Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions
A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynami...
Saved in:
Published in | Physical review. X Vol. 11; no. 4; p. 041004 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct ann-replica Keldysh field theory for the ensemble average of thenth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, whilen−1others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold. |
---|---|
AbstractList | A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct an n-replica Keldysh field theory for the ensemble average of the nth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, while n-1 others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold. A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct ann-replica Keldysh field theory for the ensemble average of thenth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, whilen−1others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold. |
ArticleNumber | 041004 |
Author | Altland, A. Buchhold, M. Minoguchi, Y. Diehl, S. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-4572-8404 surname: Buchhold fullname: Buchhold, M. – sequence: 2 givenname: Y. surname: Minoguchi fullname: Minoguchi, Y. – sequence: 3 givenname: A. surname: Altland fullname: Altland, A. – sequence: 4 givenname: S. surname: Diehl fullname: Diehl, S. |
BookMark | eNp9UcFKAzEUDKKgVn_A04Ln1Zfd7G72KNpqoWKRCt5CNnmxKe1Gk7TQvze1CuLBd8l7w8wwZE7JYe96JOSCwhWlUF5P59vwjJvXdF0BowDsgJwUtIa8LIEf_tqPyXkIC0hTA2VNc0KehsaginaD2WyOzm8z43wW55g9ogxrjyvsYz7u9VqhzqZzGRLRyz7YaF2fOZPdWS9VNkK_SkA4I0dGLgOef78D8jIazm4f8snT_fj2ZpIrVtGY806nEFUFXLVFp8u6LgztABly2lLVgqyxoLouVENZy8pGJrwB5E0reWKVAzLe-2onF-Ld25X0W-GkFV-A829C-mjVEkUJipm6w6oFxjTrZIXAgXJDUevkmLwu917v3n2sMUSxcGvfp_iiqDiwqqINJBbfs5R3IXg0Qtkod78QvbRLQUHs2hA_baRL7NtI0uKP9CfwP6JPkYGP3g |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_131_060403 crossref_primary_10_1103_PhysRevLett_133_140403 crossref_primary_10_21468_SciPostPhys_17_1_020 crossref_primary_10_21468_SciPostPhysCore_6_4_078 crossref_primary_10_1103_PhysRevResearch_6_043049 crossref_primary_10_1103_PhysRevB_106_224305 crossref_primary_10_1103_PhysRevResearch_4_L032026 crossref_primary_10_1103_PhysRevB_109_224313 crossref_primary_10_1103_PhysRevA_111_012425 crossref_primary_10_1103_PhysRevResearch_6_L042022 crossref_primary_10_1103_PhysRevResearch_4_013109 crossref_primary_10_21468_SciPostPhys_15_3_096 crossref_primary_10_1103_PhysRevB_106_144313 crossref_primary_10_1103_PhysRevB_110_045135 crossref_primary_10_1103_PRXQuantum_3_020348 crossref_primary_10_1103_PhysRevB_109_L060302 crossref_primary_10_1103_PhysRevB_107_045110 crossref_primary_10_1103_PhysRevLett_132_163401 crossref_primary_10_1103_PhysRevLett_130_120402 crossref_primary_10_1103_PRXQuantum_5_010313 crossref_primary_10_22331_q_2022_05_27_723 crossref_primary_10_1103_PhysRevB_109_224203 crossref_primary_10_1103_PhysRevResearch_6_043314 crossref_primary_10_1103_PhysRevB_110_024303 crossref_primary_10_1103_PhysRevB_111_024204 crossref_primary_10_1103_PhysRevB_105_L241114 crossref_primary_10_1103_PhysRevB_107_245132 crossref_primary_10_1103_PhysRevB_108_075151 crossref_primary_10_1103_PhysRevB_108_165126 crossref_primary_10_1103_PhysRevResearch_4_033001 crossref_primary_10_1103_PhysRevLett_129_120604 crossref_primary_10_1103_PhysRevB_106_104307 crossref_primary_10_1103_PhysRevB_109_144306 crossref_primary_10_1103_PhysRevResearch_4_L022066 crossref_primary_10_1088_1367_2630_ada1f1 crossref_primary_10_1103_PhysRevB_108_L060302 crossref_primary_10_1103_PhysRevA_109_L050201 crossref_primary_10_1103_PhysRevLett_128_130605 crossref_primary_10_22331_q_2021_11_16_579 crossref_primary_10_1103_PhysRevB_109_174307 crossref_primary_10_1103_PhysRevResearch_5_033174 crossref_primary_10_1103_PhysRevB_110_035113 crossref_primary_10_1103_PhysRevB_110_054313 crossref_primary_10_21468_SciPostPhysCore_5_2_023 crossref_primary_10_1103_PhysRevX_13_041046 crossref_primary_10_1103_PhysRevX_13_041045 crossref_primary_10_1103_PhysRevB_109_024204 crossref_primary_10_1103_PhysRevB_110_094404 crossref_primary_10_1103_PhysRevB_105_064305 crossref_primary_10_1103_PhysRevLett_133_070401 crossref_primary_10_1088_1367_2630_ad1f0a crossref_primary_10_1103_PhysRevB_106_L220304 crossref_primary_10_1103_PhysRevB_105_104306 crossref_primary_10_1103_PhysRevA_111_022427 crossref_primary_10_1103_PhysRevB_107_L140301 crossref_primary_10_21468_SciPostPhysLectNotes_82 crossref_primary_10_1103_PhysRevB_108_214305 crossref_primary_10_1103_PhysRevB_109_214308 crossref_primary_10_1103_PhysRevResearch_6_043246 crossref_primary_10_1103_PhysRevLett_130_230401 crossref_primary_10_1103_PhysRevX_13_021026 crossref_primary_10_1103_PhysRevB_107_174203 crossref_primary_10_1103_PhysRevLett_129_260603 crossref_primary_10_1103_PhysRevA_109_L020202 crossref_primary_10_1103_PhysRevB_107_L020403 crossref_primary_10_22331_q_2024_12_23_1576 crossref_primary_10_22331_q_2022_02_02_638 crossref_primary_10_1103_PhysRevLett_128_010605 crossref_primary_10_1103_PhysRevB_108_214302 crossref_primary_10_1103_PRXQuantum_5_020304 crossref_primary_10_1103_PhysRevB_108_L020306 crossref_primary_10_1103_PhysRevB_111_014312 crossref_primary_10_21468_SciPostPhys_14_5_138 crossref_primary_10_1103_PhysRevB_106_214316 crossref_primary_10_1103_PhysRevB_110_134316 crossref_primary_10_22331_q_2025_03_05_1653 crossref_primary_10_21468_SciPostPhys_15_6_250 crossref_primary_10_1103_PhysRevB_107_014308 crossref_primary_10_1103_PhysRevResearch_5_L042031 crossref_primary_10_1103_PhysRevX_13_041028 crossref_primary_10_1103_PhysRevLett_132_110403 crossref_primary_10_1103_PhysRevA_110_062422 crossref_primary_10_1103_PhysRevB_107_094309 crossref_primary_10_1103_PhysRevA_106_052210 crossref_primary_10_1103_PhysRevB_107_214203 crossref_primary_10_21468_SciPostPhysCore_7_1_011 crossref_primary_10_1103_PhysRevB_107_L220201 crossref_primary_10_1103_PhysRevB_104_184422 crossref_primary_10_1103_PhysRevB_111_064308 crossref_primary_10_1103_PhysRevResearch_6_023176 crossref_primary_10_1103_PhysRevB_105_094303 crossref_primary_10_1103_PhysRevB_111_064313 crossref_primary_10_1103_PhysRevResearch_7_013206 crossref_primary_10_1103_PhysRevB_108_104313 crossref_primary_10_1103_PhysRevResearch_4_023146 crossref_primary_10_1103_PhysRevB_106_024304 crossref_primary_10_1140_epjb_s10051_024_00725_0 crossref_primary_10_1103_PhysRevB_110_L060202 crossref_primary_10_1103_PhysRevB_105_205125 crossref_primary_10_1103_PhysRevB_105_144202 crossref_primary_10_1103_PhysRevX_12_031031 crossref_primary_10_1103_PhysRevA_111_L010402 crossref_primary_10_21468_SciPostPhysCore_6_1_023 crossref_primary_10_21468_SciPostPhys_12_1_009 crossref_primary_10_1103_PhysRevA_111_022205 crossref_primary_10_1103_PhysRevB_108_104203 crossref_primary_10_1103_PhysRevResearch_6_013313 |
Cites_doi | 10.1103/PhysRevLett.125.210602 10.22331/q-2021-01-17-382 10.1088/0305-4470/25/21/023 10.1088/0305-4470/13/2/024 10.1103/PhysRevB.103.224210 10.1093/oso/9780195140187.001.0001 10.1103/PhysRevX.11.011030 10.1016/j.aop.2016.09.006 10.21468/SciPostPhys.7.2.024 10.1103/PhysRevB.99.174205 10.1103/PhysRevResearch.2.013022 10.1103/PRXQuantum.2.010352 10.1103/PhysRevLett.68.580 10.1103/PhysRevB.16.1217 10.1103/PhysRevA.95.011601 10.1103/PhysRevLett.125.030505 10.1103/PhysRevB.102.134203 10.1017/CBO9780511813948 10.1007/JHEP05(2015)132 10.1115/1.3658902 10.1088/1751-8113/42/50/504005 10.1088/0305-4470/36/14/101 10.1088/1751-8113/42/50/504003 10.1103/PhysRevB.100.134306 10.1103/PhysRevB.99.224307 10.1103/PhysRevResearch.2.033017 10.1103/PhysRevA.98.023852 10.1103/PhysRevB.101.104301 10.1103/PhysRevX.9.031009 10.1103/PhysRevLett.126.170602 10.1103/PhysRevLett.90.227902 10.1134/S1063776116030134 10.1088/1742-5468/2005/07/P07007 10.1017/CBO9781139003667 10.1017/CBO9781139179027 10.1103/PhysRevLett.111.127205 10.1088/0022-3719/6/7/010 10.1038/ncomms15791 10.1007/JHEP02(2016)004 10.1103/PhysRevB.100.064204 10.1103/PhysRevResearch.2.043072 10.1103/PhysRevB.101.060301 10.1103/PhysRevB.102.064305 10.1103/PhysRevA.47.1652 10.1103/PhysRevB.98.205136 10.1103/PhysRevB.101.104302 10.1017/9781108380690 10.1103/PhysRevA.35.198 10.1103/PhysRevB.103.104306 10.1103/PhysRevX.10.041020 10.1142/S0217751X93002265 10.1103/PhysRevD.80.125005 10.1007/s10955-007-9422-x 10.1103/PhysRevA.60.2700 10.1103/PhysRevLett.120.133601 10.1103/PhysRevB.101.235104 10.1088/1742-5468/2004/06/P06002 10.1080/00107510601101934 10.1103/PhysRevA.70.022318 10.1007/978-3-540-47620-7 10.1103/PhysRevB.103.174309 10.1103/PhysRevA.73.012309 10.1088/0305-4470/22/23/006 10.1103/PhysRevB.102.054302 10.1103/PhysRevX.7.031016 10.1103/PhysRevA.45.4879 10.1088/1751-8113/42/50/504007 10.1088/1742-5468/2005/04/P04010 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.11.041004 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_30c4f6be59044d4ba5e08018f1edde87 10_1103_PhysRevX_11_041004 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-8bd0005508c92bd3662f1b0e4e8191c90a6e21d62c7149437a81970e879a8e4e3 |
IEDL.DBID | BENPR |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:24:40 EDT 2025 Fri Jul 25 11:44:28 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 01:33:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-8bd0005508c92bd3662f1b0e4e8191c90a6e21d62c7149437a81970e879a8e4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4572-8404 |
OpenAccessLink | https://www.proquest.com/docview/2580455170?pq-origsite=%requestingapplication% |
PQID | 2580455170 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_30c4f6be59044d4ba5e08018f1edde87 proquest_journals_2580455170 crossref_citationtrail_10_1103_PhysRevX_11_041004 crossref_primary_10_1103_PhysRevX_11_041004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.11.041004Cc7R1 PhysRevX.11.041004Cc9R1 PhysRevX.11.041004Cc17R1 PhysRevX.11.041004Cc15R1 PhysRevX.11.041004Cc59R1 PhysRevX.11.041004Cc1R1 PhysRevX.11.041004Cc3R1 J. Zinn-Justin (PhysRevX.11.041004Cc58R1) 1989 PhysRevX.11.041004Cc5R1 PhysRevX.11.041004Cc72R1 PhysRevX.11.041004Cc51R1 PhysRevX.11.041004Cc74R1 PhysRevX.11.041004Cc13R1 PhysRevX.11.041004Cc34R1 PhysRevX.11.041004Cc11R1 PhysRevX.11.041004Cc32R1 PhysRevX.11.041004Cc91R1 PhysRevX.11.041004Cc70R1 PhysRevX.11.041004Cc27R1 PhysRevX.11.041004Cc25R1 PhysRevX.11.041004Cc63R1 PhysRevX.11.041004Cc65R1 M. A. Nielsen (PhysRevX.11.041004Cc47R1) 2000 PhysRevX.11.041004Cc67R1 R. Zwanzig (PhysRevX.11.041004Cc56R1) 2001 PhysRevX.11.041004Cc23R1 PhysRevX.11.041004Cc46R1 PhysRevX.11.041004Cc21R1 PhysRevX.11.041004Cc44R1 PhysRevX.11.041004Cc42R1 PhysRevX.11.041004Cc40R1 PhysRevX.11.041004Cc82R1 PhysRevX.11.041004Cc8R1 PhysRevX.11.041004Cc18R1 PhysRevX.11.041004Cc16R1 PhysRevX.11.041004Cc39R1 PhysRevX.11.041004Cc37R1 PhysRevX.11.041004Cc2R1 PhysRevX.11.041004Cc4R1 PhysRevX.11.041004Cc6R1 H. Carmichael (PhysRevX.11.041004Cc36R1) 1993 PhysRevX.11.041004Cc75R1 PhysRevX.11.041004Cc54R1 H. M. Wiseman (PhysRevX.11.041004Cc43R1) 2009 PhysRevX.11.041004Cc79R1 A. Kamenev (PhysRevX.11.041004Cc78R1) 2011 PhysRevX.11.041004Cc12R1 PhysRevX.11.041004Cc35R1 PhysRevX.11.041004Cc10R1 PhysRevX.11.041004Cc33R1 PhysRevX.11.041004Cc90R1 PhysRevX.11.041004Cc71R1 PhysRevX.11.041004Cc28R1 PhysRevX.11.041004Cc49R1 S. L. Brunton (PhysRevX.11.041004Cc53R1) 2019 PhysRevX.11.041004Cc26R1 P. S. Maybeck (PhysRevX.11.041004Cc52R1) 2017 K. Jacobs (PhysRevX.11.041004Cc38R1) 2014 PhysRevX.11.041004Cc62R1 PhysRevX.11.041004Cc83R1 PhysRevX.11.041004Cc64R1 H. Primas (PhysRevX.11.041004Cc48R1) 1990 T. Sauter (PhysRevX.11.041004Cc50R1) 1987 PhysRevX.11.041004Cc66R1 PhysRevX.11.041004Cc87R1 PhysRevX.11.041004Cc68R1 PhysRevX.11.041004Cc89R1 PhysRevX.11.041004Cc24R1 PhysRevX.11.041004Cc45R1 PhysRevX.11.041004Cc22R1 PhysRevX.11.041004Cc20R1 PhysRevX.11.041004Cc41R1 PhysRevX.11.041004Cc60R1 |
References_xml | – volume-title: Quantum Field Theory and Critical Phenomena year: 1989 ident: PhysRevX.11.041004Cc58R1 – ident: PhysRevX.11.041004Cc40R1 doi: 10.1103/PhysRevLett.125.210602 – ident: PhysRevX.11.041004Cc23R1 doi: 10.22331/q-2021-01-17-382 – ident: PhysRevX.11.041004Cc44R1 doi: 10.1088/0305-4470/25/21/023 – ident: PhysRevX.11.041004Cc59R1 doi: 10.1088/0305-4470/13/2/024 – ident: PhysRevX.11.041004Cc82R1 doi: 10.1103/PhysRevB.103.224210 – volume-title: Nonequilibrium Statistical Mechanics year: 2001 ident: PhysRevX.11.041004Cc56R1 doi: 10.1093/oso/9780195140187.001.0001 – ident: PhysRevX.11.041004Cc8R1 doi: 10.1103/PhysRevX.11.011030 – ident: PhysRevX.11.041004Cc65R1 doi: 10.1016/j.aop.2016.09.006 – ident: PhysRevX.11.041004Cc26R1 doi: 10.21468/SciPostPhys.7.2.024 – ident: PhysRevX.11.041004Cc12R1 doi: 10.1103/PhysRevB.99.174205 – ident: PhysRevX.11.041004Cc20R1 doi: 10.1103/PhysRevResearch.2.013022 – ident: PhysRevX.11.041004Cc32R1 doi: 10.1103/PRXQuantum.2.010352 – ident: PhysRevX.11.041004Cc33R1 doi: 10.1103/PhysRevLett.68.580 – ident: PhysRevX.11.041004Cc64R1 doi: 10.1103/PhysRevB.16.1217 – volume-title: Sixty Two Years of Uncertainty year: 1990 ident: PhysRevX.11.041004Cc48R1 – ident: PhysRevX.11.041004Cc66R1 doi: 10.1103/PhysRevA.95.011601 – ident: PhysRevX.11.041004Cc6R1 doi: 10.1103/PhysRevLett.125.030505 – ident: PhysRevX.11.041004Cc15R1 doi: 10.1103/PhysRevB.102.134203 – volume-title: Quantum Measurement and Control year: 2009 ident: PhysRevX.11.041004Cc43R1 doi: 10.1017/CBO9780511813948 – ident: PhysRevX.11.041004Cc67R1 doi: 10.1007/JHEP05(2015)132 – ident: PhysRevX.11.041004Cc51R1 doi: 10.1115/1.3658902 – volume-title: Proceedings of the International Quantum Electronics Conference year: 1987 ident: PhysRevX.11.041004Cc50R1 – ident: PhysRevX.11.041004Cc79R1 doi: 10.1088/1751-8113/42/50/504005 – ident: PhysRevX.11.041004Cc71R1 doi: 10.1088/0305-4470/36/14/101 – ident: PhysRevX.11.041004Cc89R1 doi: 10.1088/1751-8113/42/50/504003 – ident: PhysRevX.11.041004Cc7R1 doi: 10.1103/PhysRevB.100.134306 – volume-title: Quantum Computation and Quantum Information year: 2000 ident: PhysRevX.11.041004Cc47R1 – ident: PhysRevX.11.041004Cc5R1 doi: 10.1103/PhysRevB.99.224307 – ident: PhysRevX.11.041004Cc28R1 doi: 10.1103/PhysRevResearch.2.033017 – ident: PhysRevX.11.041004Cc46R1 doi: 10.1103/PhysRevA.98.023852 – ident: PhysRevX.11.041004Cc4R1 doi: 10.1103/PhysRevB.101.104301 – ident: PhysRevX.11.041004Cc1R1 doi: 10.1103/PhysRevX.9.031009 – ident: PhysRevX.11.041004Cc27R1 doi: 10.1103/PhysRevLett.126.170602 – ident: PhysRevX.11.041004Cc70R1 doi: 10.1103/PhysRevLett.90.227902 – ident: PhysRevX.11.041004Cc68R1 doi: 10.1134/S1063776116030134 – ident: PhysRevX.11.041004Cc74R1 doi: 10.1088/1742-5468/2005/07/P07007 – volume-title: Field Theory of Non-Equilibrium Systems year: 2011 ident: PhysRevX.11.041004Cc78R1 doi: 10.1017/CBO9781139003667 – volume-title: Quantum Measurement Theory and its Applications year: 2014 ident: PhysRevX.11.041004Cc38R1 doi: 10.1017/CBO9781139179027 – ident: PhysRevX.11.041004Cc13R1 doi: 10.1103/PhysRevLett.111.127205 – ident: PhysRevX.11.041004Cc60R1 doi: 10.1088/0022-3719/6/7/010 – ident: PhysRevX.11.041004Cc63R1 doi: 10.1038/ncomms15791 – ident: PhysRevX.11.041004Cc10R1 doi: 10.1007/JHEP02(2016)004 – ident: PhysRevX.11.041004Cc39R1 doi: 10.1103/PhysRevB.100.064204 – ident: PhysRevX.11.041004Cc83R1 doi: 10.1103/PhysRevResearch.2.043072 – ident: PhysRevX.11.041004Cc17R1 doi: 10.1103/PhysRevB.101.060301 – ident: PhysRevX.11.041004Cc16R1 doi: 10.1103/PhysRevB.102.064305 – ident: PhysRevX.11.041004Cc42R1 doi: 10.1103/PhysRevA.47.1652 – ident: PhysRevX.11.041004Cc2R1 doi: 10.1103/PhysRevB.98.205136 – ident: PhysRevX.11.041004Cc3R1 doi: 10.1103/PhysRevB.101.104302 – volume-title: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control year: 2019 ident: PhysRevX.11.041004Cc53R1 doi: 10.1017/9781108380690 – ident: PhysRevX.11.041004Cc49R1 doi: 10.1103/PhysRevA.35.198 – ident: PhysRevX.11.041004Cc24R1 doi: 10.1103/PhysRevB.103.104306 – ident: PhysRevX.11.041004Cc25R1 doi: 10.1103/PhysRevX.10.041020 – ident: PhysRevX.11.041004Cc62R1 doi: 10.1142/S0217751X93002265 – ident: PhysRevX.11.041004Cc41R1 doi: 10.1103/PhysRevD.80.125005 – ident: PhysRevX.11.041004Cc91R1 doi: 10.1007/s10955-007-9422-x – ident: PhysRevX.11.041004Cc54R1 doi: 10.1103/PhysRevA.60.2700 – ident: PhysRevX.11.041004Cc45R1 doi: 10.1103/PhysRevLett.120.133601 – ident: PhysRevX.11.041004Cc18R1 doi: 10.1103/PhysRevB.101.235104 – volume-title: Quantum Continuous Variables: A Primer of Theoretical Methods year: 2017 ident: PhysRevX.11.041004Cc52R1 – ident: PhysRevX.11.041004Cc87R1 doi: 10.1088/1742-5468/2004/06/P06002 – ident: PhysRevX.11.041004Cc37R1 doi: 10.1080/00107510601101934 – ident: PhysRevX.11.041004Cc90R1 doi: 10.1103/PhysRevA.70.022318 – volume-title: An Open Systems Approach to Quantum Optics year: 1993 ident: PhysRevX.11.041004Cc36R1 doi: 10.1007/978-3-540-47620-7 – ident: PhysRevX.11.041004Cc22R1 doi: 10.1103/PhysRevB.103.174309 – ident: PhysRevX.11.041004Cc72R1 doi: 10.1103/PhysRevA.73.012309 – ident: PhysRevX.11.041004Cc35R1 doi: 10.1088/0305-4470/22/23/006 – ident: PhysRevX.11.041004Cc21R1 doi: 10.1103/PhysRevB.102.054302 – ident: PhysRevX.11.041004Cc11R1 doi: 10.1103/PhysRevX.7.031016 – ident: PhysRevX.11.041004Cc34R1 doi: 10.1103/PhysRevA.45.4879 – ident: PhysRevX.11.041004Cc75R1 doi: 10.1088/1751-8113/42/50/504007 – ident: PhysRevX.11.041004Cc9R1 doi: 10.1088/1742-5468/2005/04/P04010 |
SSID | ssj0000601477 |
Score | 2.5970132 |
Snippet | A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 041004 |
SubjectTerms | Background noise Competition Complexity Decoupling Degrees of freedom Distillation Eigenvectors Entropy Evolution Fermions Field theory Magnets Operators (mathematics) Phase transitions Quantum entanglement Quantum field theory Quantum statistics Quantum theory Statistical analysis Statistical mechanics Wave functions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ1ar5OBN1iabx2aPKpYiVEUs9BaSbIIHacVWf7-TZFsrgl48bpgly0wy880y8w1CZ0y5QBthC-FNKHgd4M6VhhbBCFbZUgqbOuSGd3Iw4rdjMV4Z9RVrwjI9cFZcjxHHg7Re1ITzhlsjPIAcqgL1cDNV6iOHmLeSTGUfDNC_qhZdMoT1YkHlo_8YX0TOTh550r5FokTY_8MfpyDT30ZbLTrEl_mrdtCan-yijVSl6WZ76D5zDYODwrmnHgPkxADh8PDrV18Rp3E43-CHZ4hQOAWjVJeFpwGDhzMO92MFDBy3fTTq3zxdD4p2IkLhuKDzQtkmgiwAVa4ubcOkLAO1xHMf8y5XEyN9SRtZugoyH84qA-sVATXVRoEUO0Drk-nEHyLMCRPSKuZAiNc2KC5gD96EJnDFmO8gutCOdi1deJxa8aJT2kCYXmgUnnTWaAedL995zWQZv0pfRaUvJSPRdVoA8-vW_Pov83dQd2Ey3d6-mS6FAqQqaEWO_mOPY7RZxkqWVMLXRevzt3d_AlBkbk_TqfsEOxPbZA priority: 102 providerName: Directory of Open Access Journals |
Title | Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions |
URI | https://www.proquest.com/docview/2580455170 https://doaj.org/article/30c4f6be59044d4ba5e08018f1edde87 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIT6yPkoM3WU02ySZ7EhVrEVpFFHpbNi89SKu2-vudZLMVETxudpaFSTLzzWTyDULHTBlPrdCZcLXPeOlhz-U1zXwtmNR5IXS8ITccFYMnfjsW45Rwm6WyytYmRkNtpybkyM9yoQB9CCrJ-dt7FrpGhdPV1EJjGXXABCsIvjqX16P7h0WWJbCNcCnb2zKEnYXCygf3NT4N3J088KX98kiRuP-PXY7Opr-B1hNKxBfNtG6iJTfZQquxWtPMttFdwzkMhgo3d-sxQE8MUA4Pf1J-WejKYZzF9y_gqXB0SrE-C089BktXG9wPlTCw7HbQU__68WqQpc4ImeGCzjOlbQBbAK5MmWvLiiL3VBPHXYi_TEnqwuXUFrmREAFxJmsYl8QpWdYKpNguWplMJ24PYU6YKLRiBoR4qb3iAv7BrbeeK8ZcF9FWO5VJtOGhe8VrFcMHwqpWo_BUNRrtopPFN28Naca_0pdB6QvJQHgdB6Yfz1XaPxUjhvtCO1ESzi3XtXCAdany1IGBVrKLDtspq9IunFU_a2b__9cHaC0PtSqxSO8Qrcw_Pt0RgI257qFl1b_ppXXViyH7N1z81aQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKeADnFCon7FzQIjXsqXdglAr7c2NX3Codkt3AfGn-I2MnWQrhNRbj3EmiTSexzfOPACeCuMTC8pVKrapkk1CneMtq1KrhHa8Vq5UyE0P6smR_DhTsw34M9TC5LTKwSYWQx0WPp-R73BlEH0opumr0-9VnhqV_64OIzQ6sdiLv39hyLZ8ufsO9_cZ5-P3h28nVT9VoPJSsVVlXMhABYGJb7gLoq55Yo5GGXPs4hva1pGzUHOvMXqQQre4rmk0umkNUgl87xW4KoVoskaZ8Yf1mU7ubSK1HmpzqNjJaZxf4s_Zi9wpVObubP_4vzIm4D8vUFzb-Bbc7DEped0J0W3YiPM7cK3khvrlXfjUdThGs0i6Sn6CQJcgcCTT8wPGKs8A8TGQz9_QL5LiAks2GFkkgna19WSc825QyO_B0aVw7D5szhfz-ACIpELVzgiPRLJxyUiF35AhhSSNEHEEbOCO9X2T8jwr48SWYIUKO3AUr2zH0RE8Xz9z2rXouJD6TWb6mjK31y4Li7OvttdWK6iXqXZRNVTKIF2rIiJrZhKL6A6MHsH2sGW21_mlPZfQrYtvP4Hrk8Ppvt3fPdh7CDd4zpIp6YHbsLk6-xEfIcxZucdFtggcX7Yw_wXmCQ1E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Theory+for+the+Measurement-Induced+Phase+Transition+of+Dirac+Fermions&rft.jtitle=Physical+review.+X&rft.au=Buchhold%2C+M&rft.au=Minoguchi%2C+Y&rft.au=Altland%2C+A&rft.au=Diehl%2C+S&rft.date=2021-10-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevX.11.041004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |