The structure of infinitesimal homeostasis in input–output networks
Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to...
Saved in:
Published in | Journal of mathematical biology Vol. 82; no. 7; p. 62 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Homeostasis refers to a phenomenon whereby the output
x
o
of a system is approximately constant on variation of an input
I
. Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs
G
with a distinguished input node
ι
, a different distinguished output node
o
, and a number of regulatory nodes
ρ
1
,
…
,
ρ
n
. In these models the input–output map
x
o
(
I
)
is defined by a stable equilibrium
X
0
at
I
0
. Stability implies that there is a stable equilibrium
X
(
I
)
for each
I
near
I
0
and infinitesimal homeostasis occurs at
I
0
when
(
d
x
o
/
d
I
)
(
I
0
)
=
0
. We show that there is an
(
n
+
1
)
×
(
n
+
1
)
homeostasis matrix
H
(
I
)
for which
d
x
o
/
d
I
=
0
if and only if
det
(
H
)
=
0
. We note that the entries in
H
are linearized couplings and
det
(
H
)
is a homogeneous polynomial of degree
n
+
1
in these entries. We use combinatorial matrix theory to factor the polynomial
det
(
H
)
and thereby determine a menu of different types of possible homeostasis associated with each digraph
G
. Specifically, we prove that each factor corresponds to a subnetwork of
G
. The factors divide into two combinatorially defined classes:
structural
and
appendage
. Structural factors correspond to
feedforward
motifs and appendage factors correspond to
feedback
motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of
det
(
H
)
without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of
det
(
H
)
. There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif). |
---|---|
AbstractList | Abstract
Homeostasis refers to a phenomenon whereby the output
$$x_o$$
x
o
of a system is approximately constant on variation of an input
$${{\mathcal {I}}}$$
I
. Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs
$${{\mathcal {G}}}$$
G
with a distinguished input node
$$\iota $$
ι
, a different distinguished output node
o
, and a number of regulatory nodes
$$\rho _1,\ldots ,\rho _n$$
ρ
1
,
…
,
ρ
n
. In these models the input–output map
$$x_o({{\mathcal {I}}})$$
x
o
(
I
)
is defined by a stable equilibrium
$$X_0$$
X
0
at
$${{\mathcal {I}}}_0$$
I
0
. Stability implies that there is a stable equilibrium
$$X({{\mathcal {I}}})$$
X
(
I
)
for each
$${{\mathcal {I}}}$$
I
near
$${{\mathcal {I}}}_0$$
I
0
and infinitesimal homeostasis occurs at
$${{\mathcal {I}}}_0$$
I
0
when
$$(dx_o/d{{\mathcal {I}}})({{\mathcal {I}}}_0) = 0$$
(
d
x
o
/
d
I
)
(
I
0
)
=
0
. We show that there is an
$$(n+1)\times (n+1)$$
(
n
+
1
)
×
(
n
+
1
)
homeostasis matrix
$$H({{\mathcal {I}}})$$
H
(
I
)
for which
$$dx_o/d{{\mathcal {I}}}= 0$$
d
x
o
/
d
I
=
0
if and only if
$$\det (H) = 0$$
det
(
H
)
=
0
. We note that the entries in
H
are linearized couplings and
$$\det (H)$$
det
(
H
)
is a homogeneous polynomial of degree
$$n+1$$
n
+
1
in these entries. We use combinatorial matrix theory to factor the polynomial
$$\det (H)$$
det
(
H
)
and thereby determine a menu of different types of possible homeostasis associated with each digraph
$${{\mathcal {G}}}$$
G
. Specifically, we prove that each factor corresponds to a subnetwork of
$${{\mathcal {G}}}$$
G
. The factors divide into two combinatorially defined classes:
structural
and
appendage
. Structural factors correspond to
feedforward
motifs and appendage factors correspond to
feedback
motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of
$$\det (H)$$
det
(
H
)
without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of
$$\det (H)$$
det
(
H
)
. There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif). Homeostasis refers to a phenomenon whereby the output xo of a system is approximately constant on variation of an input I. Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs G with a distinguished input node ι, a different distinguished output node o, and a number of regulatory nodes ρ1,…,ρn. In these models the input–output map xo(I) is defined by a stable equilibrium X0 at I0. Stability implies that there is a stable equilibrium X(I) for each I near I0 and infinitesimal homeostasis occurs at I0 when (dxo/dI)(I0)=0. We show that there is an (n+1)×(n+1)homeostasis matrixH(I) for which dxo/dI=0 if and only if det(H)=0. We note that the entries in H are linearized couplings and det(H) is a homogeneous polynomial of degree n+1 in these entries. We use combinatorial matrix theory to factor the polynomial det(H) and thereby determine a menu of different types of possible homeostasis associated with each digraph G. Specifically, we prove that each factor corresponds to a subnetwork of G. The factors divide into two combinatorially defined classes: structural and appendage. Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of det(H) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of det(H). There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif). Homeostasis refers to a phenomenon whereby the output \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_o$$\end{document} x o of a system is approximately constant on variation of an input \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document} I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G with a distinguished input node \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota $$\end{document} ι , a different distinguished output node o , and a number of regulatory nodes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1,\ldots ,\rho _n$$\end{document} ρ 1 , … , ρ n . In these models the input–output map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_o({{\mathcal {I}}})$$\end{document} x o ( I ) is defined by a stable equilibrium \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_0$$\end{document} X 0 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 . Stability implies that there is a stable equilibrium \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({{\mathcal {I}}})$$\end{document} X ( I ) for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document} I near \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 and infinitesimal homeostasis occurs at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}_0$$\end{document} I 0 when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(dx_o/d{{\mathcal {I}}})({{\mathcal {I}}}_0) = 0$$\end{document} ( d x o / d I ) ( I 0 ) = 0 . We show that there is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)\times (n+1)$$\end{document} ( n + 1 ) × ( n + 1 ) homeostasis matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({{\mathcal {I}}})$$\end{document} H ( I ) for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx_o/d{{\mathcal {I}}}= 0$$\end{document} d x o / d I = 0 if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H) = 0$$\end{document} det ( H ) = 0 . We note that the entries in H are linearized couplings and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) is a homogeneous polynomial of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G . Specifically, we prove that each factor corresponds to a subnetwork of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det (H)$$\end{document} det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif). Homeostasis refers to a phenomenon whereby the output x o of a system is approximately constant on variation of an input I . Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs G with a distinguished input node ι , a different distinguished output node o , and a number of regulatory nodes ρ 1 , … , ρ n . In these models the input–output map x o ( I ) is defined by a stable equilibrium X 0 at I 0 . Stability implies that there is a stable equilibrium X ( I ) for each I near I 0 and infinitesimal homeostasis occurs at I 0 when ( d x o / d I ) ( I 0 ) = 0 . We show that there is an ( n + 1 ) × ( n + 1 ) homeostasis matrix H ( I ) for which d x o / d I = 0 if and only if det ( H ) = 0 . We note that the entries in H are linearized couplings and det ( H ) is a homogeneous polynomial of degree n + 1 in these entries. We use combinatorial matrix theory to factor the polynomial det ( H ) and thereby determine a menu of different types of possible homeostasis associated with each digraph G . Specifically, we prove that each factor corresponds to a subnetwork of G . The factors divide into two combinatorially defined classes: structural and appendage . Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of det ( H ) without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of det ( H ) . There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif). |
ArticleNumber | 62 |
Author | Wang, Yangyang Golubitsky, Martin Huang, Zhengyuan Antoneli, Fernando |
Author_xml | – sequence: 1 givenname: Yangyang surname: Wang fullname: Wang, Yangyang organization: Department of Mathematics, The University of Iowa – sequence: 2 givenname: Zhengyuan surname: Huang fullname: Huang, Zhengyuan organization: The Ohio State University – sequence: 3 givenname: Fernando surname: Antoneli fullname: Antoneli, Fernando organization: Escola Paulista de Medicina, Universidade Federal de São Paulo – sequence: 4 givenname: Martin orcidid: 0000-0002-6176-8756 surname: Golubitsky fullname: Golubitsky, Martin email: golubitsky.4@osu.edu organization: Department of Mathematics, The Ohio State University |
BookMark | eNp9kU1OHDEQha0IFAaSC2TVEhs2TVy22z8bJIT4iYSUDVlbPd3lmZ702IPtBmWXO3BDThJPBgWRBZIlW6rvvaryOyR7Pngk5AvQU6BUfU2UMt3UlEFNQYKo4QOZgeCsBgFyj8wop7yWGtgBOUxpRSmoxsBHcsBFEXGjZ-TybolVynHq8hSxCq4avBv8kDEN63aslmGNIeU2DalUytlM-fn3U5hyeVQe82OIP9Mnsu_aMeHnl_uI_Li6vLu4qW-_X3-7OL-tO9FAro1zhqIrzeeibxxIw8VcoZOq0ZqicEbOlTKy74TrXSMMst5o6FkrDVBEfkTOdr6bab7GvkOfYzvaTSyzxl82tIN9W_HD0i7Cg9XbbbUqBicvBjHcT5iyXQ-pw3FsPYYpWdZwYMC0gYIe_4euwhR9WW9LUSaVUaJQbEd1MaQU0f0bBqjdpmR3Kdny4fZvSnZrzXeiVGC_wPhq_Y7qDyXpl2g |
CitedBy_id | crossref_primary_10_1007_s00285_024_02117_5 crossref_primary_10_3389_fphys_2023_1234214 crossref_primary_10_1007_s12038_022_00293_4 crossref_primary_10_1073_pnas_2207802119 crossref_primary_10_1007_s11538_024_01318_9 crossref_primary_10_1007_s00285_022_01724_4 crossref_primary_10_1007_s00285_022_01727_1 crossref_primary_10_1007_s00332_022_09793_x crossref_primary_10_1016_j_mbs_2023_108984 crossref_primary_10_1371_journal_pcbi_1009769 crossref_primary_10_1007_s00285_022_01795_3 |
Cites_doi | 10.1074/jbc.M410818200 10.1016/j.jtbi.2016.06.036 10.1016/j.cell.2009.06.013 10.1016/j.jtbi.2018.02.026 10.1038/s41586-019-1321-1 10.1038/s41467-018-04151-6 10.1016/0024-3795(77)90070-2 10.1186/s12915-015-0189-2 10.1016/j.cels.2016.02.006 10.1016/j.bpj.2012.12.015 10.1016/j.cell.2013.08.053 10.1017/CBO9781107325708 10.1093/icb/icu010 10.1007/s00285-016-1024-2 10.1016/j.mbs.2014.08.015 10.1002/bies.200900167 10.1090/S0273-0979-06-01108-6 10.1016/j.arcontrol.2018.04.007 10.1007/s00285-019-01457-x 10.1002/wsbm.1440 10.1186/1742-4682-6-21 10.1098/rsif.2017.0902 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PQEST PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1007/s00285-021-01614-1 |
DatabaseName | Springer_OA刊 CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1432-1416 |
EndPage | 62 |
ExternalDocumentID | 10_1007_s00285_021_01614_1 |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1440386 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: ; grantid: DMS-1440386 |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G8K GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CITATION H13 7TK 7TM 7U9 7XB 8FD 8FK AAYZH AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c451t-9ff90ef402b4d5f16934b7ef675880e4f96b7796dc4fdf549e2d981d2a6910ee3 |
IEDL.DBID | AGYKE |
ISSN | 0303-6812 |
IngestDate | Tue Sep 17 21:22:39 EDT 2024 Fri Oct 25 11:45:19 EDT 2024 Mon Nov 04 02:19:01 EST 2024 Thu Sep 12 16:40:23 EDT 2024 Sat Dec 16 12:09:37 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Biochemical networks Coupled systems 92C42 34C99 94C15 Homeostasis Input–output networks Combinatorial matrix theory 92C40 Perfect adaptation |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-9ff90ef402b4d5f16934b7ef675880e4f96b7796dc4fdf549e2d981d2a6910ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6176-8756 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00285-021-01614-1 |
PMID | 34021398 |
PQID | 2530267974 |
PQPubID | 54026 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139887 proquest_miscellaneous_2531212891 proquest_journals_2530267974 crossref_primary_10_1007_s00285_021_01614_1 springer_journals_10_1007_s00285_021_01614_1 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Brualdi, Cvetkoić (CR6) 2009 Reed, Best, Golubitsky, Stewart, Nijhout (CR22) 2017; 79 Reed, Lieb, Nijhout (CR21) 2010; 32 CR19 Tang, McMillen (CR24) 2016; 408 Brualdi, Ryser (CR7) 1991 CR11 Ferrell (CR8) 2016; 2 Haldane (CR12) 1965 Nijhout, Best, Reed (CR17) 2014; 257 Golubitsky, Stewart (CR10) 2017; 74 Antoneli, Golubitsky, Stewart (CR2) 2018; 445 Araujo, Liota (CR4) 2018; 9 Nijhout, Reed (CR15) 2014; 54 Nijhout, Reed, Budu, Ulrich (CR16) 2004; 279 CR5 Ang, McMillen (CR1) 2013; 104 Aoki, Lillacci, Gupta, Baumschlager, Schweingruber, Khammash (CR3) 2019; 570 Nijhout, Best, Reed (CR18) 2015; 13 Wyatt, Cecco, Czeisler, Dijk (CR26) 1999; 277 Lloyd (CR13) 2013; 154 Ma, Trusina, El-Samad, Lim, Tang (CR14) 2009; 138 CR20 Schneider (CR23) 1977; 18 Golubitsky, Stewart (CR9) 2006; 43 Vecchio, Qian, Murray, Sontag (CR25) 2018; 45 SK Aoki (1614_CR3) 2019; 570 M Golubitsky (1614_CR10) 2017; 74 1614_CR20 DD Vecchio (1614_CR25) 2018; 45 HF Nijhout (1614_CR15) 2014; 54 MC Reed (1614_CR21) 2010; 32 J Ang (1614_CR1) 2013; 104 JBS Haldane (1614_CR12) 1965 AC Lloyd (1614_CR13) 2013; 154 H Schneider (1614_CR23) 1977; 18 ZF Tang (1614_CR24) 2016; 408 M Golubitsky (1614_CR9) 2006; 43 RA Brualdi (1614_CR7) 1991 HF Nijhout (1614_CR18) 2015; 13 F Antoneli (1614_CR2) 2018; 445 JK Wyatt (1614_CR26) 1999; 277 RP Araujo (1614_CR4) 2018; 9 1614_CR11 W Ma (1614_CR14) 2009; 138 HF Nijhout (1614_CR17) 2014; 257 1614_CR19 JE Ferrell (1614_CR8) 2016; 2 RA Brualdi (1614_CR6) 2009 HF Nijhout (1614_CR16) 2004; 279 1614_CR5 M Reed (1614_CR22) 2017; 79 |
References_xml | – volume: 279 start-page: 55008 year: 2004 end-page: 55016 ident: CR16 article-title: A mathematical model of the folate cycle: new insights into folate homeostasis publication-title: J Biol Chem doi: 10.1074/jbc.M410818200 contributor: fullname: Ulrich – volume: 408 start-page: 274 year: 2016 end-page: 289 ident: CR24 article-title: Design principles for the analysis and construction of robustly homeostatic biological networks publication-title: J Theor Biol doi: 10.1016/j.jtbi.2016.06.036 contributor: fullname: McMillen – year: 2009 ident: CR6 publication-title: A combinatorial approach to matrix theory and its applications contributor: fullname: Cvetkoić – volume: 138 start-page: 760 year: 2009 end-page: 773 ident: CR14 article-title: Defining network topologies that can achieve biochemical adaptation publication-title: Cell doi: 10.1016/j.cell.2009.06.013 contributor: fullname: Tang – volume: 445 start-page: 103 year: 2018 end-page: 109 ident: CR2 article-title: Homeostasis in a feed forward loop gene regulatory network motif publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.02.026 contributor: fullname: Stewart – volume: 570 start-page: 533 year: 2019 end-page: 537 ident: CR3 article-title: A universal biomolecular integral feedback controller for robust perfect adaptation publication-title: Nature doi: 10.1038/s41586-019-1321-1 contributor: fullname: Khammash – volume: 9 start-page: 1757 year: 2018 ident: CR4 article-title: The topological requirements for robust perfect adaptation in networks of any size publication-title: Nat Commun doi: 10.1038/s41467-018-04151-6 contributor: fullname: Liota – volume: 18 start-page: 139 year: 1977 end-page: 162 ident: CR23 article-title: The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius publication-title: König and Markov Linear Algebra Appl doi: 10.1016/0024-3795(77)90070-2 contributor: fullname: Schneider – volume: 79 start-page: 1 issue: 9 year: 2017 end-page: 24 ident: CR22 article-title: Analysis of homeostatic mechanisms in biochemical networks publication-title: Bull Math Biol contributor: fullname: Nijhout – volume: 13 start-page: 79 year: 2015 ident: CR18 article-title: Using mathematical models to understand metabolism, genes and disease publication-title: BMC Biol doi: 10.1186/s12915-015-0189-2 contributor: fullname: Reed – volume: 2 start-page: 62 year: 2016 end-page: 67 ident: CR8 article-title: Perfect and near perfect adaptation in cell signaling publication-title: Cell Syst doi: 10.1016/j.cels.2016.02.006 contributor: fullname: Ferrell – ident: CR19 – volume: 104 start-page: 505 issue: 2 year: 2013 end-page: 515 ident: CR1 article-title: Physical constraints on biological integral control design for homeostasis and sensory adaptation publication-title: Biophys J doi: 10.1016/j.bpj.2012.12.015 contributor: fullname: McMillen – year: 1965 ident: CR12 publication-title: Enzymes contributor: fullname: Haldane – volume: 277 start-page: 1152 year: 1999 end-page: 1163 ident: CR26 article-title: Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day publication-title: Am J Physiol contributor: fullname: Dijk – volume: 154 start-page: 1194 year: 2013 ident: CR13 article-title: The regulation of cell size publication-title: Cell doi: 10.1016/j.cell.2013.08.053 contributor: fullname: Lloyd – year: 1991 ident: CR7 publication-title: Combinatorial matrix theory doi: 10.1017/CBO9781107325708 contributor: fullname: Ryser – ident: CR11 – volume: 54 start-page: 264 issue: 2 year: 2014 end-page: 75 ident: CR15 article-title: Homeostasis and dynamic stability of the phenotype link robustness and plasticity publication-title: Integr Comput Biol doi: 10.1093/icb/icu010 contributor: fullname: Reed – volume: 74 start-page: 387 year: 2017 end-page: 407 ident: CR10 article-title: Homeostasis, singularities and networks publication-title: J Math Biol doi: 10.1007/s00285-016-1024-2 contributor: fullname: Stewart – ident: CR5 – volume: 257 start-page: 104 year: 2014 end-page: 110 ident: CR17 article-title: Escape from homeostasis publication-title: Math Biosci doi: 10.1016/j.mbs.2014.08.015 contributor: fullname: Reed – volume: 32 start-page: 422 issue: 5 year: 2010 end-page: 429 ident: CR21 article-title: The biological significance of substrate inhibition: a mechanism with diverse functions publication-title: BioEssays doi: 10.1002/bies.200900167 contributor: fullname: Nijhout – volume: 43 start-page: 305 issue: 3 year: 2006 end-page: 364 ident: CR9 article-title: Nonlinear dynamics of networks: the groupoid formalism publication-title: Bull Am Math Soc doi: 10.1090/S0273-0979-06-01108-6 contributor: fullname: Stewart – ident: CR20 – volume: 45 start-page: 5 year: 2018 end-page: 17 ident: CR25 article-title: Future systems and control research in synthetic biology publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2018.04.007 contributor: fullname: Sontag – ident: 1614_CR11 doi: 10.1007/s00285-019-01457-x – ident: 1614_CR19 doi: 10.1002/wsbm.1440 – volume: 13 start-page: 79 year: 2015 ident: 1614_CR18 publication-title: BMC Biol doi: 10.1186/s12915-015-0189-2 contributor: fullname: HF Nijhout – volume: 79 start-page: 1 issue: 9 year: 2017 ident: 1614_CR22 publication-title: Bull Math Biol contributor: fullname: M Reed – volume: 18 start-page: 139 year: 1977 ident: 1614_CR23 publication-title: König and Markov Linear Algebra Appl doi: 10.1016/0024-3795(77)90070-2 contributor: fullname: H Schneider – volume: 104 start-page: 505 issue: 2 year: 2013 ident: 1614_CR1 publication-title: Biophys J doi: 10.1016/j.bpj.2012.12.015 contributor: fullname: J Ang – volume-title: Combinatorial matrix theory year: 1991 ident: 1614_CR7 doi: 10.1017/CBO9781107325708 contributor: fullname: RA Brualdi – ident: 1614_CR5 doi: 10.1186/1742-4682-6-21 – volume: 45 start-page: 5 year: 2018 ident: 1614_CR25 publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2018.04.007 contributor: fullname: DD Vecchio – volume: 9 start-page: 1757 year: 2018 ident: 1614_CR4 publication-title: Nat Commun doi: 10.1038/s41467-018-04151-6 contributor: fullname: RP Araujo – volume-title: A combinatorial approach to matrix theory and its applications year: 2009 ident: 1614_CR6 contributor: fullname: RA Brualdi – volume: 408 start-page: 274 year: 2016 ident: 1614_CR24 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2016.06.036 contributor: fullname: ZF Tang – ident: 1614_CR20 doi: 10.1098/rsif.2017.0902 – volume: 154 start-page: 1194 year: 2013 ident: 1614_CR13 publication-title: Cell doi: 10.1016/j.cell.2013.08.053 contributor: fullname: AC Lloyd – volume: 138 start-page: 760 year: 2009 ident: 1614_CR14 publication-title: Cell doi: 10.1016/j.cell.2009.06.013 contributor: fullname: W Ma – volume: 570 start-page: 533 year: 2019 ident: 1614_CR3 publication-title: Nature doi: 10.1038/s41586-019-1321-1 contributor: fullname: SK Aoki – volume-title: Enzymes year: 1965 ident: 1614_CR12 contributor: fullname: JBS Haldane – volume: 32 start-page: 422 issue: 5 year: 2010 ident: 1614_CR21 publication-title: BioEssays doi: 10.1002/bies.200900167 contributor: fullname: MC Reed – volume: 43 start-page: 305 issue: 3 year: 2006 ident: 1614_CR9 publication-title: Bull Am Math Soc doi: 10.1090/S0273-0979-06-01108-6 contributor: fullname: M Golubitsky – volume: 54 start-page: 264 issue: 2 year: 2014 ident: 1614_CR15 publication-title: Integr Comput Biol doi: 10.1093/icb/icu010 contributor: fullname: HF Nijhout – volume: 257 start-page: 104 year: 2014 ident: 1614_CR17 publication-title: Math Biosci doi: 10.1016/j.mbs.2014.08.015 contributor: fullname: HF Nijhout – volume: 74 start-page: 387 year: 2017 ident: 1614_CR10 publication-title: J Math Biol doi: 10.1007/s00285-016-1024-2 contributor: fullname: M Golubitsky – volume: 277 start-page: 1152 year: 1999 ident: 1614_CR26 publication-title: Am J Physiol contributor: fullname: JK Wyatt – volume: 279 start-page: 55008 year: 2004 ident: 1614_CR16 publication-title: J Biol Chem doi: 10.1074/jbc.M410818200 contributor: fullname: HF Nijhout – volume: 2 start-page: 62 year: 2016 ident: 1614_CR8 publication-title: Cell Syst doi: 10.1016/j.cels.2016.02.006 contributor: fullname: JE Ferrell – volume: 445 start-page: 103 year: 2018 ident: 1614_CR2 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.02.026 contributor: fullname: F Antoneli |
SSID | ssj0017591 |
Score | 2.4225917 |
Snippet | Homeostasis refers to a phenomenon whereby the output
x
o
of a system is approximately constant on variation of an input
I
. Homeostasis occurs frequently in... Abstract Homeostasis refers to a phenomenon whereby the output $$x_o$$ x o of a system is approximately constant on variation of an input $${{\mathcal {I}}}$$... Homeostasis refers to a phenomenon whereby the output xo of a system is approximately constant on variation of an input I. Homeostasis occurs frequently in... Homeostasis refers to a phenomenon whereby the output \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 62 |
SubjectTerms | Algorithms Applications of Mathematics Combinatorial analysis Couplings Differential equations Feedback Feedback loops Graph theory Homeostasis Mathematical analysis Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Matrix methods Matrix theory Negative feedback Networks Polynomials |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60IngRnxitEsGbLjbpJpucRKSlCHqy0FvIY5fm0KSa5ODN_-A_9Jc4s3mUFhRyCGyyu8zM7nyzOw-AG7S3bIU4ngnkMON-pFgoucNEGHGlUB9Ji-KdX17dyZQ_z5xZc-BWNG6V7Z6oN-okj-mM_N6m8jauQPj7sHxnVDWKblebEhrbsGPZA5dcusSsM7hQM9YV83CbZpRnqwma0aFzZGxQbDIZ06iimLWumFZoc9NXcuPCVOuh8QHsNwDSfKw5fghbMjuC3bqk5OcxjJDvZp0UtvqQZq5MFKGUgGWRLvC_eb6QOSLCIi2wBZ9lVf58fedViS9mVjuFFycwHY_eniasKZXAYu5YJfOV8gdSoTEY8cRRlGGFR0IqMge8geTKdyMhfDeJuUoU2oTSTnyEqnboIl6QcngKvSzP5BmYKpGJZ4XYGCq0nZ3QRz2HqzjGnu2hMzTgtqVTsKwzYgRd7mNN1QCpGmiqBpYB_ZaUQbM6imDFSwOuu2aUa7qsCDOZV_obC9Wq52MXYo0F3aiUGXu9JUvnOkO2h7gWd08D7lpmrQb_e67n_8_1AvZsLS90BNOHHrJSXiIiKaMrLXa_cj_fcg priority: 102 providerName: ProQuest |
Title | The structure of infinitesimal homeostasis in input–output networks |
URI | https://link.springer.com/article/10.1007/s00285-021-01614-1 https://www.proquest.com/docview/2530267974 https://search.proquest.com/docview/2531212891 https://pubmed.ncbi.nlm.nih.gov/PMC8139887 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD54QdAHdd1drJeSBd_cEZNOMsljW1rFxbKIhe5TSJoZLIuJmORBn_wP_kN_id_kVurlQShp4YRJO-fMnO_rzPmG6Ah8y1LA8UzAw4x7oWKB5DYTQciVQj6Spq53vhw552N-MbEn8zruYrN7vSJZTNRNrZtmB7qYWLNf5BQGyrNaFZ6uds_-_Rk0iwfCLg_Kw-zMtLxWVSvzcSuL-WgOMt9ukXyzTlqkn-EWXddFPOWuk_8neRaeTB_fazp-5Zdt02YFR41uGT_faEnGO7RWHlD5sEMbl42qa_qdBogpoxScze-lkSgD4TnToDWd3aKVm-RWJkCb6SyFBa-7PHt5ek7yDB-MuNxwnv6g8XBw3T9n1TEMbMptM2OeUt6pVCCaIY9spdVbeCik0lTDPZVceU4ohOdEU64iBb4prcgDDLYCB1hEys5PWomTWO6SoSIZuWYAY6DAy-3AQw7FDDFFy1bH7rTouHaGf1eqbfiNrnLRTT66yS-6yTdbdFD7y69GXupb-hgkR4AmtehXY8aY0QshQSyTvLjHROS4HpoQC35unqpVtxct8eymUN92gZkxM7fod-3N-cM__657X7t9n9atIiD03z0HtALXykOgnyxs07KYCFzd4VkbkT_s9UbtagTgvTcY_b2Cte_0cR1b3VeBSgOB |
link.rule.ids | 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41093,41132,41535,42162,42201,42604,43322,43612,43817,51588,52123,52246,74073,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8RSFAUXiBhFrm75OCKGNAdtOm7Rb1Uei9bB20PbAjf_AP-SX4KSPaZNA6qGS2ySyE_tzEtsAN-hv6RxxPLFRwoS6ASc-oyax_YByjvaIaSLeeTiy-hP6OjWn1YZbVl2rrHWiVNRRGoo98ntdlLexbIS_D4t3IqpGidPVqoTGJmxRA221iBTvPTenCLZZVsxDNU1Enq0qaEaGzglnQ8QmC2caTRTRVg3TEm2u35VcOzCVdqi3D3sVgFQfS4kfwAZLDmG7LCn5eQRdlLtaJoUtPpiachWnUCyAZRbP8b9ZOmcpIsIszpCCz6LIf76-0yLHFzUpL4VnxzDpdcdPfVKVSiAhNbWcuJy7HcbRGQxoZHKRYYUGNuPCHXA6jHLXCmzbtaKQ8oijT8j0yEWoqvsW4gXGjBNoJWnCTkHlEYsczUeiz9F3Nn0X7Ryu4hBb1g3TUOC25pO3KDNieE3uY8lVD7nqSa56mgLtmpVetToybylLBa4bMs5rcVjhJywt5DcamlXHxSbsFRE0vYrM2KuUJJ7JDNkO4lrUngrc1cJadv73WM_-H-sV7PTHw4E3eBm9ncOuLueO2I5pQwvFyi4QneTBpZyCvwkt4lk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4gL4ikKA4rEDaKtbdq0J8Rj03hNE2LSblW7JtoOawddD9z4D_xDfglOm3YaEkg9VEqbRLYTf44dG-Ac7S1TII4nDDlMqBcKEnBqExaEVAjUR9yQ952fe053QB-G9lDFP6UqrLLcE_ONOkpG8oy8acryNg5D-NsUKiyif9e5mr0RWUFKelpVOY1VqDPqWK0a1G_avf5L5VNgdlE_DzdtIrNuqSs0-UU6aXrIm8rStEaFRYxlNbXAnr8jJ3-5T3Ot1NmCTQUn9euC_9uwwuMdWCsKTH7sQhulQC9SxGbvXE-EjgI1kTAznUzxv3Ey5Qniw3SSYgs-s2z-_fmVZHN80eMiRDzdg0Gn_XrbJapwAhlR25gTTwivxQWahiGNbCHzrdCQcSGNA7fFqfCckDHPiUZURAItRG5GHgJXM3AQPXBu7UMtTmJ-ALqIeOQaATYGAi1pO_BQ6-GaHmHPpmVbGlyUdPJnRX4Mv8qEnFPVR6r6OVV9Q4NGSUpfrZXUX3BWg7OqGaVcui6CmCdZ_o2BStb1sAu2xIJqVJkne7klnozzfNkuolzcSzW4LJm1GPzvuR7-P9dTWEf585_ue49HsGHmoiPPZhpQQ67yY4Qq8_BEyeAPelbn9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structure+of+infinitesimal+homeostasis+in+input%E2%80%93output+networks&rft.jtitle=Journal+of+mathematical+biology&rft.au=Wang%2C+Yangyang&rft.au=Huang%2C+Zhengyuan&rft.au=Antoneli%2C+Fernando&rft.au=Golubitsky%2C+Martin&rft.date=2021-06-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=82&rft.issue=7&rft_id=info:doi/10.1007%2Fs00285-021-01614-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00285_021_01614_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |