page: 1757
  year: 2018
  ident: CR4
  article-title: The topological requirements for robust perfect adaptation in networks of any size
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04151-6
  contributor:
    fullname: Liota
– volume: 18
  start-page: 139
  year: 1977
  end-page: 162
  ident: CR23
  article-title: The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius
  publication-title: König and Markov Linear Algebra Appl
  doi: 10.1016/0024-3795(77)90070-2
  contributor:
    fullname: Schneider
– volume: 79
  start-page: 1
  issue: 9
  year: 2017
  end-page: 24
  ident: CR22
  article-title: Analysis of homeostatic mechanisms in biochemical networks
  publication-title: Bull Math Biol
  contributor:
    fullname: Nijhout
– volume: 13
  start-page: 79
  year: 2015
  ident: CR18
  article-title: Using mathematical models to understand metabolism, genes and disease
  publication-title: BMC Biol
  doi: 10.1186/s12915-015-0189-2
  contributor:
    fullname: Reed
– volume: 2
  start-page: 62
  year: 2016
  end-page: 67
  ident: CR8
  article-title: Perfect and near perfect adaptation in cell signaling
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.02.006
  contributor:
    fullname: Ferrell
– ident: CR19
– volume: 104
  start-page: 505
  issue: 2
  year: 2013
  end-page: 515
  ident: CR1
  article-title: Physical constraints on biological integral control design for homeostasis and sensory adaptation
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2012.12.015
  contributor:
    fullname: McMillen
– year: 1965
  ident: CR12
  publication-title: Enzymes
  contributor:
    fullname: Haldane
– volume: 277
  start-page: 1152
  year: 1999
  end-page: 1163
  ident: CR26
  article-title: Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day
  publication-title: Am J Physiol
  contributor:
    fullname: Dijk
– volume: 154
  start-page: 1194
  year: 2013
  ident: CR13
  article-title: The regulation of cell size
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.053
  contributor:
    fullname: Lloyd
– year: 1991
  ident: CR7
  publication-title: Combinatorial matrix theory
  doi: 10.1017/CBO9781107325708
  contributor:
    fullname: Ryser
– ident: CR11
– volume: 54
  start-page: 264
  issue: 2
  year: 2014
  end-page: 75
  ident: CR15
  article-title: Homeostasis and dynamic stability of the phenotype link robustness and plasticity
  publication-title: Integr Comput Biol
  doi: 10.1093/icb/icu010
  contributor:
    fullname: Reed
– volume: 74
  start-page: 387
  year: 2017
  end-page: 407
  ident: CR10
  article-title: Homeostasis, singularities and networks
  publication-title: J Math Biol
  doi: 10.1007/s00285-016-1024-2
  contributor:
    fullname: Stewart
– ident: CR5
– volume: 257
  start-page: 104
  year: 2014
  end-page: 110
  ident: CR17
  article-title: Escape from homeostasis
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2014.08.015
  contributor:
    fullname: Reed
– volume: 32
  start-page: 422
  issue: 5
  year: 2010
  end-page: 429
  ident: CR21
  article-title: The biological significance of substrate inhibition: a mechanism with diverse functions
  publication-title: BioEssays
  doi: 10.1002/bies.200900167
  contributor:
    fullname: Nijhout
– volume: 43
  start-page: 305
  issue: 3
  year: 2006
  end-page: 364
  ident: CR9
  article-title: Nonlinear dynamics of networks: the groupoid formalism
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0273-0979-06-01108-6
  contributor:
    fullname: Stewart
– ident: CR20
– volume: 45
  start-page: 5
  year: 2018
  end-page: 17
  ident: CR25
  article-title: Future systems and control research in synthetic biology
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2018.04.007
  contributor:
    fullname: Sontag
– ident: 1614_CR11
  doi: 10.1007/s00285-019-01457-x
– ident: 1614_CR19
  doi: 10.1002/wsbm.1440
– volume: 13
  start-page: 79
  year: 2015
  ident: 1614_CR18
  publication-title: BMC Biol
  doi: 10.1186/s12915-015-0189-2
  contributor:
    fullname: HF Nijhout
– volume: 79
  start-page: 1
  issue: 9
  year: 2017
  ident: 1614_CR22
  publication-title: Bull Math Biol
  contributor:
    fullname: M Reed
– volume: 18
  start-page: 139
  year: 1977
  ident: 1614_CR23
  publication-title: König and Markov Linear Algebra Appl
  doi: 10.1016/0024-3795(77)90070-2
  contributor:
    fullname: H Schneider
– volume: 104
  start-page: 505
  issue: 2
  year: 2013
  ident: 1614_CR1
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2012.12.015
  contributor:
    fullname: J Ang
– volume-title: Combinatorial matrix theory
  year: 1991
  ident: 1614_CR7
  doi: 10.1017/CBO9781107325708
  contributor:
    fullname: RA Brualdi
– ident: 1614_CR5
  doi: 10.1186/1742-4682-6-21
– volume: 45
  start-page: 5
  year: 2018
  ident: 1614_CR25
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2018.04.007
  contributor:
    fullname: DD Vecchio
– volume: 9
  start-page: 1757
  year: 2018
  ident: 1614_CR4
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04151-6
  contributor:
    fullname: RP Araujo
– volume-title: A combinatorial approach to matrix theory and its applications
  year: 2009
  ident: 1614_CR6
  contributor:
    fullname: RA Brualdi
– volume: 408
  start-page: 274
  year: 2016
  ident: 1614_CR24
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.06.036
  contributor:
    fullname: ZF Tang
– ident: 1614_CR20
  doi: 10.1098/rsif.2017.0902
– volume: 154
  start-page: 1194
  year: 2013
  ident: 1614_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.053
  contributor:
    fullname: AC Lloyd
– volume: 138
  start-page: 760
  year: 2009
  ident: 1614_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.013
  contributor:
    fullname: W Ma
– volume: 570
  start-page: 533
  year: 2019
  ident: 1614_CR3
  publication-title: Nature
  doi: 10.1038/s41586-019-1321-1
  contributor:
    fullname: SK Aoki
– volume-title: Enzymes
  year: 1965
  ident: 1614_CR12
  contributor:
    fullname: JBS Haldane
– volume: 32
  start-page: 422
  issue: 5
  year: 2010
  ident: 1614_CR21
  publication-title: BioEssays
  doi: 10.1002/bies.200900167
  contributor:
    fullname: MC Reed
– volume: 43
  start-page: 305
  issue: 3
  year: 2006
  ident: 1614_CR9
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0273-0979-06-01108-6
  contributor:
    fullname: M Golubitsky
– volume: 54
  start-page: 264
  issue: 2
  year: 2014
  ident: 1614_CR15
  publication-title: Integr Comput Biol
  doi: 10.1093/icb/icu010
  contributor:
    fullname: HF Nijhout
– volume: 257
  start-page: 104
  year: 2014
  ident: 1614_CR17
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2014.08.015
  contributor:
    fullname: HF Nijhout
– volume: 74
  start-page: 387
  year: 2017
  ident: 1614_CR10
  publication-title: J Math Biol
  doi: 10.1007/s00285-016-1024-2
  contributor:
    fullname: M Golubitsky
– volume: 277
  start-page: 1152
  year: 1999
  ident: 1614_CR26
  publication-title: Am J Physiol
  contributor:
    fullname: JK Wyatt
– volume: 279
  start-page: 55008
  year: 2004
  ident: 1614_CR16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M410818200
  contributor:
    fullname: HF Nijhout
– volume: 2
  start-page: 62
  year: 2016
  ident: 1614_CR8
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.02.006
  contributor:
    fullname: JE Ferrell
– volume: 445
  start-page: 103
  year: 2018
  ident: 1614_CR2
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.02.026
  contributor:
    fullname: F Antoneli
SSID ssj0017591
Score 2.4225917
Snippet Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in...
Abstract Homeostasis refers to a phenomenon whereby the output $$x_o$$ x o of a system is approximately constant on variation of an input $${{\mathcal {I}}}$$...
Homeostasis refers to a phenomenon whereby the output xo of a system is approximately constant on variation of an input I. Homeostasis occurs frequently in...
Homeostasis refers to a phenomenon whereby the output \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 62
SubjectTerms Algorithms
Applications of Mathematics
Combinatorial analysis
Couplings
Differential equations
Feedback
Feedback loops
Graph theory
Homeostasis
Mathematical analysis
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Matrix methods
Matrix theory
Negative feedback
Networks
Polynomials
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60IngRnxitEsGbLjbpJpucRKSlCHqy0FvIY5fm0KSa5ODN_-A_9Jc4s3mUFhRyCGyyu8zM7nyzOw-AG7S3bIU4ngnkMON-pFgoucNEGHGlUB9Ji-KdX17dyZQ_z5xZc-BWNG6V7Z6oN-okj-mM_N6m8jauQPj7sHxnVDWKblebEhrbsGPZA5dcusSsM7hQM9YV83CbZpRnqwma0aFzZGxQbDIZ06iimLWumFZoc9NXcuPCVOuh8QHsNwDSfKw5fghbMjuC3bqk5OcxjJDvZp0UtvqQZq5MFKGUgGWRLvC_eb6QOSLCIi2wBZ9lVf58fedViS9mVjuFFycwHY_eniasKZXAYu5YJfOV8gdSoTEY8cRRlGGFR0IqMge8geTKdyMhfDeJuUoU2oTSTnyEqnboIl6QcngKvSzP5BmYKpGJZ4XYGCq0nZ3QRz2HqzjGnu2hMzTgtqVTsKwzYgRd7mNN1QCpGmiqBpYB_ZaUQbM6imDFSwOuu2aUa7qsCDOZV_obC9Wq52MXYo0F3aiUGXu9JUvnOkO2h7gWd08D7lpmrQb_e67n_8_1AvZsLS90BNOHHrJSXiIiKaMrLXa_cj_fcg
  priority: 102
  providerName: ProQuest
Title The structure of infinitesimal homeostasis in input–output networks
URI https://link.springer.com/article/10.1007/s00285-021-01614-1
https://www.proquest.com/docview/2530267974
https://search.proquest.com/docview/2531212891
https://pubmed.ncbi.nlm.nih.gov/PMC8139887
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD54QdAHdd1drJeSBd_cEZNOMsljW1rFxbKIhe5TSJoZLIuJmORBn_wP_kN_id_kVurlQShp4YRJO-fMnO_rzPmG6Ah8y1LA8UzAw4x7oWKB5DYTQciVQj6Spq53vhw552N-MbEn8zruYrN7vSJZTNRNrZtmB7qYWLNf5BQGyrNaFZ6uds_-_Rk0iwfCLg_Kw-zMtLxWVSvzcSuL-WgOMt9ukXyzTlqkn-EWXddFPOWuk_8neRaeTB_fazp-5Zdt02YFR41uGT_faEnGO7RWHlD5sEMbl42qa_qdBogpoxScze-lkSgD4TnToDWd3aKVm-RWJkCb6SyFBa-7PHt5ek7yDB-MuNxwnv6g8XBw3T9n1TEMbMptM2OeUt6pVCCaIY9spdVbeCik0lTDPZVceU4ohOdEU64iBb4prcgDDLYCB1hEys5PWomTWO6SoSIZuWYAY6DAy-3AQw7FDDFFy1bH7rTouHaGf1eqbfiNrnLRTT66yS-6yTdbdFD7y69GXupb-hgkR4AmtehXY8aY0QshQSyTvLjHROS4HpoQC35unqpVtxct8eymUN92gZkxM7fod-3N-cM__657X7t9n9atIiD03z0HtALXykOgnyxs07KYCFzd4VkbkT_s9UbtagTgvTcY_b2Cte_0cR1b3VeBSgOB
link.rule.ids 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41093,41132,41535,42162,42201,42604,43322,43612,43817,51588,52123,52246,74073,74363,74630
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8RSFAUXiBhFrm75OCKGNAdtOm7Rb1Uei9bB20PbAjf_AP-SX4KSPaZNA6qGS2ySyE_tzEtsAN-hv6RxxPLFRwoS6ASc-oyax_YByjvaIaSLeeTiy-hP6OjWn1YZbVl2rrHWiVNRRGoo98ntdlLexbIS_D4t3IqpGidPVqoTGJmxRA221iBTvPTenCLZZVsxDNU1Enq0qaEaGzglnQ8QmC2caTRTRVg3TEm2u35VcOzCVdqi3D3sVgFQfS4kfwAZLDmG7LCn5eQRdlLtaJoUtPpiachWnUCyAZRbP8b9ZOmcpIsIszpCCz6LIf76-0yLHFzUpL4VnxzDpdcdPfVKVSiAhNbWcuJy7HcbRGQxoZHKRYYUGNuPCHXA6jHLXCmzbtaKQ8oijT8j0yEWoqvsW4gXGjBNoJWnCTkHlEYsczUeiz9F3Nn0X7Ryu4hBb1g3TUOC25pO3KDNieE3uY8lVD7nqSa56mgLtmpVetToybylLBa4bMs5rcVjhJywt5DcamlXHxSbsFRE0vYrM2KuUJJ7JDNkO4lrUngrc1cJadv73WM_-H-sV7PTHw4E3eBm9ncOuLueO2I5pQwvFyi4QneTBpZyCvwkt4lk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4gL4ikKA4rEDaKtbdq0J8Rj03hNE2LSblW7JtoOawddD9z4D_xDfglOm3YaEkg9VEqbRLYTf44dG-Ac7S1TII4nDDlMqBcKEnBqExaEVAjUR9yQ952fe053QB-G9lDFP6UqrLLcE_ONOkpG8oy8acryNg5D-NsUKiyif9e5mr0RWUFKelpVOY1VqDPqWK0a1G_avf5L5VNgdlE_DzdtIrNuqSs0-UU6aXrIm8rStEaFRYxlNbXAnr8jJ3-5T3Ot1NmCTQUn9euC_9uwwuMdWCsKTH7sQhulQC9SxGbvXE-EjgI1kTAznUzxv3Ey5Qniw3SSYgs-s2z-_fmVZHN80eMiRDzdg0Gn_XrbJapwAhlR25gTTwivxQWahiGNbCHzrdCQcSGNA7fFqfCckDHPiUZURAItRG5GHgJXM3AQPXBu7UMtTmJ-ALqIeOQaATYGAi1pO_BQ6-GaHmHPpmVbGlyUdPJnRX4Mv8qEnFPVR6r6OVV9Q4NGSUpfrZXUX3BWg7OqGaVcui6CmCdZ_o2BStb1sAu2xIJqVJkne7klnozzfNkuolzcSzW4LJm1GPzvuR7-P9dTWEf585_ue49HsGHmoiPPZhpQQ67yY4Qq8_BEyeAPelbn9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structure+of+infinitesimal+homeostasis+in+input%E2%80%93output+networks&rft.jtitle=Journal+of+mathematical+biology&rft.au=Wang%2C+Yangyang&rft.au=Huang%2C+Zhengyuan&rft.au=Antoneli%2C+Fernando&rft.au=Golubitsky%2C+Martin&rft.date=2021-06-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=82&rft.issue=7&rft_id=info:doi/10.1007%2Fs00285-021-01614-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00285_021_01614_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon