Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network

Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to und...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 12; no. 9; p. 2123
Main Authors Shankar, Tanmoy, Malik, Ganesh Chandra, Banerjee, Mahua, Dutta, Sudarshan, Praharaj, Subhashisa, Lalichetti, Sagar, Mohanty, Sahasransu, Bhattacharyay, Dipankar, Maitra, Sagar, Gaber, Ahmed, Das, Ashok K., Sharma, Ayushi, Hossain, Akbar
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to understand the role of individual nutrients (N, P, K, Zn, and S) on different plant parameters (plant height, tiller number, dry matter production, leaf area index, grain yield, and straw yield) of rice. A feed-forward neural network with back-propagation training was developed using the neural network (nnet) toolbox available in Matlab. For the training of the model, data obtained from two consecutive crop seasons over two years (a total of four crops of rice) were used. Nutrients interact with each other, and the resulting effect is an outcome of such interaction; hence, understanding the role of individual nutrients under field conditions becomes difficult. In the present study, an attempt was made to understand the role of individual nutrients in achieving crop growth and yield using an artificial neural network-based prediction model. The model predicts that growth parameters such as plant height, tiller number, and leaf area index often achieve their maximum performance at below the maximum applied dose, while the maximum yield in most cases is achieved at 100% N, P, K, Zn, and S dose. In addition, the present study attempted to understand the impact of individual nutrients on both plant growth and yield in order to optimize nutrient recommendation and nutrient management, thereby minimizing environmental pollution and wastage of nutrients.
AbstractList Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time owing to the unique production environment of rice. In this research, an artificial neural network-based prediction model was developed to understand the role of individual nutrients (N, P, K, Zn, and S) on different plant parameters (plant height, tiller number, dry matter production, leaf area index, grain yield, and straw yield) of rice. A feed-forward neural network with back-propagation training was developed using the neural network (nnet) toolbox available in Matlab. For the training of the model, data obtained from two consecutive crop seasons over two years (a total of four crops of rice) were used. Nutrients interact with each other, and the resulting effect is an outcome of such interaction; hence, understanding the role of individual nutrients under field conditions becomes difficult. In the present study, an attempt was made to understand the role of individual nutrients in achieving crop growth and yield using an artificial neural network-based prediction model. The model predicts that growth parameters such as plant height, tiller number, and leaf area index often achieve their maximum performance at below the maximum applied dose, while the maximum yield in most cases is achieved at 100% N, P, K, Zn, and S dose. In addition, the present study attempted to understand the impact of individual nutrients on both plant growth and yield in order to optimize nutrient recommendation and nutrient management, thereby minimizing environmental pollution and wastage of nutrients.
Audience Academic
Author Mohanty, Sahasransu
Hossain, Akbar
Malik, Ganesh Chandra
Lalichetti, Sagar
Sharma, Ayushi
Bhattacharyay, Dipankar
Dutta, Sudarshan
Maitra, Sagar
Banerjee, Mahua
Praharaj, Subhashisa
Shankar, Tanmoy
Gaber, Ahmed
Das, Ashok K.
Author_xml – sequence: 1
  givenname: Tanmoy
  surname: Shankar
  fullname: Shankar, Tanmoy
– sequence: 2
  givenname: Ganesh Chandra
  surname: Malik
  fullname: Malik, Ganesh Chandra
– sequence: 3
  givenname: Mahua
  surname: Banerjee
  fullname: Banerjee, Mahua
– sequence: 4
  givenname: Sudarshan
  surname: Dutta
  fullname: Dutta, Sudarshan
– sequence: 5
  givenname: Subhashisa
  surname: Praharaj
  fullname: Praharaj, Subhashisa
– sequence: 6
  givenname: Sagar
  surname: Lalichetti
  fullname: Lalichetti, Sagar
– sequence: 7
  givenname: Sahasransu
  orcidid: 0000-0003-0641-6149
  surname: Mohanty
  fullname: Mohanty, Sahasransu
– sequence: 8
  givenname: Dipankar
  surname: Bhattacharyay
  fullname: Bhattacharyay, Dipankar
– sequence: 9
  givenname: Sagar
  orcidid: 0000-0001-8210-1531
  surname: Maitra
  fullname: Maitra, Sagar
– sequence: 10
  givenname: Ahmed
  orcidid: 0000-0002-8297-935X
  surname: Gaber
  fullname: Gaber, Ahmed
– sequence: 11
  givenname: Ashok K.
  surname: Das
  fullname: Das, Ashok K.
– sequence: 12
  givenname: Ayushi
  surname: Sharma
  fullname: Sharma, Ayushi
– sequence: 13
  givenname: Akbar
  orcidid: 0000-0003-0264-2712
  surname: Hossain
  fullname: Hossain, Akbar
BookMark eNp1UU1v1DAQtVCRKKV3jpG4cNnizzg5rqoClap2heBKNOuMFy9JXGxHaP89ky5C1UrYh7HH772Z8XvNzqY4IWNvBb9SquUfYJfiFMeDkLyVQqoX7Fxyq1Zatebs2fkVu8x5z2m1QjXcnrPvm4R9cCXEqYq-Kj-wuvEeXVlu93NJAaeSK3rdDDCVagMJRiyY8gL4EhxW20O1TiX44AIM1T3O6SmU3zH9fMNeehgyXv6NF-zbx5uv159Xdw-fbq_XdyunjSirVoGy1hsrtRDSSG3qxtcOoKlr1SulwGnVGy-Bb503zjmPvEaCQWuM9uqC3R51-wj77jGFEdKhixC6p0RMuw6oRzdgBw02oKXtW70IiNbA1pO6Nc6ilZK03h-1HlP8NWMu3Riyw4HmxzjnTlqpqMlGNgR9dwLdxzlNNCmhRK0bKY0g1NURtQOqHyYfSwJHu8cxOHLSB8qvLX2FFm1tiMCPBJdizgn9v4kE7xbDu1PDiVKfUFwosNhKtcLwf-If10SyKw
CitedBy_id crossref_primary_10_3390_agriculture13101874
crossref_primary_10_1080_08839514_2024_2394734
crossref_primary_10_1016_j_atech_2025_100804
crossref_primary_10_3390_agronomy12112670
crossref_primary_10_3390_agronomy14071422
crossref_primary_10_3390_agriculture14050758
crossref_primary_10_3390_agronomy15010175
crossref_primary_10_3390_agriculture13010029
crossref_primary_10_3390_agronomy14123010
crossref_primary_10_1051_bioconf_20236902002
crossref_primary_10_3390_horticulturae10010066
crossref_primary_10_18343_jipi_28_4_641
crossref_primary_10_3390_s22239100
crossref_primary_10_1111_jph_70014
crossref_primary_10_3390_agriculture13030661
crossref_primary_10_1002_eng2_13085
crossref_primary_10_3390_su151411082
Cites_doi 10.3349/ymj.2004.45.5.776
10.3390/plants10081622
10.3390/plants11081071
10.1093/jxb/erv557
10.2136/sssaj1978.03615995004200030009x
10.20944/preprints201801.0223.v1
10.15446/acag.v66n4.59101
10.1134/S1021443707060040
10.5897/AJB11.2298
10.3390/ijms14047370
10.1111/j.1399-3054.2008.01075.x
10.3390/land10060609
10.1051/agro/2010002
10.1111/ppl.12165
10.1016/j.agrformet.2019.107886
10.1515/opag-2018-0034
10.1007/s00521-015-2093-7
10.3390/agronomy10111816
10.3103/S1068367407060031
10.1007/s11119-006-9004-y
10.2136/sssaj1951.036159950015000C0032x
10.3390/plants11010142
10.2134/agronj1962.00021962005400050028x
10.1097/00010694-194501000-00006
10.1002/j.1537-2197.1948.tb05203.x
10.3923/jai.2016.23.32
10.1016/j.fcr.2005.11.004
10.1016/j.envexpbot.2019.103816
10.1186/s40659-020-00312-4
10.1007/s11104-012-1346-9
10.1007/s11104-019-04138-2
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy12092123
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_a8e8a427d94e456195abf43d75c7e722
A745141965
10_3390_agronomy12092123
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c451t-93a377f5724112524568f6caa8663d333ac43d5f2a0bcf5cccfe06e456a9554f3
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:32:52 EDT 2025
Fri Jul 11 07:30:49 EDT 2025
Mon Jun 30 11:19:22 EDT 2025
Tue Jul 15 03:26:22 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 03:20:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-93a377f5724112524568f6caa8663d333ac43d5f2a0bcf5cccfe06e456a9554f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0264-2712
0000-0002-8297-935X
0000-0001-8210-1531
0000-0003-0641-6149
OpenAccessLink https://www.proquest.com/docview/2716482251?pq-origsite=%requestingapplication%
PQID 2716482251
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_a8e8a427d94e456195abf43d75c7e722
proquest_miscellaneous_2723125828
proquest_journals_2716482251
gale_infotracacademiconefile_A745141965
crossref_primary_10_3390_agronomy12092123
crossref_citationtrail_10_3390_agronomy12092123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Amtmann (ref_22) 2008; 133
Shabala (ref_49) 2014; 151
Mori (ref_19) 2016; 67
Chesnin (ref_41) 1950; 15
ref_18
Verma (ref_55) 2018; 7
Ismail (ref_58) 2014; 4
Rehman (ref_27) 2012; 361
Yosef (ref_21) 2012; 3
Lv (ref_3) 2017; 45
Meena (ref_46) 2015; 11
Bouyoucos (ref_35) 1951; 54
Shastry (ref_57) 2016; 9
Zulkifli (ref_11) 2017; 1152
Anas (ref_43) 2020; 53
Savin (ref_56) 2007; 33
Xu (ref_20) 2007; 54
He (ref_17) 2019; 166
Moro (ref_12) 2015; 5
ref_29
Ram (ref_45) 2020; 55
Shankar (ref_48) 2020; 55
Ye (ref_15) 2019; 20
Wang (ref_23) 2013; 14
Ghoneim (ref_10) 2018; 3
Chandel (ref_54) 2003; 8
ref_36
Muthukumararaja (ref_51) 2012; 8
Schwalbert (ref_34) 2020; 284
Hanway (ref_39) 1952; 57
ref_30
Gupta (ref_31) 2012; 4
Bhattacharyay (ref_32) 2015; 28
Jawahar (ref_25) 2010; 9
Yadi (ref_28) 2012; 3
Singh (ref_26) 2012; 4
Zhang (ref_13) 2019; 45
Yoshida (ref_14) 2006; 97
Subbiah (ref_37) 1956; 25
Lindsay (ref_40) 1978; 42
Chou (ref_5) 2020; 65
Contreras (ref_9) 2017; 66
Miao (ref_33) 2006; 7
Shah (ref_53) 2013; 15
ref_47
Atmaca (ref_24) 2004; 45
ref_42
ref_1
Jahan (ref_8) 2020; 6
Gao (ref_16) 2019; 441
ref_2
Li (ref_7) 2019; 47
Hemesh (ref_52) 2020; 9
Tayefe (ref_6) 2014; 13
Peng (ref_44) 2010; 30
ref_4
Bray (ref_38) 1945; 59
Cheng (ref_50) 1948; 35
References_xml – volume: 45
  start-page: 776
  year: 2004
  ident: ref_24
  article-title: Antioxidant effects of sulfur-containing amino acids
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2004.45.5.776
– ident: ref_42
  doi: 10.3390/plants10081622
– ident: ref_1
  doi: 10.3390/plants11081071
– volume: 67
  start-page: 1179
  year: 2016
  ident: ref_19
  article-title: The role of root size versus root efficiency in phosphorus acquisition in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv557
– volume: 42
  start-page: 421
  year: 1978
  ident: ref_40
  article-title: Development of DTPA soil test for Zn, Fe, Mn and Cu
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200030009x
– ident: ref_47
  doi: 10.20944/preprints201801.0223.v1
– volume: 55
  start-page: 1
  year: 2020
  ident: ref_48
  article-title: Influence of integrated nutrient management on growth and yield attributes of summer rice (Oryza sativa L.)
  publication-title: Crop Res.
– volume: 66
  start-page: 558
  year: 2017
  ident: ref_9
  article-title: Growth, yield and agronomic efficiency of rice (Oryza sativa L.) cv. IAPAR 117 affected by nitrogen rates and sources
  publication-title: Acta Agron.
  doi: 10.15446/acag.v66n4.59101
– volume: 54
  start-page: 741
  year: 2007
  ident: ref_20
  article-title: Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443707060040
– volume: 13
  start-page: 91
  year: 2014
  ident: ref_6
  article-title: Effect of nitrogen on rice yield, yield components and quality parameters
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB11.2298
– volume: 5
  start-page: 878
  year: 2015
  ident: ref_12
  article-title: Effect of nitrogen rates on the growth and yield of three rice (Oryza sativa L.) varieties in rain-fed lowland in the forest agro-ecological zone of Ghana
  publication-title: Int. J. Agric. Sci.
– volume: 25
  start-page: 259
  year: 1956
  ident: ref_37
  article-title: A rapid procedure for the determination of available nitrogen in soils
  publication-title: Curr. Sci.
– volume: 1152
  start-page: 159
  year: 2017
  ident: ref_11
  article-title: Effect of nitrogen fertilizer to growth, biomass and grain yield of paddy
  publication-title: Acta Hortic.
– volume: 14
  start-page: 7370
  year: 2013
  ident: ref_23
  article-title: The critical role of potassium in plant stress response
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14047370
– volume: 133
  start-page: 682
  year: 2008
  ident: ref_22
  article-title: The effect of potassium nutrition on pest and disease resistance in plants
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01075.x
– volume: 57
  start-page: 131
  year: 1952
  ident: ref_39
  article-title: Soil analyses methods as used in Iowa State College Soil Testing Laboratory
  publication-title: Iowa Agric.
– volume: 20
  start-page: e00753
  year: 2019
  ident: ref_15
  article-title: Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.)
  publication-title: Glob. Ecol. Conserv.
– volume: 3
  start-page: 4519
  year: 2012
  ident: ref_28
  article-title: Role of zinc fertilizer on grain yield and some qualities parameters in Iranian rice genotypes
  publication-title: Ann. Biol. Res.
– ident: ref_29
  doi: 10.3390/land10060609
– volume: 30
  start-page: 649
  year: 2010
  ident: ref_44
  article-title: Improving nitrogen fertilization in rice by site-specific N management. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1051/agro/2010002
– volume: 45
  start-page: 62
  year: 2017
  ident: ref_3
  article-title: Effects of nitrogen application on nitrogen metabolism and related physiological characteristics of leaves of rice of different plant types
  publication-title: Jiangsu Agric. Sci.
– volume: 47
  start-page: 117
  year: 2019
  ident: ref_7
  article-title: Effects of nitrogen application on osmotic regulators in leaves of different plant types of rice
  publication-title: Jiangsu Agric. Sci.
– volume: 45
  start-page: 231
  year: 2019
  ident: ref_13
  article-title: Effect of different amount of nitrogen on the yield and the quality of high quality rice and its nitrogen utilization efficiency
  publication-title: J. Hunan Agric. Univ. Nat. Sci.
– volume: 6
  start-page: 24
  year: 2020
  ident: ref_8
  article-title: Nitrogen response of two high yielding rice varieties as influenced by nitrogen levels and growing seasons
  publication-title: Geol. Ecol. Landsc.
– volume: 151
  start-page: 257
  year: 2014
  ident: ref_49
  article-title: Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12165
– volume: 284
  start-page: 107886
  year: 2020
  ident: ref_34
  article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107886
– volume: 55
  start-page: 65
  year: 2020
  ident: ref_45
  article-title: Productivity, nutrient uptake and nutrient use efficiency of summer rice (Oryza sativa) as influenced by integrated nutrient management practices
  publication-title: Crop Res.
– volume: 3
  start-page: 310
  year: 2018
  ident: ref_10
  article-title: Effects of nitrogen levels on growth, yield and nitrogen use efficiency of some newly released Egyptian rice genotypes
  publication-title: Open Agric.
  doi: 10.1515/opag-2018-0034
– volume: 28
  start-page: 553
  year: 2015
  ident: ref_32
  article-title: An artificial neural network model for predicting the CO2 reactivity of carbon anodes used in the primary aluminum production
  publication-title: Neural Comp. Appl.
  doi: 10.1007/s00521-015-2093-7
– volume: 8
  start-page: 155
  year: 2003
  ident: ref_54
  article-title: Effect of sulphur nutrition in rice (Oryza sativa L.) and mustard (Brassica juncea L. Czern and Coss.) grown in sequence
  publication-title: Ind. J. Plant Physiol.
– ident: ref_30
– ident: ref_4
  doi: 10.3390/agronomy10111816
– volume: 11
  start-page: 286
  year: 2015
  ident: ref_46
  article-title: Effect of phosphorus levels and bio-organic sources on growth and yield of rice (Oryza sativa L.)
  publication-title: Int. J. Agric. Sci.
– volume: 33
  start-page: 361
  year: 2007
  ident: ref_56
  article-title: Prediction of crop yields with the use of neural networks
  publication-title: Russ. Agric. Sci.
  doi: 10.3103/S1068367407060031
– volume: 7
  start-page: 117
  year: 2006
  ident: ref_33
  article-title: Identifying important factors influencing corn yield and grain quality variability using artificial neural networks
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-006-9004-y
– volume: 9
  start-page: 36
  year: 2010
  ident: ref_25
  article-title: Effect of sulphur and silicon fertilization on growth and yield of rice
  publication-title: Int. J. Curr. Res.
– volume: 15
  start-page: 149
  year: 1950
  ident: ref_41
  article-title: Turbid metric Determination of Available Sulphates
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1951.036159950015000C0032x
– volume: 4
  start-page: 455
  year: 2012
  ident: ref_31
  article-title: Artificial Neural Networks as Universal Function Approximators
  publication-title: Int. J. Emerg. Trend Engin. Devel.
– ident: ref_2
  doi: 10.3390/plants11010142
– volume: 54
  start-page: 464
  year: 1951
  ident: ref_35
  article-title: Hydrometer method improved for making particle size analysis of soils
  publication-title: J. Agron.
  doi: 10.2134/agronj1962.00021962005400050028x
– volume: 7
  start-page: 2546
  year: 2018
  ident: ref_55
  article-title: Economic aspect of vermicompost and sulphur application in the garlic cultivation
  publication-title: J. Pharmacogn. Phytochem.
– volume: 59
  start-page: 39
  year: 1945
  ident: ref_38
  article-title: Determinations of total, organic and available forms of phosphorus in soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194501000-00006
– volume: 35
  start-page: 172
  year: 1948
  ident: ref_50
  article-title: The role of zinc in auxin synthesis in the tomato plan
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1948.tb05203.x
– ident: ref_18
– volume: 9
  start-page: 23
  year: 2016
  ident: ref_57
  article-title: A parameter based customized artificial neural network model for crop yield prediction
  publication-title: J. Artif. Intel.
  doi: 10.3923/jai.2016.23.32
– volume: 4
  start-page: 162
  year: 2012
  ident: ref_26
  article-title: Effect of sulphur and zinc on rice performance and nutrient dynamics in plants and soil of Indo Gangetic plains
  publication-title: J. Agric. Sci.
– volume: 9
  start-page: 1864
  year: 2020
  ident: ref_52
  article-title: Role of sulphur in cereal crops: A review
  publication-title: J. Pharm. Phytochem.
– volume: 97
  start-page: 337
  year: 2006
  ident: ref_14
  article-title: A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2005.11.004
– volume: 166
  start-page: 103816
  year: 2019
  ident: ref_17
  article-title: Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.103816
– volume: 4
  start-page: 1
  year: 2014
  ident: ref_58
  article-title: Application of Artificial Neural Network in Predicting Crop Yield: A Review
  publication-title: J. Food Sci. Eng.
– volume: 8
  start-page: 551
  year: 2012
  ident: ref_51
  article-title: Effect of zinc on yield, zinc nutrition and zinc use efficiency of lowland rice
  publication-title: J. Agric. Technol.
– volume: 53
  start-page: 47
  year: 2020
  ident: ref_43
  article-title: Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency
  publication-title: Biol. Res.
  doi: 10.1186/s40659-020-00312-4
– volume: 65
  start-page: 52
  year: 2020
  ident: ref_5
  article-title: Effects of nitrogen reduction at different growth stages on rice population production characteristics and preliminary analysis of nitrogen reduction strategies
  publication-title: J. Yangzhou Univ.
– volume: 361
  start-page: 203
  year: 2012
  ident: ref_27
  article-title: Zinc nutrition in rice production systems: A review
  publication-title: Plant. Soil
  doi: 10.1007/s11104-012-1346-9
– ident: ref_36
– volume: 15
  start-page: 1301
  year: 2013
  ident: ref_53
  article-title: Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions
  publication-title: Int. J. Agric. Biol.
– volume: 441
  start-page: 469
  year: 2019
  ident: ref_16
  article-title: Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ–comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04138-2
– volume: 3
  start-page: 579
  year: 2012
  ident: ref_21
  article-title: Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L)
  publication-title: Int. J. Agron. Plant Prod.
SSID ssj0000913807
Score 2.3469365
Snippet Rice holds key importance in food and nutritional security across the globe. Nutrient management involving rice has been a matter of interest for a long time...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2123
SubjectTerms Agricultural production
agronomy
Amino acids
Analysis
artificial neural network
Artificial neural networks
Back propagation networks
Cereal crops
Crop growth
crop performance
Crop yield
Crop yields
dietary recommendations
digital agriculture
Dry matter
dry matter accumulation
Environmental management
Ethylenediaminetetraacetic acid
Experiments
Fertilizers
food security
grain yield
Leaf area
Leaf area index
Leaves
Loam soils
Mathematical models
Metabolism
Neural networks
Nitrogen
nutrient management
Nutrients
Parameters
Phosphorus
Plant growth
plant height
plant nutrients
Plants
Plants (botany)
pollution
Potassium
prediction
Prediction models
Productivity
Propagation
Rice
Soil fertility
straw
Sulfur
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf2J1SgRBfChbm6ZpH6coIjiGKPhkuF6Tvcgmc3vwv_curUMF9cWn0jZt00ty9x1390WIkwp8kSaYxiUYjDOt-nGZOXJVVF4XaHJUCdc73w7z64fs5lE_ftrqi3PCGnrgRnA9KFwBWWpqegUb-1JD5TNVG43GmTRoX7J5n5ypoIPLhJnUm7ikIr--B-NZqBLgWlFW11_sUKDr_0kpB0tztSHWW4goB03XNsWKm2yJtcF41tJkuG3xNJpxgIWFKqdeEoiTDQ0xnw2ZYJ_zIyTd5U2J5nIEnIPFRJrc4I6Ug6zewhcaAgnJHB3hEJLCd8TD1eX9xXXc7pQQY6aTeVwqUMZ4bcgeE2LhYGbhcwQoCFDUSilAEpn2KfQr9BoRvevnLE8oCU94tSs6k-nE7QlZGa1rBQkHQAlcqKpPix4yjx6xcFURid6H3Cy2NOK8m8WzJXeCJW2_SzoSZ8snXhoKjV_anvNQLNsx-XW4QFPCtlPC_jUlInHKA2l5iVLXENpKA_pBJruyA0NCy5hKMRLdj7G27dp9tSm7kISbdBKJ4-VtWnUcSoGJmy64DeHilEOO-__R4wOxmnJZRchd64rOfLZwhwR25tVRmNfvnJf8gA
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network
URI https://www.proquest.com/docview/2716482251
https://www.proquest.com/docview/2723125828
https://doaj.org/article/a8e8a427d94e456195abf43d75c7e722
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED629GV7GPvJvHVFg8HYg4ltWZb8NNLRUgYLoazQpwn5LOVlxK2bPvS_752sZGywPoXElzg-6U6fdHffAXzqXDBViVXeOo15rWSRt7WnrYpseoO6QVlyvfOPZXN2UX-_VJfpwO0mpVXufGJ01P2AfEY-rxjY02qmyq9X1zl3jeLoamqh8RgOyAUbM4OD45Pl6nx_ysKsl6bQU3xS0v5-7tZjrBbgmlF223-tR5G2_3_OOa44p8_hWYKKYjGN7Qt45Dcv4eliPSa6DP8Kfq1GDrSwcsUQBIE5MdER87slE-1znoSgq9ycaCtWjnOxmFCTBc7JSYjuLt5hIpIQzNURX2Jy-Gu4OD35-e0sTx0TcqxVuc1b6aTWQWlalwm5cFDThAadMwQseimlw1r2KlSu6DAoRAy-aDyJuZZwRZBvYLYZNv4tiE4r1UtXciCUQIbsCjJ-VwcMiMZ3JoP5Tm8WE504d7X4bWlbwZq2_2o6gy_7b1xNVBoPyB7zUOzlmAQ7fjCMa5tsyjrjjasr3dPsYhzYKtcFej6tUHtdVRl85oG0bKr019CligN6QCa9sgtNSquZUjGDw91Y22TDN_bPjMvg4_4yWR-HVNzGD7csQ_i44tDju4d_4j08qbhwImanHcJsO976DwRntt1RmrNH8TjgHqri9ns
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7gF4QPwVGQOMBEI8RE3sOE4eEOpgU8e2qpo2aU8Yx7H7gpot64T2pfiM3DlJEUjsbU9Vm2ta353vzrm73wG8rYwveGp5XBpl40yKJC4zh0cVkdeFVbkVKfU7H83y6Wn29UyebcCvoReGyioHmxgMdd1YekY-5hTYozeT6afzi5imRlF2dRih0anFgbv-iUe2y4_7X1C-7zjf2z35PI37qQKxzWS6ikthhFJeKvRd6N0p8Vf43BpToPOthRDGZqKWnpuksl5aa71LcodkpkTf6wXe9w5s4mISPoLNnd3Z_Hj9VIdQNotEdflQIcpkbBZt6E6gHlVyE3_5vzAm4H_OIHi4vYfwoA9N2aTTpUew4ZaP4f5k0fbwHO4JfJu3lNghYbLGMwweWQd_TO9mBOxPdRkMr9IwpBWbG6r9IgBPIjhGo8Sq6_ALHXAFI2yQ8BKK0Z_C6a3w8hmMls3SPQdWKSlrYVJKvGJQI6oEjY3JvPXWFq4qIhgPfNO2hy-nKRo_NB5jiNP6X05H8GH9jfMOuuMG2h0SxZqOQLfDB0270P0e1qZwhcm4qlGbKe4spak8rk9Jq5ziPIL3JEhNpgH_mjV9hwMukEC29EQh0zKCcIxge5C17m3Gpf6j4RG8WV_G3U4pHLN0zRXRYDzOKdW5dfMtXsPd6cnRoT7cnx28gHucmjZCZdw2jFbtlXuJodSqetXrL4Pvt71lfgOfxjHW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJyF4QHyKwAaHBEI8RE3ucrnkAU3dR7UxqKqJSXviuFzu-oKakXVC-9f467AvSRGT2NueqjRO2tg-2xfbPwO8rYwveGp5XBpl40yKJC4zh1sVkdeFVbkVKfU7f5nlh6fZpzN5tgG_h14YKqscbGIw1HVj6R35mFNgj95MpmPfl0XM96c75z9jmiBFmdZhnEanIsfu6hdu3y4-Hu2jrN9xPj34uncY9xMGYpvJdBWXwgilvFTox9DTUxKw8Lk1pkBHXAshjM1ELT03SWW9tNZ6l-QOyUyJftgLvO8d2FS0KxrB5u7BbH6yfsNDiJtForrcqBBlMjaLNnQqUL8quYx_fGEYGfA_xxC83fQhPOjDVDbp9OoRbLjlY7g_WbQ9VId7At_mLSV5SLCs8QwDSdZBIdPRjED-qUaD4VkajLRic0N1YATmSQQnaKBYdRV-oQOxYIQTEj5CYfpTOL0VXj6D0bJZuufAKiVlLUxKSVgMcESVoOExmbfe2sJVRQTjgW_a9lDmNFHjh8YtDXFaX-d0BB_WV5x3MB430O6SKNZ0BMAdvmjahe7XszaFK0zGVY2aTTFoKU3l8fmUtMopziN4T4LUZCbwr1nTdzvgAxLglp4oZFpGcI4RbA2y1r39uNB_tT2CN-vTuPIpnWOWrrkkGozNOaU9X9x8i9dwF5eK_nw0O34J9zj1b4QiuS0YrdpLt41R1ap61asvg--3vWL-ALZdNgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+Effect+of+Nutrients+on+Plant+Parameters+of+Rice+by+Artificial+Neural+Network&rft.jtitle=Agronomy+%28Basel%29&rft.au=Shankar%2C+Tanmoy&rft.au=Malik%2C+Ganesh+Chandra&rft.au=Banerjee%2C+Mahua&rft.au=Dutta%2C+Sudarshan&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=12&rft.issue=9&rft.spage=2123&rft_id=info:doi/10.3390%2Fagronomy12092123&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon