Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions

Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chines...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 187; pp. 896 - 906
Main Authors Jia, Dongyu, Yang, Liwei, Lv, Tao, Liu, Weiping, Gao, Xiaoqing, Zhou, Jiaxin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chinese cities, representing different geoclimatic and pollutant conditions. According to the results; regarding the nRMSE, nMAE, nMBE and R values, coastal locations (such as Shanghai, Guangzhou, etc.) obtained higher values than inland locations (such as Lanzhou and Wuhan). Moreover, the SVM (support vector machine) highly outperformed the other models in all locations, regardless of whether the study area was arid, semiarid, semihumid or humid, followed by GLMNET (generalized linear modeling) and RF (random forest). In addition, when assessing the SVM in different locations under different climatic and pollution conditions, it was indicated that the accuracy of solar radiation prediction was closely related to the weather and pollution condition levels. In general, the global solar radiation prediction error was in line with the weather condition levels. The prediction error increased as the weather level increased. However, the relationship between the pollution condition levels and the global solar radiation prediction showed a non-linear relationship. Moreover, for the prediction results of diffuse solar radiation, its variation law with different weather and pollution condition levels was almost different from that of global solar radiation. The maximum high error occurrence probability of global solar radiation and diffuse solar radiation appeared at pollution levels 5 and 1, respectively. Overall, the SVM model demonstrated its reliability in radiation prediction under slight pollution and stable weather conditions. This is crucial in locations with scarce meteorological data and can be used to optimize the selection of geographical locations for photovoltaic power station construction.
AbstractList Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chinese cities, representing different geoclimatic and pollutant conditions. According to the results; regarding the nRMSE, nMAE, nMBE and R values, coastal locations (such as Shanghai, Guangzhou, etc.) obtained higher values than inland locations (such as Lanzhou and Wuhan). Moreover, the SVM (support vector machine) highly outperformed the other models in all locations, regardless of whether the study area was arid, semiarid, semihumid or humid, followed by GLMNET (generalized linear modeling) and RF (random forest). In addition, when assessing the SVM in different locations under different climatic and pollution conditions, it was indicated that the accuracy of solar radiation prediction was closely related to the weather and pollution condition levels. In general, the global solar radiation prediction error was in line with the weather condition levels. The prediction error increased as the weather level increased. However, the relationship between the pollution condition levels and the global solar radiation prediction showed a non-linear relationship. Moreover, for the prediction results of diffuse solar radiation, its variation law with different weather and pollution condition levels was almost different from that of global solar radiation. The maximum high error occurrence probability of global solar radiation and diffuse solar radiation appeared at pollution levels 5 and 1, respectively. Overall, the SVM model demonstrated its reliability in radiation prediction under slight pollution and stable weather conditions. This is crucial in locations with scarce meteorological data and can be used to optimize the selection of geographical locations for photovoltaic power station construction.
Author Zhou, Jiaxin
Gao, Xiaoqing
Jia, Dongyu
Lv, Tao
Yang, Liwei
Liu, Weiping
Author_xml – sequence: 1
  givenname: Dongyu
  orcidid: 0000-0002-3919-5656
  surname: Jia
  fullname: Jia, Dongyu
  email: jdy890719@lzb.ac.cn
  organization: College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
– sequence: 2
  givenname: Liwei
  orcidid: 0000-0002-8905-8043
  surname: Yang
  fullname: Yang, Liwei
  organization: Key Laboratory of Desert and Desertification/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
– sequence: 3
  givenname: Tao
  surname: Lv
  fullname: Lv, Tao
  organization: Huangshan Meteorological Office, Huangshan, 245800, China
– sequence: 4
  givenname: Weiping
  surname: Liu
  fullname: Liu, Weiping
  organization: Lanzhou Regional Climate Center, Lanzhou, 730000, China
– sequence: 5
  givenname: Xiaoqing
  orcidid: 0000-0003-0806-2014
  surname: Gao
  fullname: Gao, Xiaoqing
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
– sequence: 6
  givenname: Jiaxin
  orcidid: 0000-0002-5147-9280
  surname: Zhou
  fullname: Zhou, Jiaxin
  organization: College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
BookMark eNqFkM2OVCEQhYkZE3tG38AFSze3p7g_XHBhYiYzajKJG10TGooZOjS0wB0zr-BTS_d15UJDJVSqzjmpfJfkIqaIhLxlsGXA-PV-mzG2t-2h77fQCvoXZMPELDvgor8gG5AcOjYK9opclrIHYJOYxw35dfukw6KrT5EmRw_aPPqINKDO0ccHekgWQ6EuZXrMaL2pp6nVPjzTh5B2OlAdLbXeuaUgLSnoTLO2fo1cosV83mI7sdKfqOsj5utjCmE5K0yK1p-68pq8dDoUfPPnvyLf726_3Xzu7r9--nLz8b4z48RqJ1GAk-MO553s-TxOZnCsNRwmmAWXeoBBCmAD11rMDgc-z8ZxO_FhktOwG67IuzX3mNOPBUtVB18MhqAjpqWono9CcMZBNum4Sk1OpWR06pj9QednxUCd0Ku9WtGrE3oFraBvtvd_2YyvZyA1N3L_M39YzY07PnnMqhiP0TT4GU1VNvl_B_wGzVqmhg
CitedBy_id crossref_primary_10_1038_s41598_023_35476_y
crossref_primary_10_3390_rs14153695
crossref_primary_10_3390_rs15092245
crossref_primary_10_3390_atmos15040475
crossref_primary_10_1007_s00521_023_08342_1
crossref_primary_10_1007_s40808_024_02098_w
crossref_primary_10_1016_j_isci_2024_110871
crossref_primary_10_1016_j_jclepro_2023_139690
crossref_primary_10_1016_j_renene_2024_120565
crossref_primary_10_1007_s10661_023_11143_7
crossref_primary_10_1016_j_renene_2023_119735
crossref_primary_10_3389_fenvs_2023_1194918
crossref_primary_10_1016_j_scs_2024_106057
crossref_primary_10_1016_j_renene_2023_119671
crossref_primary_10_1016_j_aej_2024_08_037
crossref_primary_10_1016_j_ijhydene_2023_01_068
crossref_primary_10_1016_j_apenergy_2023_120648
crossref_primary_10_1016_j_cles_2023_100101
crossref_primary_10_3390_su15010774
crossref_primary_10_1016_j_apenergy_2022_119518
crossref_primary_10_1080_15325008_2024_2310771
crossref_primary_10_21285_1814_3520_2023_1_109_122
crossref_primary_10_1016_j_jastp_2025_106419
crossref_primary_10_1016_j_jclepro_2023_139040
crossref_primary_10_1016_j_scs_2022_104101
crossref_primary_10_1016_j_enconman_2023_117455
crossref_primary_10_1038_s41597_024_03609_1
crossref_primary_10_3390_atmos15121436
crossref_primary_10_1016_j_ijleo_2023_170956
crossref_primary_10_1016_j_jastp_2023_106022
crossref_primary_10_1016_j_enbenv_2023_08_001
crossref_primary_10_11648_j_ajcst_20240702_14
crossref_primary_10_3390_atmos14121825
Cites_doi 10.1016/j.enconman.2013.08.037
10.1016/j.enconman.2015.07.083
10.1016/j.enconman.2017.11.085
10.1080/01431161.2017.1368098
10.1016/j.rser.2015.09.028
10.1016/j.apenergy.2011.10.032
10.1016/j.jhydrol.2017.06.020
10.1016/j.enconman.2018.02.087
10.1007/s11630-020-1350-y
10.1016/j.solener.2013.12.006
10.1016/j.rser.2018.06.029
10.1016/j.jhydrol.2015.12.014
10.1016/j.rser.2017.02.057
10.1016/j.apenergy.2021.117211
10.1016/j.renene.2020.07.146
10.1016/j.enconman.2016.04.051
10.3390/rs13040790
10.1016/j.jclepro.2017.09.271
10.1016/j.renene.2010.06.024
10.1016/j.renene.2016.12.095
10.1016/j.renene.2018.08.044
10.1016/j.jclepro.2019.119264
10.1007/BF00058655
10.1016/j.rser.2020.109967
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2022.02.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 906
ExternalDocumentID 10_1016_j_renene_2022_02_002
S0960148122001410
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c451t-9e80f94be7b926745c3f126760507869a303980136aa87fe3677cf6d5635953b3
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 16:07:49 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 03:20:28 EDT 2025
Fri Feb 23 02:39:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diffuse solar radiation
Global solar radiation
Machine learning
Prediction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-9e80f94be7b926745c3f126760507869a303980136aa87fe3677cf6d5635953b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5147-9280
0000-0002-8905-8043
0000-0003-0806-2014
0000-0002-3919-5656
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960148122001410
PQID 2648861609
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2648861609
crossref_primary_10_1016_j_renene_2022_02_002
crossref_citationtrail_10_1016_j_renene_2022_02_002
elsevier_sciencedirect_doi_10_1016_j_renene_2022_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Zeng, Han (bib11) 2013; 76
Fan, Wang, Zhang, Ma, Wu (bib32) 2020; 248
Yu, Yang, Chen, Kuo, Tseng (bib20) 2017; 552
Nazhad, Lotfinejad, Danesh, ul Amin, Shamshirband (bib26) 2017; 38
Zamo, Mestre, Arbogast, Pannekoucke (bib21) 2014; 105
(bib17) 2021
Friedman, Hastie, Tibshirani (bib24) 2010; 33
Sun, Gui, Yan, Liu, Liao, Zhu (bib10) 2016; 119
Fan, Wu, Zhang, Cai, Wang, Lu (bib14) 2018; 94
Hastie (bib25) 2016
Fan, Wang, Wu, Zhou, Zhang, Yu (bib30) 2018; 164
(bib16) 2021
C, G, S, Nivet, C, F, Fouilloy (bib18) 2017; 105
Zhang, Shen, Yang, Wei, Lv, Sun (bib15) 2020; 161
He, Liu, Xu, Zhang, Chen, Sun (bib5) 2020
Ramli, Twaha, Al-Turki (bib27) 2015; 105
Zhang, Shen, Wei, Wang, Lv, Sun (bib1) 2020; 29
Furlan, de Oliveira, Soares, Codato, Escobedo (bib28) 2012; 92
Jia, Hua, Wang, Guo, Guo, Wu (bib2) 2021; 13
Kisi, Parmar (bib9) 2016; 534
Jamil, Akhtar (bib8) 2017; 77
Bi, Shao, Song, Yang, Luo (bib3) 2018; 171
Benali, Notton, Fouilloy, Voyant, Dizene (bib31) 2019; 132
Fan, Wu, Zhang, Cai, Wang, Lu (bib7) 2018; 94
Chen, Liu, Wu, Xie (bib12) 2011; 36
Fan, Wang, Wu, Zhang, Bai, Lu (bib6) 2018; 156
Bellido-Jiménez, Estévez Gualda, García-Marín (bib29) 2021; 298
Mohammadi, Shamshirband, Petkovic, Khorasanizadeh (bib13) 2016; 53
(bib19) 2016
Breiman (bib22) 1996; 24
Feng, Gong, Zhang, Jiang, Zhao, Cui (bib23) 2019
Yang, Campana, Yan (bib4) 2020; 131
Mohammadi (10.1016/j.renene.2022.02.002_bib13) 2016; 53
He (10.1016/j.renene.2022.02.002_bib5) 2020
Ramli (10.1016/j.renene.2022.02.002_bib27) 2015; 105
Breiman (10.1016/j.renene.2022.02.002_bib22) 1996; 24
Chen (10.1016/j.renene.2022.02.002_bib12) 2011; 36
Fan (10.1016/j.renene.2022.02.002_bib32) 2020; 248
Friedman (10.1016/j.renene.2022.02.002_bib24) 2010; 33
Zhang (10.1016/j.renene.2022.02.002_bib1) 2020; 29
Zamo (10.1016/j.renene.2022.02.002_bib21) 2014; 105
Nazhad (10.1016/j.renene.2022.02.002_bib26) 2017; 38
Jia (10.1016/j.renene.2022.02.002_bib2) 2021; 13
Fan (10.1016/j.renene.2022.02.002_bib7) 2018; 94
Kisi (10.1016/j.renene.2022.02.002_bib9) 2016; 534
Zhang (10.1016/j.renene.2022.02.002_bib15) 2020; 161
Hastie (10.1016/j.renene.2022.02.002_bib25) 2016
Benali (10.1016/j.renene.2022.02.002_bib31) 2019; 132
Yang (10.1016/j.renene.2022.02.002_bib4) 2020; 131
(10.1016/j.renene.2022.02.002_bib19) 2016
Fan (10.1016/j.renene.2022.02.002_bib6) 2018; 156
C (10.1016/j.renene.2022.02.002_bib18) 2017; 105
Fan (10.1016/j.renene.2022.02.002_bib14) 2018; 94
Feng (10.1016/j.renene.2022.02.002_bib23) 2019
Bi (10.1016/j.renene.2022.02.002_bib3) 2018; 171
Zhao (10.1016/j.renene.2022.02.002_bib11) 2013; 76
Jamil (10.1016/j.renene.2022.02.002_bib8) 2017; 77
Yu (10.1016/j.renene.2022.02.002_bib20) 2017; 552
Bellido-Jiménez (10.1016/j.renene.2022.02.002_bib29) 2021; 298
Sun (10.1016/j.renene.2022.02.002_bib10) 2016; 119
Furlan (10.1016/j.renene.2022.02.002_bib28) 2012; 92
Fan (10.1016/j.renene.2022.02.002_bib30) 2018; 164
References_xml – volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib22
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib24
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Software
– volume: 105
  start-page: 442
  year: 2015
  end-page: 452
  ident: bib27
  article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study
  publication-title: Energy Convers. Manag.
– volume: 105
  start-page: 569
  year: 2017
  end-page: 582
  ident: bib18
  article-title: Machine learning methods for solar radiation forecasting: a review
  publication-title: Renew. Energy
– volume: 119
  start-page: 121
  year: 2016
  end-page: 129
  ident: bib10
  article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index
  publication-title: Energy Convers. Manag.
– start-page: 198
  year: 2019
  ident: bib23
  article-title: Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation
  publication-title: Energy Convers. Manag.
– volume: 76
  start-page: 846
  year: 2013
  end-page: 851
  ident: bib11
  article-title: Solar radiation estimation using sunshine hour and air pollution index in China
  publication-title: Energy Convers. Manag.
– volume: 53
  start-page: 1570
  year: 2016
  end-page: 1579
  ident: bib13
  article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: city of Kerman, Iran
  publication-title: Renew. Sustain. Energy Rev.
– volume: 131
  year: 2020
  ident: bib4
  article-title: Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities
  publication-title: Renew. Sustain. Energy Rev.
– volume: 29
  start-page: 1410
  year: 2020
  end-page: 1430
  ident: bib1
  article-title: A review on recent development of cooling technologies for photovoltaic modules
  publication-title: J. Therm. Sci.
– year: 2016
  ident: bib25
  article-title: An Introduction to Glmnet
– volume: 161
  start-page: 570
  year: 2020
  end-page: 578
  ident: bib15
  article-title: An investigation on the attenuation effect of air pollution on regional solar radiation
  publication-title: Renew. Energy
– volume: 156
  start-page: 618
  year: 2018
  end-page: 625
  ident: bib6
  article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China
  publication-title: Energy Convers. Manag.
– volume: 105
  start-page: 792
  year: 2014
  end-page: 803
  ident: bib21
  article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production
  publication-title: Sol. Energy
– volume: 298
  year: 2021
  ident: bib29
  article-title: Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions
  publication-title: Appl. Energy
– year: 2021
  ident: bib16
– volume: 171
  start-page: 867
  year: 2018
  end-page: 876
  ident: bib3
  article-title: A performance evaluation of China's coal-fired power generation with pollutant mitigation options
  publication-title: J. Clean. Prod.
– volume: 164
  start-page: 102
  year: 2018
  end-page: 111
  ident: bib30
  article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China
  publication-title: Energy Convers. Manag.
– volume: 94
  start-page: 732
  year: 2018
  end-page: 747
  ident: bib14
  article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature
  publication-title: Renew. Sustain. Energy Rev.
– year: 2021
  ident: bib17
– year: 2016
  ident: bib19
  publication-title: n.d. The Nature of Statistical Learning Theory | Vladimir Vapnik | Springer
– volume: 92
  start-page: 240
  year: 2012
  end-page: 254
  ident: bib28
  article-title: The role of clouds in improving the regression model for hourly values of diffuse solar radiation
  publication-title: Appl. Energy
– volume: 248
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib32
  article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data
  publication-title: J. Clean. Prod.
– volume: 534
  start-page: 104
  year: 2016
  end-page: 112
  ident: bib9
  article-title: Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution
  publication-title: J. Hydrol.
– volume: 38
  start-page: 6894
  year: 2017
  end-page: 6909
  ident: bib26
  article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran
  publication-title: Int. J. Rem. Sens.
– volume: 94
  start-page: 732
  year: 2018
  end-page: 747
  ident: bib7
  article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature
  publication-title: Renew. Sustain. Energy Rev.
– volume: 77
  start-page: 1326
  year: 2017
  end-page: 1342
  ident: bib8
  article-title: Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: case study for humid-subtropical climatic region of India
  publication-title: Renew. Sustain. Energy Rev.
– volume: 552
  start-page: 92
  year: 2017
  end-page: 104
  ident: bib20
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J. Hydrol.
– volume: 13
  year: 2021
  ident: bib2
  article-title: Estimations of global horizontal irradiance and direct normal irradiance by using Fengyun-4A satellite data in northern China
  publication-title: Rem. Sens.
– volume: 36
  start-page: 413
  year: 2011
  end-page: 420
  ident: bib12
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study
  publication-title: Renew. Energy
– volume: 132
  start-page: 871
  year: 2019
  end-page: 884
  ident: bib31
  article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components
  publication-title: Renew. Energy
– start-page: 220
  year: 2020
  ident: bib5
  article-title: Improving Solar Radiation Estimation in China Based on Regional Optimal Combination of Meteorological Factors with Machine Learning Methods
– volume: 76
  start-page: 846
  year: 2013
  ident: 10.1016/j.renene.2022.02.002_bib11
  article-title: Solar radiation estimation using sunshine hour and air pollution index in China
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.08.037
– volume: 105
  start-page: 442
  year: 2015
  ident: 10.1016/j.renene.2022.02.002_bib27
  article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.07.083
– volume: 156
  start-page: 618
  year: 2018
  ident: 10.1016/j.renene.2022.02.002_bib6
  article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.085
– year: 2016
  ident: 10.1016/j.renene.2022.02.002_bib19
– volume: 38
  start-page: 6894
  year: 2017
  ident: 10.1016/j.renene.2022.02.002_bib26
  article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2017.1368098
– start-page: 220
  year: 2020
  ident: 10.1016/j.renene.2022.02.002_bib5
– volume: 53
  start-page: 1570
  year: 2016
  ident: 10.1016/j.renene.2022.02.002_bib13
  article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: city of Kerman, Iran
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.028
– start-page: 198
  year: 2019
  ident: 10.1016/j.renene.2022.02.002_bib23
  article-title: Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.renene.2022.02.002_bib24
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Software
– volume: 92
  start-page: 240
  year: 2012
  ident: 10.1016/j.renene.2022.02.002_bib28
  article-title: The role of clouds in improving the regression model for hourly values of diffuse solar radiation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.10.032
– volume: 552
  start-page: 92
  year: 2017
  ident: 10.1016/j.renene.2022.02.002_bib20
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.06.020
– volume: 164
  start-page: 102
  year: 2018
  ident: 10.1016/j.renene.2022.02.002_bib30
  article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.087
– volume: 29
  start-page: 1410
  year: 2020
  ident: 10.1016/j.renene.2022.02.002_bib1
  article-title: A review on recent development of cooling technologies for photovoltaic modules
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-020-1350-y
– volume: 105
  start-page: 792
  year: 2014
  ident: 10.1016/j.renene.2022.02.002_bib21
  article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.12.006
– volume: 94
  start-page: 732
  year: 2018
  ident: 10.1016/j.renene.2022.02.002_bib7
  article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.029
– volume: 534
  start-page: 104
  year: 2016
  ident: 10.1016/j.renene.2022.02.002_bib9
  article-title: Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.014
– volume: 77
  start-page: 1326
  year: 2017
  ident: 10.1016/j.renene.2022.02.002_bib8
  article-title: Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: case study for humid-subtropical climatic region of India
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.057
– volume: 298
  year: 2021
  ident: 10.1016/j.renene.2022.02.002_bib29
  article-title: Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117211
– volume: 161
  start-page: 570
  year: 2020
  ident: 10.1016/j.renene.2022.02.002_bib15
  article-title: An investigation on the attenuation effect of air pollution on regional solar radiation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.146
– volume: 119
  start-page: 121
  year: 2016
  ident: 10.1016/j.renene.2022.02.002_bib10
  article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.04.051
– volume: 13
  year: 2021
  ident: 10.1016/j.renene.2022.02.002_bib2
  article-title: Estimations of global horizontal irradiance and direct normal irradiance by using Fengyun-4A satellite data in northern China
  publication-title: Rem. Sens.
  doi: 10.3390/rs13040790
– volume: 171
  start-page: 867
  year: 2018
  ident: 10.1016/j.renene.2022.02.002_bib3
  article-title: A performance evaluation of China's coal-fired power generation with pollutant mitigation options
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.271
– volume: 36
  start-page: 413
  year: 2011
  ident: 10.1016/j.renene.2022.02.002_bib12
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.06.024
– volume: 105
  start-page: 569
  year: 2017
  ident: 10.1016/j.renene.2022.02.002_bib18
  article-title: Machine learning methods for solar radiation forecasting: a review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.095
– volume: 132
  start-page: 871
  year: 2019
  ident: 10.1016/j.renene.2022.02.002_bib31
  article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.044
– volume: 248
  start-page: 1
  year: 2020
  ident: 10.1016/j.renene.2022.02.002_bib32
  article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119264
– volume: 94
  start-page: 732
  year: 2018
  ident: 10.1016/j.renene.2022.02.002_bib14
  article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.029
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.renene.2022.02.002_bib22
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– year: 2016
  ident: 10.1016/j.renene.2022.02.002_bib25
– volume: 131
  year: 2020
  ident: 10.1016/j.renene.2022.02.002_bib4
  article-title: Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109967
SSID ssj0015874
Score 2.5225372
Snippet Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 896
SubjectTerms China
Diffuse solar radiation
Global solar radiation
Machine learning
meteorological data
pollutants
pollution
power plants
Prediction
probability
solar energy
support vector machines
Title Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions
URI https://dx.doi.org/10.1016/j.renene.2022.02.002
https://www.proquest.com/docview/2648861609
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMV5I4KvcWvSJu3jGBtTcS862FtI20Qmsxu7IL74A_zV5iTtUEEGQh_aclJKTnrypfnOdxC6zoyhJqaCKJ0rEsbcEMVSSrKUKhVA1HS_sh8GvD8M70bRqIY6VS4M0CrL2O9juovW5Z1m2ZvN2XjcfATwbcF8QKlnK0IGeyhglN98rGkeQRR7JWZrTMC6Sp9zHC9QjSxALJNSr9xJ_5qefgVqN_v09tBuCRtx27_ZPqrp4gDtfBMTPESf3bVwN54a_OpYkhqXZSGesat5s8AWpOLZHLZngPCMczWevGMvC4JVkWOomLJaaLyANS-eg3SBeyQkm81xVU9lid88dmzOoFays7Ar69wTwI7QsNd96vRJWWmBZGEULEmi45ZJwlSLNKFchFHGTGBP7FrHQgieKDvRJTHIuykVC6MZFyIzPI845PWylB2jejEt9AnCQRrqjKWxZoZZMJgnRogoNzlsCSsbXhuIVR0ss1KGHKphTGTFN3uR3i0S3CJb9mjRBiLrVjMvw7HBXlS-kz-Gk7QzxYaWV5Wrpf3SYPtEFXq6WkjgAsY84K3k9N9PP0PbcOVJbOeovpyv9IVFNcv00g3bS7TVvr3vD74AUsb5rQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB7S9NDmUPpLk7apCu1R3bVkS_ahh9IkbH4vTSA3VbalsiX1LutdQi59gL5OXjAzkr2kgRIIBHwwtizEjDQzsr75BuBj5b3wudDcutryNFeeW1kKXpXC2oSsZviVfXikRifp3ml2ugKXfS4MwSo72x9terDW3ZNBJ83BdDwefKfgG4P5RIiIVuyQlfvu4hz3be2X3S1U8ichdraPv414V1qAV2mWzHnh8qEv0tLpshBKp1klfYI3GNyjz1SFRcte5MRnZm2uvZNK68qrOlOUyCpLif0-gIcpmgsqm_D5zxJXkmR5pH7G0XEaXp-vF0BlRFPZEDunEJEqVPzPH97wDMHd7TyFJ12cyr5GUTyDFdc8h7Vr7IUv4O_2kimcTTz7HWCZjnV1KH6yUGSnZRgVs-mMzoMIYc1qOz67YJGHhNmmZlSiZdE61tImm82IKyF0SdltM9YXcJmz8xisDqZUnDm0wK18HRFnL-HkXuT_ClabSeNeA0vK1FWyzJ30EqPPuvBaZ7Wv6Qzaoj1fB9kL2FQd7zmV3zgzPcDtl4lqMaQWM8RrKNaBL7-aRt6PW9rrXnfmn_lr0DXd8uWHXtUGlzad19jGTRatIfBhrhI1LDbu3Pt7eDQ6PjwwB7tH-2_gMb2JCLq3sDqfLdw7DKnm5WaYwgx-3PeauQI-NTJu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+machine+learning+models+for+predicting+daily+global+and+diffuse+solar+radiation+under+different+weather%2Fpollution+conditions&rft.jtitle=Renewable+energy&rft.au=Jia%2C+Dongyu&rft.au=Yang%2C+Liwei&rft.au=Lv%2C+Tao&rft.au=Liu%2C+Weiping&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=187&rft.spage=896&rft.epage=906&rft_id=info:doi/10.1016%2Fj.renene.2022.02.002&rft.externalDocID=S0960148122001410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon