Linear regression and the normality assumption
Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assump...
Saved in:
Published in | Journal of clinical epidemiology Vol. 98; pp. 146 - 151 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.
Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.
Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.
Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. |
---|---|
AbstractList | Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.
Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.
Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.
Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.OBJECTIVESResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.STUDY DESIGN AND SETTINGLinear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.RESULTSAlthough outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.CONCLUSIONGiven that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. ObjectivesResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.Study Design and SettingLinear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.ResultsAlthough outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.ConclusionGiven that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. |
Author | Schmidt, Amand F. Finan, Chris |
Author_xml | – sequence: 1 givenname: Amand F. surname: Schmidt fullname: Schmidt, Amand F. email: amand.schmidt@ucl.ac.uk organization: Faculty of Population Health, Institute of Cardiovascular Science, University College London, London WC1E 6BT, United Kingdom – sequence: 2 givenname: Chris surname: Finan fullname: Finan, Chris organization: Faculty of Population Health, Institute of Cardiovascular Science, University College London, London WC1E 6BT, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29258908$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM1q3DAURkVISCbTvkIwZJONXV3ZkiwopWFIf2Agm3YtFPm6lWvLE8kuzNtHZjKb2SQrXdD5zpW-a3LuR4-E3AAtgIL41BWd7Z3HnSsYBVkAKygVZ2QFtaxzrhickxWtFc-rkosrch1jRxNIJb8kV0wxXitar0ixTRITsoB_AsboRp8Z32TTX8z8GAbTu2mfmRjnYTelyw_kojV9xI-v55r8_vbwa_Mj3z5-_7m53-a24jDlqpbKAgJj0ijLy0YwmyYGyNtKNKAYa7iobCMrC0-CVYJXpWxbQZWQDGi5JncH7y6MzzPGSQ8uWux743GcowYlFYgaxILenqDdOAefXqcZrahkokzyNbl5peanARu9C24wYa-PTSTg8wGwYYwxYKutm8zy5ykY12ugeiled_pYvF6K18B0Kj7FxUn8uOHN4NdDEFOd_x0GHa1Db7FxAe2km9G9rfhyolgoZ03_D_fvEbwA81WzdQ |
CitedBy_id | crossref_primary_10_1016_j_compedu_2021_104411 crossref_primary_10_1155_ah_9872440 crossref_primary_10_1007_s00103_021_03278_0 crossref_primary_10_1142_S0219622022500948 crossref_primary_10_1177_0272989X251326069 crossref_primary_10_1080_13603116_2024_2303137 crossref_primary_10_3390_axioms12060524 crossref_primary_10_3390_atmos15080923 crossref_primary_10_3390_s23218926 crossref_primary_10_1016_j_jenvp_2021_101594 crossref_primary_10_1016_j_apsoil_2020_103854 crossref_primary_10_1039_D4RA02475C crossref_primary_10_1111_dom_15520 crossref_primary_10_1186_s12911_024_02470_x crossref_primary_10_1016_j_chbr_2023_100335 crossref_primary_10_4078_jrd_2019_26_1_5 crossref_primary_10_1080_0144929X_2022_2136533 crossref_primary_10_1016_j_joitmc_2023_100142 crossref_primary_10_1109_ACCESS_2021_3066340 crossref_primary_10_1007_s41449_024_00457_y crossref_primary_10_1177_1362361319898362 crossref_primary_10_1038_s41598_022_20418_x crossref_primary_10_1080_02770903_2020_1731825 crossref_primary_10_1080_00981389_2022_2147628 crossref_primary_10_3389_feduc_2024_1510416 crossref_primary_10_1007_s12671_023_02093_9 crossref_primary_10_1177_10596011211070098 crossref_primary_10_2196_31088 crossref_primary_10_1016_j_jmh_2024_100260 crossref_primary_10_1371_journal_pone_0294555 crossref_primary_10_1177_0004867420981416 crossref_primary_10_1111_bjet_13329 crossref_primary_10_3389_frvir_2024_1268780 crossref_primary_10_1016_j_abb_2021_109061 crossref_primary_10_1109_TNET_2023_3274354 crossref_primary_10_3390_electronics11040598 crossref_primary_10_1212_WNL_0000000000200928 crossref_primary_10_1177_26335565241292325 crossref_primary_10_1080_09297049_2021_2022112 crossref_primary_10_1177_02698811241254830 crossref_primary_10_1080_00273171_2023_2254769 crossref_primary_10_3389_fphys_2021_814542 crossref_primary_10_3390_rs14122843 crossref_primary_10_1002_gps_5904 crossref_primary_10_1016_j_ajodo_2021_01_003 crossref_primary_10_1017_cjn_2022_264 crossref_primary_10_3233_THC_220295 crossref_primary_10_1016_j_jadr_2022_100441 crossref_primary_10_3390_bs15030313 crossref_primary_10_3390_e22080897 crossref_primary_10_3389_fpsyg_2021_620867 crossref_primary_10_1080_23311886_2022_2144872 crossref_primary_10_1177_08862605241234352 crossref_primary_10_1016_j_pmedr_2025_103017 crossref_primary_10_1111_jcpp_13995 crossref_primary_10_1093_arclin_acaa005 crossref_primary_10_3390_nu13113910 crossref_primary_10_1057_s41307_023_00341_0 crossref_primary_10_1363_psrh_12245 crossref_primary_10_3398_064_084_0204 crossref_primary_10_3390_w16233388 crossref_primary_10_1016_j_ijhydene_2024_11_329 crossref_primary_10_1155_2023_4082587 crossref_primary_10_1007_s11031_021_09874_6 crossref_primary_10_11159_jffhmt_2024_038 crossref_primary_10_11622_smedj_2021054 crossref_primary_10_1080_13501763_2020_1859595 crossref_primary_10_1097_NMD_0000000000001689 crossref_primary_10_1097_DBP_0000000000001067 crossref_primary_10_1155_2022_2891993 crossref_primary_10_3389_fpain_2022_1082252 crossref_primary_10_1007_s10508_022_02310_x crossref_primary_10_1111_jonm_13725 crossref_primary_10_1016_j_addbeh_2020_106724 crossref_primary_10_1080_08832323_2020_1716204 crossref_primary_10_1093_humrep_deac136 crossref_primary_10_3389_fpubh_2020_625664 crossref_primary_10_3390_cancers16010202 crossref_primary_10_3389_frsps_2024_1352284 crossref_primary_10_3389_fpubh_2023_1309824 crossref_primary_10_1186_s12912_024_01724_3 crossref_primary_10_1016_j_egyr_2024_08_029 crossref_primary_10_25217_numerical_v4i2_669 crossref_primary_10_1016_j_jsat_2021_108446 crossref_primary_10_1038_s41598_021_96607_x crossref_primary_10_1093_gerona_glae290 crossref_primary_10_1016_j_archger_2023_105219 crossref_primary_10_1093_eurjcn_zvac002 crossref_primary_10_3758_s13428_025_02613_6 crossref_primary_10_1002_alz_12834 crossref_primary_10_1177_0033294120978158 crossref_primary_10_1002_jee_20587 crossref_primary_10_1038_s41598_024_72661_z crossref_primary_10_3748_wjg_v27_i26_4088 crossref_primary_10_1007_s12119_021_09940_8 crossref_primary_10_1108_JADEE_04_2023_0100 crossref_primary_10_1080_14927713_2021_1971555 crossref_primary_10_1016_j_ecolind_2022_109838 crossref_primary_10_1186_s12903_023_03724_2 crossref_primary_10_1186_s12913_022_08716_6 crossref_primary_10_3390_diagnostics14202294 crossref_primary_10_1111_rode_12783 crossref_primary_10_1007_s10826_020_01829_8 crossref_primary_10_1016_j_ebiom_2020_103036 crossref_primary_10_1002_1348_9585_12415 crossref_primary_10_1007_s10653_025_02413_z crossref_primary_10_1167_19_14_22 crossref_primary_10_3390_s24175659 crossref_primary_10_1186_s40101_023_00343_2 crossref_primary_10_3390_children11091072 crossref_primary_10_1186_s12889_022_13514_0 crossref_primary_10_1016_j_est_2023_109072 crossref_primary_10_1016_j_heliyon_2024_e25402 crossref_primary_10_1093_gerona_glab244 crossref_primary_10_1016_j_cscm_2024_e03817 crossref_primary_10_61108_ijsshr_v2i3_146 crossref_primary_10_3390_nu14061254 crossref_primary_10_1007_s10755_020_09536_4 crossref_primary_10_1057_s41599_023_02533_w crossref_primary_10_1080_02602938_2020_1776839 crossref_primary_10_1055_a_1984_8250 crossref_primary_10_1186_s13031_022_00451_3 crossref_primary_10_1016_j_chiabu_2021_105256 crossref_primary_10_1021_acs_jpclett_2c03073 crossref_primary_10_1080_15283488_2024_2437030 crossref_primary_10_1007_s12144_024_06392_9 crossref_primary_10_1007_s00406_023_01655_1 crossref_primary_10_1016_j_abrep_2024_100537 crossref_primary_10_70550_bisma_v1i1_5 crossref_primary_10_1016_j_jcrimjus_2024_102213 crossref_primary_10_3758_s13428_023_02072_x crossref_primary_10_1016_j_cscm_2022_e01229 crossref_primary_10_1038_s41366_021_01052_5 crossref_primary_10_1155_2022_5164430 crossref_primary_10_1016_j_fcr_2023_108987 crossref_primary_10_1111_jan_15595 crossref_primary_10_1016_j_jvoice_2022_02_005 crossref_primary_10_1016_j_ssresearch_2023_102908 crossref_primary_10_1007_s00406_023_01715_6 crossref_primary_10_1111_jam_14397 crossref_primary_10_1007_s10648_021_09601_0 crossref_primary_10_1038_s41598_021_02523_5 crossref_primary_10_1002_ab_70022 crossref_primary_10_1002_bimj_201800185 crossref_primary_10_3389_fpubh_2024_1378790 crossref_primary_10_4236_ojbm_2024_123103 crossref_primary_10_1002_ab_22087 crossref_primary_10_1088_2515_7620_acda80 crossref_primary_10_1007_s00442_020_04762_1 crossref_primary_10_1186_s12874_019_0734_8 crossref_primary_10_1016_j_rineng_2024_101872 crossref_primary_10_1007_s12144_023_04268_y crossref_primary_10_1186_s12913_022_08858_7 crossref_primary_10_3389_fphar_2021_725034 crossref_primary_10_1016_j_mhp_2022_200247 crossref_primary_10_3389_fpsyt_2024_1248963 crossref_primary_10_3390_polym15163450 crossref_primary_10_3390_su14031494 crossref_primary_10_1007_s10750_023_05337_w crossref_primary_10_1007_s13239_021_00582_3 crossref_primary_10_1186_s40066_024_00475_3 crossref_primary_10_55322_mdbakis_1217877 crossref_primary_10_1016_j_jad_2023_12_006 crossref_primary_10_1186_s12889_022_14284_5 crossref_primary_10_1061_JCEMD4_COENG_14585 crossref_primary_10_21764_maeuefd_1534799 crossref_primary_10_1007_s10661_022_10858_3 crossref_primary_10_1016_j_ibneur_2022_03_007 crossref_primary_10_1016_S2665_9913_24_00189_9 crossref_primary_10_2196_40121 crossref_primary_10_1111_jnc_16205 crossref_primary_10_1371_journal_pone_0290370 crossref_primary_10_1016_j_wneu_2022_02_112 crossref_primary_10_1080_08946566_2023_2236786 crossref_primary_10_1177_00332941251317680 crossref_primary_10_3390_knowledge2020014 crossref_primary_10_5005_jp_journals_10030_1393 crossref_primary_10_1002_dev_21900 crossref_primary_10_1186_s12911_022_01956_w crossref_primary_10_1253_circj_CJ_24_0031 crossref_primary_10_1093_police_paad067 crossref_primary_10_3233_JIFS_211126 crossref_primary_10_3390_atmos11020187 crossref_primary_10_1016_j_eatbeh_2021_101569 crossref_primary_10_1108_AFR_06_2019_0062 crossref_primary_10_1007_s12055_025_01901_2 crossref_primary_10_1097_AJP_0000000000000949 crossref_primary_10_17233_sosyoekonomi_2019_03_03 crossref_primary_10_1044_2023_JSLHR_22_00669 crossref_primary_10_1016_j_isci_2022_104791 crossref_primary_10_3389_fenvs_2022_902153 crossref_primary_10_3390_info12070259 crossref_primary_10_1016_j_jhydrol_2021_126834 crossref_primary_10_1080_15623599_2023_2286115 crossref_primary_10_58884_akademik_hassasiyetler_1393744 crossref_primary_10_1002_nml_21630 crossref_primary_10_1007_s10964_021_01441_z crossref_primary_10_1371_journal_pone_0290467 crossref_primary_10_1111_hex_13231 crossref_primary_10_1038_s41598_024_57707_6 crossref_primary_10_1111_jocn_15694 crossref_primary_10_1016_j_applanim_2021_105507 crossref_primary_10_1177_20552076221149317 crossref_primary_10_3390_ijerph20065168 crossref_primary_10_7717_peerj_17253 crossref_primary_10_1080_13854046_2021_1897163 crossref_primary_10_1007_s12144_023_04245_5 crossref_primary_10_3390_ijms26031239 crossref_primary_10_1080_17482798_2024_2334933 crossref_primary_10_1007_s40279_023_01962_6 crossref_primary_10_1007_s11116_023_10398_w crossref_primary_10_1177_2167702620922966 crossref_primary_10_1016_j_dhjo_2021_101107 crossref_primary_10_1016_j_oceaneng_2024_118506 crossref_primary_10_1016_j_techsoc_2022_102062 crossref_primary_10_3390_ijerph17176398 crossref_primary_10_3390_ijerph20010691 crossref_primary_10_1177_22925503231161067 crossref_primary_10_20473_jebis_v4i2_10035 crossref_primary_10_1080_02791072_2022_2060773 crossref_primary_10_3390_land13111909 crossref_primary_10_1080_14427591_2024_2431138 crossref_primary_10_1017_S135561772100045X crossref_primary_10_1093_tse_tdad025 crossref_primary_10_2106_JBJS_23_01177 crossref_primary_10_3389_fpsyt_2021_768132 crossref_primary_10_4236_ajibm_2021_1111066 crossref_primary_10_1080_14719037_2023_2242851 crossref_primary_10_1016_j_envpol_2024_123573 crossref_primary_10_3390_ijerph19031818 crossref_primary_10_1007_s40615_024_02183_x crossref_primary_10_1121_1_5047437 crossref_primary_10_3233_HSM_220202 crossref_primary_10_3389_fpsyg_2024_1348079 crossref_primary_10_1002_lt_26544 crossref_primary_10_3390_app15063259 crossref_primary_10_1177_00332941231169666 crossref_primary_10_1177_13591053241307366 crossref_primary_10_17660_ActaHortic_2023_1360_42 crossref_primary_10_1111_jns_12319 crossref_primary_10_1109_ACCESS_2021_3052473 crossref_primary_10_1002_jcph_1989 crossref_primary_10_1089_jwh_2020_8428 crossref_primary_10_1371_journal_pone_0221200 crossref_primary_10_1080_00224499_2024_2435619 crossref_primary_10_1016_j_jsp_2024_101364 crossref_primary_10_1080_21642850_2021_1904935 crossref_primary_10_1186_s40163_024_00213_x crossref_primary_10_3390_ijerph192013485 crossref_primary_10_1177_01492063221085913 crossref_primary_10_1093_forestry_cpae017 crossref_primary_10_1016_j_envint_2021_106532 crossref_primary_10_7717_peerj_13792 crossref_primary_10_1007_s10508_019_01623_8 crossref_primary_10_3390_nu12030829 crossref_primary_10_1007_s11469_021_00674_0 crossref_primary_10_3389_fnhum_2023_1274151 crossref_primary_10_1177_2150132720953682 crossref_primary_10_1186_s12889_021_12101_z crossref_primary_10_1007_s12144_020_00706_3 crossref_primary_10_1016_j_appet_2024_107675 crossref_primary_10_3390_su132011431 crossref_primary_10_1016_j_marpol_2024_106574 crossref_primary_10_1080_02701367_2022_2070592 crossref_primary_10_3390_agriculture11050438 crossref_primary_10_3390_ijerph17186739 crossref_primary_10_1057_s41599_025_04548_x crossref_primary_10_1111_opo_13292 crossref_primary_10_3390_su16198476 crossref_primary_10_1016_j_aej_2021_10_021 crossref_primary_10_1016_j_cstp_2022_10_014 crossref_primary_10_1155_2021_5519769 crossref_primary_10_3390_admsci11040144 crossref_primary_10_1002_alz_13895 crossref_primary_10_1016_j_scitotenv_2025_178990 crossref_primary_10_3390_s22145416 crossref_primary_10_1016_j_ijedro_2024_100422 crossref_primary_10_1002_sim_10172 crossref_primary_10_1111_add_15709 crossref_primary_10_1017_S1355617719000560 crossref_primary_10_1016_j_jclinepi_2025_111674 crossref_primary_10_1002_eap_2439 crossref_primary_10_21032_jhis_2023_48_2_113 crossref_primary_10_1002_gsj_1473 crossref_primary_10_3390_su14020663 crossref_primary_10_1016_j_jcjp_2025_100241 crossref_primary_10_1177_02601060221147768 crossref_primary_10_26446_kjlrp_2019_9_43_3_33 crossref_primary_10_3390_land12010090 crossref_primary_10_1108_JSTPM_09_2020_0135 crossref_primary_10_1210_jc_2018_02253 crossref_primary_10_1002_bimj_202300090 crossref_primary_10_1016_j_psychsport_2024_102639 crossref_primary_10_1038_s44220_025_00393_8 crossref_primary_10_1167_iovs_64_14_28 crossref_primary_10_1007_s10654_021_00805_w crossref_primary_10_1080_00050067_2022_2148514 crossref_primary_10_1002_hec_4149 crossref_primary_10_1016_j_ajodo_2021_02_005 crossref_primary_10_1007_s12144_019_00513_5 crossref_primary_10_1016_j_paid_2022_111908 crossref_primary_10_1016_j_addbeh_2020_106642 crossref_primary_10_2196_17757 crossref_primary_10_1080_08870446_2024_2372649 crossref_primary_10_1016_j_chemosphere_2022_133610 crossref_primary_10_1007_s10643_024_01840_4 crossref_primary_10_1038_s41562_023_01705_7 crossref_primary_10_1021_acs_jcim_2c00492 crossref_primary_10_1177_0193945920926436 crossref_primary_10_1016_j_pec_2025_108676 crossref_primary_10_3390_math11071566 crossref_primary_10_3390_economies9040161 crossref_primary_10_1038_s44168_024_00192_4 crossref_primary_10_1007_s00521_021_06511_8 crossref_primary_10_1016_j_aichem_2024_100054 crossref_primary_10_1061__ASCE_CO_1943_7862_0001998 crossref_primary_10_1287_isre_2022_0089 crossref_primary_10_1038_s41598_022_05418_1 crossref_primary_10_1080_08964289_2019_1573797 crossref_primary_10_1007_s10278_024_01372_8 crossref_primary_10_1111_fare_12925 crossref_primary_10_1080_00221309_2022_2094310 crossref_primary_10_1016_j_drugalcdep_2020_107987 crossref_primary_10_1038_s41539_024_00229_7 crossref_primary_10_1371_journal_pgen_1009876 crossref_primary_10_1016_j_ssaho_2023_100520 crossref_primary_10_1016_j_asoc_2022_108985 crossref_primary_10_1111_jcpp_13790 crossref_primary_10_1186_s12877_020_01855_7 crossref_primary_10_3390_nu12030620 crossref_primary_10_3390_ijerph18052318 crossref_primary_10_1111_cdoe_13024 crossref_primary_10_1007_s11145_020_10095_5 crossref_primary_10_1016_j_jneumeth_2018_06_005 crossref_primary_10_1111_epi_17375 crossref_primary_10_1007_s40808_024_02254_2 crossref_primary_10_1016_j_contraception_2021_08_010 crossref_primary_10_3390_brainsci11030372 crossref_primary_10_51867_ajernet_5_3_104 crossref_primary_10_3390_antibiotics13010068 crossref_primary_10_7717_peerj_18350 crossref_primary_10_3389_fpsyg_2020_578154 crossref_primary_10_1080_03323315_2024_2353317 crossref_primary_10_1371_journal_pone_0310673 crossref_primary_10_1016_j_ibusrev_2022_102051 |
Cites_doi | 10.18637/jss.v016.i09 10.2307/2983440 10.1016/j.jclinepi.2014.12.014 10.1161/CIRCGENETICS.116.001564 10.1136/bmj.i582 10.1371/journal.pone.0172231 10.1002/pds.3965 10.1016/j.jclinepi.2014.02.008 10.1017/S0370164600014346 10.2202/1557-4679.1285 10.2307/1912934 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Jun 2018 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Jun 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7RV 7T2 7T7 7TK 7U7 7U9 7X7 7XB 88C 88E 8AO 8C1 8FD 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 K9. KB0 M0S M0T M1P M2O M7N MBDVC NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1016/j.jclinepi.2017.12.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Research Library (Corporate) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic Toxicology Abstracts ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1878-5921 |
EndPage | 151 |
ExternalDocumentID | 29258908 10_1016_j_jclinepi_2017_12_006 S0895435617304857 |
Genre | Research Support, Non-U.S. Gov't Journal Article Commentary |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8G5 8P~ 9JM 9JO AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYJJ AAYWO ABBQC ABFNM ABIVO ABJNI ABLJU ABMAC ABMMH ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFFNX AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOMHK APXCP AQUVI ASPBG AVARZ AVWKF AXJTR AZFZN AZQEC BENPR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 D-I DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HEH HMCUK HMK HMO HVGLF HZ~ IHE J1W KOM L7B M0T M1P M29 M2O M3W M41 MO0 N9A NAPCQ O-L O9- OAUVE OD~ OHT OO0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQQKQ PRBVW PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSB SSH SSO SSZ SV3 T5K UAP UKHRP WOW WUQ X7M XPP YHZ Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AKYCK AMFUW EFLBG F3I LCYCR RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T2 7T7 7TK 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-9879c1e1227a9c53d62c7a921e5f46d1922d564cd74c1b62465437ff609672103 |
IEDL.DBID | .~1 |
ISSN | 0895-4356 1878-5921 |
IngestDate | Fri Jul 11 07:36:19 EDT 2025 Sat Aug 23 13:20:11 EDT 2025 Mon Jul 21 06:00:01 EDT 2025 Tue Jul 01 03:10:45 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Fri Feb 23 02:32:19 EST 2024 Tue Aug 26 17:23:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Big data Statistical inference Epidemiological methods Linear regression Bias Modeling assumptions |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-9879c1e1227a9c53d62c7a921e5f46d1922d564cd74c1b62465437ff609672103 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 29258908 |
PQID | 2040726354 |
PQPubID | 105585 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1979168160 proquest_journals_2040726354 pubmed_primary_29258908 crossref_citationtrail_10_1016_j_jclinepi_2017_12_006 crossref_primary_10_1016_j_jclinepi_2017_12_006 elsevier_sciencedirect_doi_10_1016_j_jclinepi_2017_12_006 elsevier_clinicalkey_doi_10_1016_j_jclinepi_2017_12_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Elmsford |
PublicationTitle | Journal of clinical epidemiology |
PublicationTitleAlternate | J Clin Epidemiol |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Schmidt, Groenwold, Knol, Hoes, Nielen, Roes (bib1) 2014; 67 Aitken (bib6) 1936; 55 Austin, Steyerberg (bib11) 2015; 68 Zeileis (bib9) 2006; 16 Schmidt, Klungel, Nielen, de Boer, Groenwold, Hoes (bib8) 2016; 25 Tyrrell, Jones, Beaumont, Astley, Lovell, Yaghootkar (bib3) 2016; 352 White (bib10) 1980; 48 Faraway (bib7) 2015 Shu, Chan, Huang (bib5) 2017; 12 Eppinga, Kofink, Dullaart, Dalmeijer, Lipsic, Van Veldhuisen (bib4) 2017; 10 James, Witten, Hastie, Tibishirani (bib12) 2013 Chatfield (bib13) 1995; 158 Austin, Laupacis (bib2) 2011; 7 Schmidt (10.1016/j.jclinepi.2017.12.006_bib1) 2014; 67 Zeileis (10.1016/j.jclinepi.2017.12.006_bib9) 2006; 16 Austin (10.1016/j.jclinepi.2017.12.006_bib2) 2011; 7 Aitken (10.1016/j.jclinepi.2017.12.006_bib6) 1936; 55 Shu (10.1016/j.jclinepi.2017.12.006_bib5) 2017; 12 Austin (10.1016/j.jclinepi.2017.12.006_bib11) 2015; 68 Chatfield (10.1016/j.jclinepi.2017.12.006_bib13) 1995; 158 Eppinga (10.1016/j.jclinepi.2017.12.006_bib4) 2017; 10 Faraway (10.1016/j.jclinepi.2017.12.006_bib7) 2015 Tyrrell (10.1016/j.jclinepi.2017.12.006_bib3) 2016; 352 White (10.1016/j.jclinepi.2017.12.006_bib10) 1980; 48 Schmidt (10.1016/j.jclinepi.2017.12.006_bib8) 2016; 25 James (10.1016/j.jclinepi.2017.12.006_bib12) 2013 |
References_xml | – volume: 7 start-page: 1 year: 2011 end-page: 32 ident: bib2 article-title: A tutorial on methods to estimating clinically and policy-meaningful measures of treatment effects in prospective observational studies: a review publication-title: Int J Biostat – year: 2013 ident: bib12 article-title: An introduction to statistical learning – volume: 352 start-page: i582 year: 2016 ident: bib3 article-title: Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank publication-title: BMJ – volume: 12 start-page: e0172231 year: 2017 ident: bib5 article-title: Higher body mass index and lower intake of dairy products predict poor glycaemic control among type 2 diabetes patients in Malaysia publication-title: PLoS One – volume: 68 start-page: 627 year: 2015 end-page: 636 ident: bib11 article-title: The number of subjects per variable required in linear regression analyses publication-title: J Clin Epidemiol – volume: 48 start-page: 817 year: 1980 end-page: 838 ident: bib10 article-title: Heteroskedasticity-consistent covariance matrix estimator and a direct test for Heteroskedasticity publication-title: Econometrica – volume: 55 start-page: 42 year: 1936 end-page: 48 ident: bib6 article-title: IV.—on least squares and linear combination of observations publication-title: Proc R Soc Edinb – volume: 10 year: 2017 ident: bib4 article-title: Effect of metformin on metabolites and relation with myocardial infarct size and left ventricular ejection fraction after myocardial infarction publication-title: Circ Cardiovasc Genet – year: 2015 ident: bib7 article-title: Linear Models with R – volume: 25 start-page: 355 year: 2016 end-page: 362 ident: bib8 article-title: Tailoring treatments using treatment effect modification publication-title: Pharmacoepidemiol Drug Saf – volume: 67 start-page: 821 year: 2014 end-page: 829 ident: bib1 article-title: Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study publication-title: J Clin Epidemiol – volume: 16 start-page: 1 year: 2006 end-page: 16 ident: bib9 article-title: Object-oriented computation of sandwich estimators publication-title: J Stat Softw – volume: 158 start-page: 419 year: 1995 end-page: 466 ident: bib13 article-title: Model uncertainty, data mining and statistical inference publication-title: J R Stat Soc A – volume: 16 start-page: 1 year: 2006 ident: 10.1016/j.jclinepi.2017.12.006_bib9 article-title: Object-oriented computation of sandwich estimators publication-title: J Stat Softw doi: 10.18637/jss.v016.i09 – volume: 158 start-page: 419 year: 1995 ident: 10.1016/j.jclinepi.2017.12.006_bib13 article-title: Model uncertainty, data mining and statistical inference publication-title: J R Stat Soc A doi: 10.2307/2983440 – volume: 68 start-page: 627 year: 2015 ident: 10.1016/j.jclinepi.2017.12.006_bib11 article-title: The number of subjects per variable required in linear regression analyses publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.12.014 – volume: 10 year: 2017 ident: 10.1016/j.jclinepi.2017.12.006_bib4 article-title: Effect of metformin on metabolites and relation with myocardial infarct size and left ventricular ejection fraction after myocardial infarction publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.116.001564 – volume: 352 start-page: i582 year: 2016 ident: 10.1016/j.jclinepi.2017.12.006_bib3 article-title: Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank publication-title: BMJ doi: 10.1136/bmj.i582 – volume: 12 start-page: e0172231 year: 2017 ident: 10.1016/j.jclinepi.2017.12.006_bib5 article-title: Higher body mass index and lower intake of dairy products predict poor glycaemic control among type 2 diabetes patients in Malaysia publication-title: PLoS One doi: 10.1371/journal.pone.0172231 – volume: 25 start-page: 355 year: 2016 ident: 10.1016/j.jclinepi.2017.12.006_bib8 article-title: Tailoring treatments using treatment effect modification publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.3965 – volume: 67 start-page: 821 year: 2014 ident: 10.1016/j.jclinepi.2017.12.006_bib1 article-title: Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.02.008 – volume: 55 start-page: 42 year: 1936 ident: 10.1016/j.jclinepi.2017.12.006_bib6 article-title: IV.—on least squares and linear combination of observations publication-title: Proc R Soc Edinb doi: 10.1017/S0370164600014346 – volume: 7 start-page: 1 year: 2011 ident: 10.1016/j.jclinepi.2017.12.006_bib2 article-title: A tutorial on methods to estimating clinically and policy-meaningful measures of treatment effects in prospective observational studies: a review publication-title: Int J Biostat doi: 10.2202/1557-4679.1285 – volume: 48 start-page: 817 year: 1980 ident: 10.1016/j.jclinepi.2017.12.006_bib10 article-title: Heteroskedasticity-consistent covariance matrix estimator and a direct test for Heteroskedasticity publication-title: Econometrica doi: 10.2307/1912934 – year: 2013 ident: 10.1016/j.jclinepi.2017.12.006_bib12 – year: 2015 ident: 10.1016/j.jclinepi.2017.12.006_bib7 |
SSID | ssj0017075 |
Score | 2.6619847 |
Snippet | Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and... ObjectivesResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 146 |
SubjectTerms | Bias Big data Computer simulation Confidence intervals Diabetes mellitus Diabetes mellitus (non-insulin dependent) Economic models Empirical analysis Epidemiological methods Estimates Hemoglobin Hypotheses Impact tests Linear Models Linear regression Mathematical functions Modeling assumptions Normal distribution Normality Regression analysis Regression models Researchers Sample Size Statistical analysis Statistical inference Transformations Variables Violations |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbNFkouoY8kdZoWF3pVasl6nkIpDUthe-rC3oRWkkOX4N3sbv5_Z2zZySFtcjOYMfbMePSNNPMNIV-ssNHEYGmofaAiCUP9UhlqmjpZpCf0AruRZ7_UdC5-LuQib7jtclnlEBO7QB3XAffIIUlHKi9YHsXl5pbi1Cg8Xc0jNA7IS6Quw5IuvRgTLqZ7ot3KWEkBFqgHHcKrixW2HqbNHyzv0t2WIE49enxx-hf47Bahq9fkKKPH8ltv7jfkRWrfklezfD7-jlxAagmuW27TdV_f2pa-jSWAvLJFcIqYuwS4DDZEgxyT-dWP39-nNE9EoEFItqfWaBtYYpxrb4Oso-IBrjhLshEqAlrjUSoRohaBLRVHsrRaN42CRAVSvao-IZN23ab3pNSR-cYbqZLnQicFuLVpUtRK-FAJlgoiB1W4kOnCcWrFjRvqwlZuUKFDFTrGHaiwIF9HuU1PmPGkhB407YZ2UAhgDmL6k5J2lMyAoQcCz5I9H4zq8m-7c_dOVpDP42344fAUxbdpfbdzzGqA1IapqiCnvTOMH8otl8ZW5uz_D_9ADuFNTF9xdk4m--1d-gjYZr_81DnwX67C9g4 priority: 102 providerName: ProQuest |
Title | Linear regression and the normality assumption |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895435617304857 https://dx.doi.org/10.1016/j.jclinepi.2017.12.006 https://www.ncbi.nlm.nih.gov/pubmed/29258908 https://www.proquest.com/docview/2040726354 https://www.proquest.com/docview/1979168160 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSysxEA6iIOdFvByP9cYK53XbTTbXRy1KVSziBfoW0iQrLbIWra_-dme6F45wRMGX7CUZyE4mM182MxNC_hpugg7epD53PuWR69SNpU51kUeD6Qkdx2jkq6Ec3POLkRgtkX4TC4NulbXur3T6QlvXb3o1N3uzyaR3m2kjwNiDCYYluRYYUc65QinvvrVuHlRVyXaxcYqt_4kSnnanGH4YZxN08VKL34J48tH_DdRnAHRhiM7WyVqNIJPjqpMbZCmWm2T1qt4j3yJdWF6C-CbP8aHycS0TV4YEgF5SIkBF3J0AZIZxxEH5Te7PTu_6g7Q-FSH1XNB5arQynkbKmHLGizxI5uGO0SgKLgMgNhaE5D4o7ulYMkyYlquikLBYgeVelm-T5fKpjDskUYG6wmkho2NcRQnYtShiUJI7n3EaO0Q0rLC-ThmOJ1c82sY3bGobFlpkoaXMAgs7pNfSzaqkGV9SqIbTtgkJBSVmQa9_SWlayg-C8y3a_WZQbT11X6Aec8YBDuMdctRWw6TDnRRXxqfXF0uNAlitqcw65E8lDO2HMsOENpne_UHH9sgveNKVS9o-WZ4_v8YDAD_z8eFCuqFUIwWl7sP9yvH55WAI15PT4fXNO3hhBZ0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4sFAgSHF1ix88DQjxabWl3hVAr9Wa8toNYVdmluxXiT_EbGW_iwAEol94iRWMl4_HMN54XwDPDTdDBG-Ir5wmPXBM3lZrouoomtSd0PFUjjydydMzfn4iTDfiRa2FSWmXWiWtFHeY-3ZGjk55aeaF55K8WX0maGpWiq3mERisWB_H7N3TZli_33-H-Pmdsb_fo7Yh0UwWI54KuCDrZxtNIGVPOeFEFyTw-MRpFzWVAxMOCkNwHxT2dSpYajlWqriWCfXSXygrXvQKbvEJXZgCbb3YnHz72cQvVtvYttREEgYj8rSZ5tjNLxY5x8SUllKn1JWSas_Rnc_g3uLs2e3s34HqHV4vXrYDdhI3Y3IKr4y4ifxt20JlFrhRn8XObUdsUrgkFwsqiSXA4ofwCATpKTRKBO3B8Kdy6C4Nm3sT7UKhAXe20kNExrqJEpFzXMSjJnS85jUMQmRXWdw3K05yMU5sz0WY2s9AmFlrKLLJwCC96ukXbouNCCpU5bXMBKqpMi1bkQkrTU3YQpYUe_0W7nTfVdopiaX-J9RCe9q_xiKe4jWvi_HxpqVEI4jWV5RDutcLQ_ygzTGhT6gf_XvwJXBsdjQ_t4f7k4CFs4VfpNt9tGwars_P4CJHVavq4E-cCPl32CfoJ5ZMxng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcKt4sFAgSHNPGjp8HhBBl1VJacaDS3ozXdhArlN12t0L8NX4dM5s4cADKpbdI0VjJeB7f2PMAeG6FjSYGW4bah1IkYUo_VaY0TZ0stSf0gqqRj0_Uwal4N5GTDfiRa2EorTLbxLWhjvNAZ-QYpFMrL3SPYq_p0yI-7I9fLc5KmiBFN615nEYnIkfp-zcM35YvD_dxr19wPn778c1B2U8YKIOQbFViwG0DS4xz7W2QdVQ84BNnSTZCRUQ_PEolQtQisKni1Hys1k2jEPhj6FTVuO41uK5ryUjH9GQI9pjumvxWxsoSIYn6rTp5tjujsse0-EKpZXp9HEkTl_7sGP8GfNcOcHwTtnvkWrzuRO0WbKT2Nmwd93fzd2AXw1rkSXGePne5tW3h21ggwCxaAsaE9wuE6ig_JAx34fRKeHUPNtt5mx5AoSPzjTdSJc-FTgoxc9OkqJXwoRIsjUBmVrjQtyqniRlfXc5Jm7nMQkcsdIw7ZOEI9ga6Rdes41IKnTntcikqGk-H_uRSSjtQ9mClAyH_RbuTN9X1JmPpfgn4CJ4Nr1HZ6QbHt2l-sXTMaoTzhqlqBPc7YRh-lFsuja3Mw38v_hS2UG_c-8OTo0dwAz_KdIlvO7C5Or9IjxFiraZP1rJcwKerVp6f_P40bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+regression+and+the+normality+assumption&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=Schmidt%2C+Amand+F.&rft.au=Finan%2C+Chris&rft.date=2018-06-01&rft.issn=0895-4356&rft.volume=98&rft.spage=146&rft.epage=151&rft_id=info:doi/10.1016%2Fj.jclinepi.2017.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclinepi_2017_12_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon |