A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification

A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with...

Full description

Saved in:
Bibliographic Details
Published inGeo-spatial information science Vol. 22; no. 4; pp. 251 - 264
Main Authors Liu, Yunzhe, Singleton, Alex, Arribas-Bel, Daniel
Format Journal Article
LanguageEnglish
Published Wuhan Taylor & Francis 02.10.2019
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with the objective of identifying inputs that add value but also aim for model parsimony. Within this context, our paper introduces a principal component analysis (PCA)-based automated variable selection methodology that has the objective of identifying candidate inputs to a geodemographic classification from a collection of variables. The proposed methodology is exemplified in the context of variables from the UK 2011 Census, and its output compared to the Office for National Statistics 2011 Output Area Classification (2011 OAC). Through the implementation of the proposed methodology, the quality of the cluster assignment was improved relative to 2011 OAC, manifested by a lower total within-cluster sum of square score. Across the UK, more than 70.2% of the Output Areas (OAs) occupied by the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with particularly strong performance within Scotland and Wales.
AbstractList A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with the objective of identifying inputs that add value but also aim for model parsimony. Within this context, our paper introduces a principal component analysis (PCA)-based automated variable selection methodology that has the objective of identifying candidate inputs to a geodemographic classification from a collection of variables. The proposed methodology is exemplified in the context of variables from the UK 2011 Census, and its output compared to the Office for National Statistics 2011 Output Area Classification (2011 OAC). Through the implementation of the proposed methodology, the quality of the cluster assignment was improved relative to 2011 OAC, manifested by a lower total within-cluster sum of square score. Across the UK, more than 70.2% of the Output Areas (OAs) occupied by the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with particularly strong performance within Scotland and Wales.
Author Arribas-Bel, Daniel
Singleton, Alex
Liu, Yunzhe
Author_xml – sequence: 1
  givenname: Yunzhe
  orcidid: 0000-0002-7189-3323
  surname: Liu
  fullname: Liu, Yunzhe
  email: psyliu7@liverpool.ac.uk
  organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool
– sequence: 2
  givenname: Alex
  orcidid: 0000-0002-2338-2334
  surname: Singleton
  fullname: Singleton, Alex
  organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0002-6274-1619
  surname: Arribas-Bel
  fullname: Arribas-Bel, Daniel
  organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool
BookMark eNqFkc1u1DAURiNUJNrCIyBZYgOLDHYcJ7HYMBoBrVSJLmBtXTvXgwcnDran1bw9nk676QJWtq7O9_nnXFRnc5ixqt4yumJ0oB8ZpVLQhq4ayuSKdQ0TrXxRnTMpeS2Y4GdlX5j6CL2qLlLaUcply8V5dbcmt9HNxi3gySZMS6meM1nP4A_JJfL-drP-UGtIOBIbYcL7EH8TGyKBfQ4T5DK_g-hAeyQJPZrswkzcTLYYRpzCNsLyyxliPKTkrDNwBF5XLy34hG8e18vq59cvPzZX9c33b9eb9U1tWsFy3RujzYC9aUYw0Aw4SA2ibUUnDQxdixZHbDUFpGigY1r3ou1HAEE1Y6bhl9X1qXcMsFNLdBPEgwrg1MMgxK2CmJ3xqMAKy2zTGVtOkJxJjb0QXHAuNO_AlK53p64lhj97TFntwj6Wj0qqaXvW9XQQQ6E-nSgTQ0oRrTIuP7w5R3BeMaqO0tSTNHWUph6llbR4ln668_9yn085Nxc3ExRLflQZDj7Eoq34TYr_u-IvrO-x8w
CitedBy_id crossref_primary_10_1007_s11205_021_02763_y
crossref_primary_10_1016_j_envint_2024_109065
crossref_primary_10_1080_10095020_2020_1720529
crossref_primary_10_1098_rsif_2023_0081
crossref_primary_10_1016_j_compenvurbsys_2020_101592
crossref_primary_10_1111_geoj_12550
crossref_primary_10_1080_10095020_2020_1846463
crossref_primary_10_1113_JP285214
crossref_primary_10_1016_j_sftr_2025_100562
crossref_primary_10_1007_s12524_021_01382_x
crossref_primary_10_1007_s13132_023_01344_3
crossref_primary_10_1111_geoj_12511
crossref_primary_10_1016_j_cities_2023_104350
crossref_primary_10_1080_14498596_2022_2028270
crossref_primary_10_1155_2021_6631564
crossref_primary_10_1007_s12061_022_09490_y
crossref_primary_10_2139_ssrn_4183766
crossref_primary_10_1016_j_array_2021_100112
crossref_primary_10_1080_10095020_2022_2122875
crossref_primary_10_3233_JIFS_200224
crossref_primary_10_15622_ia_2020_19_6_3
crossref_primary_10_1080_24694452_2022_2077165
crossref_primary_10_1136_bmjopen_2023_077529
crossref_primary_10_1080_13658816_2023_2254382
crossref_primary_10_1140_epjds_s13688_024_00466_1
crossref_primary_10_3390_su13094873
crossref_primary_10_32725_det_2021_017
crossref_primary_10_1016_j_compenvurbsys_2022_101802
Cites_doi 10.4135/9781529714685
10.2307/2346488
10.1111/pirs.2009.88.issue-3
10.1191/0309132505ph528pr
10.11613/BM.2007.002
10.1080/13658816.2011.554838
10.1080/00045608.2015.1052335
10.1111/rssa.2007.170.issue-2
10.1017/CBO9781139085014
10.1177/001316446002000116
10.1002/wics.101
10.1080/00330124.2013.848764
10.1007/0-387-22440-8_1
10.1002/geo2.7
10.1002/9780470977811
10.1109/IAdCC.2014.6779395
ContentType Journal Article
Copyright 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
– notice: 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
JQ2
KR7
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1080/10095020.2019.1621549
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Sustainability
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1993-5153
EndPage 264
ExternalDocumentID oai_doaj_org_article_af5f1f26cfa549319be75535335b36ac
10_1080_10095020_2019_1621549
1621549
Genre Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID -5A
-5G
-BR
.86
.QJ
0YH
188
29H
4.4
5GY
5VR
6NX
8G5
8TC
AAFWJ
AAXDM
ABFIM
ABPEM
ABTAI
ABUWG
ACGFS
ADCVX
ADINQ
AEUYN
AFBBN
AFKRA
AFPKN
AGMYJ
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AVBZW
AZQEC
BA0
BENPR
BPHCQ
CCEZO
CCPQU
CCVFK
CHBEP
CS3
CUBFJ
CW9
DWQXO
EBS
EJD
E~A
E~B
FA0
FIJ
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HF~
HG6
HLICF
HZ~
H~P
IPNFZ
I~X
J.P
M2O
M4Z
O9-
OK1
PIMPY
PQQKQ
PROAC
QOS
R9I
RDKPK
RIG
RPX
RSV
S-T
S27
SDH
SEV
SOJ
T13
TCJ
TDBHL
TEI
TFL
TFW
TGP
U2A
UT5
VC2
WK8
~S~
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
3V.
7SC
7XB
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c451t-7ccbc8e7c2daca28e89ba544569ca864efede4b0ae0eca61bb7547daa50b11c23
IEDL.DBID BENPR
ISSN 1009-5020
IngestDate Wed Aug 27 01:25:17 EDT 2025
Fri Jul 25 22:51:27 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 02:28:26 EDT 2025
Wed Dec 25 09:04:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-7ccbc8e7c2daca28e89ba544569ca864efede4b0ae0eca61bb7547daa50b11c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7189-3323
0000-0002-2338-2334
0000-0002-6274-1619
OpenAccessLink https://www.proquest.com/docview/2471670858?pq-origsite=%requestingapplication%
PQID 2471670858
PQPubID 3933171
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_af5f1f26cfa549319be75535335b36ac
crossref_primary_10_1080_10095020_2019_1621549
crossref_citationtrail_10_1080_10095020_2019_1621549
informaworld_taylorfrancis_310_1080_10095020_2019_1621549
proquest_journals_2471670858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-02
PublicationDateYYYYMMDD 2019-10-02
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle Geo-spatial information science
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_2_27_1
Webber R. (e_1_3_2_40_1) 1978
Charlton M. (e_1_3_2_6_1) 1985; 13
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_22_1
Bassett K. (e_1_3_2_5_1) 1980
Openshaw S. (e_1_3_2_24_1) 1995; 23
Sleight P. (e_1_3_2_33_1) 1993
Gale C. (e_1_3_2_10_1) 2016; 12
e_1_3_2_16_1
Santero K. (e_1_3_2_28_1) 2016; 12
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
Longley P. (e_1_3_2_20_1) 2008
e_1_3_2_38_1
e_1_3_2_8_1
Guyon I. (e_1_3_2_11_1) 2003; 7
e_1_3_2_7_1
e_1_3_2_19_1
Ismail K. (e_1_3_2_14_1) 2016; 12
Robinson G. (e_1_3_2_26_1) 1998
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_32_1
e_1_3_2_12_1
Openshaw S. (e_1_3_2_23_1) 1995
e_1_3_2_35_1
e_1_3_2_34_1
e_1_3_2_37_1
Harris R. (e_1_3_2_13_1) 2005
e_1_3_2_15_1
e_1_3_2_36_1
Singleton A. (e_1_3_2_29_1) 2016
Pacheco E. (e_1_3_2_25_1) 2015
Leventhal B. (e_1_3_2_18_1) 2016
References_xml – ident: e_1_3_2_41_1
  doi: 10.4135/9781529714685
– ident: e_1_3_2_15_1
  doi: 10.2307/2346488
– ident: e_1_3_2_22_1
– ident: e_1_3_2_30_1
  doi: 10.1111/pirs.2009.88.issue-3
– volume: 13
  start-page: 69
  issue: 1
  year: 1985
  ident: e_1_3_2_6_1
  article-title: Some New Classifications of Census Enumeration Districts in Britain: A Poor Man’s ACORN
  publication-title: Journal of Economic and Social Measurement
– ident: e_1_3_2_39_1
– start-page: 353
  volume-title: Census User’s Handbook
  year: 1995
  ident: e_1_3_2_23_1
– ident: e_1_3_2_19_1
  doi: 10.1191/0309132505ph528pr
– ident: e_1_3_2_37_1
  doi: 10.11613/BM.2007.002
– ident: e_1_3_2_12_1
  doi: 10.1080/13658816.2011.554838
– start-page: 176
  volume-title: Managing to Improve Public Services
  year: 2008
  ident: e_1_3_2_20_1
– ident: e_1_3_2_34_1
  doi: 10.1080/00045608.2015.1052335
– ident: e_1_3_2_38_1
  doi: 10.1111/rssa.2007.170.issue-2
– ident: e_1_3_2_27_1
– ident: e_1_3_2_36_1
  doi: 10.1017/CBO9781139085014
– ident: e_1_3_2_35_1
– ident: e_1_3_2_17_1
  doi: 10.1177/001316446002000116
– ident: e_1_3_2_2_1
  doi: 10.1002/wics.101
– start-page: 111
  volume-title: Unsupervised Learning with R
  year: 2015
  ident: e_1_3_2_25_1
– start-page: 215
  volume-title: Code and the City
  year: 2016
  ident: e_1_3_2_29_1
– volume-title: Housing and Residential Structure: Alternative Approaches
  year: 1980
  ident: e_1_3_2_5_1
– volume: 12
  start-page: 34
  issue: 6
  year: 2016
  ident: e_1_3_2_28_1
  article-title: Improving the Tool for Analyzing Malaysia’s Demographic Change: Data Standardization Analysis to Form Geo-Demographics Classification Profiles Using K-Means Algorithms
  publication-title: Geografia - Malaysian Journal of Society and Space
– ident: e_1_3_2_32_1
  doi: 10.1080/00330124.2013.848764
– volume-title: Geodemographic, GIS and Neighbourhood Targeting
  year: 2005
  ident: e_1_3_2_13_1
– ident: e_1_3_2_9_1
– volume: 12
  start-page: 34
  issue: 6
  year: 2016
  ident: e_1_3_2_14_1
  article-title: Improving The Tool for Analyzing Malaysia’s Demographic Change: Data Standardization Analysis to Form Geo-demographics Classification Profiles Using K-means Algorithms
  publication-title: Geografia Malaysian Journal of Society and Space
– ident: e_1_3_2_16_1
  doi: 10.1007/0-387-22440-8_1
– ident: e_1_3_2_31_1
  doi: 10.1002/geo2.7
– volume: 23
  start-page: 97
  year: 1995
  ident: e_1_3_2_24_1
  article-title: Using Neurocomputing Methods to Classify Britain’s Residential Areas
  publication-title: Innovations in GIS
– volume: 7
  start-page: 1157
  issue: 8
  year: 2003
  ident: e_1_3_2_11_1
  article-title: An Introduction to Variable and Feature Selection
  publication-title: Journal of Machine Learning
– volume-title: Methods and Techniques in Human Geography
  year: 1998
  ident: e_1_3_2_26_1
– ident: e_1_3_2_8_1
  doi: 10.1002/9780470977811
– volume-title: Geodemographics for Marketers: Using Location Analysis for Research and Marketing
  year: 2016
  ident: e_1_3_2_18_1
– volume-title: Socio-Economic Classifications of Local Authority Areas (Studies on Medical and Population Subjects)
  year: 1978
  ident: e_1_3_2_40_1
– ident: e_1_3_2_7_1
– volume: 12
  start-page: 1
  year: 2016
  ident: e_1_3_2_10_1
  article-title: Creating the 2011 Area Classification for Output Areas (2011 OAC)
  publication-title: Journal of Spatial Information Science
– ident: e_1_3_2_21_1
  doi: 10.1109/IAdCC.2014.6779395
– volume-title: Targeting Customers: How to Use Geodemographic and Lifestyle Data in Your Business
  year: 1993
  ident: e_1_3_2_33_1
SSID ssj0039435
Score 2.3093262
Snippet A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 251
SubjectTerms Area classification
Automation
Classification
Clusters
Context
Geodemographics
Geography
Methodology
principal component analysis
Principal components analysis
spatial data mining
UK census
variable selection
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09bxQxELVQGmgQn-IgIBcUUGyy9vqzPCKiiAKlIFI6yx7bEAnuULKJxL9nxrsbBSiuobVs2es3O_Nsjd8w9jZmkQs41SFVsB1aiOl89dB57bxz2vcVWrbFZ3Nypj6d6_M7pb4oJ2ySB5427jBWXUWVBmrEowwaTCpW6wFZik6DiUDeF2PecpiafPDgVSutKejqXyMjWt7uuP6Q2qiJ0rr8gTCSRMr-iEpNvP8v6dJ_XHWLP8eP2MOZOPL1tODH7F7ZPGH35xrm3349ZTdrfjrdnGM3-s23GwwofFEd4e9Oj9bvO4pamdclJYvj3Dxej1skrth-gydnekvFr1p5HMSMX2z417LN5cc00QVwIMJNGUYN1Gfs7Pjjl6OTbq6q0IHSYuwsQAJXLMgcIUpXnE-RJHmMh-iMKrXkolIfS18gGpGS1crmGHWfhAA5PGd7G_yCF4xrwJ3uZexttsqBcxHDP8LjqihZDnbF1LKrAWbJcap88T2IWZl0ASMQGGEGY8UObof9nDQ3dg34QJDddibJ7NaAhhRmQwq7DGnF_F3Aw9huTOpU3iQMOxawv1hHmH3AVZAY941FSute_o_1vWIPaMqWSCj32d54eV1eIyEa05tm-78BM8cCMA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07bxQxELYgFNAgwkMchMhFCigcrb3rXbs8IqITBUqRSFBZ9tgOkeAuym0i8e-Z8a4jHkIpqFZr-T3j8Wdr_A1jBz7KmMB0AqHCIFBDemGzBWG1scZo22Qo3haf-tVZ9_Gzrt6E29mtks7QeSKKKLaaFrcP2-oRh1_EBQhzyDHLHspeEc3YffZAkbaiSjdfVtUYt7YrMTapiKAy9RHPv6r5bXsqLP5_cJj-ZbPLRnT8hD2eESRfTiLfZffS-il7OAcz__rjGbtZ8pPpCh2z0XrfrHFn4ZV-hL89OVq-E7R9RZ6rbxbHtrm_HjeIYDH9Bo_Q9KiKb0ucHBQev1jz87SJ6fvU0AVwIORNrkZFus_Z2fGH06OVmMMrCOi0HMUAEMCkAVT04JVJxgZP3Dy9BW_6LuUUUxcan5oEvpchDLobove6CVKCal-wnTWO4CXjGnCmG-WbIQ6dAWM84oCER5EsU1TtsGBdnVUHM_c4hcD45uRMUVqF4UgYbhbGgh3eFrucyDfuKvCeRHabmbizS8Lm6tzNS9H5rLPMqoeMo7VoggL2VLeIe3Voew8LZn8VuBvL1Ume4py49o4O7FXtcLMx2DqFAKAfENuaV_9R9Wv2iH6LI6HaYzvj1XV6g4BoDPtF5X8C1MH-wQ
  priority: 102
  providerName: Taylor & Francis
Title A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification
URI https://www.tandfonline.com/doi/abs/10.1080/10095020.2019.1621549
https://www.proquest.com/docview/2471670858
https://doaj.org/article/af5f1f26cfa549319be75535335b36ac
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo9wCXiqdYKCsfOMAhbZzEiX1C29JqhaBaAZXKyXLGdqkEm7abVuLfM-M45SXRq2PHj7HHn8fjbxh7aZ1wHlSVIVRoMpwhdaaDhkxLpZWSOg8QvS2O6sVx9e5EniSD2zq5VY46MSpq1wHZyHcL1KJ1gwBBvTm_yChqFN2uphAaG2yCKljh4Wuyd3C0_Djq4lJXMcSmoCsAichofMOj8l1KoyRy79I7oi6IrOyP3SmS-P9FYfqPyo770OF9tpUAJJ8PEn_A7vjVQ3Y3xTL_-uMRu57z5WBBx2y03LsVbix8ZB_hr5b789cZ7V6Oh9E1i2Pd3F71HQJYTL_GEzS9qeLrGCYHZcfPVvzUd85_Hyo6Aw4EvMnTKAr3MTs-PPi8v8hSdIUMKin6rAFoQfkGCmfBFsor3Vqi5qk1WFVXPnjnqza3Pvdga9G2jawaZ63MWyGgKJ-wzRX24CnjEnCk88LmjWsqBUpZhAEeTyJBeFeUzZRV46gaSNTjFAHjmxGJoXQUhiFhmCSMKdu5KXY-cG_cVmCPRHaTmaizY0J3eWrSSjQ2yCBCUUPA3mrUQC22VJYIe2Vb1hamTP8ucNNHy0kYwpyY8pYGbI-zwyRdsDa_Zu6z_39-zu7Rz6KrYLHNNvvLK_8CIU_fzthG_mUxY5P52w_vP83SLJ9FA8JP3Gv-cQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG7I8oAvBm9xFbUPmujDwLTTzrQPxiwIWQQ3GwMJb7XTC5LIDrILhj_lb_ScmSneEnnitXPvOT3na-f0-wh5aT3zwSmRAVSoMvCQMtNRu0xLpZWSOo-urbaYlOND8eFIHi2RH2kvDJZVppjYBmrfOFwj3-AQRcsKAIJ6d_YtQ9Uo_LuaJDQ6t9gLV99hyjZ_u_se7PuK853tg61x1qsKZE5Itsgq52qnQuW4t85yFZSuLVLSlNpZVYoQgw-izm3Ig7Mlq-tKispbK_OaMYdEBxDyl0UBU5kBWd7cnkw_pdhfaNFKejL85SABiaU9QyrfwDZswnIyvc5KjuRof2TDVjTgL8rUf1JEm_d2VsndHrDSUedh98hSmN0nK712-perB-RyRKfdij2chuGlmUEio4nthL6ebo3eZJgtPY2pFIzCs6m9WDQAmKH9EmbsuIeLzltZHvAVejKjx6Hx4bR70ImjDoE-Vja1zvSQHN5Kvz8igxl8wWNCpYOezrnNK18J5ZSyADsCzHwiC54X1ZCI1KvG9VTnqLjx1bCeETUZw6AxTG-MIVm_vuys4_q46YJNNNn1yUjV3TY058emH_nGRhlZ5KWL8LUaIl4NbyoLgNmyLkrrhkT_bnCzaFdqYierYoobXmAteYfpY8_c_BopT_5_-AVZGR983Df7u5O9p-QO3rgtU-RrZLA4vwjPAG4t6ue9j1Py-baH1U9uCDre
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMAF8RQLBXzgAIdUiWMn9nEprJaHqj1QCU6WPbbbSrBbddNK_HtmHKfiIdQDp0iOx6-xx5-t8TeMvXShCRG0rBAq9BXOkK4yyUBllDZaK1MnyN4WB93yUH74oiZvwm1xq6QzdBqJIrKtpsV9GtLkEYdfxAUIc8gxy-w1nSCasevsBhYvaGLXX5eTMW6NzDE2SaQimekRz7-K-W17yiz-f3CY_mWz80a0uMvuFATJ56PK77FrcX2f3SrBzI9_PGAXc74ar9AxG633zRp3Fj7Rj_BXq_3564q2r8DT5JvFsW7uzocNIlhMv8AjND2q4tscJweVx0_W_ChuQvw-VnQCHAh5k6tR1u5Ddrh493l_WZXwChVI1QxVD-BBxx5EcOCEjtp4R9w8nQGnOxlTDFH62sU6gusa73sl--Ccqn3TgGgfsZ019uAx4wpwpGvh6j70UoPWDnFAxKNIamIQbT9jchpVC4V7nEJgfLNNoSidlGFJGbYoY8b2LsVOR_KNqwTekMouMxN3dk7YnB3ZshStSyo1SXSQsLcGTZDHlqoWca_ybedgxsyvCrdDvjpJY5wT217RgN1pdthiDLZWIADoesS2-sl_FP2C3Vy9XdhP7w8-PmW36U_2KRS7bGc4O4_PEBsN_nme_T8BKf4Bdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Principal+Component+Analysis+%28PCA%29-based+framework+for+automated+variable+selection+in+geodemographic+classification&rft.jtitle=Geo-spatial+information+science&rft.au=Liu%2C+Yunzhe&rft.au=Singleton%2C+Alex&rft.au=Arribas-Bel%2C+Daniel&rft.date=2019-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=22&rft.issue=4&rft.spage=251&rft.epage=264&rft_id=info:doi/10.1080%2F10095020.2019.1621549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon