Linear regression and the normality assumption

Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assump...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical epidemiology Vol. 98; pp. 146 - 151
Main Authors Schmidt, Amand F., Finan, Chris
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.
AbstractList Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.
Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.OBJECTIVESResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.STUDY DESIGN AND SETTINGLinear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.RESULTSAlthough outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.CONCLUSIONGiven that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.
ObjectivesResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates.Study Design and SettingLinear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient.ResultsAlthough outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings.ConclusionGiven that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations.
Author Schmidt, Amand F.
Finan, Chris
Author_xml – sequence: 1
  givenname: Amand F.
  surname: Schmidt
  fullname: Schmidt, Amand F.
  email: amand.schmidt@ucl.ac.uk
  organization: Faculty of Population Health, Institute of Cardiovascular Science, University College London, London WC1E 6BT, United Kingdom
– sequence: 2
  givenname: Chris
  surname: Finan
  fullname: Finan, Chris
  organization: Faculty of Population Health, Institute of Cardiovascular Science, University College London, London WC1E 6BT, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29258908$$D View this record in MEDLINE/PubMed
BookMark eNqNkM1q3DAURkVISCbTvkIwZJONXV3ZkiwopWFIf2Agm3YtFPm6lWvLE8kuzNtHZjKb2SQrXdD5zpW-a3LuR4-E3AAtgIL41BWd7Z3HnSsYBVkAKygVZ2QFtaxzrhickxWtFc-rkosrch1jRxNIJb8kV0wxXitar0ixTRITsoB_AsboRp8Z32TTX8z8GAbTu2mfmRjnYTelyw_kojV9xI-v55r8_vbwa_Mj3z5-_7m53-a24jDlqpbKAgJj0ijLy0YwmyYGyNtKNKAYa7iobCMrC0-CVYJXpWxbQZWQDGi5JncH7y6MzzPGSQ8uWux743GcowYlFYgaxILenqDdOAefXqcZrahkokzyNbl5peanARu9C24wYa-PTSTg8wGwYYwxYKutm8zy5ykY12ugeiled_pYvF6K18B0Kj7FxUn8uOHN4NdDEFOd_x0GHa1Db7FxAe2km9G9rfhyolgoZ03_D_fvEbwA81WzdQ
CitedBy_id crossref_primary_10_1016_j_compedu_2021_104411
crossref_primary_10_1155_ah_9872440
crossref_primary_10_1007_s00103_021_03278_0
crossref_primary_10_1142_S0219622022500948
crossref_primary_10_1177_0272989X251326069
crossref_primary_10_1080_13603116_2024_2303137
crossref_primary_10_3390_axioms12060524
crossref_primary_10_3390_atmos15080923
crossref_primary_10_3390_s23218926
crossref_primary_10_1016_j_jenvp_2021_101594
crossref_primary_10_1016_j_apsoil_2020_103854
crossref_primary_10_1039_D4RA02475C
crossref_primary_10_1111_dom_15520
crossref_primary_10_1186_s12911_024_02470_x
crossref_primary_10_1016_j_chbr_2023_100335
crossref_primary_10_4078_jrd_2019_26_1_5
crossref_primary_10_1080_0144929X_2022_2136533
crossref_primary_10_1016_j_joitmc_2023_100142
crossref_primary_10_1109_ACCESS_2021_3066340
crossref_primary_10_1007_s41449_024_00457_y
crossref_primary_10_1177_1362361319898362
crossref_primary_10_1038_s41598_022_20418_x
crossref_primary_10_1080_02770903_2020_1731825
crossref_primary_10_1080_00981389_2022_2147628
crossref_primary_10_3389_feduc_2024_1510416
crossref_primary_10_1007_s12671_023_02093_9
crossref_primary_10_1177_10596011211070098
crossref_primary_10_2196_31088
crossref_primary_10_1016_j_jmh_2024_100260
crossref_primary_10_1371_journal_pone_0294555
crossref_primary_10_1177_0004867420981416
crossref_primary_10_1111_bjet_13329
crossref_primary_10_3389_frvir_2024_1268780
crossref_primary_10_1016_j_abb_2021_109061
crossref_primary_10_1109_TNET_2023_3274354
crossref_primary_10_3390_electronics11040598
crossref_primary_10_1212_WNL_0000000000200928
crossref_primary_10_1177_26335565241292325
crossref_primary_10_1080_09297049_2021_2022112
crossref_primary_10_1177_02698811241254830
crossref_primary_10_1080_00273171_2023_2254769
crossref_primary_10_3389_fphys_2021_814542
crossref_primary_10_3390_rs14122843
crossref_primary_10_1002_gps_5904
crossref_primary_10_1016_j_ajodo_2021_01_003
crossref_primary_10_1017_cjn_2022_264
crossref_primary_10_3233_THC_220295
crossref_primary_10_1016_j_jadr_2022_100441
crossref_primary_10_3390_bs15030313
crossref_primary_10_3390_e22080897
crossref_primary_10_3389_fpsyg_2021_620867
crossref_primary_10_1080_23311886_2022_2144872
crossref_primary_10_1177_08862605241234352
crossref_primary_10_1016_j_pmedr_2025_103017
crossref_primary_10_1111_jcpp_13995
crossref_primary_10_1093_arclin_acaa005
crossref_primary_10_3390_nu13113910
crossref_primary_10_1057_s41307_023_00341_0
crossref_primary_10_1363_psrh_12245
crossref_primary_10_3398_064_084_0204
crossref_primary_10_3390_w16233388
crossref_primary_10_1016_j_ijhydene_2024_11_329
crossref_primary_10_1155_2023_4082587
crossref_primary_10_1007_s11031_021_09874_6
crossref_primary_10_11159_jffhmt_2024_038
crossref_primary_10_11622_smedj_2021054
crossref_primary_10_1080_13501763_2020_1859595
crossref_primary_10_1097_NMD_0000000000001689
crossref_primary_10_1097_DBP_0000000000001067
crossref_primary_10_1155_2022_2891993
crossref_primary_10_3389_fpain_2022_1082252
crossref_primary_10_1007_s10508_022_02310_x
crossref_primary_10_1111_jonm_13725
crossref_primary_10_1016_j_addbeh_2020_106724
crossref_primary_10_1080_08832323_2020_1716204
crossref_primary_10_1093_humrep_deac136
crossref_primary_10_3389_fpubh_2020_625664
crossref_primary_10_3390_cancers16010202
crossref_primary_10_3389_frsps_2024_1352284
crossref_primary_10_3389_fpubh_2023_1309824
crossref_primary_10_1186_s12912_024_01724_3
crossref_primary_10_1016_j_egyr_2024_08_029
crossref_primary_10_25217_numerical_v4i2_669
crossref_primary_10_1016_j_jsat_2021_108446
crossref_primary_10_1038_s41598_021_96607_x
crossref_primary_10_1093_gerona_glae290
crossref_primary_10_1016_j_archger_2023_105219
crossref_primary_10_1093_eurjcn_zvac002
crossref_primary_10_3758_s13428_025_02613_6
crossref_primary_10_1002_alz_12834
crossref_primary_10_1177_0033294120978158
crossref_primary_10_1002_jee_20587
crossref_primary_10_1038_s41598_024_72661_z
crossref_primary_10_3748_wjg_v27_i26_4088
crossref_primary_10_1007_s12119_021_09940_8
crossref_primary_10_1108_JADEE_04_2023_0100
crossref_primary_10_1080_14927713_2021_1971555
crossref_primary_10_1016_j_ecolind_2022_109838
crossref_primary_10_1186_s12903_023_03724_2
crossref_primary_10_1186_s12913_022_08716_6
crossref_primary_10_3390_diagnostics14202294
crossref_primary_10_1111_rode_12783
crossref_primary_10_1007_s10826_020_01829_8
crossref_primary_10_1016_j_ebiom_2020_103036
crossref_primary_10_1002_1348_9585_12415
crossref_primary_10_1007_s10653_025_02413_z
crossref_primary_10_1167_19_14_22
crossref_primary_10_3390_s24175659
crossref_primary_10_1186_s40101_023_00343_2
crossref_primary_10_3390_children11091072
crossref_primary_10_1186_s12889_022_13514_0
crossref_primary_10_1016_j_est_2023_109072
crossref_primary_10_1016_j_heliyon_2024_e25402
crossref_primary_10_1093_gerona_glab244
crossref_primary_10_1016_j_cscm_2024_e03817
crossref_primary_10_61108_ijsshr_v2i3_146
crossref_primary_10_3390_nu14061254
crossref_primary_10_1007_s10755_020_09536_4
crossref_primary_10_1057_s41599_023_02533_w
crossref_primary_10_1080_02602938_2020_1776839
crossref_primary_10_1055_a_1984_8250
crossref_primary_10_1186_s13031_022_00451_3
crossref_primary_10_1016_j_chiabu_2021_105256
crossref_primary_10_1021_acs_jpclett_2c03073
crossref_primary_10_1080_15283488_2024_2437030
crossref_primary_10_1007_s12144_024_06392_9
crossref_primary_10_1007_s00406_023_01655_1
crossref_primary_10_1016_j_abrep_2024_100537
crossref_primary_10_70550_bisma_v1i1_5
crossref_primary_10_1016_j_jcrimjus_2024_102213
crossref_primary_10_3758_s13428_023_02072_x
crossref_primary_10_1016_j_cscm_2022_e01229
crossref_primary_10_1038_s41366_021_01052_5
crossref_primary_10_1155_2022_5164430
crossref_primary_10_1016_j_fcr_2023_108987
crossref_primary_10_1111_jan_15595
crossref_primary_10_1016_j_jvoice_2022_02_005
crossref_primary_10_1016_j_ssresearch_2023_102908
crossref_primary_10_1007_s00406_023_01715_6
crossref_primary_10_1111_jam_14397
crossref_primary_10_1007_s10648_021_09601_0
crossref_primary_10_1038_s41598_021_02523_5
crossref_primary_10_1002_ab_70022
crossref_primary_10_1002_bimj_201800185
crossref_primary_10_3389_fpubh_2024_1378790
crossref_primary_10_4236_ojbm_2024_123103
crossref_primary_10_1002_ab_22087
crossref_primary_10_1088_2515_7620_acda80
crossref_primary_10_1007_s00442_020_04762_1
crossref_primary_10_1186_s12874_019_0734_8
crossref_primary_10_1016_j_rineng_2024_101872
crossref_primary_10_1007_s12144_023_04268_y
crossref_primary_10_1186_s12913_022_08858_7
crossref_primary_10_3389_fphar_2021_725034
crossref_primary_10_1016_j_mhp_2022_200247
crossref_primary_10_3389_fpsyt_2024_1248963
crossref_primary_10_3390_polym15163450
crossref_primary_10_3390_su14031494
crossref_primary_10_1007_s10750_023_05337_w
crossref_primary_10_1007_s13239_021_00582_3
crossref_primary_10_1186_s40066_024_00475_3
crossref_primary_10_55322_mdbakis_1217877
crossref_primary_10_1016_j_jad_2023_12_006
crossref_primary_10_1186_s12889_022_14284_5
crossref_primary_10_1061_JCEMD4_COENG_14585
crossref_primary_10_21764_maeuefd_1534799
crossref_primary_10_1007_s10661_022_10858_3
crossref_primary_10_1016_j_ibneur_2022_03_007
crossref_primary_10_1016_S2665_9913_24_00189_9
crossref_primary_10_2196_40121
crossref_primary_10_1111_jnc_16205
crossref_primary_10_1371_journal_pone_0290370
crossref_primary_10_1016_j_wneu_2022_02_112
crossref_primary_10_1080_08946566_2023_2236786
crossref_primary_10_1177_00332941251317680
crossref_primary_10_3390_knowledge2020014
crossref_primary_10_5005_jp_journals_10030_1393
crossref_primary_10_1002_dev_21900
crossref_primary_10_1186_s12911_022_01956_w
crossref_primary_10_1253_circj_CJ_24_0031
crossref_primary_10_1093_police_paad067
crossref_primary_10_3233_JIFS_211126
crossref_primary_10_3390_atmos11020187
crossref_primary_10_1016_j_eatbeh_2021_101569
crossref_primary_10_1108_AFR_06_2019_0062
crossref_primary_10_1007_s12055_025_01901_2
crossref_primary_10_1097_AJP_0000000000000949
crossref_primary_10_17233_sosyoekonomi_2019_03_03
crossref_primary_10_1044_2023_JSLHR_22_00669
crossref_primary_10_1016_j_isci_2022_104791
crossref_primary_10_3389_fenvs_2022_902153
crossref_primary_10_3390_info12070259
crossref_primary_10_1016_j_jhydrol_2021_126834
crossref_primary_10_1080_15623599_2023_2286115
crossref_primary_10_58884_akademik_hassasiyetler_1393744
crossref_primary_10_1002_nml_21630
crossref_primary_10_1007_s10964_021_01441_z
crossref_primary_10_1371_journal_pone_0290467
crossref_primary_10_1111_hex_13231
crossref_primary_10_1038_s41598_024_57707_6
crossref_primary_10_1111_jocn_15694
crossref_primary_10_1016_j_applanim_2021_105507
crossref_primary_10_1177_20552076221149317
crossref_primary_10_3390_ijerph20065168
crossref_primary_10_7717_peerj_17253
crossref_primary_10_1080_13854046_2021_1897163
crossref_primary_10_1007_s12144_023_04245_5
crossref_primary_10_3390_ijms26031239
crossref_primary_10_1080_17482798_2024_2334933
crossref_primary_10_1007_s40279_023_01962_6
crossref_primary_10_1007_s11116_023_10398_w
crossref_primary_10_1177_2167702620922966
crossref_primary_10_1016_j_dhjo_2021_101107
crossref_primary_10_1016_j_oceaneng_2024_118506
crossref_primary_10_1016_j_techsoc_2022_102062
crossref_primary_10_3390_ijerph17176398
crossref_primary_10_3390_ijerph20010691
crossref_primary_10_1177_22925503231161067
crossref_primary_10_20473_jebis_v4i2_10035
crossref_primary_10_1080_02791072_2022_2060773
crossref_primary_10_3390_land13111909
crossref_primary_10_1080_14427591_2024_2431138
crossref_primary_10_1017_S135561772100045X
crossref_primary_10_1093_tse_tdad025
crossref_primary_10_2106_JBJS_23_01177
crossref_primary_10_3389_fpsyt_2021_768132
crossref_primary_10_4236_ajibm_2021_1111066
crossref_primary_10_1080_14719037_2023_2242851
crossref_primary_10_1016_j_envpol_2024_123573
crossref_primary_10_3390_ijerph19031818
crossref_primary_10_1007_s40615_024_02183_x
crossref_primary_10_1121_1_5047437
crossref_primary_10_3233_HSM_220202
crossref_primary_10_3389_fpsyg_2024_1348079
crossref_primary_10_1002_lt_26544
crossref_primary_10_3390_app15063259
crossref_primary_10_1177_00332941231169666
crossref_primary_10_1177_13591053241307366
crossref_primary_10_17660_ActaHortic_2023_1360_42
crossref_primary_10_1111_jns_12319
crossref_primary_10_1109_ACCESS_2021_3052473
crossref_primary_10_1002_jcph_1989
crossref_primary_10_1089_jwh_2020_8428
crossref_primary_10_1371_journal_pone_0221200
crossref_primary_10_1080_00224499_2024_2435619
crossref_primary_10_1016_j_jsp_2024_101364
crossref_primary_10_1080_21642850_2021_1904935
crossref_primary_10_1186_s40163_024_00213_x
crossref_primary_10_3390_ijerph192013485
crossref_primary_10_1177_01492063221085913
crossref_primary_10_1093_forestry_cpae017
crossref_primary_10_1016_j_envint_2021_106532
crossref_primary_10_7717_peerj_13792
crossref_primary_10_1007_s10508_019_01623_8
crossref_primary_10_3390_nu12030829
crossref_primary_10_1007_s11469_021_00674_0
crossref_primary_10_3389_fnhum_2023_1274151
crossref_primary_10_1177_2150132720953682
crossref_primary_10_1186_s12889_021_12101_z
crossref_primary_10_1007_s12144_020_00706_3
crossref_primary_10_1016_j_appet_2024_107675
crossref_primary_10_3390_su132011431
crossref_primary_10_1016_j_marpol_2024_106574
crossref_primary_10_1080_02701367_2022_2070592
crossref_primary_10_3390_agriculture11050438
crossref_primary_10_3390_ijerph17186739
crossref_primary_10_1057_s41599_025_04548_x
crossref_primary_10_1111_opo_13292
crossref_primary_10_3390_su16198476
crossref_primary_10_1016_j_aej_2021_10_021
crossref_primary_10_1016_j_cstp_2022_10_014
crossref_primary_10_1155_2021_5519769
crossref_primary_10_3390_admsci11040144
crossref_primary_10_1002_alz_13895
crossref_primary_10_1016_j_scitotenv_2025_178990
crossref_primary_10_3390_s22145416
crossref_primary_10_1016_j_ijedro_2024_100422
crossref_primary_10_1002_sim_10172
crossref_primary_10_1111_add_15709
crossref_primary_10_1017_S1355617719000560
crossref_primary_10_1016_j_jclinepi_2025_111674
crossref_primary_10_1002_eap_2439
crossref_primary_10_21032_jhis_2023_48_2_113
crossref_primary_10_1002_gsj_1473
crossref_primary_10_3390_su14020663
crossref_primary_10_1016_j_jcjp_2025_100241
crossref_primary_10_1177_02601060221147768
crossref_primary_10_26446_kjlrp_2019_9_43_3_33
crossref_primary_10_3390_land12010090
crossref_primary_10_1108_JSTPM_09_2020_0135
crossref_primary_10_1210_jc_2018_02253
crossref_primary_10_1002_bimj_202300090
crossref_primary_10_1016_j_psychsport_2024_102639
crossref_primary_10_1038_s44220_025_00393_8
crossref_primary_10_1167_iovs_64_14_28
crossref_primary_10_1007_s10654_021_00805_w
crossref_primary_10_1080_00050067_2022_2148514
crossref_primary_10_1002_hec_4149
crossref_primary_10_1016_j_ajodo_2021_02_005
crossref_primary_10_1007_s12144_019_00513_5
crossref_primary_10_1016_j_paid_2022_111908
crossref_primary_10_1016_j_addbeh_2020_106642
crossref_primary_10_2196_17757
crossref_primary_10_1080_08870446_2024_2372649
crossref_primary_10_1016_j_chemosphere_2022_133610
crossref_primary_10_1007_s10643_024_01840_4
crossref_primary_10_1038_s41562_023_01705_7
crossref_primary_10_1021_acs_jcim_2c00492
crossref_primary_10_1177_0193945920926436
crossref_primary_10_1016_j_pec_2025_108676
crossref_primary_10_3390_math11071566
crossref_primary_10_3390_economies9040161
crossref_primary_10_1038_s44168_024_00192_4
crossref_primary_10_1007_s00521_021_06511_8
crossref_primary_10_1016_j_aichem_2024_100054
crossref_primary_10_1061__ASCE_CO_1943_7862_0001998
crossref_primary_10_1287_isre_2022_0089
crossref_primary_10_1038_s41598_022_05418_1
crossref_primary_10_1080_08964289_2019_1573797
crossref_primary_10_1007_s10278_024_01372_8
crossref_primary_10_1111_fare_12925
crossref_primary_10_1080_00221309_2022_2094310
crossref_primary_10_1016_j_drugalcdep_2020_107987
crossref_primary_10_1038_s41539_024_00229_7
crossref_primary_10_1371_journal_pgen_1009876
crossref_primary_10_1016_j_ssaho_2023_100520
crossref_primary_10_1016_j_asoc_2022_108985
crossref_primary_10_1111_jcpp_13790
crossref_primary_10_1186_s12877_020_01855_7
crossref_primary_10_3390_nu12030620
crossref_primary_10_3390_ijerph18052318
crossref_primary_10_1111_cdoe_13024
crossref_primary_10_1007_s11145_020_10095_5
crossref_primary_10_1016_j_jneumeth_2018_06_005
crossref_primary_10_1111_epi_17375
crossref_primary_10_1007_s40808_024_02254_2
crossref_primary_10_1016_j_contraception_2021_08_010
crossref_primary_10_3390_brainsci11030372
crossref_primary_10_51867_ajernet_5_3_104
crossref_primary_10_3390_antibiotics13010068
crossref_primary_10_7717_peerj_18350
crossref_primary_10_3389_fpsyg_2020_578154
crossref_primary_10_1080_03323315_2024_2353317
crossref_primary_10_1371_journal_pone_0310673
crossref_primary_10_1016_j_ibusrev_2022_102051
Cites_doi 10.18637/jss.v016.i09
10.2307/2983440
10.1016/j.jclinepi.2014.12.014
10.1161/CIRCGENETICS.116.001564
10.1136/bmj.i582
10.1371/journal.pone.0172231
10.1002/pds.3965
10.1016/j.jclinepi.2014.02.008
10.1017/S0370164600014346
10.2202/1557-4679.1285
10.2307/1912934
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Science Ltd. Jun 2018
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Jun 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7RV
7T2
7T7
7TK
7U7
7U9
7X7
7XB
88C
88E
8AO
8C1
8FD
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
KB0
M0S
M0T
M1P
M2O
M7N
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.jclinepi.2017.12.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database ProQuest
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-5921
EndPage 151
ExternalDocumentID 29258908
10_1016_j_jclinepi_2017_12_006
S0895435617304857
Genre Research Support, Non-U.S. Gov't
Journal Article
Commentary
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8P~
9JM
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
AQUVI
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HEH
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
L7B
M0T
M1P
M29
M2O
M3W
M41
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OD~
OHT
OO0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PRBVW
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSB
SSH
SSO
SSZ
SV3
T5K
UAP
UKHRP
WOW
WUQ
X7M
XPP
YHZ
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AKYCK
AMFUW
EFLBG
F3I
LCYCR
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T2
7T7
7TK
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c451t-9879c1e1227a9c53d62c7a921e5f46d1922d564cd74c1b62465437ff609672103
IEDL.DBID .~1
ISSN 0895-4356
1878-5921
IngestDate Fri Jul 11 07:36:19 EDT 2025
Sat Aug 23 13:20:11 EDT 2025
Mon Jul 21 06:00:01 EDT 2025
Tue Jul 01 03:10:45 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Fri Feb 23 02:32:19 EST 2024
Tue Aug 26 17:23:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Big data
Statistical inference
Epidemiological methods
Linear regression
Bias
Modeling assumptions
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-9879c1e1227a9c53d62c7a921e5f46d1922d564cd74c1b62465437ff609672103
Notes SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 29258908
PQID 2040726354
PQPubID 105585
PageCount 6
ParticipantIDs proquest_miscellaneous_1979168160
proquest_journals_2040726354
pubmed_primary_29258908
crossref_citationtrail_10_1016_j_jclinepi_2017_12_006
crossref_primary_10_1016_j_jclinepi_2017_12_006
elsevier_sciencedirect_doi_10_1016_j_jclinepi_2017_12_006
elsevier_clinicalkey_doi_10_1016_j_jclinepi_2017_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Elmsford
PublicationTitle Journal of clinical epidemiology
PublicationTitleAlternate J Clin Epidemiol
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Schmidt, Groenwold, Knol, Hoes, Nielen, Roes (bib1) 2014; 67
Aitken (bib6) 1936; 55
Austin, Steyerberg (bib11) 2015; 68
Zeileis (bib9) 2006; 16
Schmidt, Klungel, Nielen, de Boer, Groenwold, Hoes (bib8) 2016; 25
Tyrrell, Jones, Beaumont, Astley, Lovell, Yaghootkar (bib3) 2016; 352
White (bib10) 1980; 48
Faraway (bib7) 2015
Shu, Chan, Huang (bib5) 2017; 12
Eppinga, Kofink, Dullaart, Dalmeijer, Lipsic, Van Veldhuisen (bib4) 2017; 10
James, Witten, Hastie, Tibishirani (bib12) 2013
Chatfield (bib13) 1995; 158
Austin, Laupacis (bib2) 2011; 7
Schmidt (10.1016/j.jclinepi.2017.12.006_bib1) 2014; 67
Zeileis (10.1016/j.jclinepi.2017.12.006_bib9) 2006; 16
Austin (10.1016/j.jclinepi.2017.12.006_bib2) 2011; 7
Aitken (10.1016/j.jclinepi.2017.12.006_bib6) 1936; 55
Shu (10.1016/j.jclinepi.2017.12.006_bib5) 2017; 12
Austin (10.1016/j.jclinepi.2017.12.006_bib11) 2015; 68
Chatfield (10.1016/j.jclinepi.2017.12.006_bib13) 1995; 158
Eppinga (10.1016/j.jclinepi.2017.12.006_bib4) 2017; 10
Faraway (10.1016/j.jclinepi.2017.12.006_bib7) 2015
Tyrrell (10.1016/j.jclinepi.2017.12.006_bib3) 2016; 352
White (10.1016/j.jclinepi.2017.12.006_bib10) 1980; 48
Schmidt (10.1016/j.jclinepi.2017.12.006_bib8) 2016; 25
James (10.1016/j.jclinepi.2017.12.006_bib12) 2013
References_xml – volume: 7
  start-page: 1
  year: 2011
  end-page: 32
  ident: bib2
  article-title: A tutorial on methods to estimating clinically and policy-meaningful measures of treatment effects in prospective observational studies: a review
  publication-title: Int J Biostat
– year: 2013
  ident: bib12
  article-title: An introduction to statistical learning
– volume: 352
  start-page: i582
  year: 2016
  ident: bib3
  article-title: Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank
  publication-title: BMJ
– volume: 12
  start-page: e0172231
  year: 2017
  ident: bib5
  article-title: Higher body mass index and lower intake of dairy products predict poor glycaemic control among type 2 diabetes patients in Malaysia
  publication-title: PLoS One
– volume: 68
  start-page: 627
  year: 2015
  end-page: 636
  ident: bib11
  article-title: The number of subjects per variable required in linear regression analyses
  publication-title: J Clin Epidemiol
– volume: 48
  start-page: 817
  year: 1980
  end-page: 838
  ident: bib10
  article-title: Heteroskedasticity-consistent covariance matrix estimator and a direct test for Heteroskedasticity
  publication-title: Econometrica
– volume: 55
  start-page: 42
  year: 1936
  end-page: 48
  ident: bib6
  article-title: IV.—on least squares and linear combination of observations
  publication-title: Proc R Soc Edinb
– volume: 10
  year: 2017
  ident: bib4
  article-title: Effect of metformin on metabolites and relation with myocardial infarct size and left ventricular ejection fraction after myocardial infarction
  publication-title: Circ Cardiovasc Genet
– year: 2015
  ident: bib7
  article-title: Linear Models with R
– volume: 25
  start-page: 355
  year: 2016
  end-page: 362
  ident: bib8
  article-title: Tailoring treatments using treatment effect modification
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 67
  start-page: 821
  year: 2014
  end-page: 829
  ident: bib1
  article-title: Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study
  publication-title: J Clin Epidemiol
– volume: 16
  start-page: 1
  year: 2006
  end-page: 16
  ident: bib9
  article-title: Object-oriented computation of sandwich estimators
  publication-title: J Stat Softw
– volume: 158
  start-page: 419
  year: 1995
  end-page: 466
  ident: bib13
  article-title: Model uncertainty, data mining and statistical inference
  publication-title: J R Stat Soc A
– volume: 16
  start-page: 1
  year: 2006
  ident: 10.1016/j.jclinepi.2017.12.006_bib9
  article-title: Object-oriented computation of sandwich estimators
  publication-title: J Stat Softw
  doi: 10.18637/jss.v016.i09
– volume: 158
  start-page: 419
  year: 1995
  ident: 10.1016/j.jclinepi.2017.12.006_bib13
  article-title: Model uncertainty, data mining and statistical inference
  publication-title: J R Stat Soc A
  doi: 10.2307/2983440
– volume: 68
  start-page: 627
  year: 2015
  ident: 10.1016/j.jclinepi.2017.12.006_bib11
  article-title: The number of subjects per variable required in linear regression analyses
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.12.014
– volume: 10
  year: 2017
  ident: 10.1016/j.jclinepi.2017.12.006_bib4
  article-title: Effect of metformin on metabolites and relation with myocardial infarct size and left ventricular ejection fraction after myocardial infarction
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.116.001564
– volume: 352
  start-page: i582
  year: 2016
  ident: 10.1016/j.jclinepi.2017.12.006_bib3
  article-title: Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank
  publication-title: BMJ
  doi: 10.1136/bmj.i582
– volume: 12
  start-page: e0172231
  year: 2017
  ident: 10.1016/j.jclinepi.2017.12.006_bib5
  article-title: Higher body mass index and lower intake of dairy products predict poor glycaemic control among type 2 diabetes patients in Malaysia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172231
– volume: 25
  start-page: 355
  year: 2016
  ident: 10.1016/j.jclinepi.2017.12.006_bib8
  article-title: Tailoring treatments using treatment effect modification
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.3965
– volume: 67
  start-page: 821
  year: 2014
  ident: 10.1016/j.jclinepi.2017.12.006_bib1
  article-title: Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.02.008
– volume: 55
  start-page: 42
  year: 1936
  ident: 10.1016/j.jclinepi.2017.12.006_bib6
  article-title: IV.—on least squares and linear combination of observations
  publication-title: Proc R Soc Edinb
  doi: 10.1017/S0370164600014346
– volume: 7
  start-page: 1
  year: 2011
  ident: 10.1016/j.jclinepi.2017.12.006_bib2
  article-title: A tutorial on methods to estimating clinically and policy-meaningful measures of treatment effects in prospective observational studies: a review
  publication-title: Int J Biostat
  doi: 10.2202/1557-4679.1285
– volume: 48
  start-page: 817
  year: 1980
  ident: 10.1016/j.jclinepi.2017.12.006_bib10
  article-title: Heteroskedasticity-consistent covariance matrix estimator and a direct test for Heteroskedasticity
  publication-title: Econometrica
  doi: 10.2307/1912934
– year: 2013
  ident: 10.1016/j.jclinepi.2017.12.006_bib12
– year: 2015
  ident: 10.1016/j.jclinepi.2017.12.006_bib7
SSID ssj0017075
Score 2.6619847
Snippet Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and...
ObjectivesResearchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 146
SubjectTerms Bias
Big data
Computer simulation
Confidence intervals
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Economic models
Empirical analysis
Epidemiological methods
Estimates
Hemoglobin
Hypotheses
Impact tests
Linear Models
Linear regression
Mathematical functions
Modeling assumptions
Normal distribution
Normality
Regression analysis
Regression models
Researchers
Sample Size
Statistical analysis
Statistical inference
Transformations
Variables
Violations
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbNFkouoY8kdZoWF3pVasl6nkIpDUthe-rC3oRWkkOX4N3sbv5_Z2zZySFtcjOYMfbMePSNNPMNIV-ssNHEYGmofaAiCUP9UhlqmjpZpCf0AruRZ7_UdC5-LuQib7jtclnlEBO7QB3XAffIIUlHKi9YHsXl5pbi1Cg8Xc0jNA7IS6Quw5IuvRgTLqZ7ot3KWEkBFqgHHcKrixW2HqbNHyzv0t2WIE49enxx-hf47Bahq9fkKKPH8ltv7jfkRWrfklezfD7-jlxAagmuW27TdV_f2pa-jSWAvLJFcIqYuwS4DDZEgxyT-dWP39-nNE9EoEFItqfWaBtYYpxrb4Oso-IBrjhLshEqAlrjUSoRohaBLRVHsrRaN42CRAVSvao-IZN23ab3pNSR-cYbqZLnQicFuLVpUtRK-FAJlgoiB1W4kOnCcWrFjRvqwlZuUKFDFTrGHaiwIF9HuU1PmPGkhB407YZ2UAhgDmL6k5J2lMyAoQcCz5I9H4zq8m-7c_dOVpDP42344fAUxbdpfbdzzGqA1IapqiCnvTOMH8otl8ZW5uz_D_9ADuFNTF9xdk4m--1d-gjYZr_81DnwX67C9g4
  priority: 102
  providerName: ProQuest
Title Linear regression and the normality assumption
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895435617304857
https://dx.doi.org/10.1016/j.jclinepi.2017.12.006
https://www.ncbi.nlm.nih.gov/pubmed/29258908
https://www.proquest.com/docview/2040726354
https://www.proquest.com/docview/1979168160
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSysxEA6iIOdFvByP9cYK53XbTTbXRy1KVSziBfoW0iQrLbIWra_-dme6F45wRMGX7CUZyE4mM182MxNC_hpugg7epD53PuWR69SNpU51kUeD6Qkdx2jkq6Ec3POLkRgtkX4TC4NulbXur3T6QlvXb3o1N3uzyaR3m2kjwNiDCYYluRYYUc65QinvvrVuHlRVyXaxcYqt_4kSnnanGH4YZxN08VKL34J48tH_DdRnAHRhiM7WyVqNIJPjqpMbZCmWm2T1qt4j3yJdWF6C-CbP8aHycS0TV4YEgF5SIkBF3J0AZIZxxEH5Te7PTu_6g7Q-FSH1XNB5arQynkbKmHLGizxI5uGO0SgKLgMgNhaE5D4o7ulYMkyYlquikLBYgeVelm-T5fKpjDskUYG6wmkho2NcRQnYtShiUJI7n3EaO0Q0rLC-ThmOJ1c82sY3bGobFlpkoaXMAgs7pNfSzaqkGV9SqIbTtgkJBSVmQa9_SWlayg-C8y3a_WZQbT11X6Aec8YBDuMdctRWw6TDnRRXxqfXF0uNAlitqcw65E8lDO2HMsOENpne_UHH9sgveNKVS9o-WZ4_v8YDAD_z8eFCuqFUIwWl7sP9yvH55WAI15PT4fXNO3hhBZ0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4sFAgSHF1ix88DQjxabWl3hVAr9Wa8toNYVdmluxXiT_EbGW_iwAEol94iRWMl4_HMN54XwDPDTdDBG-Ir5wmPXBM3lZrouoomtSd0PFUjjydydMzfn4iTDfiRa2FSWmXWiWtFHeY-3ZGjk55aeaF55K8WX0maGpWiq3mERisWB_H7N3TZli_33-H-Pmdsb_fo7Yh0UwWI54KuCDrZxtNIGVPOeFEFyTw-MRpFzWVAxMOCkNwHxT2dSpYajlWqriWCfXSXygrXvQKbvEJXZgCbb3YnHz72cQvVtvYttREEgYj8rSZ5tjNLxY5x8SUllKn1JWSas_Rnc_g3uLs2e3s34HqHV4vXrYDdhI3Y3IKr4y4ifxt20JlFrhRn8XObUdsUrgkFwsqiSXA4ofwCATpKTRKBO3B8Kdy6C4Nm3sT7UKhAXe20kNExrqJEpFzXMSjJnS85jUMQmRXWdw3K05yMU5sz0WY2s9AmFlrKLLJwCC96ukXbouNCCpU5bXMBKqpMi1bkQkrTU3YQpYUe_0W7nTfVdopiaX-J9RCe9q_xiKe4jWvi_HxpqVEI4jWV5RDutcLQ_ygzTGhT6gf_XvwJXBsdjQ_t4f7k4CFs4VfpNt9tGwars_P4CJHVavq4E-cCPl32CfoJ5ZMxng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcKt4sFAgSHNPGjp8HhBBl1VJacaDS3ozXdhArlN12t0L8NX4dM5s4cADKpbdI0VjJeB7f2PMAeG6FjSYGW4bah1IkYUo_VaY0TZ0stSf0gqqRj0_Uwal4N5GTDfiRa2EorTLbxLWhjvNAZ-QYpFMrL3SPYq_p0yI-7I9fLc5KmiBFN615nEYnIkfp-zcM35YvD_dxr19wPn778c1B2U8YKIOQbFViwG0DS4xz7W2QdVQ84BNnSTZCRUQ_PEolQtQisKni1Hys1k2jEPhj6FTVuO41uK5ryUjH9GQI9pjumvxWxsoSIYn6rTp5tjujsse0-EKpZXp9HEkTl_7sGP8GfNcOcHwTtnvkWrzuRO0WbKT2Nmwd93fzd2AXw1rkSXGePne5tW3h21ggwCxaAsaE9wuE6ig_JAx34fRKeHUPNtt5mx5AoSPzjTdSJc-FTgoxc9OkqJXwoRIsjUBmVrjQtyqniRlfXc5Jm7nMQkcsdIw7ZOEI9ga6Rdes41IKnTntcikqGk-H_uRSSjtQ9mClAyH_RbuTN9X1JmPpfgn4CJ4Nr1HZ6QbHt2l-sXTMaoTzhqlqBPc7YRh-lFsuja3Mw38v_hS2UG_c-8OTo0dwAz_KdIlvO7C5Or9IjxFiraZP1rJcwKerVp6f_P40bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+regression+and+the+normality+assumption&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=Schmidt%2C+Amand+F.&rft.au=Finan%2C+Chris&rft.date=2018-06-01&rft.issn=0895-4356&rft.volume=98&rft.spage=146&rft.epage=151&rft_id=info:doi/10.1016%2Fj.jclinepi.2017.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclinepi_2017_12_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon