Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions
Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chines...
Saved in:
Published in | Renewable energy Vol. 187; pp. 896 - 906 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chinese cities, representing different geoclimatic and pollutant conditions. According to the results; regarding the nRMSE, nMAE, nMBE and R values, coastal locations (such as Shanghai, Guangzhou, etc.) obtained higher values than inland locations (such as Lanzhou and Wuhan). Moreover, the SVM (support vector machine) highly outperformed the other models in all locations, regardless of whether the study area was arid, semiarid, semihumid or humid, followed by GLMNET (generalized linear modeling) and RF (random forest). In addition, when assessing the SVM in different locations under different climatic and pollution conditions, it was indicated that the accuracy of solar radiation prediction was closely related to the weather and pollution condition levels. In general, the global solar radiation prediction error was in line with the weather condition levels. The prediction error increased as the weather level increased. However, the relationship between the pollution condition levels and the global solar radiation prediction showed a non-linear relationship. Moreover, for the prediction results of diffuse solar radiation, its variation law with different weather and pollution condition levels was almost different from that of global solar radiation. The maximum high error occurrence probability of global solar radiation and diffuse solar radiation appeared at pollution levels 5 and 1, respectively. Overall, the SVM model demonstrated its reliability in radiation prediction under slight pollution and stable weather conditions. This is crucial in locations with scarce meteorological data and can be used to optimize the selection of geographical locations for photovoltaic power station construction. |
---|---|
AbstractList | Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation predictions. In this work, three commonly used machine learning models for predicting global and diffuse solar radiation were assessed in eight Chinese cities, representing different geoclimatic and pollutant conditions. According to the results; regarding the nRMSE, nMAE, nMBE and R values, coastal locations (such as Shanghai, Guangzhou, etc.) obtained higher values than inland locations (such as Lanzhou and Wuhan). Moreover, the SVM (support vector machine) highly outperformed the other models in all locations, regardless of whether the study area was arid, semiarid, semihumid or humid, followed by GLMNET (generalized linear modeling) and RF (random forest). In addition, when assessing the SVM in different locations under different climatic and pollution conditions, it was indicated that the accuracy of solar radiation prediction was closely related to the weather and pollution condition levels. In general, the global solar radiation prediction error was in line with the weather condition levels. The prediction error increased as the weather level increased. However, the relationship between the pollution condition levels and the global solar radiation prediction showed a non-linear relationship. Moreover, for the prediction results of diffuse solar radiation, its variation law with different weather and pollution condition levels was almost different from that of global solar radiation. The maximum high error occurrence probability of global solar radiation and diffuse solar radiation appeared at pollution levels 5 and 1, respectively. Overall, the SVM model demonstrated its reliability in radiation prediction under slight pollution and stable weather conditions. This is crucial in locations with scarce meteorological data and can be used to optimize the selection of geographical locations for photovoltaic power station construction. |
Author | Zhou, Jiaxin Gao, Xiaoqing Jia, Dongyu Lv, Tao Yang, Liwei Liu, Weiping |
Author_xml | – sequence: 1 givenname: Dongyu orcidid: 0000-0002-3919-5656 surname: Jia fullname: Jia, Dongyu email: jdy890719@lzb.ac.cn organization: College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China – sequence: 2 givenname: Liwei orcidid: 0000-0002-8905-8043 surname: Yang fullname: Yang, Liwei organization: Key Laboratory of Desert and Desertification/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China – sequence: 3 givenname: Tao surname: Lv fullname: Lv, Tao organization: Huangshan Meteorological Office, Huangshan, 245800, China – sequence: 4 givenname: Weiping surname: Liu fullname: Liu, Weiping organization: Lanzhou Regional Climate Center, Lanzhou, 730000, China – sequence: 5 givenname: Xiaoqing orcidid: 0000-0003-0806-2014 surname: Gao fullname: Gao, Xiaoqing organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China – sequence: 6 givenname: Jiaxin orcidid: 0000-0002-5147-9280 surname: Zhou fullname: Zhou, Jiaxin organization: College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China |
BookMark | eNqFkM2OVCEQhYkZE3tG38AFSze3p7g_XHBhYiYzajKJG10TGooZOjS0wB0zr-BTS_d15UJDJVSqzjmpfJfkIqaIhLxlsGXA-PV-mzG2t-2h77fQCvoXZMPELDvgor8gG5AcOjYK9opclrIHYJOYxw35dfukw6KrT5EmRw_aPPqINKDO0ccHekgWQ6EuZXrMaL2pp6nVPjzTh5B2OlAdLbXeuaUgLSnoTLO2fo1cosV83mI7sdKfqOsj5utjCmE5K0yK1p-68pq8dDoUfPPnvyLf726_3Xzu7r9--nLz8b4z48RqJ1GAk-MO553s-TxOZnCsNRwmmAWXeoBBCmAD11rMDgc-z8ZxO_FhktOwG67IuzX3mNOPBUtVB18MhqAjpqWono9CcMZBNum4Sk1OpWR06pj9QednxUCd0Ku9WtGrE3oFraBvtvd_2YyvZyA1N3L_M39YzY07PnnMqhiP0TT4GU1VNvl_B_wGzVqmhg |
CitedBy_id | crossref_primary_10_1038_s41598_023_35476_y crossref_primary_10_3390_rs14153695 crossref_primary_10_3390_rs15092245 crossref_primary_10_3390_atmos15040475 crossref_primary_10_1007_s00521_023_08342_1 crossref_primary_10_1007_s40808_024_02098_w crossref_primary_10_1016_j_isci_2024_110871 crossref_primary_10_1016_j_jclepro_2023_139690 crossref_primary_10_1016_j_renene_2024_120565 crossref_primary_10_1007_s10661_023_11143_7 crossref_primary_10_1016_j_renene_2023_119735 crossref_primary_10_3389_fenvs_2023_1194918 crossref_primary_10_1016_j_scs_2024_106057 crossref_primary_10_1016_j_renene_2023_119671 crossref_primary_10_1016_j_aej_2024_08_037 crossref_primary_10_1016_j_ijhydene_2023_01_068 crossref_primary_10_1016_j_apenergy_2023_120648 crossref_primary_10_1016_j_cles_2023_100101 crossref_primary_10_3390_su15010774 crossref_primary_10_1016_j_apenergy_2022_119518 crossref_primary_10_1080_15325008_2024_2310771 crossref_primary_10_21285_1814_3520_2023_1_109_122 crossref_primary_10_1016_j_jastp_2025_106419 crossref_primary_10_1016_j_jclepro_2023_139040 crossref_primary_10_1016_j_scs_2022_104101 crossref_primary_10_1016_j_enconman_2023_117455 crossref_primary_10_1038_s41597_024_03609_1 crossref_primary_10_3390_atmos15121436 crossref_primary_10_1016_j_ijleo_2023_170956 crossref_primary_10_1016_j_jastp_2023_106022 crossref_primary_10_1016_j_enbenv_2023_08_001 crossref_primary_10_11648_j_ajcst_20240702_14 crossref_primary_10_3390_atmos14121825 |
Cites_doi | 10.1016/j.enconman.2013.08.037 10.1016/j.enconman.2015.07.083 10.1016/j.enconman.2017.11.085 10.1080/01431161.2017.1368098 10.1016/j.rser.2015.09.028 10.1016/j.apenergy.2011.10.032 10.1016/j.jhydrol.2017.06.020 10.1016/j.enconman.2018.02.087 10.1007/s11630-020-1350-y 10.1016/j.solener.2013.12.006 10.1016/j.rser.2018.06.029 10.1016/j.jhydrol.2015.12.014 10.1016/j.rser.2017.02.057 10.1016/j.apenergy.2021.117211 10.1016/j.renene.2020.07.146 10.1016/j.enconman.2016.04.051 10.3390/rs13040790 10.1016/j.jclepro.2017.09.271 10.1016/j.renene.2010.06.024 10.1016/j.renene.2016.12.095 10.1016/j.renene.2018.08.044 10.1016/j.jclepro.2019.119264 10.1007/BF00058655 10.1016/j.rser.2020.109967 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2022.02.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 906 |
ExternalDocumentID | 10_1016_j_renene_2022_02_002 S0960148122001410 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c451t-9e80f94be7b926745c3f126760507869a303980136aa87fe3677cf6d5635953b3 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 16:07:49 EDT 2025 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 03:20:28 EDT 2025 Fri Feb 23 02:39:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffuse solar radiation Global solar radiation Machine learning Prediction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-9e80f94be7b926745c3f126760507869a303980136aa87fe3677cf6d5635953b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5147-9280 0000-0002-8905-8043 0000-0003-0806-2014 0000-0002-3919-5656 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960148122001410 |
PQID | 2648861609 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2648861609 crossref_primary_10_1016_j_renene_2022_02_002 crossref_citationtrail_10_1016_j_renene_2022_02_002 elsevier_sciencedirect_doi_10_1016_j_renene_2022_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Zeng, Han (bib11) 2013; 76 Fan, Wang, Zhang, Ma, Wu (bib32) 2020; 248 Yu, Yang, Chen, Kuo, Tseng (bib20) 2017; 552 Nazhad, Lotfinejad, Danesh, ul Amin, Shamshirband (bib26) 2017; 38 Zamo, Mestre, Arbogast, Pannekoucke (bib21) 2014; 105 (bib17) 2021 Friedman, Hastie, Tibshirani (bib24) 2010; 33 Sun, Gui, Yan, Liu, Liao, Zhu (bib10) 2016; 119 Fan, Wu, Zhang, Cai, Wang, Lu (bib14) 2018; 94 Hastie (bib25) 2016 Fan, Wang, Wu, Zhou, Zhang, Yu (bib30) 2018; 164 (bib16) 2021 C, G, S, Nivet, C, F, Fouilloy (bib18) 2017; 105 Zhang, Shen, Yang, Wei, Lv, Sun (bib15) 2020; 161 He, Liu, Xu, Zhang, Chen, Sun (bib5) 2020 Ramli, Twaha, Al-Turki (bib27) 2015; 105 Zhang, Shen, Wei, Wang, Lv, Sun (bib1) 2020; 29 Furlan, de Oliveira, Soares, Codato, Escobedo (bib28) 2012; 92 Jia, Hua, Wang, Guo, Guo, Wu (bib2) 2021; 13 Kisi, Parmar (bib9) 2016; 534 Jamil, Akhtar (bib8) 2017; 77 Bi, Shao, Song, Yang, Luo (bib3) 2018; 171 Benali, Notton, Fouilloy, Voyant, Dizene (bib31) 2019; 132 Fan, Wu, Zhang, Cai, Wang, Lu (bib7) 2018; 94 Chen, Liu, Wu, Xie (bib12) 2011; 36 Fan, Wang, Wu, Zhang, Bai, Lu (bib6) 2018; 156 Bellido-Jiménez, Estévez Gualda, García-Marín (bib29) 2021; 298 Mohammadi, Shamshirband, Petkovic, Khorasanizadeh (bib13) 2016; 53 (bib19) 2016 Breiman (bib22) 1996; 24 Feng, Gong, Zhang, Jiang, Zhao, Cui (bib23) 2019 Yang, Campana, Yan (bib4) 2020; 131 Mohammadi (10.1016/j.renene.2022.02.002_bib13) 2016; 53 He (10.1016/j.renene.2022.02.002_bib5) 2020 Ramli (10.1016/j.renene.2022.02.002_bib27) 2015; 105 Breiman (10.1016/j.renene.2022.02.002_bib22) 1996; 24 Chen (10.1016/j.renene.2022.02.002_bib12) 2011; 36 Fan (10.1016/j.renene.2022.02.002_bib32) 2020; 248 Friedman (10.1016/j.renene.2022.02.002_bib24) 2010; 33 Zhang (10.1016/j.renene.2022.02.002_bib1) 2020; 29 Zamo (10.1016/j.renene.2022.02.002_bib21) 2014; 105 Nazhad (10.1016/j.renene.2022.02.002_bib26) 2017; 38 Jia (10.1016/j.renene.2022.02.002_bib2) 2021; 13 Fan (10.1016/j.renene.2022.02.002_bib7) 2018; 94 Kisi (10.1016/j.renene.2022.02.002_bib9) 2016; 534 Zhang (10.1016/j.renene.2022.02.002_bib15) 2020; 161 Hastie (10.1016/j.renene.2022.02.002_bib25) 2016 Benali (10.1016/j.renene.2022.02.002_bib31) 2019; 132 Yang (10.1016/j.renene.2022.02.002_bib4) 2020; 131 (10.1016/j.renene.2022.02.002_bib19) 2016 Fan (10.1016/j.renene.2022.02.002_bib6) 2018; 156 C (10.1016/j.renene.2022.02.002_bib18) 2017; 105 Fan (10.1016/j.renene.2022.02.002_bib14) 2018; 94 Feng (10.1016/j.renene.2022.02.002_bib23) 2019 Bi (10.1016/j.renene.2022.02.002_bib3) 2018; 171 Zhao (10.1016/j.renene.2022.02.002_bib11) 2013; 76 Jamil (10.1016/j.renene.2022.02.002_bib8) 2017; 77 Yu (10.1016/j.renene.2022.02.002_bib20) 2017; 552 Bellido-Jiménez (10.1016/j.renene.2022.02.002_bib29) 2021; 298 Sun (10.1016/j.renene.2022.02.002_bib10) 2016; 119 Furlan (10.1016/j.renene.2022.02.002_bib28) 2012; 92 Fan (10.1016/j.renene.2022.02.002_bib30) 2018; 164 |
References_xml | – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib22 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib24 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Software – volume: 105 start-page: 442 year: 2015 end-page: 452 ident: bib27 article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study publication-title: Energy Convers. Manag. – volume: 105 start-page: 569 year: 2017 end-page: 582 ident: bib18 article-title: Machine learning methods for solar radiation forecasting: a review publication-title: Renew. Energy – volume: 119 start-page: 121 year: 2016 end-page: 129 ident: bib10 article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index publication-title: Energy Convers. Manag. – start-page: 198 year: 2019 ident: bib23 article-title: Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation publication-title: Energy Convers. Manag. – volume: 76 start-page: 846 year: 2013 end-page: 851 ident: bib11 article-title: Solar radiation estimation using sunshine hour and air pollution index in China publication-title: Energy Convers. Manag. – volume: 53 start-page: 1570 year: 2016 end-page: 1579 ident: bib13 article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: city of Kerman, Iran publication-title: Renew. Sustain. Energy Rev. – volume: 131 year: 2020 ident: bib4 article-title: Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities publication-title: Renew. Sustain. Energy Rev. – volume: 29 start-page: 1410 year: 2020 end-page: 1430 ident: bib1 article-title: A review on recent development of cooling technologies for photovoltaic modules publication-title: J. Therm. Sci. – year: 2016 ident: bib25 article-title: An Introduction to Glmnet – volume: 161 start-page: 570 year: 2020 end-page: 578 ident: bib15 article-title: An investigation on the attenuation effect of air pollution on regional solar radiation publication-title: Renew. Energy – volume: 156 start-page: 618 year: 2018 end-page: 625 ident: bib6 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers. Manag. – volume: 105 start-page: 792 year: 2014 end-page: 803 ident: bib21 article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production publication-title: Sol. Energy – volume: 298 year: 2021 ident: bib29 article-title: Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions publication-title: Appl. Energy – year: 2021 ident: bib16 – volume: 171 start-page: 867 year: 2018 end-page: 876 ident: bib3 article-title: A performance evaluation of China's coal-fired power generation with pollutant mitigation options publication-title: J. Clean. Prod. – volume: 164 start-page: 102 year: 2018 end-page: 111 ident: bib30 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China publication-title: Energy Convers. Manag. – volume: 94 start-page: 732 year: 2018 end-page: 747 ident: bib14 article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature publication-title: Renew. Sustain. Energy Rev. – year: 2021 ident: bib17 – year: 2016 ident: bib19 publication-title: n.d. The Nature of Statistical Learning Theory | Vladimir Vapnik | Springer – volume: 92 start-page: 240 year: 2012 end-page: 254 ident: bib28 article-title: The role of clouds in improving the regression model for hourly values of diffuse solar radiation publication-title: Appl. Energy – volume: 248 start-page: 1 year: 2020 end-page: 14 ident: bib32 article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data publication-title: J. Clean. Prod. – volume: 534 start-page: 104 year: 2016 end-page: 112 ident: bib9 article-title: Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution publication-title: J. Hydrol. – volume: 38 start-page: 6894 year: 2017 end-page: 6909 ident: bib26 article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran publication-title: Int. J. Rem. Sens. – volume: 94 start-page: 732 year: 2018 end-page: 747 ident: bib7 article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature publication-title: Renew. Sustain. Energy Rev. – volume: 77 start-page: 1326 year: 2017 end-page: 1342 ident: bib8 article-title: Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: case study for humid-subtropical climatic region of India publication-title: Renew. Sustain. Energy Rev. – volume: 552 start-page: 92 year: 2017 end-page: 104 ident: bib20 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J. Hydrol. – volume: 13 year: 2021 ident: bib2 article-title: Estimations of global horizontal irradiance and direct normal irradiance by using Fengyun-4A satellite data in northern China publication-title: Rem. Sens. – volume: 36 start-page: 413 year: 2011 end-page: 420 ident: bib12 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study publication-title: Renew. Energy – volume: 132 start-page: 871 year: 2019 end-page: 884 ident: bib31 article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components publication-title: Renew. Energy – start-page: 220 year: 2020 ident: bib5 article-title: Improving Solar Radiation Estimation in China Based on Regional Optimal Combination of Meteorological Factors with Machine Learning Methods – volume: 76 start-page: 846 year: 2013 ident: 10.1016/j.renene.2022.02.002_bib11 article-title: Solar radiation estimation using sunshine hour and air pollution index in China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.08.037 – volume: 105 start-page: 442 year: 2015 ident: 10.1016/j.renene.2022.02.002_bib27 article-title: Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.083 – volume: 156 start-page: 618 year: 2018 ident: 10.1016/j.renene.2022.02.002_bib6 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.085 – year: 2016 ident: 10.1016/j.renene.2022.02.002_bib19 – volume: 38 start-page: 6894 year: 2017 ident: 10.1016/j.renene.2022.02.002_bib26 article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2017.1368098 – start-page: 220 year: 2020 ident: 10.1016/j.renene.2022.02.002_bib5 – volume: 53 start-page: 1570 year: 2016 ident: 10.1016/j.renene.2022.02.002_bib13 article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: city of Kerman, Iran publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.028 – start-page: 198 year: 2019 ident: 10.1016/j.renene.2022.02.002_bib23 article-title: Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation publication-title: Energy Convers. Manag. – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.renene.2022.02.002_bib24 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Software – volume: 92 start-page: 240 year: 2012 ident: 10.1016/j.renene.2022.02.002_bib28 article-title: The role of clouds in improving the regression model for hourly values of diffuse solar radiation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.10.032 – volume: 552 start-page: 92 year: 2017 ident: 10.1016/j.renene.2022.02.002_bib20 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.06.020 – volume: 164 start-page: 102 year: 2018 ident: 10.1016/j.renene.2022.02.002_bib30 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.087 – volume: 29 start-page: 1410 year: 2020 ident: 10.1016/j.renene.2022.02.002_bib1 article-title: A review on recent development of cooling technologies for photovoltaic modules publication-title: J. Therm. Sci. doi: 10.1007/s11630-020-1350-y – volume: 105 start-page: 792 year: 2014 ident: 10.1016/j.renene.2022.02.002_bib21 article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production publication-title: Sol. Energy doi: 10.1016/j.solener.2013.12.006 – volume: 94 start-page: 732 year: 2018 ident: 10.1016/j.renene.2022.02.002_bib7 article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.06.029 – volume: 534 start-page: 104 year: 2016 ident: 10.1016/j.renene.2022.02.002_bib9 article-title: Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.014 – volume: 77 start-page: 1326 year: 2017 ident: 10.1016/j.renene.2022.02.002_bib8 article-title: Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: case study for humid-subtropical climatic region of India publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.057 – volume: 298 year: 2021 ident: 10.1016/j.renene.2022.02.002_bib29 article-title: Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117211 – volume: 161 start-page: 570 year: 2020 ident: 10.1016/j.renene.2022.02.002_bib15 article-title: An investigation on the attenuation effect of air pollution on regional solar radiation publication-title: Renew. Energy doi: 10.1016/j.renene.2020.07.146 – volume: 119 start-page: 121 year: 2016 ident: 10.1016/j.renene.2022.02.002_bib10 article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.04.051 – volume: 13 year: 2021 ident: 10.1016/j.renene.2022.02.002_bib2 article-title: Estimations of global horizontal irradiance and direct normal irradiance by using Fengyun-4A satellite data in northern China publication-title: Rem. Sens. doi: 10.3390/rs13040790 – volume: 171 start-page: 867 year: 2018 ident: 10.1016/j.renene.2022.02.002_bib3 article-title: A performance evaluation of China's coal-fired power generation with pollutant mitigation options publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.271 – volume: 36 start-page: 413 year: 2011 ident: 10.1016/j.renene.2022.02.002_bib12 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study publication-title: Renew. Energy doi: 10.1016/j.renene.2010.06.024 – volume: 105 start-page: 569 year: 2017 ident: 10.1016/j.renene.2022.02.002_bib18 article-title: Machine learning methods for solar radiation forecasting: a review publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.095 – volume: 132 start-page: 871 year: 2019 ident: 10.1016/j.renene.2022.02.002_bib31 article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.044 – volume: 248 start-page: 1 year: 2020 ident: 10.1016/j.renene.2022.02.002_bib32 article-title: Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119264 – volume: 94 start-page: 732 year: 2018 ident: 10.1016/j.renene.2022.02.002_bib14 article-title: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.06.029 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.renene.2022.02.002_bib22 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – year: 2016 ident: 10.1016/j.renene.2022.02.002_bib25 – volume: 131 year: 2020 ident: 10.1016/j.renene.2022.02.002_bib4 article-title: Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109967 |
SSID | ssj0015874 |
Score | 2.5225372 |
Snippet | Due to the rapid development of solar energy and photovoltaic industries in China, it is crucial to provide the reliable and accurate solar radiation... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 896 |
SubjectTerms | China Diffuse solar radiation Global solar radiation Machine learning meteorological data pollutants pollution power plants Prediction probability solar energy support vector machines |
Title | Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions |
URI | https://dx.doi.org/10.1016/j.renene.2022.02.002 https://www.proquest.com/docview/2648861609 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMV5I4KvcWvSJu3jGBtTcS862FtI20Qmsxu7IL74A_zV5iTtUEEGQh_aclJKTnrypfnOdxC6zoyhJqaCKJ0rEsbcEMVSSrKUKhVA1HS_sh8GvD8M70bRqIY6VS4M0CrL2O9juovW5Z1m2ZvN2XjcfATwbcF8QKlnK0IGeyhglN98rGkeQRR7JWZrTMC6Sp9zHC9QjSxALJNSr9xJ_5qefgVqN_v09tBuCRtx27_ZPqrp4gDtfBMTPESf3bVwN54a_OpYkhqXZSGesat5s8AWpOLZHLZngPCMczWevGMvC4JVkWOomLJaaLyANS-eg3SBeyQkm81xVU9lid88dmzOoFays7Ar69wTwI7QsNd96vRJWWmBZGEULEmi45ZJwlSLNKFchFHGTGBP7FrHQgieKDvRJTHIuykVC6MZFyIzPI845PWylB2jejEt9AnCQRrqjKWxZoZZMJgnRogoNzlsCSsbXhuIVR0ss1KGHKphTGTFN3uR3i0S3CJb9mjRBiLrVjMvw7HBXlS-kz-Gk7QzxYaWV5Wrpf3SYPtEFXq6WkjgAsY84K3k9N9PP0PbcOVJbOeovpyv9IVFNcv00g3bS7TVvr3vD74AUsb5rQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB7S9NDmUPpLk7apCu1R3bVkS_ahh9IkbH4vTSA3VbalsiX1LutdQi59gL5OXjAzkr2kgRIIBHwwtizEjDQzsr75BuBj5b3wudDcutryNFeeW1kKXpXC2oSsZviVfXikRifp3ml2ugKXfS4MwSo72x9terDW3ZNBJ83BdDwefKfgG4P5RIiIVuyQlfvu4hz3be2X3S1U8ichdraPv414V1qAV2mWzHnh8qEv0tLpshBKp1klfYI3GNyjz1SFRcte5MRnZm2uvZNK68qrOlOUyCpLif0-gIcpmgsqm_D5zxJXkmR5pH7G0XEaXp-vF0BlRFPZEDunEJEqVPzPH97wDMHd7TyFJ12cyr5GUTyDFdc8h7Vr7IUv4O_2kimcTTz7HWCZjnV1KH6yUGSnZRgVs-mMzoMIYc1qOz67YJGHhNmmZlSiZdE61tImm82IKyF0SdltM9YXcJmz8xisDqZUnDm0wK18HRFnL-HkXuT_ClabSeNeA0vK1FWyzJ30EqPPuvBaZ7Wv6Qzaoj1fB9kL2FQd7zmV3zgzPcDtl4lqMaQWM8RrKNaBL7-aRt6PW9rrXnfmn_lr0DXd8uWHXtUGlzad19jGTRatIfBhrhI1LDbu3Pt7eDQ6PjwwB7tH-2_gMb2JCLq3sDqfLdw7DKnm5WaYwgx-3PeauQI-NTJu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+machine+learning+models+for+predicting+daily+global+and+diffuse+solar+radiation+under+different+weather%2Fpollution+conditions&rft.jtitle=Renewable+energy&rft.au=Jia%2C+Dongyu&rft.au=Yang%2C+Liwei&rft.au=Lv%2C+Tao&rft.au=Liu%2C+Weiping&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=187&rft.spage=896&rft.epage=906&rft_id=info:doi/10.1016%2Fj.renene.2022.02.002&rft.externalDocID=S0960148122001410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |