Detecting diseases in apple tree leaves using FPN-ISResNet-Faster RCNN
Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to im...
Saved in:
Published in | European journal of remote sensing Vol. 56; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cagiari
Taylor & Francis
31.12.2023
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN-ISResNet-Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet-Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN-ISResNet-Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG-Faster RCNN, GoogleNet-Faster RCNN, ResNet50-Faster RCNN, ResNeXt-Faster RCNN, and ISResNet-Faster RCNN. FPN-ISResNet-Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability. |
---|---|
AbstractList | Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) -inception squeeze-and-excitation ResNet (ISResNet)-Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN-ISResNet-Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet-Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN-ISResNet-Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG-Faster RCNN, GoogleNet-Faster RCNN, ResNet50-Faster RCNN, ResNeXt-Faster RCNN, and ISResNet-Faster RCNN. FPN-ISResNet-Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability. ABSTRACTApple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature pyramid networks (FPNs) –inception squeeze-and-excitation ResNet (ISResNet)–Faster RCNN (region with convolutional neural network) model to improve the accuracy of detecting apple leaf diseases. Apple leaf diseases were identified, evaluated, and validated by using the FPN–ISResNet–Faster RCNN. The results were compared with those obtained by the single-shot multibox detector (SSD), Faster RCNN, and ISResNet–Faster RCNN. The detection accuracies obtained by using different feature extraction networks, positions and numbers of SE, inception modules, scales of FPN structures, and scales of anchor frames were also compared. The results showed that the values of average precision (AP), and APs with the thresholds of the intersection over union of 0.5 and 0.75 (AP50 and AP75), obtained from the FPN–ISResNet–Faster RCNN were 62.71%, 93.68%, and 70.94%, respectively, which are higher than those of the SSD, VGG–Faster RCNN, GoogleNet–Faster RCNN, ResNet50–Faster RCNN, ResNeXt–Faster RCNN, and ISResNet–Faster RCNN. FPN–ISResNet–Faster RCNN was shown to be able to detect diseases in apple leaves with high accuracy and generalizability. |
Author | Hou, Bo Yang, Chen Hou, Jingwei He, Yonghong |
Author_xml | – sequence: 1 givenname: Jingwei surname: Hou fullname: Hou, Jingwei organization: Hunan University of Science and Engineering – sequence: 2 givenname: Chen surname: Yang fullname: Yang, Chen organization: Ningxia University – sequence: 3 givenname: Yonghong surname: He fullname: He, Yonghong email: 365022968@qq.com organization: Hunan University of Science and Engineering – sequence: 4 givenname: Bo surname: Hou fullname: Hou, Bo organization: Hunan University of Science and Engineering |
BookMark | eNp9UU1LAzEQDaLgV3-CsOB5azabbLI3pVotSJWq5zBNJrJl3dQkVfz37loVT85lhjdv3ht4h2S38x0SclLQcUEVPWNM1pIJPmaUlWNWqKoWYoccDHg-LHb_zPtkFOOK9qUolao-INNLTGhS0z1ntokIEWPWdBms1y1mKSBmLcJbD27iwJnez_PZwwLjHFM-hZgwZIvJfH5M9hy0EUff_Yg8Ta8eJzf57d31bHJxmxsuipTXJUhmKlCKQ82kVE6WFusCBDWVrIRh3CphuaRCOMpg6bhUCGgVcluBLI_IbKtrPaz0OjQvED60h0Z_AT48awipMS1qLJd0aUWthEQOjqvetii46TGKVLle63SrtQ7-dYMx6ZXfhK5_X7OaCs4Y5VXPEluWCT7GgO7XtaB6SED_JKCHBPR3Av3d-fau6ZwPL_DuQ2t1go_WBxegM03U5f8Sn2qtjAw |
CitedBy_id | crossref_primary_10_1002_jsfa_12700 crossref_primary_10_3389_fpls_2023_1257212 crossref_primary_10_5423_PPJ_OA_02_2023_0034 crossref_primary_10_1016_j_jag_2024_103938 crossref_primary_10_1007_s11042_023_18094_8 crossref_primary_10_1016_j_neucom_2023_126629 crossref_primary_10_1016_j_nhres_2024_07_001 crossref_primary_10_3390_rs16091535 |
Cites_doi | 10.1016/j.pmcj.2021.101437 10.3390/s20123535 10.1016/j.suscom.2019.100353 10.1016/j.biocontrol.2020.104379 10.1109/TPAMI.2016.2577031 10.1016/j.envres.2021.111275 10.1016/j.compeleceng.2019.04.011 10.1016/j.compag.2019.105146 10.1109/TGRS.2004.831865 10.3390/sym12071065 10.1016/j.scienta.2017.02.005 10.1016/j.compag.2021.106125 10.1016/j.postharvbio.2008.11.008 10.1080/01431160412331269698 10.1016/j.patrec.2021.07.003 10.1016/j.compag.2020.105661 10.1155/2017/2917536 10.1109/ACCESS.2019.2914929 10.1016/j.compag.2021.106468 10.1080/2150704X.2017.1378452 10.1109/ICPR.2006.479 10.1016/j.compag.2021.106379 10.1109/TGRS.2006.875360 10.1016/j.patcog.2021.108159 10.1016/j.ecoinf.2021.101289 10.1016/j.compag.2018.04.002 10.1109/SMC.2018.00379 10.3389/fpls.2020.00751 10.1061/(ASCE)HE.1943-5584.0001855 10.1007/s12517-021-08420-5 10.1016/j.eswa.2021.116052 10.1080/13658816.2016.1181264 10.1016/j.eswa.2020.114514 10.1016/j.landurbplan.2020.103858 10.1155/2019/7630926 10.1016/j.snb.2007.02.027 10.1016/j.neucom.2021.07.064 10.1109/APSIPA.2017.8282223 10.1016/j.compag.2019.06.001 10.1007/s11042-019-08564-3 10.1080/01431160512331314083 10.1016/j.compag.2019.03.012 10.1016/j.inpa.2018.05.002 10.1109/TPAMI.2019.2913372 10.1016/j.compag.2019.104967 10.1016/j.compag.2020.105612 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7TG 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D KL. L7M M2O MBDVC PIMPY PQEST PQQKQ PQUKI Q9U DOA |
DOI | 10.1080/22797254.2023.2186955 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 2279-7254 |
ExternalDocumentID | oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f 10_1080_22797254_2023_2186955 2186955 |
Genre | Research Article |
GroupedDBID | .4S 0YH 5VS 8G5 ABUWG ACGFS ADBBV AEGXH AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BPHCQ DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH KQ8 M2O M~E OK1 PIMPY PQEST PQQKQ PQUKI PROAC RNS TFW TUS AAHBH AAYXX CCPQU CITATION H13 M4Z TDBHL 3V. 7TG 7XB 8FD 8FK H8D KL. L7M MBDVC Q9U |
ID | FETCH-LOGICAL-c451t-93a72c6a884a92778f73de91a50c6765c24d85d47055f02abf478eaed8e4d6a73 |
IEDL.DBID | DOA |
ISSN | 2279-7254 |
IngestDate | Tue Oct 22 15:07:13 EDT 2024 Sun Oct 27 03:20:46 EDT 2024 Fri Aug 23 01:15:17 EDT 2024 Fri Mar 10 10:35:31 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-93a72c6a884a92778f73de91a50c6765c24d85d47055f02abf478eaed8e4d6a73 |
OpenAccessLink | https://doaj.org/article/e3b0bd59857e4af486a8114cbd50e08f |
PQID | 2905422046 |
PQPubID | 3933194 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_22797254_2023_2186955 proquest_journals_2905422046 crossref_primary_10_1080_22797254_2023_2186955 doaj_primary_oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cagiari |
PublicationPlace_xml | – name: Cagiari |
PublicationTitle | European journal of remote sensing |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_3_30_1 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 Kumar S. D. (e_1_3_3_23_1) 2020; 33 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_39_1 doi: 10.1016/j.pmcj.2021.101437 – ident: e_1_3_3_44_1 doi: 10.3390/s20123535 – ident: e_1_3_3_17_1 doi: 10.1016/j.suscom.2019.100353 – ident: e_1_3_3_38_1 doi: 10.1016/j.biocontrol.2020.104379 – ident: e_1_3_3_32_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_3_3_22_1 doi: 10.1016/j.envres.2021.111275 – ident: e_1_3_3_11_1 doi: 10.1016/j.compeleceng.2019.04.011 – ident: e_1_3_3_48_1 doi: 10.1016/j.compag.2019.105146 – ident: e_1_3_3_26_1 doi: 10.1109/TGRS.2004.831865 – ident: e_1_3_3_6_1 doi: 10.3390/sym12071065 – ident: e_1_3_3_24_1 doi: 10.1016/j.scienta.2017.02.005 – ident: e_1_3_3_2_1 doi: 10.1016/j.compag.2021.106125 – ident: e_1_3_3_10_1 doi: 10.1016/j.postharvbio.2008.11.008 – ident: e_1_3_3_28_1 doi: 10.1080/01431160412331269698 – ident: e_1_3_3_37_1 doi: 10.1016/j.patrec.2021.07.003 – ident: e_1_3_3_3_1 doi: 10.1016/j.compag.2020.105661 – ident: e_1_3_3_40_1 doi: 10.1155/2017/2917536 – ident: e_1_3_3_18_1 doi: 10.1109/ACCESS.2019.2914929 – ident: e_1_3_3_41_1 doi: 10.1016/j.compag.2021.106468 – ident: e_1_3_3_46_1 doi: 10.1080/2150704X.2017.1378452 – ident: e_1_3_3_27_1 doi: 10.1109/ICPR.2006.479 – ident: e_1_3_3_34_1 doi: 10.1016/j.compag.2021.106379 – ident: e_1_3_3_5_1 doi: 10.1109/TGRS.2006.875360 – ident: e_1_3_3_20_1 doi: 10.1016/j.patcog.2021.108159 – ident: e_1_3_3_36_1 doi: 10.1016/j.ecoinf.2021.101289 – ident: e_1_3_3_31_1 doi: 10.1016/j.compag.2018.04.002 – ident: e_1_3_3_21_1 doi: 10.1109/SMC.2018.00379 – ident: e_1_3_3_42_1 doi: 10.3389/fpls.2020.00751 – ident: e_1_3_3_14_1 doi: 10.1061/(ASCE)HE.1943-5584.0001855 – ident: e_1_3_3_43_1 doi: 10.1007/s12517-021-08420-5 – ident: e_1_3_3_33_1 doi: 10.1016/j.eswa.2021.116052 – ident: e_1_3_3_13_1 doi: 10.1080/13658816.2016.1181264 – ident: e_1_3_3_8_1 doi: 10.1016/j.eswa.2020.114514 – ident: e_1_3_3_15_1 doi: 10.1016/j.landurbplan.2020.103858 – ident: e_1_3_3_35_1 doi: 10.1155/2019/7630926 – ident: e_1_3_3_25_1 doi: 10.1016/j.snb.2007.02.027 – ident: e_1_3_3_19_1 doi: 10.1016/j.neucom.2021.07.064 – ident: e_1_3_3_30_1 doi: 10.1109/APSIPA.2017.8282223 – ident: e_1_3_3_45_1 doi: 10.1016/j.compag.2019.06.001 – ident: e_1_3_3_4_1 doi: 10.1007/s11042-019-08564-3 – ident: e_1_3_3_29_1 doi: 10.1080/01431160512331314083 – ident: e_1_3_3_47_1 doi: 10.1016/j.compag.2019.03.012 – ident: e_1_3_3_12_1 doi: 10.1016/j.inpa.2018.05.002 – ident: e_1_3_3_16_1 doi: 10.1109/TPAMI.2019.2913372 – volume: 33 start-page: 4907 volume-title: Materials Today: Proceedings, International Symposium on Nanostructured, Nanoengineered and Advanced Materials (ISNNAM 2020) year: 2020 ident: e_1_3_3_23_1 contributor: fullname: Kumar S. D. – ident: e_1_3_3_9_1 doi: 10.1016/j.compag.2019.104967 – ident: e_1_3_3_7_1 doi: 10.1016/j.compag.2020.105612 |
SSID | ssj0000800789 |
Score | 2.3948858 |
Snippet | Apple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the feature... ABSTRACTApple leaf diseases typified by small disease spots are generally difficult to detect in images. This study proposes a deep learning model called the... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Accuracy Apple leaf disease Apples Artificial neural networks convolutional neural network Crop diseases Datasets Deep learning Engineering Environmental engineering Faster RCNN Feature extraction FPN Fruit trees Fruits ISResNet Leaves Machine learning Neural networks Plant diseases |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwELba5UB7qFpoxRaofOg1kHX8e0L8rShSI7QtEjfLsce0EtqlbEDqjXfoG_ZJ6sk6dNVKcIsmlpXM2DPjGc83hHxsJETleCwCGMA0oymccb6Q0anAQUgfsBr5cy1PzvnphbjIAbd5vlbZ68ROUYeZxxj5LjPJuWAsHef2rn8U2DUKs6u5hcZzssLSSYENyMrBcX02eYiyoD-ktOlLd3S5i4h5inXhFFbtdB2ZsMxvySh12P3_IJf-p6k78zN-TV5lv5HuLwT9hjyD6Rp5uYQmuEZWc0Pzbz_XyekRYHYg0WlOwczp9ynFdDVQTETTK3B3iYj33i_p-Kz-ff_r05cJzGto0-PYIYACnRzW9VtyPj7-enhS5LYJhedi1Bamcop56bTmzjCldFRVksTIidJLJYVnPGgROOLoxJK5JnKlwUHQwIN0qnpHBtPZFDYIDWZkoIMUZMBFcEYK4ZM5S_Mn26rUkOz0fLPXC3QMO8qgoz2jLTLaZkYPyQFy92Ewglt3hNnNpc17xULVlE0QRgsF3EWu07-kY5tPtBJKHYfELMvGtl1sIy4akdjqiQ_Y6gVp826d279r6_3jrzfJC5xsAfS4RQbtzS1sJ6ekbT7klfcHks3esQ priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKPcAFQQGxFJAPXANZx5_HQom2lYgqYCV6spx4vFSqdtEmReq_x3YcRIsQB44ZJVYyznjG88ZvEDquOThhqMssKAgwo8qMMk3GnRGWAuONDaeRLys-mdLvt2yoJmxTWWXYQ7ueKCKu1cG4Td0OFXGngfROkJgRIcVJbKrE2Ar6SASLSG3-c_KUZgkBkZBqOLvz2tP_eKVI3v8fdemLpTr6n3ITbaTAEX_pZ3oLfYD5J7SWepjf_d1G5VcIgIB3RTihLi3-NccBoQYcsGf8G8yDF4ZS9xkuf1TZt-sraCvostIEvgR8dV5VO2haXtycT7LUJSFrKBt3mSqMIA03UlKjiBDSicIrfmxY3nDBWUOolczSQJvjcmJqR4UEA1YCtdyIYhetzhdz2EPYqrGCyCBIgDJrFGes8d7Lj-9dqRAjdDJoSd_3ZBh6nDhGB7XqoFad1DpCZ0GXTzcHLusoWCxnOpmGhqLOa8uUZAKocVT6b_G7tMbLcsilGyH1fCZ0F1MZru87oos3XuBgmDadjLPVRPk4lZCc8v13DP0ZrYfLnvTxAK12yz9w6AOUrj6Kv-Ajviravg priority: 102 providerName: Taylor & Francis |
Title | Detecting diseases in apple tree leaves using FPN-ISResNet-Faster RCNN |
URI | https://www.tandfonline.com/doi/abs/10.1080/22797254.2023.2186955 https://www.proquest.com/docview/2905422046 https://doaj.org/article/e3b0bd59857e4af486a8114cbd50e08f |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYKPZRLVWgRS-nKB64Br-PfY5eyWpCI0AISPVlOPAaqakFsisSNd-ANeRJsx1ut4MCFWzSK4tE3jmfs8XyD0HYtwEvLfOFAQ0wz6sJq2xTCW-kYcNG4WI18VInxGTs85-cLrb7inbCOHrgDbhfKmtSOa8UlMOuZElaFGL4JMgJE-bT6Er2wmfqT4yCp9LxkR5HdyJQnaTpGoeVO6sQUy_sWnFHi7H_BWPpqhU5uZ_QFfc7xIv7Z6bmKPsB0DX3Krcsv77-iw18Q8wDBA-GcbJnhqymOiWnAMeWM_4K9C8J4w_0Cj46rp4fHg5MJzCpow-PIRqoEPNmrqm_obLR_ujcucoOEomF80Ba6tJI2ARDFrKZSKi_LgPnActIIKXhDmVPcsciY4wm1tWdSgQWngDlhZbmOlqfXU9hA2OmBhkQeSIFxZ7XgvAmOK3w_eFEpe2hnjpS56XgwzCDTi86hNRFak6HtoWHE8__LkcY6CYJxTTauecu4PaQXrWHadIrhu5YjpnxDga256Uz-L2eG6hCiUkqY2HwP_b6jlThkR_y4hZbb23_wIwQpbd1HS-T3uI8-Dver40k_zc5nvxDkZg |
link.rule.ids | 315,783,787,867,2109,21402,27516,27938,27939,33758,43819,59477,59478 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fTxQxEG8UHpAHoqjxFLUPvi7sdfv3yQhyORA25ISEt6bbTpGE3AG3mvjGd_Ab-kns7HXxoom-bWabZndm2pnOdH5DyLtGQlSOxyKAAUwzmsIZ5wsZnQochPQBq5GPazk-44fn4jwH3Ob5WmW_J3YbdZh5jJHvMJOcC8bSce799U2BXaMwu5pbaDwkqwhVlbR6dXe_PpncR1nQH1La9KU7utxBxDzFunAKq7a7jkxY5rdklDrs_j-QS__aqTvzM3pMNrLfSD8sBP2EPIDpJllfQhPcJGu5ofmX70_J4UfA7ECi05yCmdPLKcV0NVBMRNMrcN8SEe-9X9DRSf3z7sfB5wnMa2jT48ghgAKd7NX1M3I22j_dGxe5bULhuRi2hamcYl46rbkzTCkdVZUkMXSi9FJJ4RkPWgSOODqxZK6JXGlwEDTwIJ2qnpOV6WwKLwgNZmiggxRkwEVwRgrhkzlL8yfbqtSAbPd8s9cLdAw7zKCjPaMtMtpmRg_ILnL3fjCCW3eE2e2FzWvFQtWUTRBGCwXcRa7Tv6Rjm0-0EkodB8Qsy8a2XWwjLhqR2Oo_H7DVC9Lm1Tq3v3Xr5b9fvyVr49PjI3t0UH96RR7hxAvQxy2y0t5-hdfJQWmbN1kLfwFMJ-Gr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKlQqXqg8QS7etD72GZh0_j2UhWvqIEC1SOVlOPAYktCA2rdR_X4_joD5Uceh1kljJTMbz9DeEvGklBOV4KDwYwDKjKZxxXSGDU56DkJ3H08ifGrk45e-_irGbcJXbKjGGDgNQRNqrUblvfBg74t4i6J1iKSPCqr00VEmINfJQGK4w_irPFndpFnSIlDbj2Z1_Pf2bVUrg_X9Al_61VSf7Uz8hj7PjSN8Nkn5KHsDyGdnIM8wvfjwn9QFgQSCaIpqrLit6uaRYoQaKtWd6Be57JGKr-zmtj5vi6PMJrBroi9ohXgI9mTfNFjmtD7_MF0WeklB0XMz6wlROsU46rbkzTCkdVBUZP3Oi7KSSomPca-E5wuaEkrk2cKXBgdfAvXSq2ibry-sl7BDqzcxAQhBkwIV3RgrRResV14-mVKkJ2Ru5ZG8GMAw7yxijI1ststVmtk7IPvLy7mbEsk6E69tzm1XDQtWWrRdGCwXcBa7jt8QorYu0EkodJsT8Kgnbp1RGGOaO2OqeF5iOYrNZOVeWmeinMlZyufsfS78mj44PavvxqPnwgmzilQH_cUrW-9tv8DL6Kn37Kv2NPwFlb91b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+diseases+in+apple+tree+leaves+using+FPN%E2%80%93ISResNet%E2%80%93Faster+RCNN&rft.jtitle=European+journal+of+remote+sensing&rft.au=Jingwei+Hou&rft.au=Chen+Yang&rft.au=Yonghong+He&rft.au=Bo+Hou&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2279-7254&rft.volume=56&rft.issue=1&rft_id=info:doi/10.1080%2F22797254.2023.2186955&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3b0bd59857e4af486a8114cbd50e08f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon |