Predicting river water quality: An imposing engagement between machine learning and the QUAL2Kw models (case study: Aji-Chai, river, Iran)

Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three c...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 21; p. 101921
Main Authors Sarafaraz, Jamal, Ahmadzadeh Kaleybar, Fariborz, Mahmoudi Karamjavan, Javad, Habibzadeh, Nader
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study. •This paper aims to simulate water quality indexes including TDS, EC and SAR for the Aji-Chai, Tabriz, Iran.•Machine learning models namely SVM, GEP and MLP have been implemented to simulate abovementioned quality parameters.•As a mathematical model, QUAL2Kw has been run to forecast three mentioned indices.•A comparison has been performed between MLMs and mathematical models using RMSE, MAE and DDR metrics.
AbstractList Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study.
Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R², and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R² and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study.
Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study. •This paper aims to simulate water quality indexes including TDS, EC and SAR for the Aji-Chai, Tabriz, Iran.•Machine learning models namely SVM, GEP and MLP have been implemented to simulate abovementioned quality parameters.•As a mathematical model, QUAL2Kw has been run to forecast three mentioned indices.•A comparison has been performed between MLMs and mathematical models using RMSE, MAE and DDR metrics.
ArticleNumber 101921
Author Ahmadzadeh Kaleybar, Fariborz
Mahmoudi Karamjavan, Javad
Sarafaraz, Jamal
Habibzadeh, Nader
Author_xml – sequence: 1
  givenname: Jamal
  surname: Sarafaraz
  fullname: Sarafaraz, Jamal
  email: jamalsarafraz1399@gmail.com
  organization: Department of Environmental Sciences and Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
– sequence: 2
  givenname: Fariborz
  orcidid: 0000-0001-5182-3128
  surname: Ahmadzadeh Kaleybar
  fullname: Ahmadzadeh Kaleybar, Fariborz
  email: f.ahmazdadeh@iaut.ac.ir
  organization: Department of Water Sciences and Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
– sequence: 3
  givenname: Javad
  surname: Mahmoudi Karamjavan
  fullname: Mahmoudi Karamjavan, Javad
  email: karamjavan@iaut.ac.ir
  organization: Department of Agricultural management, Extension and Education, Tabriz Branch, Islamic Azad University, Tabriz, Iran
– sequence: 4
  givenname: Nader
  surname: Habibzadeh
  fullname: Habibzadeh, Nader
  email: habibzadeh@iaut.ac.ir
  organization: Department of Environmental Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
BookMark eNqFkd1qFDEUxwepYK19Ay9yWaG7TTLJfPRCWJaqSxdUsNfhTHJmN8NMsk2yXfoKPrUzjoh4oTcnh8P_g_B7nZ057zDL3jK6ZJQVN90yWIdut-SUi-lUc_YiO-eypgvGc3r2x_4qu4yxo5TyahTm5Xn2_UtAY3WybkeCfcJATpDG-XiE3qbnW7JyxA4HHyfB2AI7HNAl0mA6IToygN6P9aRHCG7SgDMk7ZF8fVht-f2JDN5gH8mVhogkpqOZMju7WO_BXs-V12QTwL17k71soY94-eu9yB4-3H1bf1psP3_crFfbhRaSpUXFq6LISw6mLWVTtIw2uRFM8jpHQ7HORcW4bmotdY5cNCWWjFMBhtctqxqTX2SbOdd46NQh2AHCs_Jg1c-DDzsFIVndozKylBJZIxoqBWtZA2WNBdUNGMlakGPW1Zx1CP7xiDGpwUaNfQ8O_TGqnAtOi6oUk1TMUh18jAHb39WMqomk6tRMUk0k1UxytN3-ZdM2QbLepQC2_5_5_WweEeCTxaCituj0iDygTuOH7b8DfgDEob13
CitedBy_id crossref_primary_10_1007_s11356_024_33921_7
crossref_primary_10_1007_s00477_024_02905_x
crossref_primary_10_1016_j_wsee_2024_05_003
crossref_primary_10_1016_j_rineng_2024_102104
crossref_primary_10_1016_j_rineng_2024_102114
crossref_primary_10_1016_j_compag_2025_109932
crossref_primary_10_1016_j_rineng_2024_102563
crossref_primary_10_1007_s10661_024_13507_z
crossref_primary_10_1016_j_rineng_2024_103667
crossref_primary_10_1007_s10653_025_02425_9
crossref_primary_10_1016_j_rineng_2025_104307
crossref_primary_10_1016_j_rineng_2024_101978
Cites_doi 10.3390/su151310313
10.3390/w15101876
10.1016/j.scitotenv.2010.07.048
10.5755/j01.erem.74.1.20083
10.3390/w15112005
10.1007/s10661-023-11072-5
10.1016/j.eehl.2022.06.001
10.17533/udea.redin.20190514
10.1016/j.ecolmodel.2023.110275
10.3390/hydrology10050110
10.1002/wer.10864
10.1016/j.matcom.2019.12.005
10.3390/land12071396
10.1007/s10666-022-09844-3
10.1016/j.envsoft.2005.07.002
10.3390/w15020265
10.1007/s40899-022-00765-3
10.2175/106143008X304794
10.1016/0309-1708(78)90024-6
10.1111/j.1752-1688.2011.00588.x
10.26418/jtllb.v11i1.59397
10.1155/2019/5692753
10.13031/2013.20244
10.3390/ijgi9020094
10.1016/j.catena.2023.106951
10.1016/j.jenvman.2022.115923
10.1080/00221686.2006.9521661
10.3390/w15132492
10.3390/su11216022
10.3390/w14071058
10.2134/jeq2016.05.0200
10.1080/09640568.2022.2028609
10.1016/j.uclim.2023.101487
10.2166/wst.2011.459
10.1016/j.compgeo.2009.10.003
10.1016/j.ecohyd.2019.03.005
10.1111/lre.12256
10.1007/s13201-022-01590-x
10.1061/(ASCE)0887-3801(2004)18:2(120)
10.1016/j.eswa.2010.02.020
10.1016/j.scitotenv.2023.163713
10.13031/trans.12655
10.1016/j.jwpe.2022.102920
10.1016/j.earscirev.2020.103187
10.1007/s10666-012-9316-4
10.1007/s00500-022-07684-7
10.1007/s12205-023-1886-y
10.3390/su15032444
10.1016/j.jenvman.2021.112051
10.1016/j.scitotenv.2017.01.102
10.1007/s11269-022-03358-z
10.3390/w14030374
10.1016/j.envsoft.2023.105805
10.3390/su14031183
10.3390/w12051398
10.1007/s13201-021-01528-9
10.1016/j.jhydrol.2021.127320
10.1007/s13201-018-0831-6
10.1061/(ASCE)PS.1949-1204.0000076
10.1002/mrm.27956
10.1007/s12665-022-10191-5
10.2166/ws.2016.014
10.1061/(ASCE)0733-9372(1992)118:5(791)
10.1016/j.watres.2020.115788
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.rineng.2024.101921
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_d5755e1b4b0541f1ba79e60cbad51fa5
10_1016_j_rineng_2024_101921
S2590123024001749
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c451t-82866372adf75b6f10b3d415293ed0e934812cb9c5c3e24b7e71204ad29f18bd3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:26:51 EDT 2025
Fri Aug 22 21:00:45 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Wed Aug 27 16:26:41 EDT 2025
Sat Aug 30 17:14:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aji-Chai river
Artificial intelligence
Evaluation process
Water surface quality
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-82866372adf75b6f10b3d415293ed0e934812cb9c5c3e24b7e71204ad29f18bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5182-3128
OpenAccessLink https://doaj.org/article/d5755e1b4b0541f1ba79e60cbad51fa5
PQID 3242068745
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_d5755e1b4b0541f1ba79e60cbad51fa5
proquest_miscellaneous_3242068745
crossref_primary_10_1016_j_rineng_2024_101921
crossref_citationtrail_10_1016_j_rineng_2024_101921
elsevier_sciencedirect_doi_10_1016_j_rineng_2024_101921
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Elhabashy, Li, Sokolova (bib37) 2023; 477
Rinaldi, Soncini-Sessa (bib17) 1978; 1
Terry, Lindenschmidt (bib18) 2023; 15
Mokhtar, Elbeltagi, Gyasi-Agyei, Al-Ansari, Abdel-Fattah (bib63) 2022; 12
El Harche, Chikhaoui, Naimi, Seif-Ennasr, Whalen, Chaaou (bib46) 2023; 223
Kouadri, Elbeltagi, Islam, Kateb (bib65) 2021; 11
McCutcheon (bib15) 1983
Senaviratne, Baffaut, Lory, Udawatta, Nelson, Williams, Anderson (bib48) 2018; 61
Azamathulla, Deo, Deolalikar (bib75) 2006; 44
Melching, Anmangandla (bib14) 1992; 118
Fatemi (bib23) 2022; 81
Thu Minh, Tri, Avtar, Kumar, Dang, Downes (bib40) 2022; 14
McBride (bib16) 1982
Bui, Ha, Nguyen, Nguyen, Pham, Kandasamy, Nguyen (bib24) 2019; 19
Pan, Leng, Liu (bib1) 2013; 857
Wang, Li, Jia, Qi, Ding (bib8) 2013; 2013
Wang, Li, Ge (bib39) 2023; 15
Dashti, Nakhaei, Vadiati, Karami, Kisi (bib55) 2023
Nengsih, Purnaini, Saziati (bib29) 2023; 11
Mamani Larico, Zúñiga Medina (bib31) 2019; 24
Sener, Sener, Davraz (bib3) 2017; 584–585
Zhang, Fu (bib44) 2023; 2023
Williams, Arnold, Srinivasan, Ramanarayanan (bib51) 1998
Xu, Coco, Neale (bib66) 2020; 177
Wang, Zhong, Wu (bib4) 2004; 27
Liu, Arhonditsis, Stow, Scavia (bib13) 2011; 47
Deng, Chau, Duan (bib64) 2021; 284
Pelletier, Chapra, Tao (bib70) 2006; 21
Lung (bib10) 2023; 95
Wang, Peng, Liang (bib62) 2022; 605
Leggesse, Zimale, Sultan, Enku, Srinivasan, Tilahun (bib57) 2023; 10
Zhang, Omar, Hashim, Alam, Khalifa, Elkotb (bib53) 2023; 49
Osmond, Bolster, Sharpley, Cabrera, Feagley, Forsberg, Zhang (bib49) 2017; 46
Williams, Harman, Magre, Kizil, Lindley, Padmanabhan, Wang (bib50) 2006; 49
Xu, Ren, Huang, Li, Zi, Hu (bib36) 2023; 15
Zhu, Wang, Yang, Zhang, Zhang, Ren, Ye (bib52) 2022; 1
Shin, Her, Muñoz-Carpena, Yu (bib43) 2023; 883
Cui, Gao, Wang (bib38) 2023
Uddin, Nash, Diganta, Rahman, Olbert (bib61) 2022; 321
Fang, Zhang, Chen, Xu (bib7) 2008; 80
Wool, Ambrose, Martin, Comer (bib30) 2020; 12
Azamathulla, Zakaria (bib77) 2011; 63
Hong, Abbas, Kim, Kwon, Yoon, Yun, Cho (bib42) 2023
Goodarzi, Niknam, Barzkar, Niazkar, Zare Mehrjerdi, Abedi, HeydariPour (bib54) 2023; 15
Azamathulla, Haghiabi, Parsaie (bib72) 2016; 16
Ab Ghani, Md Azamathulla (bib80) 2011; 2
Santos Santos, Camacho (bib32) 2022; 14
Hasanpour Kashani, Nikpour, Jalali (bib56) 2023; 27
Mohammed, Longva, Seidu (bib68) 2018; 74
Perera, Rathnayake (bib78) 2019; 2019
Long (bib11) 2020; 171
Zhao, Václavů, Petersen, Biemond, Sokolska, Suzuki, Chappell (bib34) 2020; 83
Alqahtani, Shah, Aldrees, Javed (bib59) 2022; 14
Fan, Wang, Liu, Yang (bib12) 2012; 17
Akomeah, Lindenschmidt, Morales-Marin, Hassanzadeh (bib28) 2023; 66
Ferreira (bib79) 2001; 13
Sagan, Peterson, Maimaitijiang, Sidike, Sloan, Greeling, Maalouf, Adams (bib2) 2020; 205
Ahmed, Othman, Afan, Ibrahim, Fai, Hossain, Elshafie (bib67) 2019; 578
Kaya (bib76) 2010; 37
Prajapati, Sabokruhie, Brinkmann, Lindenschmidt (bib27) 2023; 15
Palacio-Tobón, Vieira-Agudelo, Saldarriaga-Molina, Ruiz-Jaramillo (bib35) 2019
Ekanayake, Wickramasinghe, Jayasinghe, Rathnayake (bib73) 2021
Zehra, Singh, Verma, Kulshreshtha (bib20) 2023; 195
Vapnik (bib71) 1995
Almeida, Rebelo, Costa, Rodrigues, Coelho (bib21) 2023; 28
Li, Huang, Wang (bib41) 2020; 9
Chapra, Pelletier, Tao (bib69) 2003
Sahoo, Swain (bib19) 2023
Xin, Ye, Zhang (bib25) 2019; 11
Ejigu (bib9) 2021; 8
Adib, Farajpanah, Shoushtari, Lotfirad, Saeedpanah, Sasani (bib58) 2022; 8
Noori, Khakpour, Omidvar, Farokhnia (bib82) 2010; 37
Azamathulla, Rathnayake, Shatnawi (bib74) 2018; 8
Ahn, Kim, Kwak, Kang (bib45) 2023; 27
Zakaria, Azamathulla, Chang, Ghani (bib81) 2010; 408
Cao, Zhang (bib5) 2006; 4
Kumar, Priya, Shaik, Singh (bib22) 2023; 37
Żelazny, Bryła, Ozga-Zielinski, Walczykiewicz (bib26) 2023; 15
Mujumdar, Vemula (bib6) 2004; 18
Andualem, Hewa, Myers, Peters, Boland (bib47) 2023; 12
Iqbal, Li, Hussain, Lee, Mumtaz, Elbeltagi, Dilawar (bib33) 2022; 14
Nasir, Kansal, Alshaltone, Barneih, Sameer, Shanableh, Al-Shamma'a (bib60) 2022; 48
Leggesse (10.1016/j.rineng.2024.101921_bib57) 2023; 10
Zhang (10.1016/j.rineng.2024.101921_bib53) 2023; 49
Mamani Larico (10.1016/j.rineng.2024.101921_bib31) 2019; 24
Xu (10.1016/j.rineng.2024.101921_bib66) 2020; 177
Zhang (10.1016/j.rineng.2024.101921_bib44) 2023; 2023
Kaya (10.1016/j.rineng.2024.101921_bib76) 2010; 37
Almeida (10.1016/j.rineng.2024.101921_bib21) 2023; 28
Fatemi (10.1016/j.rineng.2024.101921_bib23) 2022; 81
Żelazny (10.1016/j.rineng.2024.101921_bib26) 2023; 15
Nasir (10.1016/j.rineng.2024.101921_bib60) 2022; 48
Wang (10.1016/j.rineng.2024.101921_bib62) 2022; 605
McBride (10.1016/j.rineng.2024.101921_bib16) 1982
Azamathulla (10.1016/j.rineng.2024.101921_bib72) 2016; 16
Chapra (10.1016/j.rineng.2024.101921_bib69) 2003
Ejigu (10.1016/j.rineng.2024.101921_bib9) 2021; 8
Perera (10.1016/j.rineng.2024.101921_bib78) 2019; 2019
Wool (10.1016/j.rineng.2024.101921_bib30) 2020; 12
Kumar (10.1016/j.rineng.2024.101921_bib22) 2023; 37
Pelletier (10.1016/j.rineng.2024.101921_bib70) 2006; 21
Prajapati (10.1016/j.rineng.2024.101921_bib27) 2023; 15
Sener (10.1016/j.rineng.2024.101921_bib3) 2017; 584–585
Mujumdar (10.1016/j.rineng.2024.101921_bib6) 2004; 18
Noori (10.1016/j.rineng.2024.101921_bib82) 2010; 37
Lung (10.1016/j.rineng.2024.101921_bib10) 2023; 95
Fan (10.1016/j.rineng.2024.101921_bib12) 2012; 17
Zehra (10.1016/j.rineng.2024.101921_bib20) 2023; 195
Mohammed (10.1016/j.rineng.2024.101921_bib68) 2018; 74
El Harche (10.1016/j.rineng.2024.101921_bib46) 2023; 223
Osmond (10.1016/j.rineng.2024.101921_bib49) 2017; 46
Pan (10.1016/j.rineng.2024.101921_bib1) 2013; 857
Palacio-Tobón (10.1016/j.rineng.2024.101921_bib35) 2019
Akomeah (10.1016/j.rineng.2024.101921_bib28) 2023; 66
Deng (10.1016/j.rineng.2024.101921_bib64) 2021; 284
Alqahtani (10.1016/j.rineng.2024.101921_bib59) 2022; 14
Iqbal (10.1016/j.rineng.2024.101921_bib33) 2022; 14
Fang (10.1016/j.rineng.2024.101921_bib7) 2008; 80
Williams (10.1016/j.rineng.2024.101921_bib51) 1998
Goodarzi (10.1016/j.rineng.2024.101921_bib54) 2023; 15
Dashti (10.1016/j.rineng.2024.101921_bib55) 2023
Liu (10.1016/j.rineng.2024.101921_bib13) 2011; 47
Ahn (10.1016/j.rineng.2024.101921_bib45) 2023; 27
Thu Minh (10.1016/j.rineng.2024.101921_bib40) 2022; 14
Ferreira (10.1016/j.rineng.2024.101921_bib79) 2001; 13
Ahmed (10.1016/j.rineng.2024.101921_bib67) 2019; 578
Senaviratne (10.1016/j.rineng.2024.101921_bib48) 2018; 61
Nengsih (10.1016/j.rineng.2024.101921_bib29) 2023; 11
Zhao (10.1016/j.rineng.2024.101921_bib34) 2020; 83
Santos Santos (10.1016/j.rineng.2024.101921_bib32) 2022; 14
Vapnik (10.1016/j.rineng.2024.101921_bib71) 1995
Kouadri (10.1016/j.rineng.2024.101921_bib65) 2021; 11
Sagan (10.1016/j.rineng.2024.101921_bib2) 2020; 205
Cui (10.1016/j.rineng.2024.101921_bib38) 2023
Adib (10.1016/j.rineng.2024.101921_bib58) 2022; 8
Cao (10.1016/j.rineng.2024.101921_bib5) 2006; 4
Azamathulla (10.1016/j.rineng.2024.101921_bib77) 2011; 63
Terry (10.1016/j.rineng.2024.101921_bib18) 2023; 15
Melching (10.1016/j.rineng.2024.101921_bib14) 1992; 118
Zakaria (10.1016/j.rineng.2024.101921_bib81) 2010; 408
Xin (10.1016/j.rineng.2024.101921_bib25) 2019; 11
Mokhtar (10.1016/j.rineng.2024.101921_bib63) 2022; 12
Wang (10.1016/j.rineng.2024.101921_bib4) 2004; 27
Williams (10.1016/j.rineng.2024.101921_bib50) 2006; 49
Bui (10.1016/j.rineng.2024.101921_bib24) 2019; 19
Hasanpour Kashani (10.1016/j.rineng.2024.101921_bib56) 2023; 27
Sahoo (10.1016/j.rineng.2024.101921_bib19) 2023
Ekanayake (10.1016/j.rineng.2024.101921_bib73) 2021
Xu (10.1016/j.rineng.2024.101921_bib36) 2023; 15
Long (10.1016/j.rineng.2024.101921_bib11) 2020; 171
Ab Ghani (10.1016/j.rineng.2024.101921_bib80) 2011; 2
McCutcheon (10.1016/j.rineng.2024.101921_bib15) 1983
Wang (10.1016/j.rineng.2024.101921_bib8) 2013; 2013
Rinaldi (10.1016/j.rineng.2024.101921_bib17) 1978; 1
Elhabashy (10.1016/j.rineng.2024.101921_bib37) 2023; 477
Azamathulla (10.1016/j.rineng.2024.101921_bib74) 2018; 8
Zhu (10.1016/j.rineng.2024.101921_bib52) 2022; 1
Uddin (10.1016/j.rineng.2024.101921_bib61) 2022; 321
Hong (10.1016/j.rineng.2024.101921_bib42) 2023
Azamathulla (10.1016/j.rineng.2024.101921_bib75) 2006; 44
Andualem (10.1016/j.rineng.2024.101921_bib47) 2023; 12
Li (10.1016/j.rineng.2024.101921_bib41) 2020; 9
Wang (10.1016/j.rineng.2024.101921_bib39) 2023; 15
Shin (10.1016/j.rineng.2024.101921_bib43) 2023; 883
References_xml – volume: 11
  start-page: 6022
  year: 2019
  ident: bib25
  article-title: Application of export coefficient model and QUAL2K for water environmental management in a rural watershed
  publication-title: Sustainability
– start-page: 1
  year: 2023
  end-page: 23
  ident: bib55
  article-title: Estimation of unconfined aquifer transmissivity using a comparative study of machine learning models
  publication-title: Water Resour. Manag.
– volume: 118
  start-page: 791
  year: 1992
  end-page: 805
  ident: bib14
  article-title: Improved first-order uncertainty method for water-quality modeling
  publication-title: J. Environ. Eng.
– volume: 15
  start-page: 2005
  year: 2023
  ident: bib18
  article-title: Water quality and flow management scenarios in the Qu'Appelle river–reservoir system using loosely coupled WASP and CE-QUAL-W2 models
  publication-title: Water
– volume: 8
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib74
  article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia
  publication-title: Appl. Water Sci.
– volume: 15
  year: 2023
  ident: bib36
  article-title: Simulation study on the impact of water flow regulation based on the MIKE 21 model in a river water environment
  publication-title: Sustainability
– volume: 17
  start-page: 639
  year: 2012
  end-page: 651
  ident: bib12
  article-title: Sensitivity analysis and water quality modeling of a tidal river using a modified streeter–phelps equation with HEC-RAS-calculated hydraulic characteristics
  publication-title: Environ. Model. Assess.
– volume: 48
  year: 2022
  ident: bib60
  article-title: Water quality classification using machine learning algorithms
  publication-title: Journal of Water Process Engineering
– start-page: 378
  year: 1982
  end-page: 384
  ident: bib16
  article-title: Nomographs for rapid solutions for the Streeter-Phelps equations
  publication-title: Journal (Water Pollution Control Federation)
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib78
  article-title: Rainfall and atmospheric temperature against the other climatic factors: a case study from Colombo, Sri Lanka
  publication-title: Math. Probl Eng.
– volume: 14
  start-page: 374
  year: 2022
  ident: bib32
  article-title: An integrated water quality model to support multiscale decisions in a highly altered catchment
  publication-title: Water
– volume: 171
  start-page: 119
  year: 2020
  end-page: 126
  ident: bib11
  article-title: Inverse algorithm for Streeter–Phelps equation in water pollution control problem
  publication-title: Math. Comput. Simulat.
– volume: 1
  start-page: 141
  year: 1978
  end-page: 146
  ident: bib17
  article-title: Sensitivity analysis of generalized Streeter-Phelps models
  publication-title: Adv. Water Resour.
– volume: 95
  year: 2023
  ident: bib10
  article-title: Progression of river BOD/DO modeling for water quality management
  publication-title: Water Environ. Res.
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 24
  ident: bib44
  article-title: Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1. 0.0): does the model calibrated with a wider hydrological variability become more robust?
  publication-title: Geosci. Model Dev. Discuss. (GMDD)
– volume: 49
  start-page: 61
  year: 2006
  end-page: 73
  ident: bib50
  article-title: APEX feedlot water quality simulation
  publication-title: Transactions of the ASABE
– volume: 44
  start-page: 61
  year: 2006
  end-page: 69
  ident: bib75
  article-title: Estimation of scour below spillways using neural networks
  publication-title: J. Hydraul. Res.
– volume: 857
  start-page: 610
  year: 2013
  end-page: 613
  ident: bib1
  article-title: Shifosi reservoir water environmental assessment based on grey clustering
  publication-title: Prog. Environ. Sci. Eng.
– start-page: 19
  year: 2019
  end-page: 35
  ident: bib35
  article-title: Model simulation of heavy metals in river systems: case study the Negro river basin
  publication-title: Revista Facultad de Ingeniería Universidad de Antioquia
– volume: 14
  start-page: 1183
  year: 2022
  ident: bib59
  article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality
  publication-title: Sustainability
– volume: 83
  start-page: 731
  year: 2020
  end-page: 748
  ident: bib34
  article-title: Quantification of cerebral perfusion and cerebrovascular reserve using Turbo‐QUASAR arterial spin labeling MRI
  publication-title: Magn. Reson. Med.
– year: 1983
  ident: bib15
  article-title: Evaluation of Selected One-Dimensional Stream Water-Quality Models with Field Data
– volume: 883
  year: 2023
  ident: bib43
  article-title: Quantifying the contribution of external loadings and internal hydrodynamic processes to the water quality of Lake Okeechobee
  publication-title: Sci. Total Environ.
– volume: 408
  start-page: 5078
  year: 2010
  end-page: 5085
  ident: bib81
  article-title: Gene expression programming for total bed material load estimation—a case study
  publication-title: Science of the total environment
– volume: 10
  start-page: 110
  year: 2023
  ident: bib57
  article-title: Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia
  publication-title: Hydrology
– volume: 16
  start-page: 1002
  year: 2016
  end-page: 1016
  ident: bib72
  article-title: Prediction of side weir discharge coefficient by support vector machine technique
  publication-title: Water Sci. Technol. Water Supply
– volume: 195
  start-page: 480
  year: 2023
  ident: bib20
  article-title: Spatio-temporal investigation of physico-chemical water quality parameters based on comparative assessment of QUAL 2Kw and WASP model for the upper reaches of Yamuna River stretching from Paonta Sahib, Sirmaur district to Cullackpur, North Delhi districts of North India
  publication-title: Environ. Monit. Assess.
– volume: 2
  start-page: 102
  year: 2011
  end-page: 106
  ident: bib80
  article-title: Gene-expression programming for sediment transport in sewer pipe systems
  publication-title: J. Pipeline Syst. Eng. Pract.
– volume: 24
  start-page: 37
  year: 2019
  end-page: 47
  ident: bib31
  article-title: Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes
  publication-title: Lakes Reservoirs Res. Manag.
– start-page: 441
  year: 1998
  end-page: 449
  ident: bib51
  article-title: APEX: a new tool for predicting the effects of climate and CO2 changes on erosion and water quality
  publication-title: Modelling Soil Erosion by Water
– volume: 37
  start-page: 413
  year: 2010
  end-page: 418
  ident: bib76
  article-title: Artificial neural network study of observed pattern of scour depth around bridge piers
  publication-title: Comput. Geotech.
– year: 2023
  ident: bib42
  article-title: Autonomous calibration of EFDC for predicting chlorophyll-a using reinforcement learning and a real-time monitoring system
  publication-title: Environ. Model. Software
– volume: 12
  start-page: 76
  year: 2022
  ident: bib63
  article-title: Prediction of irrigation water quality indices based on machine learning and regression models
  publication-title: Appl. Water Sci.
– volume: 37
  start-page: 5856
  year: 2010
  end-page: 5862
  ident: bib82
  article-title: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 243
  year: 2004
  end-page: 247
  ident: bib4
  article-title: Steam water quality models and its development trend
  publication-title: ” Journal of Anhui Normal University (Natural Science)
– volume: 284
  year: 2021
  ident: bib64
  article-title: Machine learning based marine water quality prediction for coastal hydro-environment management
  publication-title: J. Environ. Manag.
– volume: 66
  start-page: 1431
  year: 2023
  end-page: 1452
  ident: bib28
  article-title: Evidence-based identification of integrated water quality systems
  publication-title: J. Environ. Plann. Manag.
– volume: 15
  start-page: 1876
  year: 2023
  ident: bib54
  article-title: Water quality index estimations using machine learning algorithms: a case study of Yazd-Ardakan plain, Iran
  publication-title: Water
– volume: 18
  start-page: 120
  year: 2004
  end-page: 131
  ident: bib6
  article-title: Fuzzy waste load allocation model: simulation-optimization approach
  publication-title: J. Comput. Civ. Eng.
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: bib79
  article-title: Gene-expression programming. A new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 584–585
  start-page: 131
  year: 2017
  end-page: 144
  ident: bib3
  article-title: Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey)
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 1348
  year: 2011
  end-page: 1363
  ident: bib13
  article-title: Predicting the hypoxic volume in chesapeake bay with the streeter–phelps model: a bayesian approach 1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 605
  year: 2022
  ident: bib62
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: J. Hydrol.
– volume: 11
  start-page: 190
  year: 2021
  ident: bib65
  article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast)
  publication-title: Appl. Water Sci.
– start-page: 60
  year: 2023
  end-page: 67
  ident: bib38
  article-title: Research on water salinity control in Dongying City based on MIKE SHE model
  publication-title: Advances in Civil Engineering and Environmental Engineering, Volume 2
– volume: 28
  start-page: 201
  year: 2023
  end-page: 225
  ident: bib21
  article-title: Long-term water quality modeling of a shallow eutrophic lagoon with limited forcing data
  publication-title: Environ. Model. Assess.
– volume: 177
  year: 2020
  ident: bib66
  article-title: A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning
  publication-title: Water Res.
– volume: 477
  year: 2023
  ident: bib37
  article-title: Water quality modeling of a eutrophic drinking water source: impact of future climate on Cyanobacterial blooms
  publication-title: Ecol. Model.
– volume: 80
  start-page: 2125
  year: 2008
  end-page: 2133
  ident: bib7
  article-title: QUAL2Kmodel used in the water quality assessment of Qiantang River, China
  publication-title: Water Environ. Res.
– volume: 15
  start-page: 2492
  year: 2023
  ident: bib39
  article-title: Numerical simulation of the lower and middle reaches of the Yarkant river (China) using MIKE SHE
  publication-title: Water
– volume: 27
  start-page: 7439
  year: 2023
  end-page: 7448
  ident: bib56
  article-title: Water quality prediction using data-driven models case study: ardabil plain, Iran
  publication-title: Soft Comput.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib73
  article-title: 2021 Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning
  publication-title: Math. Probl Eng.
– volume: 2013
  year: 2013
  ident: bib8
  article-title: A review of surface water quality models
  publication-title: Sci. World J.
– volume: 205
  year: 2020
  ident: bib2
  article-title: Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing
  publication-title: Earth Sci. Rev.
– volume: 8
  start-page: 172
  year: 2022
  ident: bib58
  article-title: Selection of the best machine learning method for estimation of concentration of different water quality parameters
  publication-title: Sustainable Water Resources Management
– year: 1995
  ident: bib71
  article-title: The Nature of Statistical Learning Theory
– volume: 12
  start-page: 1398
  year: 2020
  ident: bib30
  article-title: Wasp 8: the next generation in the 50-year evolution of USEPA's water quality model
  publication-title: Water
– volume: 63
  start-page: 2225
  year: 2011
  end-page: 2230
  ident: bib77
  article-title: Prediction of scour below submerged pipeline crossing a river using ANN
  publication-title: Water Sci. Technol.
– volume: 223
  year: 2023
  ident: bib46
  article-title: No-tillage and agroforestry decrease sediment loss from a hilly landscape in northern Morocco
  publication-title: Catena
– volume: 27
  start-page: 1066
  year: 2023
  end-page: 1076
  ident: bib45
  article-title: Optimized microcystis prediction model using EFDC-NIER and LH-OAT method
  publication-title: KSCE J. Civ. Eng.
– start-page: 489
  year: 2023
  ident: bib19
  article-title: Water quality modelling using QUAL-2K at bray marina, UK check for updates
  publication-title: Fluid Mechanics and Hydraulics: Proceedings of 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021)
– volume: 19
  start-page: 210
  year: 2019
  end-page: 223
  ident: bib24
  article-title: Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam
  publication-title: Ecohydrol. Hydrobiol.
– volume: 81
  start-page: 66
  year: 2022
  ident: bib23
  article-title: A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran
  publication-title: Environ. Earth Sci.
– volume: 1
  start-page: 107
  year: 2022
  end-page: 116
  ident: bib52
  article-title: A review of the application of machine learning in water quality evaluation
  publication-title: Eco-Environment & Health
– volume: 4
  start-page: 18
  year: 2006
  end-page: 21
  ident: bib5
  article-title: Commentary on study of surface water quality model
  publication-title: ” Journal of Water Resources and Architectural Engineering
– volume: 14
  start-page: 412
  year: 2022
  ident: bib40
  article-title: A model-based approach for improving surface water quality management in aquaculture using MIKE 11: a case of the Long Xuyen Quadangle
  publication-title: Mekong Delta, Vietnam. Water
– volume: 14
  start-page: 1058
  year: 2022
  ident: bib33
  article-title: Analysis of seasonal variations in surface water quality over wet and dry regions
  publication-title: Water
– volume: 8
  year: 2021
  ident: bib9
  article-title: Overview of water quality modeling
  publication-title: Civ. Environ. Eng.
– volume: 15
  start-page: 2444
  year: 2023
  ident: bib26
  article-title: Applicability of the WASP model in an assessment of the impact of anthropogenic pollution on water quality—dunajec river case study
  publication-title: Sustainability
– volume: 321
  year: 2022
  ident: bib61
  article-title: Robust machine learning algorithms for predicting coastal water quality index
  publication-title: J. Environ. Manag.
– start-page: 121
  year: 2003
  ident: bib69
  article-title: QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and User's Manual
– volume: 61
  start-page: 603
  year: 2018
  end-page: 616
  ident: bib48
  article-title: Improved APEX model simulation of buffer water quality benefits at field scale
  publication-title: Transactions of the ASABE
– volume: 15
  start-page: 265
  year: 2023
  ident: bib27
  article-title: Modelling transport and fate of copper and nickel across the south saskatchewan river using WASP—TOXI
  publication-title: Water
– volume: 9
  start-page: 94
  year: 2020
  ident: bib41
  article-title: Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and MIKE 21
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 578
  year: 2019
  ident: bib67
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
– volume: 11
  start-page: 84
  year: 2023
  end-page: 93
  ident: bib29
  article-title: Pendekatan model WASP (water quality analysis simulation program) pada pencemaran logam berat Cd di Sungai Kapuas Kecil
  publication-title: Jurnal Teknologi Lingkungan Lahan Basah
– volume: 37
  start-page: 113
  year: 2023
  end-page: 133
  ident: bib22
  article-title: Environmental flows allocation for a tropical reservoir system by integration of water quantity (SWAT) and quality (GEFC, QUAL2K) models
  publication-title: Water Resour. Manag.
– volume: 74
  start-page: 7
  year: 2018
  end-page: 20
  ident: bib68
  article-title: Predictive analysis of microbial water quality using machine-learning algorithms
  publication-title: Environ. Res. Eng. Manag.
– volume: 12
  start-page: 1396
  year: 2023
  ident: bib47
  article-title: Erosion and sediment transport modeling: a systematic review
  publication-title: Land
– volume: 49
  year: 2023
  ident: bib53
  article-title: Enhancing waste management and prediction of water quality in the sustainable urban environment using optimized algorithm of least square support vector machine and deep learning techniques
  publication-title: Urban Clim.
– volume: 46
  start-page: 1296
  year: 2017
  end-page: 1305
  ident: bib49
  article-title: Southern Phosphorus Indices, water quality data, and modeling (APEX, APLE, and TBET) results: a comparison
  publication-title: J. Environ. Qual.
– volume: 21
  start-page: 419
  year: 2006
  end-page: 425
  ident: bib70
  article-title: QUAL2Kw-A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration
  publication-title: Environmental Modeling & Software
– volume: 15
  issue: 13
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib36
  article-title: Simulation study on the impact of water flow regulation based on the MIKE 21 model in a river water environment
  publication-title: Sustainability
  doi: 10.3390/su151310313
– volume: 15
  start-page: 1876
  issue: 10
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib54
  article-title: Water quality index estimations using machine learning algorithms: a case study of Yazd-Ardakan plain, Iran
  publication-title: Water
  doi: 10.3390/w15101876
– volume: 408
  start-page: 5078
  issue: 21
  year: 2010
  ident: 10.1016/j.rineng.2024.101921_bib81
  article-title: Gene expression programming for total bed material load estimation—a case study
  publication-title: Science of the total environment
  doi: 10.1016/j.scitotenv.2010.07.048
– volume: 74
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.rineng.2024.101921_bib68
  article-title: Predictive analysis of microbial water quality using machine-learning algorithms
  publication-title: Environ. Res. Eng. Manag.
  doi: 10.5755/j01.erem.74.1.20083
– volume: 15
  start-page: 2005
  issue: 11
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib18
  article-title: Water quality and flow management scenarios in the Qu'Appelle river–reservoir system using loosely coupled WASP and CE-QUAL-W2 models
  publication-title: Water
  doi: 10.3390/w15112005
– volume: 195
  start-page: 480
  issue: 4
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib20
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11072-5
– volume: 1
  start-page: 107
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib52
  article-title: A review of the application of machine learning in water quality evaluation
  publication-title: Eco-Environment & Health
  doi: 10.1016/j.eehl.2022.06.001
– start-page: 19
  issue: 92
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib35
  article-title: Model simulation of heavy metals in river systems: case study the Negro river basin
  publication-title: Revista Facultad de Ingeniería Universidad de Antioquia
  doi: 10.17533/udea.redin.20190514
– volume: 477
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib37
  article-title: Water quality modeling of a eutrophic drinking water source: impact of future climate on Cyanobacterial blooms
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2023.110275
– volume: 10
  start-page: 110
  issue: 5
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib57
  article-title: Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia
  publication-title: Hydrology
  doi: 10.3390/hydrology10050110
– volume: 27
  start-page: 243
  issue: 3
  year: 2004
  ident: 10.1016/j.rineng.2024.101921_bib4
  article-title: Steam water quality models and its development trend
  publication-title: ” Journal of Anhui Normal University (Natural Science)
– volume: 95
  issue: 4
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib10
  article-title: Progression of river BOD/DO modeling for water quality management
  publication-title: Water Environ. Res.
  doi: 10.1002/wer.10864
– volume: 171
  start-page: 119
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib11
  article-title: Inverse algorithm for Streeter–Phelps equation in water pollution control problem
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/j.matcom.2019.12.005
– start-page: 1
  year: 2021
  ident: 10.1016/j.rineng.2024.101921_bib73
  article-title: 2021 Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning
  publication-title: Math. Probl Eng.
– volume: 12
  start-page: 1396
  issue: 7
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib47
  article-title: Erosion and sediment transport modeling: a systematic review
  publication-title: Land
  doi: 10.3390/land12071396
– volume: 28
  start-page: 201
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib21
  article-title: Long-term water quality modeling of a shallow eutrophic lagoon with limited forcing data
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-022-09844-3
– volume: 21
  start-page: 419
  year: 2006
  ident: 10.1016/j.rineng.2024.101921_bib70
  article-title: QUAL2Kw-A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration
  publication-title: Environmental Modeling & Software
  doi: 10.1016/j.envsoft.2005.07.002
– volume: 15
  start-page: 265
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib27
  article-title: Modelling transport and fate of copper and nickel across the south saskatchewan river using WASP—TOXI
  publication-title: Water
  doi: 10.3390/w15020265
– volume: 8
  start-page: 172
  issue: 6
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib58
  article-title: Selection of the best machine learning method for estimation of concentration of different water quality parameters
  publication-title: Sustainable Water Resources Management
  doi: 10.1007/s40899-022-00765-3
– volume: 857
  start-page: 610
  year: 2013
  ident: 10.1016/j.rineng.2024.101921_bib1
  article-title: Shifosi reservoir water environmental assessment based on grey clustering
  publication-title: Prog. Environ. Sci. Eng.
– start-page: 121
  year: 2003
  ident: 10.1016/j.rineng.2024.101921_bib69
– volume: 80
  start-page: 2125
  issue: 11
  year: 2008
  ident: 10.1016/j.rineng.2024.101921_bib7
  article-title: QUAL2Kmodel used in the water quality assessment of Qiantang River, China
  publication-title: Water Environ. Res.
  doi: 10.2175/106143008X304794
– start-page: 378
  year: 1982
  ident: 10.1016/j.rineng.2024.101921_bib16
  article-title: Nomographs for rapid solutions for the Streeter-Phelps equations
  publication-title: Journal (Water Pollution Control Federation)
– volume: 1
  start-page: 141
  year: 1978
  ident: 10.1016/j.rineng.2024.101921_bib17
  article-title: Sensitivity analysis of generalized Streeter-Phelps models
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(78)90024-6
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib44
  article-title: Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1. 0.0): does the model calibrated with a wider hydrological variability become more robust?
  publication-title: Geosci. Model Dev. Discuss. (GMDD)
– volume: 47
  start-page: 1348
  issue: 6
  year: 2011
  ident: 10.1016/j.rineng.2024.101921_bib13
  article-title: Predicting the hypoxic volume in chesapeake bay with the streeter–phelps model: a bayesian approach 1
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.2011.00588.x
– volume: 11
  start-page: 84
  issue: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib29
  article-title: Pendekatan model WASP (water quality analysis simulation program) pada pencemaran logam berat Cd di Sungai Kapuas Kecil
  publication-title: Jurnal Teknologi Lingkungan Lahan Basah
  doi: 10.26418/jtllb.v11i1.59397
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib78
  article-title: Rainfall and atmospheric temperature against the other climatic factors: a case study from Colombo, Sri Lanka
  publication-title: Math. Probl Eng.
  doi: 10.1155/2019/5692753
– volume: 49
  start-page: 61
  issue: 1
  year: 2006
  ident: 10.1016/j.rineng.2024.101921_bib50
  article-title: APEX feedlot water quality simulation
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.20244
– start-page: 441
  year: 1998
  ident: 10.1016/j.rineng.2024.101921_bib51
  article-title: APEX: a new tool for predicting the effects of climate and CO2 changes on erosion and water quality
– volume: 9
  start-page: 94
  issue: 2
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib41
  article-title: Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and MIKE 21
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9020094
– year: 1983
  ident: 10.1016/j.rineng.2024.101921_bib15
– start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib55
  article-title: Estimation of unconfined aquifer transmissivity using a comparative study of machine learning models
  publication-title: Water Resour. Manag.
– volume: 223
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib46
  article-title: No-tillage and agroforestry decrease sediment loss from a hilly landscape in northern Morocco
  publication-title: Catena
  doi: 10.1016/j.catena.2023.106951
– volume: 321
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib61
  article-title: Robust machine learning algorithms for predicting coastal water quality index
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.115923
– volume: 44
  start-page: 61
  issue: 1
  year: 2006
  ident: 10.1016/j.rineng.2024.101921_bib75
  article-title: Estimation of scour below spillways using neural networks
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2006.9521661
– volume: 15
  start-page: 2492
  issue: 13
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib39
  article-title: Numerical simulation of the lower and middle reaches of the Yarkant river (China) using MIKE SHE
  publication-title: Water
  doi: 10.3390/w15132492
– volume: 4
  start-page: 18
  issue: 4
  year: 2006
  ident: 10.1016/j.rineng.2024.101921_bib5
  article-title: Commentary on study of surface water quality model
  publication-title: ” Journal of Water Resources and Architectural Engineering
– volume: 11
  start-page: 6022
  issue: 21
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib25
  article-title: Application of export coefficient model and QUAL2K for water environmental management in a rural watershed
  publication-title: Sustainability
  doi: 10.3390/su11216022
– volume: 14
  start-page: 1058
  issue: 7
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib33
  article-title: Analysis of seasonal variations in surface water quality over wet and dry regions
  publication-title: Water
  doi: 10.3390/w14071058
– volume: 46
  start-page: 1296
  issue: 6
  year: 2017
  ident: 10.1016/j.rineng.2024.101921_bib49
  article-title: Southern Phosphorus Indices, water quality data, and modeling (APEX, APLE, and TBET) results: a comparison
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.05.0200
– volume: 66
  start-page: 1431
  issue: 7
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib28
  article-title: Evidence-based identification of integrated water quality systems
  publication-title: J. Environ. Plann. Manag.
  doi: 10.1080/09640568.2022.2028609
– volume: 49
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib53
  article-title: Enhancing waste management and prediction of water quality in the sustainable urban environment using optimized algorithm of least square support vector machine and deep learning techniques
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2023.101487
– volume: 63
  start-page: 2225
  issue: 10
  year: 2011
  ident: 10.1016/j.rineng.2024.101921_bib77
  article-title: Prediction of scour below submerged pipeline crossing a river using ANN
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2011.459
– volume: 37
  start-page: 413
  issue: 3
  year: 2010
  ident: 10.1016/j.rineng.2024.101921_bib76
  article-title: Artificial neural network study of observed pattern of scour depth around bridge piers
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2009.10.003
– volume: 19
  start-page: 210
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib24
  article-title: Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.1016/j.ecohyd.2019.03.005
– volume: 24
  start-page: 37
  issue: 1
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib31
  article-title: Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes
  publication-title: Lakes Reservoirs Res. Manag.
  doi: 10.1111/lre.12256
– volume: 12
  start-page: 76
  issue: 4
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib63
  article-title: Prediction of irrigation water quality indices based on machine learning and regression models
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-022-01590-x
– volume: 18
  start-page: 120
  issue: 2
  year: 2004
  ident: 10.1016/j.rineng.2024.101921_bib6
  article-title: Fuzzy waste load allocation model: simulation-optimization approach
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2004)18:2(120)
– start-page: 489
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib19
  article-title: Water quality modelling using QUAL-2K at bray marina, UK check for updates
– volume: 14
  start-page: 412
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib40
  article-title: A model-based approach for improving surface water quality management in aquaculture using MIKE 11: a case of the Long Xuyen Quadangle
  publication-title: Mekong Delta, Vietnam. Water
– volume: 37
  start-page: 5856
  year: 2010
  ident: 10.1016/j.rineng.2024.101921_bib82
  article-title: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.020
– volume: 883
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib43
  article-title: Quantifying the contribution of external loadings and internal hydrodynamic processes to the water quality of Lake Okeechobee
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.163713
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 10.1016/j.rineng.2024.101921_bib79
  article-title: Gene-expression programming. A new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– start-page: 60
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib38
  article-title: Research on water salinity control in Dongying City based on MIKE SHE model
– volume: 61
  start-page: 603
  issue: 2
  year: 2018
  ident: 10.1016/j.rineng.2024.101921_bib48
  article-title: Improved APEX model simulation of buffer water quality benefits at field scale
  publication-title: Transactions of the ASABE
  doi: 10.13031/trans.12655
– volume: 48
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib60
  article-title: Water quality classification using machine learning algorithms
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2022.102920
– volume: 205
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib2
  article-title: Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103187
– year: 1995
  ident: 10.1016/j.rineng.2024.101921_bib71
– volume: 8
  year: 2021
  ident: 10.1016/j.rineng.2024.101921_bib9
  article-title: Overview of water quality modeling
  publication-title: Civ. Environ. Eng.
– volume: 17
  start-page: 639
  year: 2012
  ident: 10.1016/j.rineng.2024.101921_bib12
  article-title: Sensitivity analysis and water quality modeling of a tidal river using a modified streeter–phelps equation with HEC-RAS-calculated hydraulic characteristics
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-012-9316-4
– volume: 27
  start-page: 7439
  issue: 11
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib56
  article-title: Water quality prediction using data-driven models case study: ardabil plain, Iran
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07684-7
– volume: 27
  start-page: 1066
  issue: 3
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib45
  article-title: Optimized microcystis prediction model using EFDC-NIER and LH-OAT method
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-023-1886-y
– volume: 15
  start-page: 2444
  issue: 3
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib26
  article-title: Applicability of the WASP model in an assessment of the impact of anthropogenic pollution on water quality—dunajec river case study
  publication-title: Sustainability
  doi: 10.3390/su15032444
– volume: 284
  year: 2021
  ident: 10.1016/j.rineng.2024.101921_bib64
  article-title: Machine learning based marine water quality prediction for coastal hydro-environment management
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112051
– volume: 578
  year: 2019
  ident: 10.1016/j.rineng.2024.101921_bib67
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
– volume: 584–585
  start-page: 131
  year: 2017
  ident: 10.1016/j.rineng.2024.101921_bib3
  article-title: Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.102
– volume: 37
  start-page: 113
  issue: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib22
  article-title: Environmental flows allocation for a tropical reservoir system by integration of water quantity (SWAT) and quality (GEFC, QUAL2K) models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03358-z
– volume: 14
  start-page: 374
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib32
  article-title: An integrated water quality model to support multiscale decisions in a highly altered catchment
  publication-title: Water
  doi: 10.3390/w14030374
– year: 2023
  ident: 10.1016/j.rineng.2024.101921_bib42
  article-title: Autonomous calibration of EFDC for predicting chlorophyll-a using reinforcement learning and a real-time monitoring system
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2023.105805
– volume: 14
  start-page: 1183
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib59
  article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality
  publication-title: Sustainability
  doi: 10.3390/su14031183
– volume: 12
  start-page: 1398
  issue: 5
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib30
  article-title: Wasp 8: the next generation in the 50-year evolution of USEPA's water quality model
  publication-title: Water
  doi: 10.3390/w12051398
– volume: 11
  start-page: 190
  issue: 12
  year: 2021
  ident: 10.1016/j.rineng.2024.101921_bib65
  article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast)
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-021-01528-9
– volume: 605
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib62
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127320
– volume: 2013
  year: 2013
  ident: 10.1016/j.rineng.2024.101921_bib8
  article-title: A review of surface water quality models
  publication-title: Sci. World J.
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2024.101921_bib74
  article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-018-0831-6
– volume: 2
  start-page: 102
  issue: 3
  year: 2011
  ident: 10.1016/j.rineng.2024.101921_bib80
  article-title: Gene-expression programming for sediment transport in sewer pipe systems
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000076
– volume: 83
  start-page: 731
  issue: 2
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib34
  article-title: Quantification of cerebral perfusion and cerebrovascular reserve using Turbo‐QUASAR arterial spin labeling MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27956
– volume: 81
  start-page: 66
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2024.101921_bib23
  article-title: A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-022-10191-5
– volume: 16
  start-page: 1002
  issue: 4
  year: 2016
  ident: 10.1016/j.rineng.2024.101921_bib72
  article-title: Prediction of side weir discharge coefficient by support vector machine technique
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2016.014
– volume: 118
  start-page: 791
  issue: 5
  year: 1992
  ident: 10.1016/j.rineng.2024.101921_bib14
  article-title: Improved first-order uncertainty method for water-quality modeling
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1992)118:5(791)
– volume: 177
  year: 2020
  ident: 10.1016/j.rineng.2024.101921_bib66
  article-title: A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115788
SSID ssj0002810137
Score 2.3491426
Snippet Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101921
SubjectTerms Aji-Chai river
Artificial intelligence
case studies
decision making
Evaluation process
Iran
mathematical models
river water
rivers
water quality
Water surface quality
Title Predicting river water quality: An imposing engagement between machine learning and the QUAL2Kw models (case study: Aji-Chai, river, Iran)
URI https://dx.doi.org/10.1016/j.rineng.2024.101921
https://www.proquest.com/docview/3242068745
https://doaj.org/article/d5755e1b4b0541f1ba79e60cbad51fa5
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3qo2tKq25ZqkHqgEhGx48Tr3gCBaIGqB5C4WfEX3RWEalmEuPQH9Fd3xk7Q0steesnBcmIrM848O2_eMPYp4K7CVxa3qbWShQzWFXYcXFGKIEPEiFVaOu84_d4cnctvF_XFQqkv4oRleeD84nY84ok6cCstggseuW2VDk3pbOtrHtukXooxb2EzNU1HRpy09IZcuUToomy67hK3hEJSkxb8SSxKkv1PQtI_H-cUcQ5fsOc9VITdPMWXbCV0r9izBQHBdfbnx4x-tBB1GWbEsIB7xI4zyKmSD19gt4PJNRGzsANOq2e6QM_OgutEpQzQ1464hLbzgJAQEOieiON7SIVybmHLYbCDJEWLz5xOiv2f7WQ7D7kNXzHefX7Nzg8PzvaPir66QuFkzecpf7yplGh9VLVtIlql8hTOdRV8GTRl6ApntatdFYS0KiguStl6oSMfW1-9YavdTRfeMrBlE73XUWlOimlcWx1s1GXtlLBu3IxYNbxn43rpcaqAcWUGjtnUZOsYso7J1hmx4vGuX1l6Y0n_PTLhY18Szk4N6E6mdyezzJ1GTA0OYHoMkrEFPmqyZPjNwV8MLlH679J24ebu1hBmLRuqK_Duf0zxPVujYTMR7gNbnc_uwgYio7n9mBYBXk9_H_wFg7IN3Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+river+water+quality%3A+An+imposing+engagement+between+machine+learning+and+the+QUAL2Kw+models+%28case+study%3A+Aji-Chai%2C+river%2C+Iran%29&rft.jtitle=Results+in+engineering&rft.au=Sarafaraz%2C+Jamal&rft.au=Ahmadzadeh+Kaleybar%2C+Fariborz&rft.au=Mahmoudi+Karamjavan%2C+Javad&rft.au=Habibzadeh%2C+Nader&rft.date=2024-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=21+p.101921-&rft_id=info:doi/10.1016%2Fj.rineng.2024.101921&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon