The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown...
Saved in:
Published in | The Plant cell Vol. 28; no. 10; pp. 2586 - 2602 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1105/tpc.16.00071 |
Cover
Loading…
Abstract | RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgenederived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. |
---|---|
AbstractList | Bamboo mosaic virus
satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in
Nicotiana benthamiana
.
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of
Bamboo mosaic potexvirus
satRNA
(
satBaMV
) can functionally complement in trans the systemic trafficking of
P20
-defective satBaMV in infected
Nicotiana benthamiana
. The transgene-derived satBaMV, uncoupled from
HV
replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing
fibrillarin
suppressed satBaMV-, but not
HV
-, phloem-based movement following grafting or coinoculation with
HV
. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (
RNP
) complex composed of P20 and fibrillarin, whereas
BaMV
movement proteins, capsid protein, and
BaMV
RNA are recruited with
HV
coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20
RNP
complex in phloem-mediated systemic trafficking. RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgenederived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana. RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. |
Author | Shaw, Jane Chang, Chih-Hao Taliansky, Michael Wang, Jiun-Da Hsu, Yau-Heiu Lo, Yih-Shan Lee, Shu-Chuan Chang, Ban-Yang Lin, Na-Sheng Hsu, Fu-Chen |
Author_xml | – sequence: 1 givenname: Chih-Hao surname: Chang fullname: Chang, Chih-Hao organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan – sequence: 2 givenname: Fu-Chen surname: Hsu fullname: Hsu, Fu-Chen organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan – sequence: 3 givenname: Shu-Chuan surname: Lee fullname: Lee, Shu-Chuan organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan – sequence: 4 givenname: Yih-Shan surname: Lo fullname: Lo, Yih-Shan organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan – sequence: 5 givenname: Jiun-Da surname: Wang fullname: Wang, Jiun-Da organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan – sequence: 6 givenname: Jane surname: Shaw fullname: Shaw, Jane organization: The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom – sequence: 7 givenname: Michael surname: Taliansky fullname: Taliansky, Michael organization: The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom – sequence: 8 givenname: Ban-Yang surname: Chang fullname: Chang, Ban-Yang organization: Department of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan – sequence: 9 givenname: Yau-Heiu surname: Hsu fullname: Hsu, Yau-Heiu organization: Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan – sequence: 10 givenname: Na-Sheng surname: Lin fullname: Lin, Na-Sheng organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27702772$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A-981pyacFZ8zmZuRFKtXZhqdKu4l3IZs5sU2eTaZIp-Bf6q5tx66KC4EWSA3nOe97DOYfFnvMOiuIlwTNCsHibBjMj1QxjLMmT4oAIRkva1N_2cow5LnklyH5xGONNRogkzbNin0qJ86EHxf3yGtDFaHrwvQ7ozK6C7XNkHfocfIL8ziO6hNvRBmhR5wM6h36AgL7aMMZy7loYIF8uoYV36_K9jUk7A2gZdNdZ8926NfId0uhqXN3ZoHt0pRP0vU2ALi9O0FSp1y7F58XTTvcRXjy-R8WXsw_L0_Ny8enj_PRkURouSCqbCnJ7pjNC4go0B6ZFJTqOa1lzkHSlGSdtTaGRDVBW4XaFGTEtlRUWhBh2VLzb6g7jagOtydazKzUEu9Hhh_Laqj9_nL1Wa3-nBGG8kSwLvH4UCP52hJjUxkaTW9IO_BgVqXnFKRGi_g-UCSaauppUX_1ua-fn16wy8GYLmOBjDNDtEILVtAoqr4Iilfq5Chmnf-HGJp2sn5qy_b-SjrdJNzH5sCswTAOabCtaT4lUZMcPeMfGxw |
CitedBy_id | crossref_primary_10_3389_fpls_2020_597665 crossref_primary_10_1093_plcell_koad140 crossref_primary_10_3389_fpls_2024_1445097 crossref_primary_10_3390_v14040698 crossref_primary_10_3389_fpls_2018_00132 crossref_primary_10_1186_s12864_022_08411_0 crossref_primary_10_1007_s11033_021_06401_1 crossref_primary_10_1371_journal_ppat_1006587 crossref_primary_10_3390_plants11151903 crossref_primary_10_1038_s41598_019_46695_7 crossref_primary_10_1111_nph_20030 crossref_primary_10_1093_plphys_kiac547 crossref_primary_10_1186_s13568_022_01402_0 crossref_primary_10_1007_s11262_020_01806_9 crossref_primary_10_1111_nph_15530 crossref_primary_10_1016_j_xplc_2023_100606 crossref_primary_10_1093_jxb_erac248 crossref_primary_10_1371_journal_ppat_1009622 crossref_primary_10_1111_mpp_12612 crossref_primary_10_3389_fimmu_2022_793582 crossref_primary_10_3389_fpls_2017_01878 crossref_primary_10_1094_MPMI_06_19_0161_FI crossref_primary_10_3389_fcell_2024_1494631 crossref_primary_10_3389_fmicb_2020_01828 crossref_primary_10_1111_mpp_13422 crossref_primary_10_3389_fmicb_2021_780724 crossref_primary_10_3389_fpls_2023_1223820 crossref_primary_10_1016_j_pbi_2018_02_001 crossref_primary_10_1371_journal_ppat_1008709 crossref_primary_10_1111_jipb_13580 crossref_primary_10_1093_hr_uhac088 crossref_primary_10_1111_pce_15099 crossref_primary_10_3390_v13030358 crossref_primary_10_1093_plphys_kiad289 crossref_primary_10_1111_nph_17657 crossref_primary_10_3389_fmicb_2023_1139447 crossref_primary_10_1111_pbi_14350 crossref_primary_10_3389_fmicb_2017_00787 crossref_primary_10_3389_fmicb_2017_00886 crossref_primary_10_1105_tpc_16_00774 |
ContentType | Journal Article |
Copyright | 2016 American Society of Plant Biologists 2016 American Society of Plant Biologists. All rights reserved. 2016 American Society of Plant Biologists. All rights reserved. 2016 |
Copyright_xml | – notice: 2016 American Society of Plant Biologists – notice: 2016 American Society of Plant Biologists. All rights reserved. – notice: 2016 American Society of Plant Biologists. All rights reserved. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 7U9 8FD FR3 H94 P64 5PM |
DOI | 10.1105/tpc.16.00071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2602 |
ExternalDocumentID | PMC5134973 27702772 10_1105_tpc_16_00071 plantcell.28.10.2586 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ AAYXX ABIME ABPIB ABUWG ABZEO ACFRR ACUTJ ACVCV ACZBC ADXHL AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AHGBF AJBYB AJDVS ALIPV ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CITATION D1J DWQXO FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ P0- PHGZM PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 3V. 88A ADYWZ CGR CUY CVF DOOOF ECM EIF FRP ISR JSODD M0L NPM RHF RPM VQA VXZ 7X8 7QO 7TM 7U9 8FD FR3 H94 P64 5PM |
ID | FETCH-LOGICAL-c451t-96e298cfc5706ea4e3a565f408784e72ba341d82e979e2360db031cd2760511c3 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:09:05 EDT 2025 Fri Sep 05 10:58:31 EDT 2025 Thu Sep 04 15:18:59 EDT 2025 Wed Feb 19 02:40:22 EST 2025 Tue Jul 01 03:49:46 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Sun Aug 24 12:10:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2016 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-96e298cfc5706ea4e3a565f408784e72ba341d82e979e2360db031cd2760511c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Na-Sheng Lin (nslin@sinica.edu.tw). www.plantcell.org/cgi/doi/10.1105/tpc.16.00071 |
ORCID | 0000-0002-3071-4253 0000-0003-1309-7596 0000-0002-6499-6439 0000-0003-1148-6256 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5134973 |
PMID | 27702772 |
PQID | 1835359863 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5134973 proquest_miscellaneous_1846421558 proquest_miscellaneous_1835359863 pubmed_primary_27702772 crossref_primary_10_1105_tpc_16_00071 crossref_citationtrail_10_1105_tpc_16_00071 jstor_primary_plantcell_28_10_2586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2016 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | 20413458 - Science. 2010 May 14;328(5980):912-6 24283212 - Plant Biotechnol J. 2014 Apr;12(3):330-43 15210063 - Acta Pharmacol Sin. 2004 Jul;25(7):902-6 19470590 - Plant Cell. 2009 May;21(5):1541-55 19805075 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17594-9 17416731 - Plant Cell. 2007 Apr;19(4):1179-91 19025382 - Annu Rev Plant Biol. 2009;60:207-21 21900168 - J Virol. 2011 Nov;85(22):11821-32 18199452 - J Mol Biol. 2008 Feb 29;376(4):932-7 23675378 - Front Plant Sci. 2013 May 10;4:130 19748270 - Trends Cell Biol. 2009 Oct;19(10):495-503 15258266 - Plant Cell. 2004 Aug;16(8):1979-2000 23809921 - Adv Virus Res. 2013;87:75-112 12388758 - Mol Biol Cell. 2002 Oct;13(10):3576-87 20521953 - Mol Plant Microbe Interact. 2010 Jul;23(7):903-14 24420565 - J Exp Bot. 2014 Apr;65(7):1689-97 9484488 - Plant Mol Biol. 1998 Feb;36(3):479-85 22654666 - PLoS Pathog. 2012;8(5):e1002726 10698933 - EMBO J. 2000 Mar 1;19(5):913-20 3443303 - Gene. 1987;61(1):1-11 22733783 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1980-9 15225285 - Plant J. 2004 Jul;39(2):194-205 21518793 - J Cell Biol. 2011 May 2;193(3):521-35 23675895 - Mol Plant Pathol. 2013 Sep;14(7):693-707 23898339 - Front Plant Sci. 2013 Jul 24;4:272 17576925 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20 21994552 - Viruses. 2009 Sep;1(2):317-34 23370600 - Cell Tissue Res. 2013 Apr;352(1):49-58 12383090 - Plant J. 2002 Oct;32(2):255-62 19141462 - J Gen Virol. 2009 Feb;90(Pt 2):507-18 21965537 - Nucleic Acids Res. 2012 Jan;40(2):638-49 10074153 - J Virol. 1999 Apr;73(4):3032-9 21984697 - Plant Cell. 2011 Oct;23(10):3727-44 9634582 - Plant Cell. 1998 Jun;10(6):937-46 24431156 - J Exp Bot. 2014 Apr;65(7):1673-80 15282326 - Mol Cell Biol. 2004 Aug;24(16):7284-97 20951872 - Adv Virus Res. 2010;77:119-58 15992545 - Dev Cell. 2005 Jul;9(1):109-19 16186245 - J Gen Virol. 2005 Oct;86(Pt 10):2891-6 14718640 - J Gen Virol. 2004 Jan;85(Pt 1):251-9 11715051 - Nat Rev Mol Cell Biol. 2001 Nov;2(11):849-57 17905731 - J Exp Bot. 2008;59(1):85-92 25431002 - Mol Plant Pathol. 2015 Dec;16(9):921-30 23754943 - PLoS Pathog. 2013;9(6):e1003405 16838788 - Mol Plant Microbe Interact. 2006 Jul;19(7):758-67 7844568 - J Gen Virol. 1995 Feb;76 ( Pt 2):459-64 19616989 - Trends Plant Sci. 2009 Aug;14(8):443-53 19122103 - Plant Cell. 2009 Jan;21(1):197-215 11169199 - Plant J. 2001 Jan;25(2):237-45 15464839 - Virology. 2004 Oct 25;328(2):185-97 7518162 - Virology. 1994 Aug 1;202(2):707-14 15773853 - Plant J. 2005 Apr;42(1):49-68 21258006 - Plant Cell. 2011 Jan;23(1):258-72 8610182 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3138-42 23745125 - Front Plant Sci. 2013 May 24;4:154 8077956 - J Gen Virol. 1994 Sep;75 ( Pt 9):2513-8 6021091 - Virology. 1967 Feb;31(2):191-6 24637832 - Nucleus. 2014 Jan-Feb;5(1):85-94 15863519 - Plant Cell. 2005 Jun;17(6):1801-14 21994595 - Viruses. 2009 Dec;1(3):1325-50 21917973 - J Virol. 2011 Nov;85(22):12022-31 12379800 - J Cell Biol. 2002 Oct 14;159(1):17-21 25329993 - PLoS Pathog. 2014 Oct 16;10(10):e1004448 23110896 - Plant Cell. 2012 Oct;24(10):3876-91 10829025 - J Biol Chem. 2000 Sep 1;275(35):27212-20 22349738 - Biochimie. 2012 May;94(5):1180-8 16603539 - J Gen Virol. 2006 May;87(Pt 5):1357-67 20413459 - Science. 2010 May 14;328(5980):872-5 |
References_xml | – reference: 20521953 - Mol Plant Microbe Interact. 2010 Jul;23(7):903-14 – reference: 22654666 - PLoS Pathog. 2012;8(5):e1002726 – reference: 24431156 - J Exp Bot. 2014 Apr;65(7):1673-80 – reference: 23370600 - Cell Tissue Res. 2013 Apr;352(1):49-58 – reference: 15863519 - Plant Cell. 2005 Jun;17(6):1801-14 – reference: 9484488 - Plant Mol Biol. 1998 Feb;36(3):479-85 – reference: 22733783 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1980-9 – reference: 17416731 - Plant Cell. 2007 Apr;19(4):1179-91 – reference: 10829025 - J Biol Chem. 2000 Sep 1;275(35):27212-20 – reference: 3443303 - Gene. 1987;61(1):1-11 – reference: 15258266 - Plant Cell. 2004 Aug;16(8):1979-2000 – reference: 20413459 - Science. 2010 May 14;328(5980):872-5 – reference: 7518162 - Virology. 1994 Aug 1;202(2):707-14 – reference: 21994595 - Viruses. 2009 Dec;1(3):1325-50 – reference: 21258006 - Plant Cell. 2011 Jan;23(1):258-72 – reference: 23110896 - Plant Cell. 2012 Oct;24(10):3876-91 – reference: 17905731 - J Exp Bot. 2008;59(1):85-92 – reference: 22349738 - Biochimie. 2012 May;94(5):1180-8 – reference: 21900168 - J Virol. 2011 Nov;85(22):11821-32 – reference: 23675378 - Front Plant Sci. 2013 May 10;4:130 – reference: 21917973 - J Virol. 2011 Nov;85(22):12022-31 – reference: 19470590 - Plant Cell. 2009 May;21(5):1541-55 – reference: 19122103 - Plant Cell. 2009 Jan;21(1):197-215 – reference: 24283212 - Plant Biotechnol J. 2014 Apr;12(3):330-43 – reference: 24420565 - J Exp Bot. 2014 Apr;65(7):1689-97 – reference: 15464839 - Virology. 2004 Oct 25;328(2):185-97 – reference: 8610182 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3138-42 – reference: 10074153 - J Virol. 1999 Apr;73(4):3032-9 – reference: 20951872 - Adv Virus Res. 2010;77:119-58 – reference: 25329993 - PLoS Pathog. 2014 Oct 16;10(10):e1004448 – reference: 16186245 - J Gen Virol. 2005 Oct;86(Pt 10):2891-6 – reference: 9634582 - Plant Cell. 1998 Jun;10(6):937-46 – reference: 23754943 - PLoS Pathog. 2013;9(6):e1003405 – reference: 16603539 - J Gen Virol. 2006 May;87(Pt 5):1357-67 – reference: 24637832 - Nucleus. 2014 Jan-Feb;5(1):85-94 – reference: 10698933 - EMBO J. 2000 Mar 1;19(5):913-20 – reference: 21518793 - J Cell Biol. 2011 May 2;193(3):521-35 – reference: 23898339 - Front Plant Sci. 2013 Jul 24;4:272 – reference: 18199452 - J Mol Biol. 2008 Feb 29;376(4):932-7 – reference: 15225285 - Plant J. 2004 Jul;39(2):194-205 – reference: 15282326 - Mol Cell Biol. 2004 Aug;24(16):7284-97 – reference: 14718640 - J Gen Virol. 2004 Jan;85(Pt 1):251-9 – reference: 6021091 - Virology. 1967 Feb;31(2):191-6 – reference: 19616989 - Trends Plant Sci. 2009 Aug;14(8):443-53 – reference: 23809921 - Adv Virus Res. 2013;87:75-112 – reference: 11169199 - Plant J. 2001 Jan;25(2):237-45 – reference: 19141462 - J Gen Virol. 2009 Feb;90(Pt 2):507-18 – reference: 23745125 - Front Plant Sci. 2013 May 24;4:154 – reference: 25431002 - Mol Plant Pathol. 2015 Dec;16(9):921-30 – reference: 21965537 - Nucleic Acids Res. 2012 Jan;40(2):638-49 – reference: 12379800 - J Cell Biol. 2002 Oct 14;159(1):17-21 – reference: 19025382 - Annu Rev Plant Biol. 2009;60:207-21 – reference: 17576925 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20 – reference: 15210063 - Acta Pharmacol Sin. 2004 Jul;25(7):902-6 – reference: 11715051 - Nat Rev Mol Cell Biol. 2001 Nov;2(11):849-57 – reference: 19748270 - Trends Cell Biol. 2009 Oct;19(10):495-503 – reference: 16838788 - Mol Plant Microbe Interact. 2006 Jul;19(7):758-67 – reference: 15992545 - Dev Cell. 2005 Jul;9(1):109-19 – reference: 12383090 - Plant J. 2002 Oct;32(2):255-62 – reference: 12388758 - Mol Biol Cell. 2002 Oct;13(10):3576-87 – reference: 21984697 - Plant Cell. 2011 Oct;23(10):3727-44 – reference: 19805075 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17594-9 – reference: 21994552 - Viruses. 2009 Sep;1(2):317-34 – reference: 23675895 - Mol Plant Pathol. 2013 Sep;14(7):693-707 – reference: 15773853 - Plant J. 2005 Apr;42(1):49-68 – reference: 20413458 - Science. 2010 May 14;328(5980):912-6 – reference: 8077956 - J Gen Virol. 1994 Sep;75 ( Pt 9):2513-8 – reference: 7844568 - J Gen Virol. 1995 Feb;76 ( Pt 2):459-64 |
SSID | ssj0001719 |
Score | 2.4174314 |
Snippet | RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs),... Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana. RNA... Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana . RNA... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2586 |
SubjectTerms | Alphaflexiviridae Helper Viruses - genetics Immunoprecipitation Nicotiana benthamiana Potexvirus Reverse Transcriptase Polymerase Chain Reaction Ribonucleoproteins - metabolism RNA, Plant - genetics RNA, Satellite - genetics Viral Proteins - genetics |
Title | The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants |
URI | https://www.jstor.org/stable/plantcell.28.10.2586 https://www.ncbi.nlm.nih.gov/pubmed/27702772 https://www.proquest.com/docview/1835359863 https://www.proquest.com/docview/1846421558 https://pubmed.ncbi.nlm.nih.gov/PMC5134973 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqBQkuCJbHlpcMglOUJXHiODkuhVXLoxLsLlpOkZM6pGKVVG1ygJ_AP-FfMuMkbloKWrhEqeO8Op89M_E3M4Q8Ax3oKCZTW2Yzbvu-EHYSyRDX4APHzxQcxgDn99NgfOa_Oefng8HPHmuprpLD9PvOuJL_kSq0gVwxSvYfJGsuCg2wD_KFLUgYtpeW8RQTEqN_ah0jex-kupwXyP_HMpbWBMNAkOwLdiUSCkHLLNTS-jRf1it7YkrgVta7svhiv0JjEkc6aDBMLfG1pURLnF-QDXxhnUidwrNS1sfpEX4swapHTTaozsbFp9KtFq4K9PgDzbQyyue5PZalAdSq1hZ0bY9ytU0QOsmxue4Rh_Sn3c9wiZO8bW2_WbiBYb910yzyGLEKe6OFuqmX2SzShYbN3MzCPgad_kzLuxTazc9AB27v0AgOJs-oFumhi8tOjnDXmq9b7d9SiIamqB0kh8dwduwi_c_BbAVXGHgkWCXk7Yd1YnpX6Boy5sVMjAV_0b_3hvXTEGB3uTbbDN2eyXN6k9xofRV61ADvFhmoYp9cfVkCRr7tk2ujrlbgbfIDZE4NEmkPibRFIp2saIdECkikDRLpb0ikG0ikPSTSMqOSdkikBokUkEjxThqJd8jZ8evT0dhuq3zYqc_dyo4CBVJPs5QLJ1DSV54EJyPznVCEvhIskWBozUKmIhEp5gXOLAFFlM6YAE_cdVPvLtkrykIdEBp5qcgin6Uz7vmBo2QSBhlTmRBREsD-kFjdvx-nbQp8rMRyEe-S9JA8N70XTeqXP_R7qgVpOi3wdXGExSzEMxCqQ_Kkk3IMssGjslBlvYpBp3JMoxl4f-vjY0A65-GQ3GuQYe4GaEQeBhsSsYEZ0wETyG8eKea5TiTPMTep8O5f8kUfkOvrwfyQ7FXLWj0Ck7xKHuvB8AubV-J8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nucleolar+Fibrillarin+Protein+Is+Required+for+Helper+Virus-Independent+Long-Distance+Trafficking+of+a+Subviral+Satellite+RNA+in+Plants&rft.jtitle=The+Plant+cell&rft.au=Chang%2C+Chih-Hao&rft.au=Hsu%2C+Fu-Chen&rft.au=Lee%2C+Shu-Chuan&rft.au=Lo%2C+Yih-Shan&rft.date=2016-10-01&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=28&rft.issue=10&rft.spage=2586&rft.epage=2602&rft_id=info:doi/10.1105%2Ftpc.16.00071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1105_tpc_16_00071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |