The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants

RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 28; no. 10; pp. 2586 - 2602
Main Authors Chang, Chih-Hao, Hsu, Fu-Chen, Lee, Shu-Chuan, Lo, Yih-Shan, Wang, Jiun-Da, Shaw, Jane, Taliansky, Michael, Chang, Ban-Yang, Hsu, Yau-Heiu, Lin, Na-Sheng
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.10.2016
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1105/tpc.16.00071

Cover

Loading…
Abstract RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgenederived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
AbstractList Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana . RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA ( satBaMV ) can functionally complement in trans the systemic trafficking of P20 -defective satBaMV in infected Nicotiana benthamiana . The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV -, phloem-based movement following grafting or coinoculation with HV . Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein ( RNP ) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgenederived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana. RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
Author Shaw, Jane
Chang, Chih-Hao
Taliansky, Michael
Wang, Jiun-Da
Hsu, Yau-Heiu
Lo, Yih-Shan
Lee, Shu-Chuan
Chang, Ban-Yang
Lin, Na-Sheng
Hsu, Fu-Chen
Author_xml – sequence: 1
  givenname: Chih-Hao
  surname: Chang
  fullname: Chang, Chih-Hao
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
– sequence: 2
  givenname: Fu-Chen
  surname: Hsu
  fullname: Hsu, Fu-Chen
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
– sequence: 3
  givenname: Shu-Chuan
  surname: Lee
  fullname: Lee, Shu-Chuan
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
– sequence: 4
  givenname: Yih-Shan
  surname: Lo
  fullname: Lo, Yih-Shan
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
– sequence: 5
  givenname: Jiun-Da
  surname: Wang
  fullname: Wang, Jiun-Da
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
– sequence: 6
  givenname: Jane
  surname: Shaw
  fullname: Shaw, Jane
  organization: The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
– sequence: 7
  givenname: Michael
  surname: Taliansky
  fullname: Taliansky, Michael
  organization: The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
– sequence: 8
  givenname: Ban-Yang
  surname: Chang
  fullname: Chang, Ban-Yang
  organization: Department of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
– sequence: 9
  givenname: Yau-Heiu
  surname: Hsu
  fullname: Hsu, Yau-Heiu
  organization: Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
– sequence: 10
  givenname: Na-Sheng
  surname: Lin
  fullname: Lin, Na-Sheng
  organization: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27702772$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A-981pyacFZ8zmZuRFKtXZhqdKu4l3IZs5sU2eTaZIp-Bf6q5tx66KC4EWSA3nOe97DOYfFnvMOiuIlwTNCsHibBjMj1QxjLMmT4oAIRkva1N_2cow5LnklyH5xGONNRogkzbNin0qJ86EHxf3yGtDFaHrwvQ7ozK6C7XNkHfocfIL8ziO6hNvRBmhR5wM6h36AgL7aMMZy7loYIF8uoYV36_K9jUk7A2gZdNdZ8926NfId0uhqXN3ZoHt0pRP0vU2ALi9O0FSp1y7F58XTTvcRXjy-R8WXsw_L0_Ny8enj_PRkURouSCqbCnJ7pjNC4go0B6ZFJTqOa1lzkHSlGSdtTaGRDVBW4XaFGTEtlRUWhBh2VLzb6g7jagOtydazKzUEu9Hhh_Laqj9_nL1Wa3-nBGG8kSwLvH4UCP52hJjUxkaTW9IO_BgVqXnFKRGi_g-UCSaauppUX_1ua-fn16wy8GYLmOBjDNDtEILVtAoqr4Iilfq5Chmnf-HGJp2sn5qy_b-SjrdJNzH5sCswTAOabCtaT4lUZMcPeMfGxw
CitedBy_id crossref_primary_10_3389_fpls_2020_597665
crossref_primary_10_1093_plcell_koad140
crossref_primary_10_3389_fpls_2024_1445097
crossref_primary_10_3390_v14040698
crossref_primary_10_3389_fpls_2018_00132
crossref_primary_10_1186_s12864_022_08411_0
crossref_primary_10_1007_s11033_021_06401_1
crossref_primary_10_1371_journal_ppat_1006587
crossref_primary_10_3390_plants11151903
crossref_primary_10_1038_s41598_019_46695_7
crossref_primary_10_1111_nph_20030
crossref_primary_10_1093_plphys_kiac547
crossref_primary_10_1186_s13568_022_01402_0
crossref_primary_10_1007_s11262_020_01806_9
crossref_primary_10_1111_nph_15530
crossref_primary_10_1016_j_xplc_2023_100606
crossref_primary_10_1093_jxb_erac248
crossref_primary_10_1371_journal_ppat_1009622
crossref_primary_10_1111_mpp_12612
crossref_primary_10_3389_fimmu_2022_793582
crossref_primary_10_3389_fpls_2017_01878
crossref_primary_10_1094_MPMI_06_19_0161_FI
crossref_primary_10_3389_fcell_2024_1494631
crossref_primary_10_3389_fmicb_2020_01828
crossref_primary_10_1111_mpp_13422
crossref_primary_10_3389_fmicb_2021_780724
crossref_primary_10_3389_fpls_2023_1223820
crossref_primary_10_1016_j_pbi_2018_02_001
crossref_primary_10_1371_journal_ppat_1008709
crossref_primary_10_1111_jipb_13580
crossref_primary_10_1093_hr_uhac088
crossref_primary_10_1111_pce_15099
crossref_primary_10_3390_v13030358
crossref_primary_10_1093_plphys_kiad289
crossref_primary_10_1111_nph_17657
crossref_primary_10_3389_fmicb_2023_1139447
crossref_primary_10_1111_pbi_14350
crossref_primary_10_3389_fmicb_2017_00787
crossref_primary_10_3389_fmicb_2017_00886
crossref_primary_10_1105_tpc_16_00774
ContentType Journal Article
Copyright 2016 American Society of Plant Biologists
2016 American Society of Plant Biologists. All rights reserved.
2016 American Society of Plant Biologists. All rights reserved. 2016
Copyright_xml – notice: 2016 American Society of Plant Biologists
– notice: 2016 American Society of Plant Biologists. All rights reserved.
– notice: 2016 American Society of Plant Biologists. All rights reserved. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
7U9
8FD
FR3
H94
P64
5PM
DOI 10.1105/tpc.16.00071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2602
ExternalDocumentID PMC5134973
27702772
10_1105_tpc_16_00071
plantcell.28.10.2586
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
AAYXX
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
ADXHL
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AHGBF
AJBYB
AJDVS
ALIPV
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
D1J
DWQXO
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
P0-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
3V.
88A
ADYWZ
CGR
CUY
CVF
DOOOF
ECM
EIF
FRP
ISR
JSODD
M0L
NPM
RHF
RPM
VQA
VXZ
7X8
7QO
7TM
7U9
8FD
FR3
H94
P64
5PM
ID FETCH-LOGICAL-c451t-96e298cfc5706ea4e3a565f408784e72ba341d82e979e2360db031cd2760511c3
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:09:05 EDT 2025
Fri Sep 05 10:58:31 EDT 2025
Thu Sep 04 15:18:59 EDT 2025
Wed Feb 19 02:40:22 EST 2025
Tue Jul 01 03:49:46 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Sun Aug 24 12:10:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2016 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-96e298cfc5706ea4e3a565f408784e72ba341d82e979e2360db031cd2760511c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Na-Sheng Lin (nslin@sinica.edu.tw).
www.plantcell.org/cgi/doi/10.1105/tpc.16.00071
ORCID 0000-0002-3071-4253
0000-0003-1309-7596
0000-0002-6499-6439
0000-0003-1148-6256
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5134973
PMID 27702772
PQID 1835359863
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5134973
proquest_miscellaneous_1846421558
proquest_miscellaneous_1835359863
pubmed_primary_27702772
crossref_primary_10_1105_tpc_16_00071
crossref_citationtrail_10_1105_tpc_16_00071
jstor_primary_plantcell_28_10_2586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2016
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References 20413458 - Science. 2010 May 14;328(5980):912-6
24283212 - Plant Biotechnol J. 2014 Apr;12(3):330-43
15210063 - Acta Pharmacol Sin. 2004 Jul;25(7):902-6
19470590 - Plant Cell. 2009 May;21(5):1541-55
19805075 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17594-9
17416731 - Plant Cell. 2007 Apr;19(4):1179-91
19025382 - Annu Rev Plant Biol. 2009;60:207-21
21900168 - J Virol. 2011 Nov;85(22):11821-32
18199452 - J Mol Biol. 2008 Feb 29;376(4):932-7
23675378 - Front Plant Sci. 2013 May 10;4:130
19748270 - Trends Cell Biol. 2009 Oct;19(10):495-503
15258266 - Plant Cell. 2004 Aug;16(8):1979-2000
23809921 - Adv Virus Res. 2013;87:75-112
12388758 - Mol Biol Cell. 2002 Oct;13(10):3576-87
20521953 - Mol Plant Microbe Interact. 2010 Jul;23(7):903-14
24420565 - J Exp Bot. 2014 Apr;65(7):1689-97
9484488 - Plant Mol Biol. 1998 Feb;36(3):479-85
22654666 - PLoS Pathog. 2012;8(5):e1002726
10698933 - EMBO J. 2000 Mar 1;19(5):913-20
3443303 - Gene. 1987;61(1):1-11
22733783 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1980-9
15225285 - Plant J. 2004 Jul;39(2):194-205
21518793 - J Cell Biol. 2011 May 2;193(3):521-35
23675895 - Mol Plant Pathol. 2013 Sep;14(7):693-707
23898339 - Front Plant Sci. 2013 Jul 24;4:272
17576925 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20
21994552 - Viruses. 2009 Sep;1(2):317-34
23370600 - Cell Tissue Res. 2013 Apr;352(1):49-58
12383090 - Plant J. 2002 Oct;32(2):255-62
19141462 - J Gen Virol. 2009 Feb;90(Pt 2):507-18
21965537 - Nucleic Acids Res. 2012 Jan;40(2):638-49
10074153 - J Virol. 1999 Apr;73(4):3032-9
21984697 - Plant Cell. 2011 Oct;23(10):3727-44
9634582 - Plant Cell. 1998 Jun;10(6):937-46
24431156 - J Exp Bot. 2014 Apr;65(7):1673-80
15282326 - Mol Cell Biol. 2004 Aug;24(16):7284-97
20951872 - Adv Virus Res. 2010;77:119-58
15992545 - Dev Cell. 2005 Jul;9(1):109-19
16186245 - J Gen Virol. 2005 Oct;86(Pt 10):2891-6
14718640 - J Gen Virol. 2004 Jan;85(Pt 1):251-9
11715051 - Nat Rev Mol Cell Biol. 2001 Nov;2(11):849-57
17905731 - J Exp Bot. 2008;59(1):85-92
25431002 - Mol Plant Pathol. 2015 Dec;16(9):921-30
23754943 - PLoS Pathog. 2013;9(6):e1003405
16838788 - Mol Plant Microbe Interact. 2006 Jul;19(7):758-67
7844568 - J Gen Virol. 1995 Feb;76 ( Pt 2):459-64
19616989 - Trends Plant Sci. 2009 Aug;14(8):443-53
19122103 - Plant Cell. 2009 Jan;21(1):197-215
11169199 - Plant J. 2001 Jan;25(2):237-45
15464839 - Virology. 2004 Oct 25;328(2):185-97
7518162 - Virology. 1994 Aug 1;202(2):707-14
15773853 - Plant J. 2005 Apr;42(1):49-68
21258006 - Plant Cell. 2011 Jan;23(1):258-72
8610182 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3138-42
23745125 - Front Plant Sci. 2013 May 24;4:154
8077956 - J Gen Virol. 1994 Sep;75 ( Pt 9):2513-8
6021091 - Virology. 1967 Feb;31(2):191-6
24637832 - Nucleus. 2014 Jan-Feb;5(1):85-94
15863519 - Plant Cell. 2005 Jun;17(6):1801-14
21994595 - Viruses. 2009 Dec;1(3):1325-50
21917973 - J Virol. 2011 Nov;85(22):12022-31
12379800 - J Cell Biol. 2002 Oct 14;159(1):17-21
25329993 - PLoS Pathog. 2014 Oct 16;10(10):e1004448
23110896 - Plant Cell. 2012 Oct;24(10):3876-91
10829025 - J Biol Chem. 2000 Sep 1;275(35):27212-20
22349738 - Biochimie. 2012 May;94(5):1180-8
16603539 - J Gen Virol. 2006 May;87(Pt 5):1357-67
20413459 - Science. 2010 May 14;328(5980):872-5
References_xml – reference: 20521953 - Mol Plant Microbe Interact. 2010 Jul;23(7):903-14
– reference: 22654666 - PLoS Pathog. 2012;8(5):e1002726
– reference: 24431156 - J Exp Bot. 2014 Apr;65(7):1673-80
– reference: 23370600 - Cell Tissue Res. 2013 Apr;352(1):49-58
– reference: 15863519 - Plant Cell. 2005 Jun;17(6):1801-14
– reference: 9484488 - Plant Mol Biol. 1998 Feb;36(3):479-85
– reference: 22733783 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1980-9
– reference: 17416731 - Plant Cell. 2007 Apr;19(4):1179-91
– reference: 10829025 - J Biol Chem. 2000 Sep 1;275(35):27212-20
– reference: 3443303 - Gene. 1987;61(1):1-11
– reference: 15258266 - Plant Cell. 2004 Aug;16(8):1979-2000
– reference: 20413459 - Science. 2010 May 14;328(5980):872-5
– reference: 7518162 - Virology. 1994 Aug 1;202(2):707-14
– reference: 21994595 - Viruses. 2009 Dec;1(3):1325-50
– reference: 21258006 - Plant Cell. 2011 Jan;23(1):258-72
– reference: 23110896 - Plant Cell. 2012 Oct;24(10):3876-91
– reference: 17905731 - J Exp Bot. 2008;59(1):85-92
– reference: 22349738 - Biochimie. 2012 May;94(5):1180-8
– reference: 21900168 - J Virol. 2011 Nov;85(22):11821-32
– reference: 23675378 - Front Plant Sci. 2013 May 10;4:130
– reference: 21917973 - J Virol. 2011 Nov;85(22):12022-31
– reference: 19470590 - Plant Cell. 2009 May;21(5):1541-55
– reference: 19122103 - Plant Cell. 2009 Jan;21(1):197-215
– reference: 24283212 - Plant Biotechnol J. 2014 Apr;12(3):330-43
– reference: 24420565 - J Exp Bot. 2014 Apr;65(7):1689-97
– reference: 15464839 - Virology. 2004 Oct 25;328(2):185-97
– reference: 8610182 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3138-42
– reference: 10074153 - J Virol. 1999 Apr;73(4):3032-9
– reference: 20951872 - Adv Virus Res. 2010;77:119-58
– reference: 25329993 - PLoS Pathog. 2014 Oct 16;10(10):e1004448
– reference: 16186245 - J Gen Virol. 2005 Oct;86(Pt 10):2891-6
– reference: 9634582 - Plant Cell. 1998 Jun;10(6):937-46
– reference: 23754943 - PLoS Pathog. 2013;9(6):e1003405
– reference: 16603539 - J Gen Virol. 2006 May;87(Pt 5):1357-67
– reference: 24637832 - Nucleus. 2014 Jan-Feb;5(1):85-94
– reference: 10698933 - EMBO J. 2000 Mar 1;19(5):913-20
– reference: 21518793 - J Cell Biol. 2011 May 2;193(3):521-35
– reference: 23898339 - Front Plant Sci. 2013 Jul 24;4:272
– reference: 18199452 - J Mol Biol. 2008 Feb 29;376(4):932-7
– reference: 15225285 - Plant J. 2004 Jul;39(2):194-205
– reference: 15282326 - Mol Cell Biol. 2004 Aug;24(16):7284-97
– reference: 14718640 - J Gen Virol. 2004 Jan;85(Pt 1):251-9
– reference: 6021091 - Virology. 1967 Feb;31(2):191-6
– reference: 19616989 - Trends Plant Sci. 2009 Aug;14(8):443-53
– reference: 23809921 - Adv Virus Res. 2013;87:75-112
– reference: 11169199 - Plant J. 2001 Jan;25(2):237-45
– reference: 19141462 - J Gen Virol. 2009 Feb;90(Pt 2):507-18
– reference: 23745125 - Front Plant Sci. 2013 May 24;4:154
– reference: 25431002 - Mol Plant Pathol. 2015 Dec;16(9):921-30
– reference: 21965537 - Nucleic Acids Res. 2012 Jan;40(2):638-49
– reference: 12379800 - J Cell Biol. 2002 Oct 14;159(1):17-21
– reference: 19025382 - Annu Rev Plant Biol. 2009;60:207-21
– reference: 17576925 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20
– reference: 15210063 - Acta Pharmacol Sin. 2004 Jul;25(7):902-6
– reference: 11715051 - Nat Rev Mol Cell Biol. 2001 Nov;2(11):849-57
– reference: 19748270 - Trends Cell Biol. 2009 Oct;19(10):495-503
– reference: 16838788 - Mol Plant Microbe Interact. 2006 Jul;19(7):758-67
– reference: 15992545 - Dev Cell. 2005 Jul;9(1):109-19
– reference: 12383090 - Plant J. 2002 Oct;32(2):255-62
– reference: 12388758 - Mol Biol Cell. 2002 Oct;13(10):3576-87
– reference: 21984697 - Plant Cell. 2011 Oct;23(10):3727-44
– reference: 19805075 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17594-9
– reference: 21994552 - Viruses. 2009 Sep;1(2):317-34
– reference: 23675895 - Mol Plant Pathol. 2013 Sep;14(7):693-707
– reference: 15773853 - Plant J. 2005 Apr;42(1):49-68
– reference: 20413458 - Science. 2010 May 14;328(5980):912-6
– reference: 8077956 - J Gen Virol. 1994 Sep;75 ( Pt 9):2513-8
– reference: 7844568 - J Gen Virol. 1995 Feb;76 ( Pt 2):459-64
SSID ssj0001719
Score 2.4174314
Snippet RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs),...
Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana. RNA...
Bamboo mosaic virus satellite RNA can move autonomously in a fibrillarin-dependent manner in the absence of its helper virus in Nicotiana benthamiana . RNA...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2586
SubjectTerms Alphaflexiviridae
Helper Viruses - genetics
Immunoprecipitation
Nicotiana benthamiana
Potexvirus
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleoproteins - metabolism
RNA, Plant - genetics
RNA, Satellite - genetics
Viral Proteins - genetics
Title The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants
URI https://www.jstor.org/stable/plantcell.28.10.2586
https://www.ncbi.nlm.nih.gov/pubmed/27702772
https://www.proquest.com/docview/1835359863
https://www.proquest.com/docview/1846421558
https://pubmed.ncbi.nlm.nih.gov/PMC5134973
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqBQkuCJbHlpcMglOUJXHiODkuhVXLoxLsLlpOkZM6pGKVVG1ygJ_AP-FfMuMkbloKWrhEqeO8Op89M_E3M4Q8Ax3oKCZTW2Yzbvu-EHYSyRDX4APHzxQcxgDn99NgfOa_Oefng8HPHmuprpLD9PvOuJL_kSq0gVwxSvYfJGsuCg2wD_KFLUgYtpeW8RQTEqN_ah0jex-kupwXyP_HMpbWBMNAkOwLdiUSCkHLLNTS-jRf1it7YkrgVta7svhiv0JjEkc6aDBMLfG1pURLnF-QDXxhnUidwrNS1sfpEX4swapHTTaozsbFp9KtFq4K9PgDzbQyyue5PZalAdSq1hZ0bY9ytU0QOsmxue4Rh_Sn3c9wiZO8bW2_WbiBYb910yzyGLEKe6OFuqmX2SzShYbN3MzCPgad_kzLuxTazc9AB27v0AgOJs-oFumhi8tOjnDXmq9b7d9SiIamqB0kh8dwduwi_c_BbAVXGHgkWCXk7Yd1YnpX6Boy5sVMjAV_0b_3hvXTEGB3uTbbDN2eyXN6k9xofRV61ADvFhmoYp9cfVkCRr7tk2ujrlbgbfIDZE4NEmkPibRFIp2saIdECkikDRLpb0ikG0ikPSTSMqOSdkikBokUkEjxThqJd8jZ8evT0dhuq3zYqc_dyo4CBVJPs5QLJ1DSV54EJyPznVCEvhIskWBozUKmIhEp5gXOLAFFlM6YAE_cdVPvLtkrykIdEBp5qcgin6Uz7vmBo2QSBhlTmRBREsD-kFjdvx-nbQp8rMRyEe-S9JA8N70XTeqXP_R7qgVpOi3wdXGExSzEMxCqQ_Kkk3IMssGjslBlvYpBp3JMoxl4f-vjY0A65-GQ3GuQYe4GaEQeBhsSsYEZ0wETyG8eKea5TiTPMTep8O5f8kUfkOvrwfyQ7FXLWj0Ck7xKHuvB8AubV-J8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nucleolar+Fibrillarin+Protein+Is+Required+for+Helper+Virus-Independent+Long-Distance+Trafficking+of+a+Subviral+Satellite+RNA+in+Plants&rft.jtitle=The+Plant+cell&rft.au=Chang%2C+Chih-Hao&rft.au=Hsu%2C+Fu-Chen&rft.au=Lee%2C+Shu-Chuan&rft.au=Lo%2C+Yih-Shan&rft.date=2016-10-01&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=28&rft.issue=10&rft.spage=2586&rft.epage=2602&rft_id=info:doi/10.1105%2Ftpc.16.00071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1105_tpc_16_00071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon