Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions

A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynami...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 11; no. 4; p. 041004
Main Authors Buchhold, M., Minoguchi, Y., Altland, A., Diehl, S.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct ann-replica Keldysh field theory for the ensemble average of thenth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, whilen−1others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold.
AbstractList A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct an n-replica Keldysh field theory for the ensemble average of the nth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, while n-1 others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold.
A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement-induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access this competition despite the randomness of single quantum trajectories, we construct ann-replica Keldysh field theory for the ensemble average of thenth moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, whilen−1others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in (1+1) dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a measurement-induced pinning of the trajectory wave function into eigenstates of the measurement operators, which succeeds upon increasing the monitoring rate across a critical threshold.
ArticleNumber 041004
Author Altland, A.
Buchhold, M.
Minoguchi, Y.
Diehl, S.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-4572-8404
  surname: Buchhold
  fullname: Buchhold, M.
– sequence: 2
  givenname: Y.
  surname: Minoguchi
  fullname: Minoguchi, Y.
– sequence: 3
  givenname: A.
  surname: Altland
  fullname: Altland, A.
– sequence: 4
  givenname: S.
  surname: Diehl
  fullname: Diehl, S.
BookMark eNp9UcFKAzEUDKKgVn_A04Ln1Zfd7G72KNpqoWKRCt5CNnmxKe1Gk7TQvze1CuLBd8l7w8wwZE7JYe96JOSCwhWlUF5P59vwjJvXdF0BowDsgJwUtIa8LIEf_tqPyXkIC0hTA2VNc0KehsaginaD2WyOzm8z43wW55g9ogxrjyvsYz7u9VqhzqZzGRLRyz7YaF2fOZPdWS9VNkK_SkA4I0dGLgOef78D8jIazm4f8snT_fj2ZpIrVtGY806nEFUFXLVFp8u6LgztABly2lLVgqyxoLouVENZy8pGJrwB5E0reWKVAzLe-2onF-Ld25X0W-GkFV-A829C-mjVEkUJipm6w6oFxjTrZIXAgXJDUevkmLwu917v3n2sMUSxcGvfp_iiqDiwqqINJBbfs5R3IXg0Qtkod78QvbRLQUHs2hA_baRL7NtI0uKP9CfwP6JPkYGP3g
CitedBy_id crossref_primary_10_1103_PhysRevLett_131_060403
crossref_primary_10_1103_PhysRevLett_133_140403
crossref_primary_10_21468_SciPostPhys_17_1_020
crossref_primary_10_21468_SciPostPhysCore_6_4_078
crossref_primary_10_1103_PhysRevResearch_6_043049
crossref_primary_10_1103_PhysRevB_106_224305
crossref_primary_10_1103_PhysRevResearch_4_L032026
crossref_primary_10_1103_PhysRevB_109_224313
crossref_primary_10_1103_PhysRevA_111_012425
crossref_primary_10_1103_PhysRevResearch_6_L042022
crossref_primary_10_1103_PhysRevResearch_4_013109
crossref_primary_10_21468_SciPostPhys_15_3_096
crossref_primary_10_1103_PhysRevB_106_144313
crossref_primary_10_1103_PhysRevB_110_045135
crossref_primary_10_1103_PRXQuantum_3_020348
crossref_primary_10_1103_PhysRevB_109_L060302
crossref_primary_10_1103_PhysRevB_107_045110
crossref_primary_10_1103_PhysRevLett_132_163401
crossref_primary_10_1103_PhysRevLett_130_120402
crossref_primary_10_1103_PRXQuantum_5_010313
crossref_primary_10_22331_q_2022_05_27_723
crossref_primary_10_1103_PhysRevB_109_224203
crossref_primary_10_1103_PhysRevResearch_6_043314
crossref_primary_10_1103_PhysRevB_110_024303
crossref_primary_10_1103_PhysRevB_111_024204
crossref_primary_10_1103_PhysRevB_105_L241114
crossref_primary_10_1103_PhysRevB_107_245132
crossref_primary_10_1103_PhysRevB_108_075151
crossref_primary_10_1103_PhysRevB_108_165126
crossref_primary_10_1103_PhysRevResearch_4_033001
crossref_primary_10_1103_PhysRevLett_129_120604
crossref_primary_10_1103_PhysRevB_106_104307
crossref_primary_10_1103_PhysRevB_109_144306
crossref_primary_10_1103_PhysRevResearch_4_L022066
crossref_primary_10_1088_1367_2630_ada1f1
crossref_primary_10_1103_PhysRevB_108_L060302
crossref_primary_10_1103_PhysRevA_109_L050201
crossref_primary_10_1103_PhysRevLett_128_130605
crossref_primary_10_22331_q_2021_11_16_579
crossref_primary_10_1103_PhysRevB_109_174307
crossref_primary_10_1103_PhysRevResearch_5_033174
crossref_primary_10_1103_PhysRevB_110_035113
crossref_primary_10_1103_PhysRevB_110_054313
crossref_primary_10_21468_SciPostPhysCore_5_2_023
crossref_primary_10_1103_PhysRevX_13_041046
crossref_primary_10_1103_PhysRevX_13_041045
crossref_primary_10_1103_PhysRevB_109_024204
crossref_primary_10_1103_PhysRevB_110_094404
crossref_primary_10_1103_PhysRevB_105_064305
crossref_primary_10_1103_PhysRevLett_133_070401
crossref_primary_10_1088_1367_2630_ad1f0a
crossref_primary_10_1103_PhysRevB_106_L220304
crossref_primary_10_1103_PhysRevB_105_104306
crossref_primary_10_1103_PhysRevA_111_022427
crossref_primary_10_1103_PhysRevB_107_L140301
crossref_primary_10_21468_SciPostPhysLectNotes_82
crossref_primary_10_1103_PhysRevB_108_214305
crossref_primary_10_1103_PhysRevB_109_214308
crossref_primary_10_1103_PhysRevResearch_6_043246
crossref_primary_10_1103_PhysRevLett_130_230401
crossref_primary_10_1103_PhysRevX_13_021026
crossref_primary_10_1103_PhysRevB_107_174203
crossref_primary_10_1103_PhysRevLett_129_260603
crossref_primary_10_1103_PhysRevA_109_L020202
crossref_primary_10_1103_PhysRevB_107_L020403
crossref_primary_10_22331_q_2024_12_23_1576
crossref_primary_10_22331_q_2022_02_02_638
crossref_primary_10_1103_PhysRevLett_128_010605
crossref_primary_10_1103_PhysRevB_108_214302
crossref_primary_10_1103_PRXQuantum_5_020304
crossref_primary_10_1103_PhysRevB_108_L020306
crossref_primary_10_1103_PhysRevB_111_014312
crossref_primary_10_21468_SciPostPhys_14_5_138
crossref_primary_10_1103_PhysRevB_106_214316
crossref_primary_10_1103_PhysRevB_110_134316
crossref_primary_10_22331_q_2025_03_05_1653
crossref_primary_10_21468_SciPostPhys_15_6_250
crossref_primary_10_1103_PhysRevB_107_014308
crossref_primary_10_1103_PhysRevResearch_5_L042031
crossref_primary_10_1103_PhysRevX_13_041028
crossref_primary_10_1103_PhysRevLett_132_110403
crossref_primary_10_1103_PhysRevA_110_062422
crossref_primary_10_1103_PhysRevB_107_094309
crossref_primary_10_1103_PhysRevA_106_052210
crossref_primary_10_1103_PhysRevB_107_214203
crossref_primary_10_21468_SciPostPhysCore_7_1_011
crossref_primary_10_1103_PhysRevB_107_L220201
crossref_primary_10_1103_PhysRevB_104_184422
crossref_primary_10_1103_PhysRevB_111_064308
crossref_primary_10_1103_PhysRevResearch_6_023176
crossref_primary_10_1103_PhysRevB_105_094303
crossref_primary_10_1103_PhysRevB_111_064313
crossref_primary_10_1103_PhysRevResearch_7_013206
crossref_primary_10_1103_PhysRevB_108_104313
crossref_primary_10_1103_PhysRevResearch_4_023146
crossref_primary_10_1103_PhysRevB_106_024304
crossref_primary_10_1140_epjb_s10051_024_00725_0
crossref_primary_10_1103_PhysRevB_110_L060202
crossref_primary_10_1103_PhysRevB_105_205125
crossref_primary_10_1103_PhysRevB_105_144202
crossref_primary_10_1103_PhysRevX_12_031031
crossref_primary_10_1103_PhysRevA_111_L010402
crossref_primary_10_21468_SciPostPhysCore_6_1_023
crossref_primary_10_21468_SciPostPhys_12_1_009
crossref_primary_10_1103_PhysRevA_111_022205
crossref_primary_10_1103_PhysRevB_108_104203
crossref_primary_10_1103_PhysRevResearch_6_013313
Cites_doi 10.1103/PhysRevLett.125.210602
10.22331/q-2021-01-17-382
10.1088/0305-4470/25/21/023
10.1088/0305-4470/13/2/024
10.1103/PhysRevB.103.224210
10.1093/oso/9780195140187.001.0001
10.1103/PhysRevX.11.011030
10.1016/j.aop.2016.09.006
10.21468/SciPostPhys.7.2.024
10.1103/PhysRevB.99.174205
10.1103/PhysRevResearch.2.013022
10.1103/PRXQuantum.2.010352
10.1103/PhysRevLett.68.580
10.1103/PhysRevB.16.1217
10.1103/PhysRevA.95.011601
10.1103/PhysRevLett.125.030505
10.1103/PhysRevB.102.134203
10.1017/CBO9780511813948
10.1007/JHEP05(2015)132
10.1115/1.3658902
10.1088/1751-8113/42/50/504005
10.1088/0305-4470/36/14/101
10.1088/1751-8113/42/50/504003
10.1103/PhysRevB.100.134306
10.1103/PhysRevB.99.224307
10.1103/PhysRevResearch.2.033017
10.1103/PhysRevA.98.023852
10.1103/PhysRevB.101.104301
10.1103/PhysRevX.9.031009
10.1103/PhysRevLett.126.170602
10.1103/PhysRevLett.90.227902
10.1134/S1063776116030134
10.1088/1742-5468/2005/07/P07007
10.1017/CBO9781139003667
10.1017/CBO9781139179027
10.1103/PhysRevLett.111.127205
10.1088/0022-3719/6/7/010
10.1038/ncomms15791
10.1007/JHEP02(2016)004
10.1103/PhysRevB.100.064204
10.1103/PhysRevResearch.2.043072
10.1103/PhysRevB.101.060301
10.1103/PhysRevB.102.064305
10.1103/PhysRevA.47.1652
10.1103/PhysRevB.98.205136
10.1103/PhysRevB.101.104302
10.1017/9781108380690
10.1103/PhysRevA.35.198
10.1103/PhysRevB.103.104306
10.1103/PhysRevX.10.041020
10.1142/S0217751X93002265
10.1103/PhysRevD.80.125005
10.1007/s10955-007-9422-x
10.1103/PhysRevA.60.2700
10.1103/PhysRevLett.120.133601
10.1103/PhysRevB.101.235104
10.1088/1742-5468/2004/06/P06002
10.1080/00107510601101934
10.1103/PhysRevA.70.022318
10.1007/978-3-540-47620-7
10.1103/PhysRevB.103.174309
10.1103/PhysRevA.73.012309
10.1088/0305-4470/22/23/006
10.1103/PhysRevB.102.054302
10.1103/PhysRevX.7.031016
10.1103/PhysRevA.45.4879
10.1088/1751-8113/42/50/504007
10.1088/1742-5468/2005/04/P04010
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.11.041004
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_30c4f6be59044d4ba5e08018f1edde87
10_1103_PhysRevX_11_041004
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c451t-8bd0005508c92bd3662f1b0e4e8191c90a6e21d62c7149437a81970e879a8e4e3
IEDL.DBID BENPR
ISSN 2160-3308
IngestDate Wed Aug 27 01:24:40 EDT 2025
Fri Jul 25 11:44:28 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 01:33:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-8bd0005508c92bd3662f1b0e4e8191c90a6e21d62c7149437a81970e879a8e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4572-8404
OpenAccessLink https://www.proquest.com/docview/2580455170?pq-origsite=%requestingapplication%
PQID 2580455170
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_30c4f6be59044d4ba5e08018f1edde87
proquest_journals_2580455170
crossref_citationtrail_10_1103_PhysRevX_11_041004
crossref_primary_10_1103_PhysRevX_11_041004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211001
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.11.041004Cc7R1
PhysRevX.11.041004Cc9R1
PhysRevX.11.041004Cc17R1
PhysRevX.11.041004Cc15R1
PhysRevX.11.041004Cc59R1
PhysRevX.11.041004Cc1R1
PhysRevX.11.041004Cc3R1
J. Zinn-Justin (PhysRevX.11.041004Cc58R1) 1989
PhysRevX.11.041004Cc5R1
PhysRevX.11.041004Cc72R1
PhysRevX.11.041004Cc51R1
PhysRevX.11.041004Cc74R1
PhysRevX.11.041004Cc13R1
PhysRevX.11.041004Cc34R1
PhysRevX.11.041004Cc11R1
PhysRevX.11.041004Cc32R1
PhysRevX.11.041004Cc91R1
PhysRevX.11.041004Cc70R1
PhysRevX.11.041004Cc27R1
PhysRevX.11.041004Cc25R1
PhysRevX.11.041004Cc63R1
PhysRevX.11.041004Cc65R1
M. A. Nielsen (PhysRevX.11.041004Cc47R1) 2000
PhysRevX.11.041004Cc67R1
R. Zwanzig (PhysRevX.11.041004Cc56R1) 2001
PhysRevX.11.041004Cc23R1
PhysRevX.11.041004Cc46R1
PhysRevX.11.041004Cc21R1
PhysRevX.11.041004Cc44R1
PhysRevX.11.041004Cc42R1
PhysRevX.11.041004Cc40R1
PhysRevX.11.041004Cc82R1
PhysRevX.11.041004Cc8R1
PhysRevX.11.041004Cc18R1
PhysRevX.11.041004Cc16R1
PhysRevX.11.041004Cc39R1
PhysRevX.11.041004Cc37R1
PhysRevX.11.041004Cc2R1
PhysRevX.11.041004Cc4R1
PhysRevX.11.041004Cc6R1
H. Carmichael (PhysRevX.11.041004Cc36R1) 1993
PhysRevX.11.041004Cc75R1
PhysRevX.11.041004Cc54R1
H. M. Wiseman (PhysRevX.11.041004Cc43R1) 2009
PhysRevX.11.041004Cc79R1
A. Kamenev (PhysRevX.11.041004Cc78R1) 2011
PhysRevX.11.041004Cc12R1
PhysRevX.11.041004Cc35R1
PhysRevX.11.041004Cc10R1
PhysRevX.11.041004Cc33R1
PhysRevX.11.041004Cc90R1
PhysRevX.11.041004Cc71R1
PhysRevX.11.041004Cc28R1
PhysRevX.11.041004Cc49R1
S. L. Brunton (PhysRevX.11.041004Cc53R1) 2019
PhysRevX.11.041004Cc26R1
P. S. Maybeck (PhysRevX.11.041004Cc52R1) 2017
K. Jacobs (PhysRevX.11.041004Cc38R1) 2014
PhysRevX.11.041004Cc62R1
PhysRevX.11.041004Cc83R1
PhysRevX.11.041004Cc64R1
H. Primas (PhysRevX.11.041004Cc48R1) 1990
T. Sauter (PhysRevX.11.041004Cc50R1) 1987
PhysRevX.11.041004Cc66R1
PhysRevX.11.041004Cc87R1
PhysRevX.11.041004Cc68R1
PhysRevX.11.041004Cc89R1
PhysRevX.11.041004Cc24R1
PhysRevX.11.041004Cc45R1
PhysRevX.11.041004Cc22R1
PhysRevX.11.041004Cc20R1
PhysRevX.11.041004Cc41R1
PhysRevX.11.041004Cc60R1
References_xml – volume-title: Quantum Field Theory and Critical Phenomena
  year: 1989
  ident: PhysRevX.11.041004Cc58R1
– ident: PhysRevX.11.041004Cc40R1
  doi: 10.1103/PhysRevLett.125.210602
– ident: PhysRevX.11.041004Cc23R1
  doi: 10.22331/q-2021-01-17-382
– ident: PhysRevX.11.041004Cc44R1
  doi: 10.1088/0305-4470/25/21/023
– ident: PhysRevX.11.041004Cc59R1
  doi: 10.1088/0305-4470/13/2/024
– ident: PhysRevX.11.041004Cc82R1
  doi: 10.1103/PhysRevB.103.224210
– volume-title: Nonequilibrium Statistical Mechanics
  year: 2001
  ident: PhysRevX.11.041004Cc56R1
  doi: 10.1093/oso/9780195140187.001.0001
– ident: PhysRevX.11.041004Cc8R1
  doi: 10.1103/PhysRevX.11.011030
– ident: PhysRevX.11.041004Cc65R1
  doi: 10.1016/j.aop.2016.09.006
– ident: PhysRevX.11.041004Cc26R1
  doi: 10.21468/SciPostPhys.7.2.024
– ident: PhysRevX.11.041004Cc12R1
  doi: 10.1103/PhysRevB.99.174205
– ident: PhysRevX.11.041004Cc20R1
  doi: 10.1103/PhysRevResearch.2.013022
– ident: PhysRevX.11.041004Cc32R1
  doi: 10.1103/PRXQuantum.2.010352
– ident: PhysRevX.11.041004Cc33R1
  doi: 10.1103/PhysRevLett.68.580
– ident: PhysRevX.11.041004Cc64R1
  doi: 10.1103/PhysRevB.16.1217
– volume-title: Sixty Two Years of Uncertainty
  year: 1990
  ident: PhysRevX.11.041004Cc48R1
– ident: PhysRevX.11.041004Cc66R1
  doi: 10.1103/PhysRevA.95.011601
– ident: PhysRevX.11.041004Cc6R1
  doi: 10.1103/PhysRevLett.125.030505
– ident: PhysRevX.11.041004Cc15R1
  doi: 10.1103/PhysRevB.102.134203
– volume-title: Quantum Measurement and Control
  year: 2009
  ident: PhysRevX.11.041004Cc43R1
  doi: 10.1017/CBO9780511813948
– ident: PhysRevX.11.041004Cc67R1
  doi: 10.1007/JHEP05(2015)132
– ident: PhysRevX.11.041004Cc51R1
  doi: 10.1115/1.3658902
– volume-title: Proceedings of the International Quantum Electronics Conference
  year: 1987
  ident: PhysRevX.11.041004Cc50R1
– ident: PhysRevX.11.041004Cc79R1
  doi: 10.1088/1751-8113/42/50/504005
– ident: PhysRevX.11.041004Cc71R1
  doi: 10.1088/0305-4470/36/14/101
– ident: PhysRevX.11.041004Cc89R1
  doi: 10.1088/1751-8113/42/50/504003
– ident: PhysRevX.11.041004Cc7R1
  doi: 10.1103/PhysRevB.100.134306
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: PhysRevX.11.041004Cc47R1
– ident: PhysRevX.11.041004Cc5R1
  doi: 10.1103/PhysRevB.99.224307
– ident: PhysRevX.11.041004Cc28R1
  doi: 10.1103/PhysRevResearch.2.033017
– ident: PhysRevX.11.041004Cc46R1
  doi: 10.1103/PhysRevA.98.023852
– ident: PhysRevX.11.041004Cc4R1
  doi: 10.1103/PhysRevB.101.104301
– ident: PhysRevX.11.041004Cc1R1
  doi: 10.1103/PhysRevX.9.031009
– ident: PhysRevX.11.041004Cc27R1
  doi: 10.1103/PhysRevLett.126.170602
– ident: PhysRevX.11.041004Cc70R1
  doi: 10.1103/PhysRevLett.90.227902
– ident: PhysRevX.11.041004Cc68R1
  doi: 10.1134/S1063776116030134
– ident: PhysRevX.11.041004Cc74R1
  doi: 10.1088/1742-5468/2005/07/P07007
– volume-title: Field Theory of Non-Equilibrium Systems
  year: 2011
  ident: PhysRevX.11.041004Cc78R1
  doi: 10.1017/CBO9781139003667
– volume-title: Quantum Measurement Theory and its Applications
  year: 2014
  ident: PhysRevX.11.041004Cc38R1
  doi: 10.1017/CBO9781139179027
– ident: PhysRevX.11.041004Cc13R1
  doi: 10.1103/PhysRevLett.111.127205
– ident: PhysRevX.11.041004Cc60R1
  doi: 10.1088/0022-3719/6/7/010
– ident: PhysRevX.11.041004Cc63R1
  doi: 10.1038/ncomms15791
– ident: PhysRevX.11.041004Cc10R1
  doi: 10.1007/JHEP02(2016)004
– ident: PhysRevX.11.041004Cc39R1
  doi: 10.1103/PhysRevB.100.064204
– ident: PhysRevX.11.041004Cc83R1
  doi: 10.1103/PhysRevResearch.2.043072
– ident: PhysRevX.11.041004Cc17R1
  doi: 10.1103/PhysRevB.101.060301
– ident: PhysRevX.11.041004Cc16R1
  doi: 10.1103/PhysRevB.102.064305
– ident: PhysRevX.11.041004Cc42R1
  doi: 10.1103/PhysRevA.47.1652
– ident: PhysRevX.11.041004Cc2R1
  doi: 10.1103/PhysRevB.98.205136
– ident: PhysRevX.11.041004Cc3R1
  doi: 10.1103/PhysRevB.101.104302
– volume-title: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
  year: 2019
  ident: PhysRevX.11.041004Cc53R1
  doi: 10.1017/9781108380690
– ident: PhysRevX.11.041004Cc49R1
  doi: 10.1103/PhysRevA.35.198
– ident: PhysRevX.11.041004Cc24R1
  doi: 10.1103/PhysRevB.103.104306
– ident: PhysRevX.11.041004Cc25R1
  doi: 10.1103/PhysRevX.10.041020
– ident: PhysRevX.11.041004Cc62R1
  doi: 10.1142/S0217751X93002265
– ident: PhysRevX.11.041004Cc41R1
  doi: 10.1103/PhysRevD.80.125005
– ident: PhysRevX.11.041004Cc91R1
  doi: 10.1007/s10955-007-9422-x
– ident: PhysRevX.11.041004Cc54R1
  doi: 10.1103/PhysRevA.60.2700
– ident: PhysRevX.11.041004Cc45R1
  doi: 10.1103/PhysRevLett.120.133601
– ident: PhysRevX.11.041004Cc18R1
  doi: 10.1103/PhysRevB.101.235104
– volume-title: Quantum Continuous Variables: A Primer of Theoretical Methods
  year: 2017
  ident: PhysRevX.11.041004Cc52R1
– ident: PhysRevX.11.041004Cc87R1
  doi: 10.1088/1742-5468/2004/06/P06002
– ident: PhysRevX.11.041004Cc37R1
  doi: 10.1080/00107510601101934
– ident: PhysRevX.11.041004Cc90R1
  doi: 10.1103/PhysRevA.70.022318
– volume-title: An Open Systems Approach to Quantum Optics
  year: 1993
  ident: PhysRevX.11.041004Cc36R1
  doi: 10.1007/978-3-540-47620-7
– ident: PhysRevX.11.041004Cc22R1
  doi: 10.1103/PhysRevB.103.174309
– ident: PhysRevX.11.041004Cc72R1
  doi: 10.1103/PhysRevA.73.012309
– ident: PhysRevX.11.041004Cc35R1
  doi: 10.1088/0305-4470/22/23/006
– ident: PhysRevX.11.041004Cc21R1
  doi: 10.1103/PhysRevB.102.054302
– ident: PhysRevX.11.041004Cc11R1
  doi: 10.1103/PhysRevX.7.031016
– ident: PhysRevX.11.041004Cc34R1
  doi: 10.1103/PhysRevA.45.4879
– ident: PhysRevX.11.041004Cc75R1
  doi: 10.1088/1751-8113/42/50/504007
– ident: PhysRevX.11.041004Cc9R1
  doi: 10.1088/1742-5468/2005/04/P04010
SSID ssj0000601477
Score 2.5970132
Snippet A wave function subject to unitary time evolution and exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 041004
SubjectTerms Background noise
Competition
Complexity
Decoupling
Degrees of freedom
Distillation
Eigenvectors
Entropy
Evolution
Fermions
Field theory
Magnets
Operators (mathematics)
Phase transitions
Quantum entanglement
Quantum field theory
Quantum statistics
Quantum theory
Statistical analysis
Statistical mechanics
Wave functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ1ar5OBN1iabx2aPKpYiVEUs9BaSbIIHacVWf7-TZFsrgl48bpgly0wy880y8w1CZ0y5QBthC-FNKHgd4M6VhhbBCFbZUgqbOuSGd3Iw4rdjMV4Z9RVrwjI9cFZcjxHHg7Re1ITzhlsjPIAcqgL1cDNV6iOHmLeSTGUfDNC_qhZdMoT1YkHlo_8YX0TOTh550r5FokTY_8MfpyDT30ZbLTrEl_mrdtCan-yijVSl6WZ76D5zDYODwrmnHgPkxADh8PDrV18Rp3E43-CHZ4hQOAWjVJeFpwGDhzMO92MFDBy3fTTq3zxdD4p2IkLhuKDzQtkmgiwAVa4ubcOkLAO1xHMf8y5XEyN9SRtZugoyH84qA-sVATXVRoEUO0Drk-nEHyLMCRPSKuZAiNc2KC5gD96EJnDFmO8gutCOdi1deJxa8aJT2kCYXmgUnnTWaAedL995zWQZv0pfRaUvJSPRdVoA8-vW_Pov83dQd2Ey3d6-mS6FAqQqaEWO_mOPY7RZxkqWVMLXRevzt3d_AlBkbk_TqfsEOxPbZA
  priority: 102
  providerName: Directory of Open Access Journals
Title Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions
URI https://www.proquest.com/docview/2580455170
https://doaj.org/article/30c4f6be59044d4ba5e08018f1edde87
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIT6yPkoM3WU02ySZ7EhVrEVpFFHpbNi89SKu2-vudZLMVETxudpaFSTLzzWTyDULHTBlPrdCZcLXPeOlhz-U1zXwtmNR5IXS8ITccFYMnfjsW45Rwm6WyytYmRkNtpybkyM9yoQB9CCrJ-dt7FrpGhdPV1EJjGXXABCsIvjqX16P7h0WWJbCNcCnb2zKEnYXCygf3NT4N3J088KX98kiRuP-PXY7Opr-B1hNKxBfNtG6iJTfZQquxWtPMttFdwzkMhgo3d-sxQE8MUA4Pf1J-WejKYZzF9y_gqXB0SrE-C089BktXG9wPlTCw7HbQU__68WqQpc4ImeGCzjOlbQBbAK5MmWvLiiL3VBPHXYi_TEnqwuXUFrmREAFxJmsYl8QpWdYKpNguWplMJ24PYU6YKLRiBoR4qb3iAv7BrbeeK8ZcF9FWO5VJtOGhe8VrFcMHwqpWo_BUNRrtopPFN28Naca_0pdB6QvJQHgdB6Yfz1XaPxUjhvtCO1ESzi3XtXCAdany1IGBVrKLDtspq9IunFU_a2b__9cHaC0PtSqxSO8Qrcw_Pt0RgI257qFl1b_ppXXViyH7N1z81aQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKeADnFCon7FzQIjXsqXdglAr7c2NX3Codkt3AfGn-I2MnWQrhNRbj3EmiTSexzfOPACeCuMTC8pVKrapkk1CneMtq1KrhHa8Vq5UyE0P6smR_DhTsw34M9TC5LTKwSYWQx0WPp-R73BlEH0opumr0-9VnhqV_64OIzQ6sdiLv39hyLZ8ufsO9_cZ5-P3h28nVT9VoPJSsVVlXMhABYGJb7gLoq55Yo5GGXPs4hva1pGzUHOvMXqQQre4rmk0umkNUgl87xW4KoVoskaZ8Yf1mU7ubSK1HmpzqNjJaZxf4s_Zi9wpVObubP_4vzIm4D8vUFzb-Bbc7DEped0J0W3YiPM7cK3khvrlXfjUdThGs0i6Sn6CQJcgcCTT8wPGKs8A8TGQz9_QL5LiAks2GFkkgna19WSc825QyO_B0aVw7D5szhfz-ACIpELVzgiPRLJxyUiF35AhhSSNEHEEbOCO9X2T8jwr48SWYIUKO3AUr2zH0RE8Xz9z2rXouJD6TWb6mjK31y4Li7OvttdWK6iXqXZRNVTKIF2rIiJrZhKL6A6MHsH2sGW21_mlPZfQrYtvP4Hrk8Ppvt3fPdh7CDd4zpIp6YHbsLk6-xEfIcxZucdFtggcX7Yw_wXmCQ1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Theory+for+the+Measurement-Induced+Phase+Transition+of+Dirac+Fermions&rft.jtitle=Physical+review.+X&rft.au=Buchhold%2C+M&rft.au=Minoguchi%2C+Y&rft.au=Altland%2C+A&rft.au=Diehl%2C+S&rft.date=2021-10-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevX.11.041004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon