A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification
A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with...
Saved in:
Published in | Geo-spatial information science Vol. 22; no. 4; pp. 251 - 264 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wuhan
Taylor & Francis
02.10.2019
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with the objective of identifying inputs that add value but also aim for model parsimony. Within this context, our paper introduces a principal component analysis (PCA)-based automated variable selection methodology that has the objective of identifying candidate inputs to a geodemographic classification from a collection of variables. The proposed methodology is exemplified in the context of variables from the UK 2011 Census, and its output compared to the Office for National Statistics 2011 Output Area Classification (2011 OAC). Through the implementation of the proposed methodology, the quality of the cluster assignment was improved relative to 2011 OAC, manifested by a lower total within-cluster sum of square score. Across the UK, more than 70.2% of the Output Areas (OAs) occupied by the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with particularly strong performance within Scotland and Wales. |
---|---|
AbstractList | A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced by the methodological choices made during their construction. Of particular debate are the choice and specification of input variables, with the objective of identifying inputs that add value but also aim for model parsimony. Within this context, our paper introduces a principal component analysis (PCA)-based automated variable selection methodology that has the objective of identifying candidate inputs to a geodemographic classification from a collection of variables. The proposed methodology is exemplified in the context of variables from the UK 2011 Census, and its output compared to the Office for National Statistics 2011 Output Area Classification (2011 OAC). Through the implementation of the proposed methodology, the quality of the cluster assignment was improved relative to 2011 OAC, manifested by a lower total within-cluster sum of square score. Across the UK, more than 70.2% of the Output Areas (OAs) occupied by the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with particularly strong performance within Scotland and Wales. |
Author | Arribas-Bel, Daniel Singleton, Alex Liu, Yunzhe |
Author_xml | – sequence: 1 givenname: Yunzhe orcidid: 0000-0002-7189-3323 surname: Liu fullname: Liu, Yunzhe email: psyliu7@liverpool.ac.uk organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool – sequence: 2 givenname: Alex orcidid: 0000-0002-2338-2334 surname: Singleton fullname: Singleton, Alex organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool – sequence: 3 givenname: Daniel orcidid: 0000-0002-6274-1619 surname: Arribas-Bel fullname: Arribas-Bel, Daniel organization: Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool |
BookMark | eNqFkc1u1DAURiNUJNrCIyBZYgOLDHYcJ7HYMBoBrVSJLmBtXTvXgwcnDran1bw9nk676QJWtq7O9_nnXFRnc5ixqt4yumJ0oB8ZpVLQhq4ayuSKdQ0TrXxRnTMpeS2Y4GdlX5j6CL2qLlLaUcply8V5dbcmt9HNxi3gySZMS6meM1nP4A_JJfL-drP-UGtIOBIbYcL7EH8TGyKBfQ4T5DK_g-hAeyQJPZrswkzcTLYYRpzCNsLyyxliPKTkrDNwBF5XLy34hG8e18vq59cvPzZX9c33b9eb9U1tWsFy3RujzYC9aUYw0Aw4SA2ibUUnDQxdixZHbDUFpGigY1r3ou1HAEE1Y6bhl9X1qXcMsFNLdBPEgwrg1MMgxK2CmJ3xqMAKy2zTGVtOkJxJjb0QXHAuNO_AlK53p64lhj97TFntwj6Wj0qqaXvW9XQQQ6E-nSgTQ0oRrTIuP7w5R3BeMaqO0tSTNHWUph6llbR4ln668_9yn085Nxc3ExRLflQZDj7Eoq34TYr_u-IvrO-x8w |
CitedBy_id | crossref_primary_10_1007_s11205_021_02763_y crossref_primary_10_1016_j_envint_2024_109065 crossref_primary_10_1080_10095020_2020_1720529 crossref_primary_10_1098_rsif_2023_0081 crossref_primary_10_1016_j_compenvurbsys_2020_101592 crossref_primary_10_1111_geoj_12550 crossref_primary_10_1080_10095020_2020_1846463 crossref_primary_10_1113_JP285214 crossref_primary_10_1016_j_sftr_2025_100562 crossref_primary_10_1007_s12524_021_01382_x crossref_primary_10_1007_s13132_023_01344_3 crossref_primary_10_1111_geoj_12511 crossref_primary_10_1016_j_cities_2023_104350 crossref_primary_10_1080_14498596_2022_2028270 crossref_primary_10_1155_2021_6631564 crossref_primary_10_1007_s12061_022_09490_y crossref_primary_10_2139_ssrn_4183766 crossref_primary_10_1016_j_array_2021_100112 crossref_primary_10_1080_10095020_2022_2122875 crossref_primary_10_3233_JIFS_200224 crossref_primary_10_15622_ia_2020_19_6_3 crossref_primary_10_1080_24694452_2022_2077165 crossref_primary_10_1136_bmjopen_2023_077529 crossref_primary_10_1080_13658816_2023_2254382 crossref_primary_10_1140_epjds_s13688_024_00466_1 crossref_primary_10_3390_su13094873 crossref_primary_10_32725_det_2021_017 crossref_primary_10_1016_j_compenvurbsys_2022_101802 |
Cites_doi | 10.4135/9781529714685 10.2307/2346488 10.1111/pirs.2009.88.issue-3 10.1191/0309132505ph528pr 10.11613/BM.2007.002 10.1080/13658816.2011.554838 10.1080/00045608.2015.1052335 10.1111/rssa.2007.170.issue-2 10.1017/CBO9781139085014 10.1177/001316446002000116 10.1002/wics.101 10.1080/00330124.2013.848764 10.1007/0-387-22440-8_1 10.1002/geo2.7 10.1002/9780470977811 10.1109/IAdCC.2014.6779395 |
ContentType | Journal Article |
Copyright | 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 – notice: 2019 Wuhan University Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7SC 7XB 8FD 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO FR3 GNUQQ GUQSH JQ2 KR7 L7M L~C L~D M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U DOA |
DOI | 10.1080/10095020.2019.1621549 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Sustainability ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1993-5153 |
EndPage | 264 |
ExternalDocumentID | oai_doaj_org_article_af5f1f26cfa549319be75535335b36ac 10_1080_10095020_2019_1621549 1621549 |
Genre | Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GroupedDBID | -5A -5G -BR .86 .QJ 0YH 188 29H 4.4 5GY 5VR 6NX 8G5 8TC AAFWJ AAXDM ABFIM ABPEM ABTAI ABUWG ACGFS ADCVX ADINQ AEUYN AFBBN AFKRA AFPKN AGMYJ AHBYD ALMA_UNASSIGNED_HOLDINGS AVBZW AZQEC BA0 BENPR BPHCQ CCEZO CCPQU CCVFK CHBEP CS3 CUBFJ CW9 DWQXO EBS EJD E~A E~B FA0 FIJ GNUQQ GROUPED_DOAJ GTTXZ GUQSH H13 HF~ HG6 HLICF HZ~ H~P IPNFZ I~X J.P M2O M4Z O9- OK1 PIMPY PQQKQ PROAC QOS R9I RDKPK RIG RPX RSV S-T S27 SDH SEV SOJ T13 TCJ TDBHL TEI TFL TFW TGP U2A UT5 VC2 WK8 ~S~ AAYXX ADMLS CITATION PHGZM PHGZT 3V. 7SC 7XB 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-7ccbc8e7c2daca28e89ba544569ca864efede4b0ae0eca61bb7547daa50b11c23 |
IEDL.DBID | BENPR |
ISSN | 1009-5020 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Fri Jul 25 22:51:27 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 02:28:26 EDT 2025 Wed Dec 25 09:04:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-7ccbc8e7c2daca28e89ba544569ca864efede4b0ae0eca61bb7547daa50b11c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7189-3323 0000-0002-2338-2334 0000-0002-6274-1619 |
OpenAccessLink | https://www.proquest.com/docview/2471670858?pq-origsite=%requestingapplication% |
PQID | 2471670858 |
PQPubID | 3933171 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af5f1f26cfa549319be75535335b36ac crossref_primary_10_1080_10095020_2019_1621549 crossref_citationtrail_10_1080_10095020_2019_1621549 informaworld_taylorfrancis_310_1080_10095020_2019_1621549 proquest_journals_2471670858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-02 |
PublicationDateYYYYMMDD | 2019-10-02 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan |
PublicationTitle | Geo-spatial information science |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_2_27_1 Webber R. (e_1_3_2_40_1) 1978 Charlton M. (e_1_3_2_6_1) 1985; 13 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_22_1 Bassett K. (e_1_3_2_5_1) 1980 Openshaw S. (e_1_3_2_24_1) 1995; 23 Sleight P. (e_1_3_2_33_1) 1993 Gale C. (e_1_3_2_10_1) 2016; 12 e_1_3_2_16_1 Santero K. (e_1_3_2_28_1) 2016; 12 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 Longley P. (e_1_3_2_20_1) 2008 e_1_3_2_38_1 e_1_3_2_8_1 Guyon I. (e_1_3_2_11_1) 2003; 7 e_1_3_2_7_1 e_1_3_2_19_1 Ismail K. (e_1_3_2_14_1) 2016; 12 Robinson G. (e_1_3_2_26_1) 1998 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_32_1 e_1_3_2_12_1 Openshaw S. (e_1_3_2_23_1) 1995 e_1_3_2_35_1 e_1_3_2_34_1 e_1_3_2_37_1 Harris R. (e_1_3_2_13_1) 2005 e_1_3_2_15_1 e_1_3_2_36_1 Singleton A. (e_1_3_2_29_1) 2016 Pacheco E. (e_1_3_2_25_1) 2015 Leventhal B. (e_1_3_2_18_1) 2016 |
References_xml | – ident: e_1_3_2_41_1 doi: 10.4135/9781529714685 – ident: e_1_3_2_15_1 doi: 10.2307/2346488 – ident: e_1_3_2_22_1 – ident: e_1_3_2_30_1 doi: 10.1111/pirs.2009.88.issue-3 – volume: 13 start-page: 69 issue: 1 year: 1985 ident: e_1_3_2_6_1 article-title: Some New Classifications of Census Enumeration Districts in Britain: A Poor Man’s ACORN publication-title: Journal of Economic and Social Measurement – ident: e_1_3_2_39_1 – start-page: 353 volume-title: Census User’s Handbook year: 1995 ident: e_1_3_2_23_1 – ident: e_1_3_2_19_1 doi: 10.1191/0309132505ph528pr – ident: e_1_3_2_37_1 doi: 10.11613/BM.2007.002 – ident: e_1_3_2_12_1 doi: 10.1080/13658816.2011.554838 – start-page: 176 volume-title: Managing to Improve Public Services year: 2008 ident: e_1_3_2_20_1 – ident: e_1_3_2_34_1 doi: 10.1080/00045608.2015.1052335 – ident: e_1_3_2_38_1 doi: 10.1111/rssa.2007.170.issue-2 – ident: e_1_3_2_27_1 – ident: e_1_3_2_36_1 doi: 10.1017/CBO9781139085014 – ident: e_1_3_2_35_1 – ident: e_1_3_2_17_1 doi: 10.1177/001316446002000116 – ident: e_1_3_2_2_1 doi: 10.1002/wics.101 – start-page: 111 volume-title: Unsupervised Learning with R year: 2015 ident: e_1_3_2_25_1 – start-page: 215 volume-title: Code and the City year: 2016 ident: e_1_3_2_29_1 – volume-title: Housing and Residential Structure: Alternative Approaches year: 1980 ident: e_1_3_2_5_1 – volume: 12 start-page: 34 issue: 6 year: 2016 ident: e_1_3_2_28_1 article-title: Improving the Tool for Analyzing Malaysia’s Demographic Change: Data Standardization Analysis to Form Geo-Demographics Classification Profiles Using K-Means Algorithms publication-title: Geografia - Malaysian Journal of Society and Space – ident: e_1_3_2_32_1 doi: 10.1080/00330124.2013.848764 – volume-title: Geodemographic, GIS and Neighbourhood Targeting year: 2005 ident: e_1_3_2_13_1 – ident: e_1_3_2_9_1 – volume: 12 start-page: 34 issue: 6 year: 2016 ident: e_1_3_2_14_1 article-title: Improving The Tool for Analyzing Malaysia’s Demographic Change: Data Standardization Analysis to Form Geo-demographics Classification Profiles Using K-means Algorithms publication-title: Geografia Malaysian Journal of Society and Space – ident: e_1_3_2_16_1 doi: 10.1007/0-387-22440-8_1 – ident: e_1_3_2_31_1 doi: 10.1002/geo2.7 – volume: 23 start-page: 97 year: 1995 ident: e_1_3_2_24_1 article-title: Using Neurocomputing Methods to Classify Britain’s Residential Areas publication-title: Innovations in GIS – volume: 7 start-page: 1157 issue: 8 year: 2003 ident: e_1_3_2_11_1 article-title: An Introduction to Variable and Feature Selection publication-title: Journal of Machine Learning – volume-title: Methods and Techniques in Human Geography year: 1998 ident: e_1_3_2_26_1 – ident: e_1_3_2_8_1 doi: 10.1002/9780470977811 – volume-title: Geodemographics for Marketers: Using Location Analysis for Research and Marketing year: 2016 ident: e_1_3_2_18_1 – volume-title: Socio-Economic Classifications of Local Authority Areas (Studies on Medical and Population Subjects) year: 1978 ident: e_1_3_2_40_1 – ident: e_1_3_2_7_1 – volume: 12 start-page: 1 year: 2016 ident: e_1_3_2_10_1 article-title: Creating the 2011 Area Classification for Output Areas (2011 OAC) publication-title: Journal of Spatial Information Science – ident: e_1_3_2_21_1 doi: 10.1109/IAdCC.2014.6779395 – volume-title: Targeting Customers: How to Use Geodemographic and Lifestyle Data in Your Business year: 1993 ident: e_1_3_2_33_1 |
SSID | ssj0039435 |
Score | 2.3093262 |
Snippet | A geodemographic classification aims to describe the most salient characteristics of a small area zonal geography. However, such representations are influenced... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 251 |
SubjectTerms | Area classification Automation Classification Clusters Context Geodemographics Geography Methodology principal component analysis Principal components analysis spatial data mining UK census variable selection Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09bxQxELVQGmgQn-IgIBcUUGyy9vqzPCKiiAKlIFI6yx7bEAnuULKJxL9nxrsbBSiuobVs2es3O_Nsjd8w9jZmkQs41SFVsB1aiOl89dB57bxz2vcVWrbFZ3Nypj6d6_M7pb4oJ2ySB5427jBWXUWVBmrEowwaTCpW6wFZik6DiUDeF2PecpiafPDgVSutKejqXyMjWt7uuP6Q2qiJ0rr8gTCSRMr-iEpNvP8v6dJ_XHWLP8eP2MOZOPL1tODH7F7ZPGH35xrm3349ZTdrfjrdnGM3-s23GwwofFEd4e9Oj9bvO4pamdclJYvj3Dxej1skrth-gydnekvFr1p5HMSMX2z417LN5cc00QVwIMJNGUYN1Gfs7Pjjl6OTbq6q0IHSYuwsQAJXLMgcIUpXnE-RJHmMh-iMKrXkolIfS18gGpGS1crmGHWfhAA5PGd7G_yCF4xrwJ3uZexttsqBcxHDP8LjqihZDnbF1LKrAWbJcap88T2IWZl0ASMQGGEGY8UObof9nDQ3dg34QJDddibJ7NaAhhRmQwq7DGnF_F3Aw9huTOpU3iQMOxawv1hHmH3AVZAY941FSute_o_1vWIPaMqWSCj32d54eV1eIyEa05tm-78BM8cCMA priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07bxQxELYgFNAgwkMchMhFCigcrb3rXbs8IqITBUqRSFBZ9tgOkeAuym0i8e-Z8a4jHkIpqFZr-T3j8Wdr_A1jBz7KmMB0AqHCIFBDemGzBWG1scZo22Qo3haf-tVZ9_Gzrt6E29mtks7QeSKKKLaaFrcP2-oRh1_EBQhzyDHLHspeEc3YffZAkbaiSjdfVtUYt7YrMTapiKAy9RHPv6r5bXsqLP5_cJj-ZbPLRnT8hD2eESRfTiLfZffS-il7OAcz__rjGbtZ8pPpCh2z0XrfrHFn4ZV-hL89OVq-E7R9RZ6rbxbHtrm_HjeIYDH9Bo_Q9KiKb0ucHBQev1jz87SJ6fvU0AVwIORNrkZFus_Z2fGH06OVmMMrCOi0HMUAEMCkAVT04JVJxgZP3Dy9BW_6LuUUUxcan5oEvpchDLobove6CVKCal-wnTWO4CXjGnCmG-WbIQ6dAWM84oCER5EsU1TtsGBdnVUHM_c4hcD45uRMUVqF4UgYbhbGgh3eFrucyDfuKvCeRHabmbizS8Lm6tzNS9H5rLPMqoeMo7VoggL2VLeIe3Voew8LZn8VuBvL1Ume4py49o4O7FXtcLMx2DqFAKAfENuaV_9R9Wv2iH6LI6HaYzvj1XV6g4BoDPtF5X8C1MH-wQ priority: 102 providerName: Taylor & Francis |
Title | A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification |
URI | https://www.tandfonline.com/doi/abs/10.1080/10095020.2019.1621549 https://www.proquest.com/docview/2471670858 https://doaj.org/article/af5f1f26cfa549319be75535335b36ac |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo9wCXiqdYKCsfOMAhbZzEiX1C29JqhaBaAZXKyXLGdqkEm7abVuLfM-M45SXRq2PHj7HHn8fjbxh7aZ1wHlSVIVRoMpwhdaaDhkxLpZWSOg8QvS2O6sVx9e5EniSD2zq5VY46MSpq1wHZyHcL1KJ1gwBBvTm_yChqFN2uphAaG2yCKljh4Wuyd3C0_Djq4lJXMcSmoCsAichofMOj8l1KoyRy79I7oi6IrOyP3SmS-P9FYfqPyo770OF9tpUAJJ8PEn_A7vjVQ3Y3xTL_-uMRu57z5WBBx2y03LsVbix8ZB_hr5b789cZ7V6Oh9E1i2Pd3F71HQJYTL_GEzS9qeLrGCYHZcfPVvzUd85_Hyo6Aw4EvMnTKAr3MTs-PPi8v8hSdIUMKin6rAFoQfkGCmfBFsor3Vqi5qk1WFVXPnjnqza3Pvdga9G2jawaZ63MWyGgKJ-wzRX24CnjEnCk88LmjWsqBUpZhAEeTyJBeFeUzZRV46gaSNTjFAHjmxGJoXQUhiFhmCSMKdu5KXY-cG_cVmCPRHaTmaizY0J3eWrSSjQ2yCBCUUPA3mrUQC22VJYIe2Vb1hamTP8ucNNHy0kYwpyY8pYGbI-zwyRdsDa_Zu6z_39-zu7Rz6KrYLHNNvvLK_8CIU_fzthG_mUxY5P52w_vP83SLJ9FA8JP3Gv-cQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG7I8oAvBm9xFbUPmujDwLTTzrQPxiwIWQQ3GwMJb7XTC5LIDrILhj_lb_ScmSneEnnitXPvOT3na-f0-wh5aT3zwSmRAVSoMvCQMtNRu0xLpZWSOo-urbaYlOND8eFIHi2RH2kvDJZVppjYBmrfOFwj3-AQRcsKAIJ6d_YtQ9Uo_LuaJDQ6t9gLV99hyjZ_u_se7PuK853tg61x1qsKZE5Itsgq52qnQuW4t85yFZSuLVLSlNpZVYoQgw-izm3Ig7Mlq-tKispbK_OaMYdEBxDyl0UBU5kBWd7cnkw_pdhfaNFKejL85SABiaU9QyrfwDZswnIyvc5KjuRof2TDVjTgL8rUf1JEm_d2VsndHrDSUedh98hSmN0nK712-perB-RyRKfdij2chuGlmUEio4nthL6ebo3eZJgtPY2pFIzCs6m9WDQAmKH9EmbsuIeLzltZHvAVejKjx6Hx4bR70ImjDoE-Vja1zvSQHN5Kvz8igxl8wWNCpYOezrnNK18J5ZSyADsCzHwiC54X1ZCI1KvG9VTnqLjx1bCeETUZw6AxTG-MIVm_vuys4_q46YJNNNn1yUjV3TY058emH_nGRhlZ5KWL8LUaIl4NbyoLgNmyLkrrhkT_bnCzaFdqYierYoobXmAteYfpY8_c_BopT_5_-AVZGR983Df7u5O9p-QO3rgtU-RrZLA4vwjPAG4t6ue9j1Py-baH1U9uCDre |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMAF8RQLBXzgAIdUiWMn9nEprJaHqj1QCU6WPbbbSrBbddNK_HtmHKfiIdQDp0iOx6-xx5-t8TeMvXShCRG0rBAq9BXOkK4yyUBllDZaK1MnyN4WB93yUH74oiZvwm1xq6QzdBqJIrKtpsV9GtLkEYdfxAUIc8gxy-w1nSCasevsBhYvaGLXX5eTMW6NzDE2SaQimekRz7-K-W17yiz-f3CY_mWz80a0uMvuFATJ56PK77FrcX2f3SrBzI9_PGAXc74ar9AxG633zRp3Fj7Rj_BXq_3564q2r8DT5JvFsW7uzocNIlhMv8AjND2q4tscJweVx0_W_ChuQvw-VnQCHAh5k6tR1u5Ddrh493l_WZXwChVI1QxVD-BBxx5EcOCEjtp4R9w8nQGnOxlTDFH62sU6gusa73sl--Ccqn3TgGgfsZ019uAx4wpwpGvh6j70UoPWDnFAxKNIamIQbT9jchpVC4V7nEJgfLNNoSidlGFJGbYoY8b2LsVOR_KNqwTekMouMxN3dk7YnB3ZshStSyo1SXSQsLcGTZDHlqoWca_ybedgxsyvCrdDvjpJY5wT217RgN1pdthiDLZWIADoesS2-sl_FP2C3Vy9XdhP7w8-PmW36U_2KRS7bGc4O4_PEBsN_nme_T8BKf4Bdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Principal+Component+Analysis+%28PCA%29-based+framework+for+automated+variable+selection+in+geodemographic+classification&rft.jtitle=Geo-spatial+information+science&rft.au=Liu%2C+Yunzhe&rft.au=Singleton%2C+Alex&rft.au=Arribas-Bel%2C+Daniel&rft.date=2019-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=22&rft.issue=4&rft.spage=251&rft.epage=264&rft_id=info:doi/10.1080%2F10095020.2019.1621549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon |