Detecting diseases in apple tree leaves using FPN-ISResNet-Faster RCNN

Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to im...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of remote sensing Vol. 56; no. 1
Main Authors Hou, Jingwei, Yang, Chen, He, Yonghong, Hou, Bo
Format Journal Article
LanguageEnglish
Published Cagiari Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN-ISResNet-Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet-Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN-ISResNet-Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG-Faster RCNN, GoogleNet-Faster RCNN, ResNet50-Faster RCNN, ResNeXt-Faster RCNN, and ISResNet-Faster RCNN. FPN-ISResNet-Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability.
AbstractList Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN-ISResNet-Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet-Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN-ISResNet-Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG-Faster RCNN, GoogleNet-Faster RCNN, ResNet50-Faster RCNN, ResNeXt-Faster RCNN, and ISResNet-Faster RCNN. FPN-ISResNet-Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability.
ABSTRACTApple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) –inception squeeze-and-excitation ResNet (ISResNet)–Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN–ISResNet–Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet–Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN–ISResNet–Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG–Faster RCNN, GoogleNet–Faster RCNN, ResNet50–Faster RCNN, ResNeXt–Faster RCNN, and ISResNet–Faster RCNN. FPN–ISResNet–Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability.
Author Hou, Bo
Yang, Chen
Hou, Jingwei
He, Yonghong
Author_xml – sequence: 1
  givenname: Jingwei
  surname: Hou
  fullname: Hou, Jingwei
  organization: Hunan University of Science and Engineering
– sequence: 2
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: Ningxia University
– sequence: 3
  givenname: Yonghong
  surname: He
  fullname: He, Yonghong
  email: 365022968@qq.com
  organization: Hunan University of Science and Engineering
– sequence: 4
  givenname: Bo
  surname: Hou
  fullname: Hou, Bo
  organization: Hunan University of Science and Engineering
BookMark eNp9UU1LAzEQDaLgV3-CsOB5azabbLI3pVotSJWq5zBNJrJl3dQkVfz37loVT85lhjdv3ht4h2S38x0SclLQcUEVPWNM1pIJPmaUlWNWqKoWYoccDHg-LHb_zPtkFOOK9qUolao-INNLTGhS0z1ntokIEWPWdBms1y1mKSBmLcJbD27iwJnez_PZwwLjHFM-hZgwZIvJfH5M9hy0EUff_Yg8Ta8eJzf57d31bHJxmxsuipTXJUhmKlCKQ82kVE6WFusCBDWVrIRh3CphuaRCOMpg6bhUCGgVcluBLI_IbKtrPaz0OjQvED60h0Z_AT48awipMS1qLJd0aUWthEQOjqvetii46TGKVLle63SrtQ7-dYMx6ZXfhK5_X7OaCs4Y5VXPEluWCT7GgO7XtaB6SED_JKCHBPR3Av3d-fau6ZwPL_DuQ2t1go_WBxegM03U5f8Sn2qtjAw
CitedBy_id crossref_primary_10_1002_jsfa_12700
crossref_primary_10_3389_fpls_2023_1257212
crossref_primary_10_5423_PPJ_OA_02_2023_0034
crossref_primary_10_1016_j_jag_2024_103938
crossref_primary_10_1007_s11042_023_18094_8
crossref_primary_10_1016_j_neucom_2023_126629
crossref_primary_10_1016_j_nhres_2024_07_001
crossref_primary_10_3390_rs16091535
Cites_doi 10.1016/j.pmcj.2021.101437
10.3390/s20123535
10.1016/j.suscom.2019.100353
10.1016/j.biocontrol.2020.104379
10.1109/TPAMI.2016.2577031
10.1016/j.envres.2021.111275
10.1016/j.compeleceng.2019.04.011
10.1016/j.compag.2019.105146
10.1109/TGRS.2004.831865
10.3390/sym12071065
10.1016/j.scienta.2017.02.005
10.1016/j.compag.2021.106125
10.1016/j.postharvbio.2008.11.008
10.1080/01431160412331269698
10.1016/j.patrec.2021.07.003
10.1016/j.compag.2020.105661
10.1155/2017/2917536
10.1109/ACCESS.2019.2914929
10.1016/j.compag.2021.106468
10.1080/2150704X.2017.1378452
10.1109/ICPR.2006.479
10.1016/j.compag.2021.106379
10.1109/TGRS.2006.875360
10.1016/j.patcog.2021.108159
10.1016/j.ecoinf.2021.101289
10.1016/j.compag.2018.04.002
10.1109/SMC.2018.00379
10.3389/fpls.2020.00751
10.1061/(ASCE)HE.1943-5584.0001855
10.1007/s12517-021-08420-5
10.1016/j.eswa.2021.116052
10.1080/13658816.2016.1181264
10.1016/j.eswa.2020.114514
10.1016/j.landurbplan.2020.103858
10.1155/2019/7630926
10.1016/j.snb.2007.02.027
10.1016/j.neucom.2021.07.064
10.1109/APSIPA.2017.8282223
10.1016/j.compag.2019.06.001
10.1007/s11042-019-08564-3
10.1080/01431160512331314083
10.1016/j.compag.2019.03.012
10.1016/j.inpa.2018.05.002
10.1109/TPAMI.2019.2913372
10.1016/j.compag.2019.104967
10.1016/j.compag.2020.105612
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7TG
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
KL.
L7M
M2O
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1080/22797254.2023.2186955
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 2279-7254
ExternalDocumentID oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f
10_1080_22797254_2023_2186955
2186955
Genre Research Article
GroupedDBID .4S
0YH
5VS
8G5
ABUWG
ACGFS
ADBBV
AEGXH
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BPHCQ
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
KQ8
M2O
M~E
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PROAC
RNS
TFW
TUS
AAHBH
AAYXX
CCPQU
CITATION
H13
M4Z
TDBHL
3V.
7TG
7XB
8FD
8FK
H8D
KL.
L7M
MBDVC
Q9U
ID FETCH-LOGICAL-c451t-93a72c6a884a92778f73de91a50c6765c24d85d47055f02abf478eaed8e4d6a73
IEDL.DBID DOA
ISSN 2279-7254
IngestDate Tue Oct 22 15:07:13 EDT 2024
Sun Oct 27 03:20:46 EDT 2024
Fri Aug 23 01:15:17 EDT 2024
Fri Mar 10 10:35:31 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-93a72c6a884a92778f73de91a50c6765c24d85d47055f02abf478eaed8e4d6a73
OpenAccessLink https://doaj.org/article/e3b0bd59857e4af486a8114cbd50e08f
PQID 2905422046
PQPubID 3933194
ParticipantIDs informaworld_taylorfrancis_310_1080_22797254_2023_2186955
proquest_journals_2905422046
crossref_primary_10_1080_22797254_2023_2186955
doaj_primary_oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Cagiari
PublicationPlace_xml – name: Cagiari
PublicationTitle European journal of remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
Kumar S. D. (e_1_3_3_23_1) 2020; 33
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_39_1
  doi: 10.1016/j.pmcj.2021.101437
– ident: e_1_3_3_44_1
  doi: 10.3390/s20123535
– ident: e_1_3_3_17_1
  doi: 10.1016/j.suscom.2019.100353
– ident: e_1_3_3_38_1
  doi: 10.1016/j.biocontrol.2020.104379
– ident: e_1_3_3_32_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_3_3_22_1
  doi: 10.1016/j.envres.2021.111275
– ident: e_1_3_3_11_1
  doi: 10.1016/j.compeleceng.2019.04.011
– ident: e_1_3_3_48_1
  doi: 10.1016/j.compag.2019.105146
– ident: e_1_3_3_26_1
  doi: 10.1109/TGRS.2004.831865
– ident: e_1_3_3_6_1
  doi: 10.3390/sym12071065
– ident: e_1_3_3_24_1
  doi: 10.1016/j.scienta.2017.02.005
– ident: e_1_3_3_2_1
  doi: 10.1016/j.compag.2021.106125
– ident: e_1_3_3_10_1
  doi: 10.1016/j.postharvbio.2008.11.008
– ident: e_1_3_3_28_1
  doi: 10.1080/01431160412331269698
– ident: e_1_3_3_37_1
  doi: 10.1016/j.patrec.2021.07.003
– ident: e_1_3_3_3_1
  doi: 10.1016/j.compag.2020.105661
– ident: e_1_3_3_40_1
  doi: 10.1155/2017/2917536
– ident: e_1_3_3_18_1
  doi: 10.1109/ACCESS.2019.2914929
– ident: e_1_3_3_41_1
  doi: 10.1016/j.compag.2021.106468
– ident: e_1_3_3_46_1
  doi: 10.1080/2150704X.2017.1378452
– ident: e_1_3_3_27_1
  doi: 10.1109/ICPR.2006.479
– ident: e_1_3_3_34_1
  doi: 10.1016/j.compag.2021.106379
– ident: e_1_3_3_5_1
  doi: 10.1109/TGRS.2006.875360
– ident: e_1_3_3_20_1
  doi: 10.1016/j.patcog.2021.108159
– ident: e_1_3_3_36_1
  doi: 10.1016/j.ecoinf.2021.101289
– ident: e_1_3_3_31_1
  doi: 10.1016/j.compag.2018.04.002
– ident: e_1_3_3_21_1
  doi: 10.1109/SMC.2018.00379
– ident: e_1_3_3_42_1
  doi: 10.3389/fpls.2020.00751
– ident: e_1_3_3_14_1
  doi: 10.1061/(ASCE)HE.1943-5584.0001855
– ident: e_1_3_3_43_1
  doi: 10.1007/s12517-021-08420-5
– ident: e_1_3_3_33_1
  doi: 10.1016/j.eswa.2021.116052
– ident: e_1_3_3_13_1
  doi: 10.1080/13658816.2016.1181264
– ident: e_1_3_3_8_1
  doi: 10.1016/j.eswa.2020.114514
– ident: e_1_3_3_15_1
  doi: 10.1016/j.landurbplan.2020.103858
– ident: e_1_3_3_35_1
  doi: 10.1155/2019/7630926
– ident: e_1_3_3_25_1
  doi: 10.1016/j.snb.2007.02.027
– ident: e_1_3_3_19_1
  doi: 10.1016/j.neucom.2021.07.064
– ident: e_1_3_3_30_1
  doi: 10.1109/APSIPA.2017.8282223
– ident: e_1_3_3_45_1
  doi: 10.1016/j.compag.2019.06.001
– ident: e_1_3_3_4_1
  doi: 10.1007/s11042-019-08564-3
– ident: e_1_3_3_29_1
  doi: 10.1080/01431160512331314083
– ident: e_1_3_3_47_1
  doi: 10.1016/j.compag.2019.03.012
– ident: e_1_3_3_12_1
  doi: 10.1016/j.inpa.2018.05.002
– ident: e_1_3_3_16_1
  doi: 10.1109/TPAMI.2019.2913372
– volume: 33
  start-page: 4907
  volume-title: Materials Today: Proceedings, International Symposium on Nanostructured, Nanoengineered and Advanced Materials (ISNNAM 2020)
  year: 2020
  ident: e_1_3_3_23_1
  contributor:
    fullname: Kumar S. D.
– ident: e_1_3_3_9_1
  doi: 10.1016/j.compag.2019.104967
– ident: e_1_3_3_7_1
  doi: 10.1016/j.compag.2020.105612
SSID ssj0000800789
Score 2.3948858
Snippet Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature...
ABSTRACTApple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Accuracy
Apple leaf disease
Apples
Artificial neural networks
convolutional neural network
Crop diseases
Datasets
Deep learning
Engineering
Environmental engineering
Faster RCNN
Feature extraction
FPN
Fruit trees
Fruits
ISResNet
Leaves
Machine learning
Neural networks
Plant diseases
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwELba5UB7qFpoxRaofOg1kHX8e0L8rShSI7QtEjfLsce0EtqlbEDqjXfoG_ZJ6sk6dNVKcIsmlpXM2DPjGc83hHxsJETleCwCGMA0oymccb6Q0anAQUgfsBr5cy1PzvnphbjIAbd5vlbZ68ROUYeZxxj5LjPJuWAsHef2rn8U2DUKs6u5hcZzssLSSYENyMrBcX02eYiyoD-ktOlLd3S5i4h5inXhFFbtdB2ZsMxvySh12P3_IJf-p6k78zN-TV5lv5HuLwT9hjyD6Rp5uYQmuEZWc0Pzbz_XyekRYHYg0WlOwczp9ynFdDVQTETTK3B3iYj33i_p-Kz-ff_r05cJzGto0-PYIYACnRzW9VtyPj7-enhS5LYJhedi1Bamcop56bTmzjCldFRVksTIidJLJYVnPGgROOLoxJK5JnKlwUHQwIN0qnpHBtPZFDYIDWZkoIMUZMBFcEYK4ZM5S_Mn26rUkOz0fLPXC3QMO8qgoz2jLTLaZkYPyQFy92Ewglt3hNnNpc17xULVlE0QRgsF3EWu07-kY5tPtBJKHYfELMvGtl1sIy4akdjqiQ_Y6gVp826d279r6_3jrzfJC5xsAfS4RQbtzS1sJ6ekbT7klfcHks3esQ
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKPcAFQQGxFJAPXANZx5_HQom2lYgqYCV6spx4vFSqdtEmReq_x3YcRIsQB44ZJVYyznjG88ZvEDquOThhqMssKAgwo8qMMk3GnRGWAuONDaeRLys-mdLvt2yoJmxTWWXYQ7ueKCKu1cG4Td0OFXGngfROkJgRIcVJbKrE2Ar6SASLSG3-c_KUZgkBkZBqOLvz2tP_eKVI3v8fdemLpTr6n3ITbaTAEX_pZ3oLfYD5J7SWepjf_d1G5VcIgIB3RTihLi3-NccBoQYcsGf8G8yDF4ZS9xkuf1TZt-sraCvostIEvgR8dV5VO2haXtycT7LUJSFrKBt3mSqMIA03UlKjiBDSicIrfmxY3nDBWUOolczSQJvjcmJqR4UEA1YCtdyIYhetzhdz2EPYqrGCyCBIgDJrFGes8d7Lj-9dqRAjdDJoSd_3ZBh6nDhGB7XqoFad1DpCZ0GXTzcHLusoWCxnOpmGhqLOa8uUZAKocVT6b_G7tMbLcsilGyH1fCZ0F1MZru87oos3XuBgmDadjLPVRPk4lZCc8v13DP0ZrYfLnvTxAK12yz9w6AOUrj6Kv-Ajviravg
  priority: 102
  providerName: Taylor & Francis
Title Detecting diseases in apple tree leaves using FPN-ISResNet-Faster RCNN
URI https://www.tandfonline.com/doi/abs/10.1080/22797254.2023.2186955
https://www.proquest.com/docview/2905422046
https://doaj.org/article/e3b0bd59857e4af486a8114cbd50e08f
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYKPZRLVWgRS-nKB64Br-PfY5eyWpCI0AISPVlOPAaqakFsisSNd-ANeRJsx1ut4MCFWzSK4tE3jmfs8XyD0HYtwEvLfOFAQ0wz6sJq2xTCW-kYcNG4WI18VInxGTs85-cLrb7inbCOHrgDbhfKmtSOa8UlMOuZElaFGL4JMgJE-bT6Er2wmfqT4yCp9LxkR5HdyJQnaTpGoeVO6sQUy_sWnFHi7H_BWPpqhU5uZ_QFfc7xIv7Z6bmKPsB0DX3Krcsv77-iw18Q8wDBA-GcbJnhqymOiWnAMeWM_4K9C8J4w_0Cj46rp4fHg5MJzCpow-PIRqoEPNmrqm_obLR_ujcucoOEomF80Ba6tJI2ARDFrKZSKi_LgPnActIIKXhDmVPcsciY4wm1tWdSgQWngDlhZbmOlqfXU9hA2OmBhkQeSIFxZ7XgvAmOK3w_eFEpe2hnjpS56XgwzCDTi86hNRFak6HtoWHE8__LkcY6CYJxTTauecu4PaQXrWHadIrhu5YjpnxDga256Uz-L2eG6hCiUkqY2HwP_b6jlThkR_y4hZbb23_wIwQpbd1HS-T3uI8-Dver40k_zc5nvxDkZg
link.rule.ids 315,783,787,867,2109,21402,27516,27938,27939,33758,43819,59477,59478
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fTxQxEG8UHpAHoqjxFLUPvi7sdfv3yQhyORA25ISEt6bbTpGE3AG3mvjGd_Ab-kns7HXxoom-bWabZndm2pnOdH5DyLtGQlSOxyKAAUwzmsIZ5wsZnQochPQBq5GPazk-44fn4jwH3Ob5WmW_J3YbdZh5jJHvMJOcC8bSce799U2BXaMwu5pbaDwkqwhVlbR6dXe_PpncR1nQH1La9KU7utxBxDzFunAKq7a7jkxY5rdklDrs_j-QS__aqTvzM3pMNrLfSD8sBP2EPIDpJllfQhPcJGu5ofmX70_J4UfA7ECi05yCmdPLKcV0NVBMRNMrcN8SEe-9X9DRSf3z7sfB5wnMa2jT48ghgAKd7NX1M3I22j_dGxe5bULhuRi2hamcYl46rbkzTCkdVZUkMXSi9FJJ4RkPWgSOODqxZK6JXGlwEDTwIJ2qnpOV6WwKLwgNZmiggxRkwEVwRgrhkzlL8yfbqtSAbPd8s9cLdAw7zKCjPaMtMtpmRg_ILnL3fjCCW3eE2e2FzWvFQtWUTRBGCwXcRa7Tv6Rjm0-0EkodB8Qsy8a2XWwjLhqR2Oo_H7DVC9Lm1Tq3v3Xr5b9fvyVr49PjI3t0UH96RR7hxAvQxy2y0t5-hdfJQWmbN1kLfwFMJ-Gr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKlQqXqg8QS7etD72GZh0_j2UhWvqIEC1SOVlOPAYktCA2rdR_X4_joD5Uceh1kljJTMbz9DeEvGklBOV4KDwYwDKjKZxxXSGDU56DkJ3H08ifGrk45e-_irGbcJXbKjGGDgNQRNqrUblvfBg74t4i6J1iKSPCqr00VEmINfJQGK4w_irPFndpFnSIlDbj2Z1_Pf2bVUrg_X9Al_61VSf7Uz8hj7PjSN8Nkn5KHsDyGdnIM8wvfjwn9QFgQSCaIpqrLit6uaRYoQaKtWd6Be57JGKr-zmtj5vi6PMJrBroi9ohXgI9mTfNFjmtD7_MF0WeklB0XMz6wlROsU46rbkzTCkdVBUZP3Oi7KSSomPca-E5wuaEkrk2cKXBgdfAvXSq2ibry-sl7BDqzcxAQhBkwIV3RgrRResV14-mVKkJ2Ru5ZG8GMAw7yxijI1ststVmtk7IPvLy7mbEsk6E69tzm1XDQtWWrRdGCwXcBa7jt8QorYu0EkodJsT8Kgnbp1RGGOaO2OqeF5iOYrNZOVeWmeinMlZyufsfS78mj44PavvxqPnwgmzilQH_cUrW-9tv8DL6Kn37Kv2NPwFlb91b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+diseases+in+apple+tree+leaves+using+FPN%E2%80%93ISResNet%E2%80%93Faster+RCNN&rft.jtitle=European+journal+of+remote+sensing&rft.au=Jingwei+Hou&rft.au=Chen+Yang&rft.au=Yonghong+He&rft.au=Bo+Hou&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2279-7254&rft.volume=56&rft.issue=1&rft_id=info:doi/10.1080%2F22797254.2023.2186955&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon