Predicting river water quality: An imposing engagement between machine learning and the QUAL2Kw models (case study: Aji-Chai, river, Iran)
Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three c...
Saved in:
Published in | Results in engineering Vol. 21; p. 101921 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study.
•This paper aims to simulate water quality indexes including TDS, EC and SAR for the Aji-Chai, Tabriz, Iran.•Machine learning models namely SVM, GEP and MLP have been implemented to simulate abovementioned quality parameters.•As a mathematical model, QUAL2Kw has been run to forecast three mentioned indices.•A comparison has been performed between MLMs and mathematical models using RMSE, MAE and DDR metrics. |
---|---|
AbstractList | Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study. Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R², and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R² and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study. Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial for water resources management and macro-level decision-making. In this context, the forthcoming article delves into the simulation of three crucial parameters, namely EC, SAR, and TDS, through a reach of 106 km length along the Aji-Chai River, Iran, encompassing stations from Markid, Khajeh, Akhola, and Serin Dizj. This simulation employs three advanced machine learning models: SVM, GEP, and MLP, in conjunction with the QUAL2Kw mathematical simulator. The study meticulously evaluates the performance of these models using four key indices: RMSE, MAE, R2, and DDR. The calculated results unequivocally establish the superiority of the SVM in simulating three essential water quality parameters across all stations. This is supported by consistently high R2 and DDR values, along with low RMSE and MAE values. While the mathematical model used in this study showed reasonable accuracy in simulating the parameters under investigation, it consistently performed less effectively than the SVM model. In summary, the SVM model with specific parameters (C = 68.5, ε = 4.55, and γ = 205) emerges as the optimal choice for accurately simulating river water quality parameters based on the conducted study. •This paper aims to simulate water quality indexes including TDS, EC and SAR for the Aji-Chai, Tabriz, Iran.•Machine learning models namely SVM, GEP and MLP have been implemented to simulate abovementioned quality parameters.•As a mathematical model, QUAL2Kw has been run to forecast three mentioned indices.•A comparison has been performed between MLMs and mathematical models using RMSE, MAE and DDR metrics. |
ArticleNumber | 101921 |
Author | Ahmadzadeh Kaleybar, Fariborz Mahmoudi Karamjavan, Javad Sarafaraz, Jamal Habibzadeh, Nader |
Author_xml | – sequence: 1 givenname: Jamal surname: Sarafaraz fullname: Sarafaraz, Jamal email: jamalsarafraz1399@gmail.com organization: Department of Environmental Sciences and Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran – sequence: 2 givenname: Fariborz orcidid: 0000-0001-5182-3128 surname: Ahmadzadeh Kaleybar fullname: Ahmadzadeh Kaleybar, Fariborz email: f.ahmazdadeh@iaut.ac.ir organization: Department of Water Sciences and Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran – sequence: 3 givenname: Javad surname: Mahmoudi Karamjavan fullname: Mahmoudi Karamjavan, Javad email: karamjavan@iaut.ac.ir organization: Department of Agricultural management, Extension and Education, Tabriz Branch, Islamic Azad University, Tabriz, Iran – sequence: 4 givenname: Nader surname: Habibzadeh fullname: Habibzadeh, Nader email: habibzadeh@iaut.ac.ir organization: Department of Environmental Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran |
BookMark | eNqFkd1qFDEUxwepYK19Ay9yWaG7TTLJfPRCWJaqSxdUsNfhTHJmN8NMsk2yXfoKPrUzjoh4oTcnh8P_g_B7nZ057zDL3jK6ZJQVN90yWIdut-SUi-lUc_YiO-eypgvGc3r2x_4qu4yxo5TyahTm5Xn2_UtAY3WybkeCfcJATpDG-XiE3qbnW7JyxA4HHyfB2AI7HNAl0mA6IToygN6P9aRHCG7SgDMk7ZF8fVht-f2JDN5gH8mVhogkpqOZMju7WO_BXs-V12QTwL17k71soY94-eu9yB4-3H1bf1psP3_crFfbhRaSpUXFq6LISw6mLWVTtIw2uRFM8jpHQ7HORcW4bmotdY5cNCWWjFMBhtctqxqTX2SbOdd46NQh2AHCs_Jg1c-DDzsFIVndozKylBJZIxoqBWtZA2WNBdUNGMlakGPW1Zx1CP7xiDGpwUaNfQ8O_TGqnAtOi6oUk1TMUh18jAHb39WMqomk6tRMUk0k1UxytN3-ZdM2QbLepQC2_5_5_WweEeCTxaCituj0iDygTuOH7b8DfgDEob13 |
CitedBy_id | crossref_primary_10_1007_s11356_024_33921_7 crossref_primary_10_1007_s00477_024_02905_x crossref_primary_10_1016_j_wsee_2024_05_003 crossref_primary_10_1016_j_rineng_2024_102104 crossref_primary_10_1016_j_rineng_2024_102114 crossref_primary_10_1016_j_compag_2025_109932 crossref_primary_10_1016_j_rineng_2024_102563 crossref_primary_10_1007_s10661_024_13507_z crossref_primary_10_1016_j_rineng_2024_103667 crossref_primary_10_1007_s10653_025_02425_9 crossref_primary_10_1016_j_rineng_2025_104307 crossref_primary_10_1016_j_rineng_2024_101978 |
Cites_doi | 10.3390/su151310313 10.3390/w15101876 10.1016/j.scitotenv.2010.07.048 10.5755/j01.erem.74.1.20083 10.3390/w15112005 10.1007/s10661-023-11072-5 10.1016/j.eehl.2022.06.001 10.17533/udea.redin.20190514 10.1016/j.ecolmodel.2023.110275 10.3390/hydrology10050110 10.1002/wer.10864 10.1016/j.matcom.2019.12.005 10.3390/land12071396 10.1007/s10666-022-09844-3 10.1016/j.envsoft.2005.07.002 10.3390/w15020265 10.1007/s40899-022-00765-3 10.2175/106143008X304794 10.1016/0309-1708(78)90024-6 10.1111/j.1752-1688.2011.00588.x 10.26418/jtllb.v11i1.59397 10.1155/2019/5692753 10.13031/2013.20244 10.3390/ijgi9020094 10.1016/j.catena.2023.106951 10.1016/j.jenvman.2022.115923 10.1080/00221686.2006.9521661 10.3390/w15132492 10.3390/su11216022 10.3390/w14071058 10.2134/jeq2016.05.0200 10.1080/09640568.2022.2028609 10.1016/j.uclim.2023.101487 10.2166/wst.2011.459 10.1016/j.compgeo.2009.10.003 10.1016/j.ecohyd.2019.03.005 10.1111/lre.12256 10.1007/s13201-022-01590-x 10.1061/(ASCE)0887-3801(2004)18:2(120) 10.1016/j.eswa.2010.02.020 10.1016/j.scitotenv.2023.163713 10.13031/trans.12655 10.1016/j.jwpe.2022.102920 10.1016/j.earscirev.2020.103187 10.1007/s10666-012-9316-4 10.1007/s00500-022-07684-7 10.1007/s12205-023-1886-y 10.3390/su15032444 10.1016/j.jenvman.2021.112051 10.1016/j.scitotenv.2017.01.102 10.1007/s11269-022-03358-z 10.3390/w14030374 10.1016/j.envsoft.2023.105805 10.3390/su14031183 10.3390/w12051398 10.1007/s13201-021-01528-9 10.1016/j.jhydrol.2021.127320 10.1007/s13201-018-0831-6 10.1061/(ASCE)PS.1949-1204.0000076 10.1002/mrm.27956 10.1007/s12665-022-10191-5 10.2166/ws.2016.014 10.1061/(ASCE)0733-9372(1992)118:5(791) 10.1016/j.watres.2020.115788 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.rineng.2024.101921 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_d5755e1b4b0541f1ba79e60cbad51fa5 10_1016_j_rineng_2024_101921 S2590123024001749 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c451t-82866372adf75b6f10b3d415293ed0e934812cb9c5c3e24b7e71204ad29f18bd3 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:26:51 EDT 2025 Fri Aug 22 21:00:45 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Wed Aug 27 16:26:41 EDT 2025 Sat Aug 30 17:14:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aji-Chai river Artificial intelligence Evaluation process Water surface quality |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-82866372adf75b6f10b3d415293ed0e934812cb9c5c3e24b7e71204ad29f18bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5182-3128 |
OpenAccessLink | https://doaj.org/article/d5755e1b4b0541f1ba79e60cbad51fa5 |
PQID | 3242068745 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d5755e1b4b0541f1ba79e60cbad51fa5 proquest_miscellaneous_3242068745 crossref_primary_10_1016_j_rineng_2024_101921 crossref_citationtrail_10_1016_j_rineng_2024_101921 elsevier_sciencedirect_doi_10_1016_j_rineng_2024_101921 |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Elhabashy, Li, Sokolova (bib37) 2023; 477 Rinaldi, Soncini-Sessa (bib17) 1978; 1 Terry, Lindenschmidt (bib18) 2023; 15 Mokhtar, Elbeltagi, Gyasi-Agyei, Al-Ansari, Abdel-Fattah (bib63) 2022; 12 El Harche, Chikhaoui, Naimi, Seif-Ennasr, Whalen, Chaaou (bib46) 2023; 223 Kouadri, Elbeltagi, Islam, Kateb (bib65) 2021; 11 McCutcheon (bib15) 1983 Senaviratne, Baffaut, Lory, Udawatta, Nelson, Williams, Anderson (bib48) 2018; 61 Azamathulla, Deo, Deolalikar (bib75) 2006; 44 Melching, Anmangandla (bib14) 1992; 118 Fatemi (bib23) 2022; 81 Thu Minh, Tri, Avtar, Kumar, Dang, Downes (bib40) 2022; 14 McBride (bib16) 1982 Bui, Ha, Nguyen, Nguyen, Pham, Kandasamy, Nguyen (bib24) 2019; 19 Pan, Leng, Liu (bib1) 2013; 857 Wang, Li, Jia, Qi, Ding (bib8) 2013; 2013 Wang, Li, Ge (bib39) 2023; 15 Dashti, Nakhaei, Vadiati, Karami, Kisi (bib55) 2023 Nengsih, Purnaini, Saziati (bib29) 2023; 11 Mamani Larico, Zúñiga Medina (bib31) 2019; 24 Sener, Sener, Davraz (bib3) 2017; 584–585 Zhang, Fu (bib44) 2023; 2023 Williams, Arnold, Srinivasan, Ramanarayanan (bib51) 1998 Xu, Coco, Neale (bib66) 2020; 177 Wang, Zhong, Wu (bib4) 2004; 27 Liu, Arhonditsis, Stow, Scavia (bib13) 2011; 47 Deng, Chau, Duan (bib64) 2021; 284 Pelletier, Chapra, Tao (bib70) 2006; 21 Lung (bib10) 2023; 95 Wang, Peng, Liang (bib62) 2022; 605 Leggesse, Zimale, Sultan, Enku, Srinivasan, Tilahun (bib57) 2023; 10 Zhang, Omar, Hashim, Alam, Khalifa, Elkotb (bib53) 2023; 49 Osmond, Bolster, Sharpley, Cabrera, Feagley, Forsberg, Zhang (bib49) 2017; 46 Williams, Harman, Magre, Kizil, Lindley, Padmanabhan, Wang (bib50) 2006; 49 Xu, Ren, Huang, Li, Zi, Hu (bib36) 2023; 15 Zhu, Wang, Yang, Zhang, Zhang, Ren, Ye (bib52) 2022; 1 Shin, Her, Muñoz-Carpena, Yu (bib43) 2023; 883 Cui, Gao, Wang (bib38) 2023 Uddin, Nash, Diganta, Rahman, Olbert (bib61) 2022; 321 Fang, Zhang, Chen, Xu (bib7) 2008; 80 Wool, Ambrose, Martin, Comer (bib30) 2020; 12 Azamathulla, Zakaria (bib77) 2011; 63 Hong, Abbas, Kim, Kwon, Yoon, Yun, Cho (bib42) 2023 Goodarzi, Niknam, Barzkar, Niazkar, Zare Mehrjerdi, Abedi, HeydariPour (bib54) 2023; 15 Azamathulla, Haghiabi, Parsaie (bib72) 2016; 16 Ab Ghani, Md Azamathulla (bib80) 2011; 2 Santos Santos, Camacho (bib32) 2022; 14 Hasanpour Kashani, Nikpour, Jalali (bib56) 2023; 27 Mohammed, Longva, Seidu (bib68) 2018; 74 Perera, Rathnayake (bib78) 2019; 2019 Long (bib11) 2020; 171 Zhao, Václavů, Petersen, Biemond, Sokolska, Suzuki, Chappell (bib34) 2020; 83 Alqahtani, Shah, Aldrees, Javed (bib59) 2022; 14 Fan, Wang, Liu, Yang (bib12) 2012; 17 Akomeah, Lindenschmidt, Morales-Marin, Hassanzadeh (bib28) 2023; 66 Ferreira (bib79) 2001; 13 Sagan, Peterson, Maimaitijiang, Sidike, Sloan, Greeling, Maalouf, Adams (bib2) 2020; 205 Ahmed, Othman, Afan, Ibrahim, Fai, Hossain, Elshafie (bib67) 2019; 578 Kaya (bib76) 2010; 37 Prajapati, Sabokruhie, Brinkmann, Lindenschmidt (bib27) 2023; 15 Palacio-Tobón, Vieira-Agudelo, Saldarriaga-Molina, Ruiz-Jaramillo (bib35) 2019 Ekanayake, Wickramasinghe, Jayasinghe, Rathnayake (bib73) 2021 Zehra, Singh, Verma, Kulshreshtha (bib20) 2023; 195 Vapnik (bib71) 1995 Almeida, Rebelo, Costa, Rodrigues, Coelho (bib21) 2023; 28 Li, Huang, Wang (bib41) 2020; 9 Chapra, Pelletier, Tao (bib69) 2003 Sahoo, Swain (bib19) 2023 Xin, Ye, Zhang (bib25) 2019; 11 Ejigu (bib9) 2021; 8 Adib, Farajpanah, Shoushtari, Lotfirad, Saeedpanah, Sasani (bib58) 2022; 8 Noori, Khakpour, Omidvar, Farokhnia (bib82) 2010; 37 Azamathulla, Rathnayake, Shatnawi (bib74) 2018; 8 Ahn, Kim, Kwak, Kang (bib45) 2023; 27 Zakaria, Azamathulla, Chang, Ghani (bib81) 2010; 408 Cao, Zhang (bib5) 2006; 4 Kumar, Priya, Shaik, Singh (bib22) 2023; 37 Żelazny, Bryła, Ozga-Zielinski, Walczykiewicz (bib26) 2023; 15 Mujumdar, Vemula (bib6) 2004; 18 Andualem, Hewa, Myers, Peters, Boland (bib47) 2023; 12 Iqbal, Li, Hussain, Lee, Mumtaz, Elbeltagi, Dilawar (bib33) 2022; 14 Nasir, Kansal, Alshaltone, Barneih, Sameer, Shanableh, Al-Shamma'a (bib60) 2022; 48 Leggesse (10.1016/j.rineng.2024.101921_bib57) 2023; 10 Zhang (10.1016/j.rineng.2024.101921_bib53) 2023; 49 Mamani Larico (10.1016/j.rineng.2024.101921_bib31) 2019; 24 Xu (10.1016/j.rineng.2024.101921_bib66) 2020; 177 Zhang (10.1016/j.rineng.2024.101921_bib44) 2023; 2023 Kaya (10.1016/j.rineng.2024.101921_bib76) 2010; 37 Almeida (10.1016/j.rineng.2024.101921_bib21) 2023; 28 Fatemi (10.1016/j.rineng.2024.101921_bib23) 2022; 81 Żelazny (10.1016/j.rineng.2024.101921_bib26) 2023; 15 Nasir (10.1016/j.rineng.2024.101921_bib60) 2022; 48 Wang (10.1016/j.rineng.2024.101921_bib62) 2022; 605 McBride (10.1016/j.rineng.2024.101921_bib16) 1982 Azamathulla (10.1016/j.rineng.2024.101921_bib72) 2016; 16 Chapra (10.1016/j.rineng.2024.101921_bib69) 2003 Ejigu (10.1016/j.rineng.2024.101921_bib9) 2021; 8 Perera (10.1016/j.rineng.2024.101921_bib78) 2019; 2019 Wool (10.1016/j.rineng.2024.101921_bib30) 2020; 12 Kumar (10.1016/j.rineng.2024.101921_bib22) 2023; 37 Pelletier (10.1016/j.rineng.2024.101921_bib70) 2006; 21 Prajapati (10.1016/j.rineng.2024.101921_bib27) 2023; 15 Sener (10.1016/j.rineng.2024.101921_bib3) 2017; 584–585 Mujumdar (10.1016/j.rineng.2024.101921_bib6) 2004; 18 Noori (10.1016/j.rineng.2024.101921_bib82) 2010; 37 Lung (10.1016/j.rineng.2024.101921_bib10) 2023; 95 Fan (10.1016/j.rineng.2024.101921_bib12) 2012; 17 Zehra (10.1016/j.rineng.2024.101921_bib20) 2023; 195 Mohammed (10.1016/j.rineng.2024.101921_bib68) 2018; 74 El Harche (10.1016/j.rineng.2024.101921_bib46) 2023; 223 Osmond (10.1016/j.rineng.2024.101921_bib49) 2017; 46 Pan (10.1016/j.rineng.2024.101921_bib1) 2013; 857 Palacio-Tobón (10.1016/j.rineng.2024.101921_bib35) 2019 Akomeah (10.1016/j.rineng.2024.101921_bib28) 2023; 66 Deng (10.1016/j.rineng.2024.101921_bib64) 2021; 284 Alqahtani (10.1016/j.rineng.2024.101921_bib59) 2022; 14 Iqbal (10.1016/j.rineng.2024.101921_bib33) 2022; 14 Fang (10.1016/j.rineng.2024.101921_bib7) 2008; 80 Williams (10.1016/j.rineng.2024.101921_bib51) 1998 Goodarzi (10.1016/j.rineng.2024.101921_bib54) 2023; 15 Dashti (10.1016/j.rineng.2024.101921_bib55) 2023 Liu (10.1016/j.rineng.2024.101921_bib13) 2011; 47 Ahn (10.1016/j.rineng.2024.101921_bib45) 2023; 27 Thu Minh (10.1016/j.rineng.2024.101921_bib40) 2022; 14 Ferreira (10.1016/j.rineng.2024.101921_bib79) 2001; 13 Ahmed (10.1016/j.rineng.2024.101921_bib67) 2019; 578 Senaviratne (10.1016/j.rineng.2024.101921_bib48) 2018; 61 Nengsih (10.1016/j.rineng.2024.101921_bib29) 2023; 11 Zhao (10.1016/j.rineng.2024.101921_bib34) 2020; 83 Santos Santos (10.1016/j.rineng.2024.101921_bib32) 2022; 14 Vapnik (10.1016/j.rineng.2024.101921_bib71) 1995 Kouadri (10.1016/j.rineng.2024.101921_bib65) 2021; 11 Sagan (10.1016/j.rineng.2024.101921_bib2) 2020; 205 Cui (10.1016/j.rineng.2024.101921_bib38) 2023 Adib (10.1016/j.rineng.2024.101921_bib58) 2022; 8 Cao (10.1016/j.rineng.2024.101921_bib5) 2006; 4 Azamathulla (10.1016/j.rineng.2024.101921_bib77) 2011; 63 Terry (10.1016/j.rineng.2024.101921_bib18) 2023; 15 Melching (10.1016/j.rineng.2024.101921_bib14) 1992; 118 Zakaria (10.1016/j.rineng.2024.101921_bib81) 2010; 408 Xin (10.1016/j.rineng.2024.101921_bib25) 2019; 11 Mokhtar (10.1016/j.rineng.2024.101921_bib63) 2022; 12 Wang (10.1016/j.rineng.2024.101921_bib4) 2004; 27 Williams (10.1016/j.rineng.2024.101921_bib50) 2006; 49 Bui (10.1016/j.rineng.2024.101921_bib24) 2019; 19 Hasanpour Kashani (10.1016/j.rineng.2024.101921_bib56) 2023; 27 Sahoo (10.1016/j.rineng.2024.101921_bib19) 2023 Ekanayake (10.1016/j.rineng.2024.101921_bib73) 2021 Xu (10.1016/j.rineng.2024.101921_bib36) 2023; 15 Long (10.1016/j.rineng.2024.101921_bib11) 2020; 171 Ab Ghani (10.1016/j.rineng.2024.101921_bib80) 2011; 2 McCutcheon (10.1016/j.rineng.2024.101921_bib15) 1983 Wang (10.1016/j.rineng.2024.101921_bib8) 2013; 2013 Rinaldi (10.1016/j.rineng.2024.101921_bib17) 1978; 1 Elhabashy (10.1016/j.rineng.2024.101921_bib37) 2023; 477 Azamathulla (10.1016/j.rineng.2024.101921_bib74) 2018; 8 Zhu (10.1016/j.rineng.2024.101921_bib52) 2022; 1 Uddin (10.1016/j.rineng.2024.101921_bib61) 2022; 321 Hong (10.1016/j.rineng.2024.101921_bib42) 2023 Azamathulla (10.1016/j.rineng.2024.101921_bib75) 2006; 44 Andualem (10.1016/j.rineng.2024.101921_bib47) 2023; 12 Li (10.1016/j.rineng.2024.101921_bib41) 2020; 9 Wang (10.1016/j.rineng.2024.101921_bib39) 2023; 15 Shin (10.1016/j.rineng.2024.101921_bib43) 2023; 883 |
References_xml | – volume: 11 start-page: 6022 year: 2019 ident: bib25 article-title: Application of export coefficient model and QUAL2K for water environmental management in a rural watershed publication-title: Sustainability – start-page: 1 year: 2023 end-page: 23 ident: bib55 article-title: Estimation of unconfined aquifer transmissivity using a comparative study of machine learning models publication-title: Water Resour. Manag. – volume: 118 start-page: 791 year: 1992 end-page: 805 ident: bib14 article-title: Improved first-order uncertainty method for water-quality modeling publication-title: J. Environ. Eng. – volume: 15 start-page: 2005 year: 2023 ident: bib18 article-title: Water quality and flow management scenarios in the Qu'Appelle river–reservoir system using loosely coupled WASP and CE-QUAL-W2 models publication-title: Water – volume: 8 start-page: 1 year: 2018 end-page: 7 ident: bib74 article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia publication-title: Appl. Water Sci. – volume: 15 year: 2023 ident: bib36 article-title: Simulation study on the impact of water flow regulation based on the MIKE 21 model in a river water environment publication-title: Sustainability – volume: 17 start-page: 639 year: 2012 end-page: 651 ident: bib12 article-title: Sensitivity analysis and water quality modeling of a tidal river using a modified streeter–phelps equation with HEC-RAS-calculated hydraulic characteristics publication-title: Environ. Model. Assess. – volume: 48 year: 2022 ident: bib60 article-title: Water quality classification using machine learning algorithms publication-title: Journal of Water Process Engineering – start-page: 378 year: 1982 end-page: 384 ident: bib16 article-title: Nomographs for rapid solutions for the Streeter-Phelps equations publication-title: Journal (Water Pollution Control Federation) – volume: 2019 start-page: 1 year: 2019 end-page: 15 ident: bib78 article-title: Rainfall and atmospheric temperature against the other climatic factors: a case study from Colombo, Sri Lanka publication-title: Math. Probl Eng. – volume: 14 start-page: 374 year: 2022 ident: bib32 article-title: An integrated water quality model to support multiscale decisions in a highly altered catchment publication-title: Water – volume: 171 start-page: 119 year: 2020 end-page: 126 ident: bib11 article-title: Inverse algorithm for Streeter–Phelps equation in water pollution control problem publication-title: Math. Comput. Simulat. – volume: 1 start-page: 141 year: 1978 end-page: 146 ident: bib17 article-title: Sensitivity analysis of generalized Streeter-Phelps models publication-title: Adv. Water Resour. – volume: 95 year: 2023 ident: bib10 article-title: Progression of river BOD/DO modeling for water quality management publication-title: Water Environ. Res. – volume: 2023 start-page: 1 year: 2023 end-page: 24 ident: bib44 article-title: Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1. 0.0): does the model calibrated with a wider hydrological variability become more robust? publication-title: Geosci. Model Dev. Discuss. (GMDD) – volume: 49 start-page: 61 year: 2006 end-page: 73 ident: bib50 article-title: APEX feedlot water quality simulation publication-title: Transactions of the ASABE – volume: 44 start-page: 61 year: 2006 end-page: 69 ident: bib75 article-title: Estimation of scour below spillways using neural networks publication-title: J. Hydraul. Res. – volume: 857 start-page: 610 year: 2013 end-page: 613 ident: bib1 article-title: Shifosi reservoir water environmental assessment based on grey clustering publication-title: Prog. Environ. Sci. Eng. – start-page: 19 year: 2019 end-page: 35 ident: bib35 article-title: Model simulation of heavy metals in river systems: case study the Negro river basin publication-title: Revista Facultad de Ingeniería Universidad de Antioquia – volume: 14 start-page: 1183 year: 2022 ident: bib59 article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality publication-title: Sustainability – volume: 83 start-page: 731 year: 2020 end-page: 748 ident: bib34 article-title: Quantification of cerebral perfusion and cerebrovascular reserve using Turbo‐QUASAR arterial spin labeling MRI publication-title: Magn. Reson. Med. – year: 1983 ident: bib15 article-title: Evaluation of Selected One-Dimensional Stream Water-Quality Models with Field Data – volume: 883 year: 2023 ident: bib43 article-title: Quantifying the contribution of external loadings and internal hydrodynamic processes to the water quality of Lake Okeechobee publication-title: Sci. Total Environ. – volume: 408 start-page: 5078 year: 2010 end-page: 5085 ident: bib81 article-title: Gene expression programming for total bed material load estimation—a case study publication-title: Science of the total environment – volume: 10 start-page: 110 year: 2023 ident: bib57 article-title: Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia publication-title: Hydrology – volume: 16 start-page: 1002 year: 2016 end-page: 1016 ident: bib72 article-title: Prediction of side weir discharge coefficient by support vector machine technique publication-title: Water Sci. Technol. Water Supply – volume: 195 start-page: 480 year: 2023 ident: bib20 article-title: Spatio-temporal investigation of physico-chemical water quality parameters based on comparative assessment of QUAL 2Kw and WASP model for the upper reaches of Yamuna River stretching from Paonta Sahib, Sirmaur district to Cullackpur, North Delhi districts of North India publication-title: Environ. Monit. Assess. – volume: 2 start-page: 102 year: 2011 end-page: 106 ident: bib80 article-title: Gene-expression programming for sediment transport in sewer pipe systems publication-title: J. Pipeline Syst. Eng. Pract. – volume: 24 start-page: 37 year: 2019 end-page: 47 ident: bib31 article-title: Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes publication-title: Lakes Reservoirs Res. Manag. – start-page: 441 year: 1998 end-page: 449 ident: bib51 article-title: APEX: a new tool for predicting the effects of climate and CO2 changes on erosion and water quality publication-title: Modelling Soil Erosion by Water – volume: 37 start-page: 413 year: 2010 end-page: 418 ident: bib76 article-title: Artificial neural network study of observed pattern of scour depth around bridge piers publication-title: Comput. Geotech. – year: 2023 ident: bib42 article-title: Autonomous calibration of EFDC for predicting chlorophyll-a using reinforcement learning and a real-time monitoring system publication-title: Environ. Model. Software – volume: 12 start-page: 76 year: 2022 ident: bib63 article-title: Prediction of irrigation water quality indices based on machine learning and regression models publication-title: Appl. Water Sci. – volume: 37 start-page: 5856 year: 2010 end-page: 5862 ident: bib82 article-title: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics publication-title: Expert Syst. Appl. – volume: 27 start-page: 243 year: 2004 end-page: 247 ident: bib4 article-title: Steam water quality models and its development trend publication-title: ” Journal of Anhui Normal University (Natural Science) – volume: 284 year: 2021 ident: bib64 article-title: Machine learning based marine water quality prediction for coastal hydro-environment management publication-title: J. Environ. Manag. – volume: 66 start-page: 1431 year: 2023 end-page: 1452 ident: bib28 article-title: Evidence-based identification of integrated water quality systems publication-title: J. Environ. Plann. Manag. – volume: 15 start-page: 1876 year: 2023 ident: bib54 article-title: Water quality index estimations using machine learning algorithms: a case study of Yazd-Ardakan plain, Iran publication-title: Water – volume: 18 start-page: 120 year: 2004 end-page: 131 ident: bib6 article-title: Fuzzy waste load allocation model: simulation-optimization approach publication-title: J. Comput. Civ. Eng. – volume: 13 start-page: 87 year: 2001 end-page: 129 ident: bib79 article-title: Gene-expression programming. A new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 584–585 start-page: 131 year: 2017 end-page: 144 ident: bib3 article-title: Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey) publication-title: Sci. Total Environ. – volume: 47 start-page: 1348 year: 2011 end-page: 1363 ident: bib13 article-title: Predicting the hypoxic volume in chesapeake bay with the streeter–phelps model: a bayesian approach 1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 605 year: 2022 ident: bib62 article-title: Prediction of estuarine water quality using interpretable machine learning approach publication-title: J. Hydrol. – volume: 11 start-page: 190 year: 2021 ident: bib65 article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast) publication-title: Appl. Water Sci. – start-page: 60 year: 2023 end-page: 67 ident: bib38 article-title: Research on water salinity control in Dongying City based on MIKE SHE model publication-title: Advances in Civil Engineering and Environmental Engineering, Volume 2 – volume: 28 start-page: 201 year: 2023 end-page: 225 ident: bib21 article-title: Long-term water quality modeling of a shallow eutrophic lagoon with limited forcing data publication-title: Environ. Model. Assess. – volume: 177 year: 2020 ident: bib66 article-title: A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning publication-title: Water Res. – volume: 477 year: 2023 ident: bib37 article-title: Water quality modeling of a eutrophic drinking water source: impact of future climate on Cyanobacterial blooms publication-title: Ecol. Model. – volume: 80 start-page: 2125 year: 2008 end-page: 2133 ident: bib7 article-title: QUAL2Kmodel used in the water quality assessment of Qiantang River, China publication-title: Water Environ. Res. – volume: 15 start-page: 2492 year: 2023 ident: bib39 article-title: Numerical simulation of the lower and middle reaches of the Yarkant river (China) using MIKE SHE publication-title: Water – volume: 27 start-page: 7439 year: 2023 end-page: 7448 ident: bib56 article-title: Water quality prediction using data-driven models case study: ardabil plain, Iran publication-title: Soft Comput. – start-page: 1 year: 2021 end-page: 12 ident: bib73 article-title: 2021 Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning publication-title: Math. Probl Eng. – volume: 2013 year: 2013 ident: bib8 article-title: A review of surface water quality models publication-title: Sci. World J. – volume: 205 year: 2020 ident: bib2 article-title: Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing publication-title: Earth Sci. Rev. – volume: 8 start-page: 172 year: 2022 ident: bib58 article-title: Selection of the best machine learning method for estimation of concentration of different water quality parameters publication-title: Sustainable Water Resources Management – year: 1995 ident: bib71 article-title: The Nature of Statistical Learning Theory – volume: 12 start-page: 1398 year: 2020 ident: bib30 article-title: Wasp 8: the next generation in the 50-year evolution of USEPA's water quality model publication-title: Water – volume: 63 start-page: 2225 year: 2011 end-page: 2230 ident: bib77 article-title: Prediction of scour below submerged pipeline crossing a river using ANN publication-title: Water Sci. Technol. – volume: 223 year: 2023 ident: bib46 article-title: No-tillage and agroforestry decrease sediment loss from a hilly landscape in northern Morocco publication-title: Catena – volume: 27 start-page: 1066 year: 2023 end-page: 1076 ident: bib45 article-title: Optimized microcystis prediction model using EFDC-NIER and LH-OAT method publication-title: KSCE J. Civ. Eng. – start-page: 489 year: 2023 ident: bib19 article-title: Water quality modelling using QUAL-2K at bray marina, UK check for updates publication-title: Fluid Mechanics and Hydraulics: Proceedings of 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) – volume: 19 start-page: 210 year: 2019 end-page: 223 ident: bib24 article-title: Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam publication-title: Ecohydrol. Hydrobiol. – volume: 81 start-page: 66 year: 2022 ident: bib23 article-title: A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran publication-title: Environ. Earth Sci. – volume: 1 start-page: 107 year: 2022 end-page: 116 ident: bib52 article-title: A review of the application of machine learning in water quality evaluation publication-title: Eco-Environment & Health – volume: 4 start-page: 18 year: 2006 end-page: 21 ident: bib5 article-title: Commentary on study of surface water quality model publication-title: ” Journal of Water Resources and Architectural Engineering – volume: 14 start-page: 412 year: 2022 ident: bib40 article-title: A model-based approach for improving surface water quality management in aquaculture using MIKE 11: a case of the Long Xuyen Quadangle publication-title: Mekong Delta, Vietnam. Water – volume: 14 start-page: 1058 year: 2022 ident: bib33 article-title: Analysis of seasonal variations in surface water quality over wet and dry regions publication-title: Water – volume: 8 year: 2021 ident: bib9 article-title: Overview of water quality modeling publication-title: Civ. Environ. Eng. – volume: 15 start-page: 2444 year: 2023 ident: bib26 article-title: Applicability of the WASP model in an assessment of the impact of anthropogenic pollution on water quality—dunajec river case study publication-title: Sustainability – volume: 321 year: 2022 ident: bib61 article-title: Robust machine learning algorithms for predicting coastal water quality index publication-title: J. Environ. Manag. – start-page: 121 year: 2003 ident: bib69 article-title: QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and User's Manual – volume: 61 start-page: 603 year: 2018 end-page: 616 ident: bib48 article-title: Improved APEX model simulation of buffer water quality benefits at field scale publication-title: Transactions of the ASABE – volume: 15 start-page: 265 year: 2023 ident: bib27 article-title: Modelling transport and fate of copper and nickel across the south saskatchewan river using WASP—TOXI publication-title: Water – volume: 9 start-page: 94 year: 2020 ident: bib41 article-title: Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and MIKE 21 publication-title: ISPRS Int. J. Geo-Inf. – volume: 578 year: 2019 ident: bib67 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. – volume: 11 start-page: 84 year: 2023 end-page: 93 ident: bib29 article-title: Pendekatan model WASP (water quality analysis simulation program) pada pencemaran logam berat Cd di Sungai Kapuas Kecil publication-title: Jurnal Teknologi Lingkungan Lahan Basah – volume: 37 start-page: 113 year: 2023 end-page: 133 ident: bib22 article-title: Environmental flows allocation for a tropical reservoir system by integration of water quantity (SWAT) and quality (GEFC, QUAL2K) models publication-title: Water Resour. Manag. – volume: 74 start-page: 7 year: 2018 end-page: 20 ident: bib68 article-title: Predictive analysis of microbial water quality using machine-learning algorithms publication-title: Environ. Res. Eng. Manag. – volume: 12 start-page: 1396 year: 2023 ident: bib47 article-title: Erosion and sediment transport modeling: a systematic review publication-title: Land – volume: 49 year: 2023 ident: bib53 article-title: Enhancing waste management and prediction of water quality in the sustainable urban environment using optimized algorithm of least square support vector machine and deep learning techniques publication-title: Urban Clim. – volume: 46 start-page: 1296 year: 2017 end-page: 1305 ident: bib49 article-title: Southern Phosphorus Indices, water quality data, and modeling (APEX, APLE, and TBET) results: a comparison publication-title: J. Environ. Qual. – volume: 21 start-page: 419 year: 2006 end-page: 425 ident: bib70 article-title: QUAL2Kw-A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration publication-title: Environmental Modeling & Software – volume: 15 issue: 13 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib36 article-title: Simulation study on the impact of water flow regulation based on the MIKE 21 model in a river water environment publication-title: Sustainability doi: 10.3390/su151310313 – volume: 15 start-page: 1876 issue: 10 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib54 article-title: Water quality index estimations using machine learning algorithms: a case study of Yazd-Ardakan plain, Iran publication-title: Water doi: 10.3390/w15101876 – volume: 408 start-page: 5078 issue: 21 year: 2010 ident: 10.1016/j.rineng.2024.101921_bib81 article-title: Gene expression programming for total bed material load estimation—a case study publication-title: Science of the total environment doi: 10.1016/j.scitotenv.2010.07.048 – volume: 74 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.rineng.2024.101921_bib68 article-title: Predictive analysis of microbial water quality using machine-learning algorithms publication-title: Environ. Res. Eng. Manag. doi: 10.5755/j01.erem.74.1.20083 – volume: 15 start-page: 2005 issue: 11 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib18 article-title: Water quality and flow management scenarios in the Qu'Appelle river–reservoir system using loosely coupled WASP and CE-QUAL-W2 models publication-title: Water doi: 10.3390/w15112005 – volume: 195 start-page: 480 issue: 4 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib20 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11072-5 – volume: 1 start-page: 107 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib52 article-title: A review of the application of machine learning in water quality evaluation publication-title: Eco-Environment & Health doi: 10.1016/j.eehl.2022.06.001 – start-page: 19 issue: 92 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib35 article-title: Model simulation of heavy metals in river systems: case study the Negro river basin publication-title: Revista Facultad de Ingeniería Universidad de Antioquia doi: 10.17533/udea.redin.20190514 – volume: 477 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib37 article-title: Water quality modeling of a eutrophic drinking water source: impact of future climate on Cyanobacterial blooms publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2023.110275 – volume: 10 start-page: 110 issue: 5 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib57 article-title: Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia publication-title: Hydrology doi: 10.3390/hydrology10050110 – volume: 27 start-page: 243 issue: 3 year: 2004 ident: 10.1016/j.rineng.2024.101921_bib4 article-title: Steam water quality models and its development trend publication-title: ” Journal of Anhui Normal University (Natural Science) – volume: 95 issue: 4 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib10 article-title: Progression of river BOD/DO modeling for water quality management publication-title: Water Environ. Res. doi: 10.1002/wer.10864 – volume: 171 start-page: 119 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib11 article-title: Inverse algorithm for Streeter–Phelps equation in water pollution control problem publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2019.12.005 – start-page: 1 year: 2021 ident: 10.1016/j.rineng.2024.101921_bib73 article-title: 2021 Regression-based prediction of power generation at samanalawewa hydropower plant in Sri Lanka using machine learning publication-title: Math. Probl Eng. – volume: 12 start-page: 1396 issue: 7 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib47 article-title: Erosion and sediment transport modeling: a systematic review publication-title: Land doi: 10.3390/land12071396 – volume: 28 start-page: 201 issue: 2 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib21 article-title: Long-term water quality modeling of a shallow eutrophic lagoon with limited forcing data publication-title: Environ. Model. Assess. doi: 10.1007/s10666-022-09844-3 – volume: 21 start-page: 419 year: 2006 ident: 10.1016/j.rineng.2024.101921_bib70 article-title: QUAL2Kw-A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration publication-title: Environmental Modeling & Software doi: 10.1016/j.envsoft.2005.07.002 – volume: 15 start-page: 265 issue: 2 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib27 article-title: Modelling transport and fate of copper and nickel across the south saskatchewan river using WASP—TOXI publication-title: Water doi: 10.3390/w15020265 – volume: 8 start-page: 172 issue: 6 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib58 article-title: Selection of the best machine learning method for estimation of concentration of different water quality parameters publication-title: Sustainable Water Resources Management doi: 10.1007/s40899-022-00765-3 – volume: 857 start-page: 610 year: 2013 ident: 10.1016/j.rineng.2024.101921_bib1 article-title: Shifosi reservoir water environmental assessment based on grey clustering publication-title: Prog. Environ. Sci. Eng. – start-page: 121 year: 2003 ident: 10.1016/j.rineng.2024.101921_bib69 – volume: 80 start-page: 2125 issue: 11 year: 2008 ident: 10.1016/j.rineng.2024.101921_bib7 article-title: QUAL2Kmodel used in the water quality assessment of Qiantang River, China publication-title: Water Environ. Res. doi: 10.2175/106143008X304794 – start-page: 378 year: 1982 ident: 10.1016/j.rineng.2024.101921_bib16 article-title: Nomographs for rapid solutions for the Streeter-Phelps equations publication-title: Journal (Water Pollution Control Federation) – volume: 1 start-page: 141 year: 1978 ident: 10.1016/j.rineng.2024.101921_bib17 article-title: Sensitivity analysis of generalized Streeter-Phelps models publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(78)90024-6 – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib44 article-title: Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1. 0.0): does the model calibrated with a wider hydrological variability become more robust? publication-title: Geosci. Model Dev. Discuss. (GMDD) – volume: 47 start-page: 1348 issue: 6 year: 2011 ident: 10.1016/j.rineng.2024.101921_bib13 article-title: Predicting the hypoxic volume in chesapeake bay with the streeter–phelps model: a bayesian approach 1 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.2011.00588.x – volume: 11 start-page: 84 issue: 1 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib29 article-title: Pendekatan model WASP (water quality analysis simulation program) pada pencemaran logam berat Cd di Sungai Kapuas Kecil publication-title: Jurnal Teknologi Lingkungan Lahan Basah doi: 10.26418/jtllb.v11i1.59397 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib78 article-title: Rainfall and atmospheric temperature against the other climatic factors: a case study from Colombo, Sri Lanka publication-title: Math. Probl Eng. doi: 10.1155/2019/5692753 – volume: 49 start-page: 61 issue: 1 year: 2006 ident: 10.1016/j.rineng.2024.101921_bib50 article-title: APEX feedlot water quality simulation publication-title: Transactions of the ASABE doi: 10.13031/2013.20244 – start-page: 441 year: 1998 ident: 10.1016/j.rineng.2024.101921_bib51 article-title: APEX: a new tool for predicting the effects of climate and CO2 changes on erosion and water quality – volume: 9 start-page: 94 issue: 2 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib41 article-title: Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and MIKE 21 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi9020094 – year: 1983 ident: 10.1016/j.rineng.2024.101921_bib15 – start-page: 1 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib55 article-title: Estimation of unconfined aquifer transmissivity using a comparative study of machine learning models publication-title: Water Resour. Manag. – volume: 223 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib46 article-title: No-tillage and agroforestry decrease sediment loss from a hilly landscape in northern Morocco publication-title: Catena doi: 10.1016/j.catena.2023.106951 – volume: 321 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib61 article-title: Robust machine learning algorithms for predicting coastal water quality index publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115923 – volume: 44 start-page: 61 issue: 1 year: 2006 ident: 10.1016/j.rineng.2024.101921_bib75 article-title: Estimation of scour below spillways using neural networks publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2006.9521661 – volume: 15 start-page: 2492 issue: 13 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib39 article-title: Numerical simulation of the lower and middle reaches of the Yarkant river (China) using MIKE SHE publication-title: Water doi: 10.3390/w15132492 – volume: 4 start-page: 18 issue: 4 year: 2006 ident: 10.1016/j.rineng.2024.101921_bib5 article-title: Commentary on study of surface water quality model publication-title: ” Journal of Water Resources and Architectural Engineering – volume: 11 start-page: 6022 issue: 21 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib25 article-title: Application of export coefficient model and QUAL2K for water environmental management in a rural watershed publication-title: Sustainability doi: 10.3390/su11216022 – volume: 14 start-page: 1058 issue: 7 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib33 article-title: Analysis of seasonal variations in surface water quality over wet and dry regions publication-title: Water doi: 10.3390/w14071058 – volume: 46 start-page: 1296 issue: 6 year: 2017 ident: 10.1016/j.rineng.2024.101921_bib49 article-title: Southern Phosphorus Indices, water quality data, and modeling (APEX, APLE, and TBET) results: a comparison publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.05.0200 – volume: 66 start-page: 1431 issue: 7 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib28 article-title: Evidence-based identification of integrated water quality systems publication-title: J. Environ. Plann. Manag. doi: 10.1080/09640568.2022.2028609 – volume: 49 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib53 article-title: Enhancing waste management and prediction of water quality in the sustainable urban environment using optimized algorithm of least square support vector machine and deep learning techniques publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101487 – volume: 63 start-page: 2225 issue: 10 year: 2011 ident: 10.1016/j.rineng.2024.101921_bib77 article-title: Prediction of scour below submerged pipeline crossing a river using ANN publication-title: Water Sci. Technol. doi: 10.2166/wst.2011.459 – volume: 37 start-page: 413 issue: 3 year: 2010 ident: 10.1016/j.rineng.2024.101921_bib76 article-title: Artificial neural network study of observed pattern of scour depth around bridge piers publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2009.10.003 – volume: 19 start-page: 210 issue: 2 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib24 article-title: Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam publication-title: Ecohydrol. Hydrobiol. doi: 10.1016/j.ecohyd.2019.03.005 – volume: 24 start-page: 37 issue: 1 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib31 article-title: Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes publication-title: Lakes Reservoirs Res. Manag. doi: 10.1111/lre.12256 – volume: 12 start-page: 76 issue: 4 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib63 article-title: Prediction of irrigation water quality indices based on machine learning and regression models publication-title: Appl. Water Sci. doi: 10.1007/s13201-022-01590-x – volume: 18 start-page: 120 issue: 2 year: 2004 ident: 10.1016/j.rineng.2024.101921_bib6 article-title: Fuzzy waste load allocation model: simulation-optimization approach publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2004)18:2(120) – start-page: 489 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib19 article-title: Water quality modelling using QUAL-2K at bray marina, UK check for updates – volume: 14 start-page: 412 issue: 3 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib40 article-title: A model-based approach for improving surface water quality management in aquaculture using MIKE 11: a case of the Long Xuyen Quadangle publication-title: Mekong Delta, Vietnam. Water – volume: 37 start-page: 5856 year: 2010 ident: 10.1016/j.rineng.2024.101921_bib82 article-title: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.02.020 – volume: 883 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib43 article-title: Quantifying the contribution of external loadings and internal hydrodynamic processes to the water quality of Lake Okeechobee publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163713 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 10.1016/j.rineng.2024.101921_bib79 article-title: Gene-expression programming. A new adaptive algorithm for solving problems publication-title: Complex Syst. – start-page: 60 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib38 article-title: Research on water salinity control in Dongying City based on MIKE SHE model – volume: 61 start-page: 603 issue: 2 year: 2018 ident: 10.1016/j.rineng.2024.101921_bib48 article-title: Improved APEX model simulation of buffer water quality benefits at field scale publication-title: Transactions of the ASABE doi: 10.13031/trans.12655 – volume: 48 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib60 article-title: Water quality classification using machine learning algorithms publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2022.102920 – volume: 205 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib2 article-title: Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103187 – year: 1995 ident: 10.1016/j.rineng.2024.101921_bib71 – volume: 8 year: 2021 ident: 10.1016/j.rineng.2024.101921_bib9 article-title: Overview of water quality modeling publication-title: Civ. Environ. Eng. – volume: 17 start-page: 639 year: 2012 ident: 10.1016/j.rineng.2024.101921_bib12 article-title: Sensitivity analysis and water quality modeling of a tidal river using a modified streeter–phelps equation with HEC-RAS-calculated hydraulic characteristics publication-title: Environ. Model. Assess. doi: 10.1007/s10666-012-9316-4 – volume: 27 start-page: 7439 issue: 11 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib56 article-title: Water quality prediction using data-driven models case study: ardabil plain, Iran publication-title: Soft Comput. doi: 10.1007/s00500-022-07684-7 – volume: 27 start-page: 1066 issue: 3 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib45 article-title: Optimized microcystis prediction model using EFDC-NIER and LH-OAT method publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-023-1886-y – volume: 15 start-page: 2444 issue: 3 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib26 article-title: Applicability of the WASP model in an assessment of the impact of anthropogenic pollution on water quality—dunajec river case study publication-title: Sustainability doi: 10.3390/su15032444 – volume: 284 year: 2021 ident: 10.1016/j.rineng.2024.101921_bib64 article-title: Machine learning based marine water quality prediction for coastal hydro-environment management publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112051 – volume: 578 year: 2019 ident: 10.1016/j.rineng.2024.101921_bib67 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. – volume: 584–585 start-page: 131 year: 2017 ident: 10.1016/j.rineng.2024.101921_bib3 article-title: Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.102 – volume: 37 start-page: 113 issue: 1 year: 2023 ident: 10.1016/j.rineng.2024.101921_bib22 article-title: Environmental flows allocation for a tropical reservoir system by integration of water quantity (SWAT) and quality (GEFC, QUAL2K) models publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03358-z – volume: 14 start-page: 374 issue: 3 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib32 article-title: An integrated water quality model to support multiscale decisions in a highly altered catchment publication-title: Water doi: 10.3390/w14030374 – year: 2023 ident: 10.1016/j.rineng.2024.101921_bib42 article-title: Autonomous calibration of EFDC for predicting chlorophyll-a using reinforcement learning and a real-time monitoring system publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2023.105805 – volume: 14 start-page: 1183 issue: 3 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib59 article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality publication-title: Sustainability doi: 10.3390/su14031183 – volume: 12 start-page: 1398 issue: 5 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib30 article-title: Wasp 8: the next generation in the 50-year evolution of USEPA's water quality model publication-title: Water doi: 10.3390/w12051398 – volume: 11 start-page: 190 issue: 12 year: 2021 ident: 10.1016/j.rineng.2024.101921_bib65 article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast) publication-title: Appl. Water Sci. doi: 10.1007/s13201-021-01528-9 – volume: 605 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib62 article-title: Prediction of estuarine water quality using interpretable machine learning approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127320 – volume: 2013 year: 2013 ident: 10.1016/j.rineng.2024.101921_bib8 article-title: A review of surface water quality models publication-title: Sci. World J. – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.rineng.2024.101921_bib74 article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia publication-title: Appl. Water Sci. doi: 10.1007/s13201-018-0831-6 – volume: 2 start-page: 102 issue: 3 year: 2011 ident: 10.1016/j.rineng.2024.101921_bib80 article-title: Gene-expression programming for sediment transport in sewer pipe systems publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000076 – volume: 83 start-page: 731 issue: 2 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib34 article-title: Quantification of cerebral perfusion and cerebrovascular reserve using Turbo‐QUASAR arterial spin labeling MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27956 – volume: 81 start-page: 66 issue: 3 year: 2022 ident: 10.1016/j.rineng.2024.101921_bib23 article-title: A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-022-10191-5 – volume: 16 start-page: 1002 issue: 4 year: 2016 ident: 10.1016/j.rineng.2024.101921_bib72 article-title: Prediction of side weir discharge coefficient by support vector machine technique publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2016.014 – volume: 118 start-page: 791 issue: 5 year: 1992 ident: 10.1016/j.rineng.2024.101921_bib14 article-title: Improved first-order uncertainty method for water-quality modeling publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1992)118:5(791) – volume: 177 year: 2020 ident: 10.1016/j.rineng.2024.101921_bib66 article-title: A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning publication-title: Water Res. doi: 10.1016/j.watres.2020.115788 |
SSID | ssj0002810137 |
Score | 2.3491426 |
Snippet | Rivers play an essential role in supplying high-quality water to diverse sectors. Understanding water quality indicators and systematic monitoring is crucial... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101921 |
SubjectTerms | Aji-Chai river Artificial intelligence case studies decision making Evaluation process Iran mathematical models river water rivers water quality Water surface quality |
Title | Predicting river water quality: An imposing engagement between machine learning and the QUAL2Kw models (case study: Aji-Chai, river, Iran) |
URI | https://dx.doi.org/10.1016/j.rineng.2024.101921 https://www.proquest.com/docview/3242068745 https://doaj.org/article/d5755e1b4b0541f1ba79e60cbad51fa5 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3qo2tKq25ZqkHqgEhGx48Tr3gCBaIGqB5C4WfEX3RWEalmEuPQH9Fd3xk7Q0steesnBcmIrM848O2_eMPYp4K7CVxa3qbWShQzWFXYcXFGKIEPEiFVaOu84_d4cnctvF_XFQqkv4oRleeD84nY84ok6cCstggseuW2VDk3pbOtrHtukXooxb2EzNU1HRpy09IZcuUToomy67hK3hEJSkxb8SSxKkv1PQtI_H-cUcQ5fsOc9VITdPMWXbCV0r9izBQHBdfbnx4x-tBB1GWbEsIB7xI4zyKmSD19gt4PJNRGzsANOq2e6QM_OgutEpQzQ1464hLbzgJAQEOieiON7SIVybmHLYbCDJEWLz5xOiv2f7WQ7D7kNXzHefX7Nzg8PzvaPir66QuFkzecpf7yplGh9VLVtIlql8hTOdRV8GTRl6ApntatdFYS0KiguStl6oSMfW1-9YavdTRfeMrBlE73XUWlOimlcWx1s1GXtlLBu3IxYNbxn43rpcaqAcWUGjtnUZOsYso7J1hmx4vGuX1l6Y0n_PTLhY18Szk4N6E6mdyezzJ1GTA0OYHoMkrEFPmqyZPjNwV8MLlH679J24ebu1hBmLRuqK_Duf0zxPVujYTMR7gNbnc_uwgYio7n9mBYBXk9_H_wFg7IN3Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+river+water+quality%3A+An+imposing+engagement+between+machine+learning+and+the+QUAL2Kw+models+%28case+study%3A+Aji-Chai%2C+river%2C+Iran%29&rft.jtitle=Results+in+engineering&rft.au=Sarafaraz%2C+Jamal&rft.au=Ahmadzadeh+Kaleybar%2C+Fariborz&rft.au=Mahmoudi+Karamjavan%2C+Javad&rft.au=Habibzadeh%2C+Nader&rft.date=2024-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=21+p.101921-&rft_id=info:doi/10.1016%2Fj.rineng.2024.101921&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |