Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network
Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to und...
Saved in:
Published in | Agronomy (Basel) Vol. 12; no. 9; p. 2123 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to understand the role of individual nutrients (N, P, K, Zn, and S) on different plant parameters (plant height, tiller number, dry matter production, leaf area index, grain yield, and straw yield) of rice. A feed-forward neural network with back-propagation training was developed using the neural network (nnet) toolbox available in Matlab. For the training of the model, data obtained from two consecutive crop seasons over two years (a total of four crops of rice) were used. Nutrients interact with each other, and the resulting effect is an outcome of such interaction; hence, understanding the role of individual nutrients under field conditions becomes difficult. In the present study, an attempt was made to understand the role of individual nutrients in achieving crop growth and yield using an artificial neural network-based prediction model. The model predicts that growth parameters such as plant height, tiller number, and leaf area index often achieve their maximum performance at below the maximum applied dose, while the maximum yield in most cases is achieved at 100% N, P, K, Zn, and S dose. In addition, the present study attempted to understand the impact of individual nutrients on both plant growth and yield in order to optimize nutrient recommendation and nutrient management, thereby minimizing environmental pollution and wastage of nutrients. |
---|---|
AbstractList | Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to understand the role of individual nutrients (N, P, K, Zn, and S) on different plant parameters (plant height, tiller number, dry matter production, leaf area index, grain yield, and straw yield) of rice. A feed-forward neural network with back-propagation training was developed using the neural network (nnet) toolbox available in Matlab. For the training of the model, data obtained from two consecutive crop seasons over two years (a total of four crops of rice) were used. Nutrients interact with each other, and the resulting effect is an outcome of such interaction; hence, understanding the role of individual nutrients under field conditions becomes difficult. In the present study, an attempt was made to understand the role of individual nutrients in achieving crop growth and yield using an artificial neural network-based prediction model. The model predicts that growth parameters such as plant height, tiller number, and leaf area index often achieve their maximum performance at below the maximum applied dose, while the maximum yield in most cases is achieved at 100% N, P, K, Zn, and S dose. In addition, the present study attempted to understand the impact of individual nutrients on both plant growth and yield in order to optimize nutrient recommendation and nutrient management, thereby minimizing environmental pollution and wastage of nutrients. |
Audience | Academic |
Author | Mohanty, Sahasransu Hossain, Akbar Malik, Ganesh Chandra Lalichetti, Sagar Sharma, Ayushi Bhattacharyay, Dipankar Dutta, Sudarshan Maitra, Sagar Banerjee, Mahua Praharaj, Subhashisa Shankar, Tanmoy Gaber, Ahmed Das, Ashok K. |
Author_xml | – sequence: 1 givenname: Tanmoy surname: Shankar fullname: Shankar, Tanmoy – sequence: 2 givenname: Ganesh Chandra surname: Malik fullname: Malik, Ganesh Chandra – sequence: 3 givenname: Mahua surname: Banerjee fullname: Banerjee, Mahua – sequence: 4 givenname: Sudarshan surname: Dutta fullname: Dutta, Sudarshan – sequence: 5 givenname: Subhashisa surname: Praharaj fullname: Praharaj, Subhashisa – sequence: 6 givenname: Sagar surname: Lalichetti fullname: Lalichetti, Sagar – sequence: 7 givenname: Sahasransu orcidid: 0000-0003-0641-6149 surname: Mohanty fullname: Mohanty, Sahasransu – sequence: 8 givenname: Dipankar surname: Bhattacharyay fullname: Bhattacharyay, Dipankar – sequence: 9 givenname: Sagar orcidid: 0000-0001-8210-1531 surname: Maitra fullname: Maitra, Sagar – sequence: 10 givenname: Ahmed orcidid: 0000-0002-8297-935X surname: Gaber fullname: Gaber, Ahmed – sequence: 11 givenname: Ashok K. surname: Das fullname: Das, Ashok K. – sequence: 12 givenname: Ayushi surname: Sharma fullname: Sharma, Ayushi – sequence: 13 givenname: Akbar orcidid: 0000-0003-0264-2712 surname: Hossain fullname: Hossain, Akbar |
BookMark | eNp1UU1v1DAQtVCRKKV3jpG4cNnizzg5rqoClap2heBKNOuMFy9JXGxHaP89ky5C1UrYh7HH772Z8XvNzqY4IWNvBb9SquUfYJfiFMeDkLyVQqoX7Fxyq1Zatebs2fkVu8x5z2m1QjXcnrPvm4R9cCXEqYq-Kj-wuvEeXVlu93NJAaeSK3rdDDCVagMJRiyY8gL4EhxW20O1TiX44AIM1T3O6SmU3zH9fMNeehgyXv6NF-zbx5uv159Xdw-fbq_XdyunjSirVoGy1hsrtRDSSG3qxtcOoKlr1SulwGnVGy-Bb503zjmPvEaCQWuM9uqC3R51-wj77jGFEdKhixC6p0RMuw6oRzdgBw02oKXtW70IiNbA1pO6Nc6ilZK03h-1HlP8NWMu3Riyw4HmxzjnTlqpqMlGNgR9dwLdxzlNNCmhRK0bKY0g1NURtQOqHyYfSwJHu8cxOHLSB8qvLX2FFm1tiMCPBJdizgn9v4kE7xbDu1PDiVKfUFwosNhKtcLwf-If10SyKw |
CitedBy_id | crossref_primary_10_3390_agriculture13101874 crossref_primary_10_1080_08839514_2024_2394734 crossref_primary_10_1016_j_atech_2025_100804 crossref_primary_10_3390_agronomy12112670 crossref_primary_10_3390_agronomy14071422 crossref_primary_10_3390_agriculture14050758 crossref_primary_10_3390_agronomy15010175 crossref_primary_10_3390_agriculture13010029 crossref_primary_10_3390_agronomy14123010 crossref_primary_10_1051_bioconf_20236902002 crossref_primary_10_3390_horticulturae10010066 crossref_primary_10_18343_jipi_28_4_641 crossref_primary_10_3390_s22239100 crossref_primary_10_1111_jph_70014 crossref_primary_10_3390_agriculture13030661 crossref_primary_10_1002_eng2_13085 crossref_primary_10_3390_su151411082 |
Cites_doi | 10.3349/ymj.2004.45.5.776 10.3390/plants10081622 10.3390/plants11081071 10.1093/jxb/erv557 10.2136/sssaj1978.03615995004200030009x 10.20944/preprints201801.0223.v1 10.15446/acag.v66n4.59101 10.1134/S1021443707060040 10.5897/AJB11.2298 10.3390/ijms14047370 10.1111/j.1399-3054.2008.01075.x 10.3390/land10060609 10.1051/agro/2010002 10.1111/ppl.12165 10.1016/j.agrformet.2019.107886 10.1515/opag-2018-0034 10.1007/s00521-015-2093-7 10.3390/agronomy10111816 10.3103/S1068367407060031 10.1007/s11119-006-9004-y 10.2136/sssaj1951.036159950015000C0032x 10.3390/plants11010142 10.2134/agronj1962.00021962005400050028x 10.1097/00010694-194501000-00006 10.1002/j.1537-2197.1948.tb05203.x 10.3923/jai.2016.23.32 10.1016/j.fcr.2005.11.004 10.1016/j.envexpbot.2019.103816 10.1186/s40659-020-00312-4 10.1007/s11104-012-1346-9 10.1007/s11104-019-04138-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy12092123 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_a8e8a427d94e456195abf43d75c7e722 A745141965 10_3390_agronomy12092123 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c451t-93a377f5724112524568f6caa8663d333ac43d5f2a0bcf5cccfe06e456a9554f3 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:32:52 EDT 2025 Fri Jul 11 07:30:49 EDT 2025 Mon Jun 30 11:19:22 EDT 2025 Tue Jul 15 03:26:22 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 03:20:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-93a377f5724112524568f6caa8663d333ac43d5f2a0bcf5cccfe06e456a9554f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0264-2712 0000-0002-8297-935X 0000-0001-8210-1531 0000-0003-0641-6149 |
OpenAccessLink | https://www.proquest.com/docview/2716482251?pq-origsite=%requestingapplication% |
PQID | 2716482251 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a8e8a427d94e456195abf43d75c7e722 proquest_miscellaneous_2723125828 proquest_journals_2716482251 gale_infotracacademiconefile_A745141965 crossref_primary_10_3390_agronomy12092123 crossref_citationtrail_10_3390_agronomy12092123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Amtmann (ref_22) 2008; 133 Shabala (ref_49) 2014; 151 Mori (ref_19) 2016; 67 Chesnin (ref_41) 1950; 15 ref_18 Verma (ref_55) 2018; 7 Ismail (ref_58) 2014; 4 Rehman (ref_27) 2012; 361 Yosef (ref_21) 2012; 3 Lv (ref_3) 2017; 45 Meena (ref_46) 2015; 11 Bouyoucos (ref_35) 1951; 54 Shastry (ref_57) 2016; 9 Zulkifli (ref_11) 2017; 1152 Anas (ref_43) 2020; 53 Savin (ref_56) 2007; 33 Xu (ref_20) 2007; 54 He (ref_17) 2019; 166 Moro (ref_12) 2015; 5 ref_29 Ram (ref_45) 2020; 55 Shankar (ref_48) 2020; 55 Ye (ref_15) 2019; 20 Wang (ref_23) 2013; 14 Ghoneim (ref_10) 2018; 3 Chandel (ref_54) 2003; 8 ref_36 Muthukumararaja (ref_51) 2012; 8 Schwalbert (ref_34) 2020; 284 Hanway (ref_39) 1952; 57 ref_30 Gupta (ref_31) 2012; 4 Bhattacharyay (ref_32) 2015; 28 Jawahar (ref_25) 2010; 9 Yadi (ref_28) 2012; 3 Singh (ref_26) 2012; 4 Zhang (ref_13) 2019; 45 Yoshida (ref_14) 2006; 97 Subbiah (ref_37) 1956; 25 Lindsay (ref_40) 1978; 42 Chou (ref_5) 2020; 65 Contreras (ref_9) 2017; 66 Miao (ref_33) 2006; 7 Shah (ref_53) 2013; 15 ref_47 Atmaca (ref_24) 2004; 45 ref_42 ref_1 Jahan (ref_8) 2020; 6 Gao (ref_16) 2019; 441 ref_2 Li (ref_7) 2019; 47 Hemesh (ref_52) 2020; 9 Tayefe (ref_6) 2014; 13 Peng (ref_44) 2010; 30 ref_4 Bray (ref_38) 1945; 59 Cheng (ref_50) 1948; 35 |
References_xml | – volume: 45 start-page: 776 year: 2004 ident: ref_24 article-title: Antioxidant effects of sulfur-containing amino acids publication-title: Yonsei Med. J. doi: 10.3349/ymj.2004.45.5.776 – ident: ref_42 doi: 10.3390/plants10081622 – ident: ref_1 doi: 10.3390/plants11081071 – volume: 67 start-page: 1179 year: 2016 ident: ref_19 article-title: The role of root size versus root efficiency in phosphorus acquisition in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv557 – volume: 42 start-page: 421 year: 1978 ident: ref_40 article-title: Development of DTPA soil test for Zn, Fe, Mn and Cu publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1978.03615995004200030009x – ident: ref_47 doi: 10.20944/preprints201801.0223.v1 – volume: 55 start-page: 1 year: 2020 ident: ref_48 article-title: Influence of integrated nutrient management on growth and yield attributes of summer rice (Oryza sativa L.) publication-title: Crop Res. – volume: 66 start-page: 558 year: 2017 ident: ref_9 article-title: Growth, yield and agronomic efficiency of rice (Oryza sativa L.) cv. IAPAR 117 affected by nitrogen rates and sources publication-title: Acta Agron. doi: 10.15446/acag.v66n4.59101 – volume: 54 start-page: 741 year: 2007 ident: ref_20 article-title: Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443707060040 – volume: 13 start-page: 91 year: 2014 ident: ref_6 article-title: Effect of nitrogen on rice yield, yield components and quality parameters publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB11.2298 – volume: 5 start-page: 878 year: 2015 ident: ref_12 article-title: Effect of nitrogen rates on the growth and yield of three rice (Oryza sativa L.) varieties in rain-fed lowland in the forest agro-ecological zone of Ghana publication-title: Int. J. Agric. Sci. – volume: 25 start-page: 259 year: 1956 ident: ref_37 article-title: A rapid procedure for the determination of available nitrogen in soils publication-title: Curr. Sci. – volume: 1152 start-page: 159 year: 2017 ident: ref_11 article-title: Effect of nitrogen fertilizer to growth, biomass and grain yield of paddy publication-title: Acta Hortic. – volume: 14 start-page: 7370 year: 2013 ident: ref_23 article-title: The critical role of potassium in plant stress response publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14047370 – volume: 133 start-page: 682 year: 2008 ident: ref_22 article-title: The effect of potassium nutrition on pest and disease resistance in plants publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01075.x – volume: 57 start-page: 131 year: 1952 ident: ref_39 article-title: Soil analyses methods as used in Iowa State College Soil Testing Laboratory publication-title: Iowa Agric. – volume: 20 start-page: e00753 year: 2019 ident: ref_15 article-title: Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.) publication-title: Glob. Ecol. Conserv. – volume: 3 start-page: 4519 year: 2012 ident: ref_28 article-title: Role of zinc fertilizer on grain yield and some qualities parameters in Iranian rice genotypes publication-title: Ann. Biol. Res. – ident: ref_29 doi: 10.3390/land10060609 – volume: 30 start-page: 649 year: 2010 ident: ref_44 article-title: Improving nitrogen fertilization in rice by site-specific N management. A review publication-title: Agron. Sustain. Dev. doi: 10.1051/agro/2010002 – volume: 45 start-page: 62 year: 2017 ident: ref_3 article-title: Effects of nitrogen application on nitrogen metabolism and related physiological characteristics of leaves of rice of different plant types publication-title: Jiangsu Agric. Sci. – volume: 47 start-page: 117 year: 2019 ident: ref_7 article-title: Effects of nitrogen application on osmotic regulators in leaves of different plant types of rice publication-title: Jiangsu Agric. Sci. – volume: 45 start-page: 231 year: 2019 ident: ref_13 article-title: Effect of different amount of nitrogen on the yield and the quality of high quality rice and its nitrogen utilization efficiency publication-title: J. Hunan Agric. Univ. Nat. Sci. – volume: 6 start-page: 24 year: 2020 ident: ref_8 article-title: Nitrogen response of two high yielding rice varieties as influenced by nitrogen levels and growing seasons publication-title: Geol. Ecol. Landsc. – volume: 151 start-page: 257 year: 2014 ident: ref_49 article-title: Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance publication-title: Physiol. Plant doi: 10.1111/ppl.12165 – volume: 284 start-page: 107886 year: 2020 ident: ref_34 article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107886 – volume: 55 start-page: 65 year: 2020 ident: ref_45 article-title: Productivity, nutrient uptake and nutrient use efficiency of summer rice (Oryza sativa) as influenced by integrated nutrient management practices publication-title: Crop Res. – volume: 3 start-page: 310 year: 2018 ident: ref_10 article-title: Effects of nitrogen levels on growth, yield and nitrogen use efficiency of some newly released Egyptian rice genotypes publication-title: Open Agric. doi: 10.1515/opag-2018-0034 – volume: 28 start-page: 553 year: 2015 ident: ref_32 article-title: An artificial neural network model for predicting the CO2 reactivity of carbon anodes used in the primary aluminum production publication-title: Neural Comp. Appl. doi: 10.1007/s00521-015-2093-7 – volume: 8 start-page: 155 year: 2003 ident: ref_54 article-title: Effect of sulphur nutrition in rice (Oryza sativa L.) and mustard (Brassica juncea L. Czern and Coss.) grown in sequence publication-title: Ind. J. Plant Physiol. – ident: ref_30 – ident: ref_4 doi: 10.3390/agronomy10111816 – volume: 11 start-page: 286 year: 2015 ident: ref_46 article-title: Effect of phosphorus levels and bio-organic sources on growth and yield of rice (Oryza sativa L.) publication-title: Int. J. Agric. Sci. – volume: 33 start-page: 361 year: 2007 ident: ref_56 article-title: Prediction of crop yields with the use of neural networks publication-title: Russ. Agric. Sci. doi: 10.3103/S1068367407060031 – volume: 7 start-page: 117 year: 2006 ident: ref_33 article-title: Identifying important factors influencing corn yield and grain quality variability using artificial neural networks publication-title: Precis. Agric. doi: 10.1007/s11119-006-9004-y – volume: 9 start-page: 36 year: 2010 ident: ref_25 article-title: Effect of sulphur and silicon fertilization on growth and yield of rice publication-title: Int. J. Curr. Res. – volume: 15 start-page: 149 year: 1950 ident: ref_41 article-title: Turbid metric Determination of Available Sulphates publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1951.036159950015000C0032x – volume: 4 start-page: 455 year: 2012 ident: ref_31 article-title: Artificial Neural Networks as Universal Function Approximators publication-title: Int. J. Emerg. Trend Engin. Devel. – ident: ref_2 doi: 10.3390/plants11010142 – volume: 54 start-page: 464 year: 1951 ident: ref_35 article-title: Hydrometer method improved for making particle size analysis of soils publication-title: J. Agron. doi: 10.2134/agronj1962.00021962005400050028x – volume: 7 start-page: 2546 year: 2018 ident: ref_55 article-title: Economic aspect of vermicompost and sulphur application in the garlic cultivation publication-title: J. Pharmacogn. Phytochem. – volume: 59 start-page: 39 year: 1945 ident: ref_38 article-title: Determinations of total, organic and available forms of phosphorus in soils publication-title: Soil Sci. doi: 10.1097/00010694-194501000-00006 – volume: 35 start-page: 172 year: 1948 ident: ref_50 article-title: The role of zinc in auxin synthesis in the tomato plan publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1948.tb05203.x – ident: ref_18 – volume: 9 start-page: 23 year: 2016 ident: ref_57 article-title: A parameter based customized artificial neural network model for crop yield prediction publication-title: J. Artif. Intel. doi: 10.3923/jai.2016.23.32 – volume: 4 start-page: 162 year: 2012 ident: ref_26 article-title: Effect of sulphur and zinc on rice performance and nutrient dynamics in plants and soil of Indo Gangetic plains publication-title: J. Agric. Sci. – volume: 9 start-page: 1864 year: 2020 ident: ref_52 article-title: Role of sulphur in cereal crops: A review publication-title: J. Pharm. Phytochem. – volume: 97 start-page: 337 year: 2006 ident: ref_14 article-title: A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2005.11.004 – volume: 166 start-page: 103816 year: 2019 ident: ref_17 article-title: Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.103816 – volume: 4 start-page: 1 year: 2014 ident: ref_58 article-title: Application of Artificial Neural Network in Predicting Crop Yield: A Review publication-title: J. Food Sci. Eng. – volume: 8 start-page: 551 year: 2012 ident: ref_51 article-title: Effect of zinc on yield, zinc nutrition and zinc use efficiency of lowland rice publication-title: J. Agric. Technol. – volume: 53 start-page: 47 year: 2020 ident: ref_43 article-title: Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency publication-title: Biol. Res. doi: 10.1186/s40659-020-00312-4 – volume: 65 start-page: 52 year: 2020 ident: ref_5 article-title: Effects of nitrogen reduction at different growth stages on rice population production characteristics and preliminary analysis of nitrogen reduction strategies publication-title: J. Yangzhou Univ. – volume: 361 start-page: 203 year: 2012 ident: ref_27 article-title: Zinc nutrition in rice production systems: A review publication-title: Plant. Soil doi: 10.1007/s11104-012-1346-9 – ident: ref_36 – volume: 15 start-page: 1301 year: 2013 ident: ref_53 article-title: Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions publication-title: Int. J. Agric. Biol. – volume: 441 start-page: 469 year: 2019 ident: ref_16 article-title: Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ–comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage publication-title: Plant Soil doi: 10.1007/s11104-019-04138-2 – volume: 3 start-page: 579 year: 2012 ident: ref_21 article-title: Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L) publication-title: Int. J. Agron. Plant Prod. |
SSID | ssj0000913807 |
Score | 2.3469365 |
Snippet | Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2123 |
SubjectTerms | Agricultural production agronomy Amino acids Analysis artificial neural network Artificial neural networks Back propagation networks Cereal crops Crop growth crop performance Crop yield Crop yields dietary recommendations digital agriculture Dry matter dry matter accumulation Environmental management Ethylenediaminetetraacetic acid Experiments Fertilizers food security grain yield Leaf area Leaf area index Leaves Loam soils Mathematical models Metabolism Neural networks Nitrogen nutrient management Nutrients Parameters Phosphorus Plant growth plant height plant nutrients Plants Plants (botany) pollution Potassium prediction Prediction models Productivity Propagation Rice Soil fertility straw Sulfur Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf2J1SgRBfChbm6ZpH6coIjiGKPhkuF6Tvcgmc3vwv_curUMF9cWn0jZt00ty9x1390WIkwp8kSaYxiUYjDOt-nGZOXJVVF4XaHJUCdc73w7z64fs5lE_ftrqi3PCGnrgRnA9KFwBWWpqegUb-1JD5TNVG43GmTRoX7J5n5ypoIPLhJnUm7ikIr--B-NZqBLgWlFW11_sUKDr_0kpB0tztSHWW4goB03XNsWKm2yJtcF41tJkuG3xNJpxgIWFKqdeEoiTDQ0xnw2ZYJ_zIyTd5U2J5nIEnIPFRJrc4I6Ug6zewhcaAgnJHB3hEJLCd8TD1eX9xXXc7pQQY6aTeVwqUMZ4bcgeE2LhYGbhcwQoCFDUSilAEpn2KfQr9BoRvevnLE8oCU94tSs6k-nE7QlZGa1rBQkHQAlcqKpPix4yjx6xcFURid6H3Cy2NOK8m8WzJXeCJW2_SzoSZ8snXhoKjV_anvNQLNsx-XW4QFPCtlPC_jUlInHKA2l5iVLXENpKA_pBJruyA0NCy5hKMRLdj7G27dp9tSm7kISbdBKJ4-VtWnUcSoGJmy64DeHilEOO-__R4wOxmnJZRchd64rOfLZwhwR25tVRmNfvnJf8gA priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network |
URI | https://www.proquest.com/docview/2716482251 https://www.proquest.com/docview/2723125828 https://doaj.org/article/a8e8a427d94e456195abf43d75c7e722 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED629GV7GPvJvHVFg8HYg4ltWZb8NNLRUgYLoazQpwn5LOVlxK2bPvS_752sZGywPoXElzg-6U6fdHffAXzqXDBViVXeOo15rWSRt7WnrYpseoO6QVlyvfOPZXN2UX-_VJfpwO0mpVXufGJ01P2AfEY-rxjY02qmyq9X1zl3jeLoamqh8RgOyAUbM4OD45Pl6nx_ysKsl6bQU3xS0v5-7tZjrBbgmlF223-tR5G2_3_OOa44p8_hWYKKYjGN7Qt45Dcv4eliPSa6DP8Kfq1GDrSwcsUQBIE5MdER87slE-1znoSgq9ycaCtWjnOxmFCTBc7JSYjuLt5hIpIQzNURX2Jy-Gu4OD35-e0sTx0TcqxVuc1b6aTWQWlalwm5cFDThAadMwQseimlw1r2KlSu6DAoRAy-aDyJuZZwRZBvYLYZNv4tiE4r1UtXciCUQIbsCjJ-VwcMiMZ3JoP5Tm8WE504d7X4bWlbwZq2_2o6gy_7b1xNVBoPyB7zUOzlmAQ7fjCMa5tsyjrjjasr3dPsYhzYKtcFej6tUHtdVRl85oG0bKr019CligN6QCa9sgtNSquZUjGDw91Y22TDN_bPjMvg4_4yWR-HVNzGD7csQ_i44tDju4d_4j08qbhwImanHcJsO976DwRntt1RmrNH8TjgHqri9ns |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7gF4QPwVGQOMBEI8RE3sOE4eEOpgU8e2qpo2aU8Yx7H7gpot64T2pfiM3DlJEUjsbU9Vm2ta353vzrm73wG8rYwveGp5XBpl40yKJC4zh0cVkdeFVbkVKfU7H83y6Wn29UyebcCvoReGyioHmxgMdd1YekY-5hTYozeT6afzi5imRlF2dRih0anFgbv-iUe2y4_7X1C-7zjf2z35PI37qQKxzWS6ikthhFJeKvRd6N0p8Vf43BpToPOthRDGZqKWnpuksl5aa71LcodkpkTf6wXe9w5s4mISPoLNnd3Z_Hj9VIdQNotEdflQIcpkbBZt6E6gHlVyE3_5vzAm4H_OIHi4vYfwoA9N2aTTpUew4ZaP4f5k0fbwHO4JfJu3lNghYbLGMwweWQd_TO9mBOxPdRkMr9IwpBWbG6r9IgBPIjhGo8Sq6_ALHXAFI2yQ8BKK0Z_C6a3w8hmMls3SPQdWKSlrYVJKvGJQI6oEjY3JvPXWFq4qIhgPfNO2hy-nKRo_NB5jiNP6X05H8GH9jfMOuuMG2h0SxZqOQLfDB0270P0e1qZwhcm4qlGbKe4spak8rk9Jq5ziPIL3JEhNpgH_mjV9hwMukEC29EQh0zKCcIxge5C17m3Gpf6j4RG8WV_G3U4pHLN0zRXRYDzOKdW5dfMtXsPd6cnRoT7cnx28gHucmjZCZdw2jFbtlXuJodSqetXrL4Pvt71lfgOfxjHW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJyF4QHyKwAaHBEI8RE3ucrnkAU3dR7UxqKqJSXviuFzu-oKakXVC-9f467AvSRGT2NueqjRO2tg-2xfbPwO8rYwveGp5XBpl40yKJC4zh1sVkdeFVbkVKfU7f5nlh6fZpzN5tgG_h14YKqscbGIw1HVj6R35mFNgj95MpmPfl0XM96c75z9jmiBFmdZhnEanIsfu6hdu3y4-Hu2jrN9xPj34uncY9xMGYpvJdBWXwgilvFTox9DTUxKw8Lk1pkBHXAshjM1ELT03SWW9tNZ6l-QOyUyJftgLvO8d2FS0KxrB5u7BbH6yfsNDiJtForrcqBBlMjaLNnQqUL8quYx_fGEYGfA_xxC83fQhPOjDVDbp9OoRbLjlY7g_WbQ9VId7At_mLSV5SLCs8QwDSdZBIdPRjED-qUaD4VkajLRic0N1YATmSQQnaKBYdRV-oQOxYIQTEj5CYfpTOL0VXj6D0bJZuufAKiVlLUxKSVgMcESVoOExmbfe2sJVRQTjgW_a9lDmNFHjh8YtDXFaX-d0BB_WV5x3MB430O6SKNZ0BMAdvmjahe7XszaFK0zGVY2aTTFoKU3l8fmUtMopziN4T4LUZCbwr1nTdzvgAxLglp4oZFpGcI4RbA2y1r39uNB_tT2CN-vTuPIpnWOWrrkkGozNOaU9X9x8i9dwF5eK_nw0O34J9zj1b4QiuS0YrdpLt41R1ap61asvg--3vWL-ALZdNgs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+Effect+of+Nutrients+on+Plant+Parameters+of+Rice+by+Artificial+Neural+Network&rft.jtitle=Agronomy+%28Basel%29&rft.au=Shankar%2C+Tanmoy&rft.au=Malik%2C+Ganesh+Chandra&rft.au=Banerjee%2C+Mahua&rft.au=Dutta%2C+Sudarshan&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=12&rft.issue=9&rft.spage=2123&rft_id=info:doi/10.3390%2Fagronomy12092123&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |