Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy

Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simu...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 254; p. 108269
Main Authors Rasheed, Bismi, Bjelland, Øystein, Dalen, Andreas F., Schaarschmidt, Ute, Schaathun, Hans Georg, Pedersen, Morten D., Steinert, Martin, Bye, Robin T.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method. Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force–displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force–displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson’s ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test. The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination. This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy. •Estimation of elastic moduli during arthroscopy using an adaptive observer method.•Arthroscopic elastic moduli were validated against moduli based on indentation test.•Meniscus shows subject specificity, as well as anatomical and regional differences.•Provide quantitative measure of meniscus health conditions.•Enable in vivo patient-specific measurement of meniscus elastic moduli.
AbstractList Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method. Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force–displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force–displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson’s ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test. The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination. This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy. •Estimation of elastic moduli during arthroscopy using an adaptive observer method.•Arthroscopic elastic moduli were validated against moduli based on indentation test.•Meniscus shows subject specificity, as well as anatomical and regional differences.•Provide quantitative measure of meniscus health conditions.•Enable in vivo patient-specific measurement of meniscus elastic moduli.
Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method. Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force-displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force-displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson's ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test. The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination. This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy.
Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method.BACKGROUND AND OBJECTIVEDegenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method.Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force-displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force-displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson's ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test.METHODSEx vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force-displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force-displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson's ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test.The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination.RESULTSThe elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination.This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy.CONCLUSIONSThis study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy.
ArticleNumber 108269
Author Rasheed, Bismi
Bjelland, Øystein
Steinert, Martin
Dalen, Andreas F.
Schaathun, Hans Georg
Pedersen, Morten D.
Schaarschmidt, Ute
Bye, Robin T.
Author_xml – sequence: 1
  givenname: Bismi
  orcidid: 0000-0002-8897-5130
  surname: Rasheed
  fullname: Rasheed, Bismi
  email: bismi.rasheed@ntnu.no
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
– sequence: 2
  givenname: Øystein
  orcidid: 0000-0002-2581-9843
  surname: Bjelland
  fullname: Bjelland, Øystein
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
– sequence: 3
  givenname: Andreas F.
  orcidid: 0000-0003-3210-4560
  surname: Dalen
  fullname: Dalen, Andreas F.
  organization: Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
– sequence: 4
  givenname: Ute
  surname: Schaarschmidt
  fullname: Schaarschmidt, Ute
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
– sequence: 5
  givenname: Hans Georg
  surname: Schaathun
  fullname: Schaathun, Hans Georg
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
– sequence: 6
  givenname: Morten D.
  orcidid: 0000-0002-2587-1449
  surname: Pedersen
  fullname: Pedersen, Morten D.
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, 7491, Norway
– sequence: 7
  givenname: Martin
  surname: Steinert
  fullname: Steinert, Martin
  organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
– sequence: 8
  givenname: Robin T.
  orcidid: 0000-0002-6063-1264
  surname: Bye
  fullname: Bye, Robin T.
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38861877$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFP3DAQhS1EBQvlD3BAOfaSrZ3Edqh6qRAtSEi9tGfLsSfgJbGD7ay0_54JCxcOcPF47O-N7PdOyKEPHgg5Z3TNKBPfN2szTt26olWDB20lLg_IirWyKiUX_JCsELosK0HlMTlJaUMprTgXR-S4bluBoFwRe-tz1GGCqLPbQuEs-Ox6Z7ANvgh9MeEOz8o0gVkuChh0yljHYOdhTguTH6AYwbtksLdzdP6-0DE_xJBMmHZfyZdeDwnOXusp-f_7-t_VTXn398_t1a-70jSc5VKaWne11Vb0RkMjtZCNML21uAihZd0xWbGON5RpC4L1vOupNboTjFJuu_qUfNvPnWJ4miFlNeKTYBi0hzAnVdOWM1Y3LUX04hWduxGsmqIbddypN2cQaPeAwU-kCL0yLr-Ygn65QTGqlhDURi0hqCUEtQ8BpdU76dv0D0U_9yJAg7YOokoGfTdgXQSTlQ3uY_mPd3IzOI8xDo-w-0z8DHKLtpc
CitedBy_id crossref_primary_10_1016_j_jbiomech_2025_112627
Cites_doi 10.3109/03008207.2014.894997
10.1155/2012/979847
10.1016/j.jbiomech.2015.03.014
10.1007/s00167-010-1251-9
10.1016/0021-9290(72)90010-3
10.1016/j.cmpb.2019.105234
10.1007/s10561-022-10065-x
10.1016/j.cmpb.2020.105319
10.1016/j.jbiomech.2015.03.002
10.1016/j.cmpb.2022.106963
10.1016/j.cmpb.2020.105344
10.3390/diagnostics10060362
10.1016/j.jbiomech.2015.01.048
10.1016/j.jbiomech.2020.110126
10.1007/s10237-019-01274-7
10.1002/mp.14252
10.4329/wjr.v8.i1.59
10.1016/j.jbiomech.2015.02.044
10.1109/TMRB.2023.3295008
10.3233/BMR-2000-152-302
10.1115/1.1468868
10.1016/j.cmpb.2020.105794
10.1177/0300060520976048
10.1016/j.jbiomech.2018.07.001
10.1007/s11517-021-02432-9
10.1016/j.arthro.2017.08.287
10.1186/s12891-023-06153-y
10.1007/s00167-014-2926-4
10.2147/ORR.S54669
10.1016/j.jbiomech.2015.02.042
10.1016/j.cmpb.2013.05.005
10.1016/j.eswa.2019.113083
10.1080/00207179.2016.1157901
10.1016/j.jmbbm.2017.09.023
10.1016/j.jbiomech.2020.110152
10.1114/B:ABME.0000049040.70767.5c
10.3389/fbioe.2023.1167427
10.3390/s110101212
10.1137/S1052623496303470
10.1371/journal.pone.0280616
10.1016/j.cmpb.2023.107976
10.1002/jor.1100070602
10.1016/j.arthro.2006.12.025
10.1016/j.cmpb.2019.105244
10.1109/ACCESS.2022.3170108
10.1016/j.cmpb.2019.01.003
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2024.108269
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 38861877
10_1016_j_cmpb_2024_108269
S0169260724002645
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
AAIAV
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c451t-7c3ab3dad6fcae47a6746cfdd6cf66a73b1721b5401ade61f5bf0dcab61005db3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Jul 11 05:40:09 EDT 2025
Mon Jul 21 05:50:10 EDT 2025
Tue Jul 01 02:41:35 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Sat Jul 27 15:42:59 EDT 2024
Tue Aug 26 19:05:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Arthroscopic meniscus examination
Indentation testing
Elastic modulus
Inverse parameter identification
Finite element analysis
Adaptive observer
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-7c3ab3dad6fcae47a6746cfdd6cf66a73b1721b5401ade61f5bf0dcab61005db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3210-4560
0000-0002-2581-9843
0000-0002-2587-1449
0000-0002-6063-1264
0000-0002-8897-5130
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169260724002645
PMID 38861877
PQID 3085113480
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3085113480
pubmed_primary_38861877
crossref_citationtrail_10_1016_j_cmpb_2024_108269
crossref_primary_10_1016_j_cmpb_2024_108269
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108269
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-Sep
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jia, Zu, Hariri (b21) 2011; 11
Sweigart, Zhu, Burt, DeHoll, Agrawal, Clanton, Athanasiou (b49) 2004; 32
Bjelland, Rasheed, Schaathun, Pedersen, Steinert, Hellevik, Bye (b3) 2022; 10
Proctor, Schmidt, Whipple, Kelly, Mow (b34) 1989; 7
Rothermel, Smuin, Dhawan (b1) 2018; 34
Hayes, Keer, Herrmann, Mockros (b37) 1972; 5
Abdin, Shah, Cho, Yoo (b32) 2024; 244
Lagarias, Reeds, Wright, Wright (b42) 1998; 9
Karimi, Grytz, Rahmati, Girkin, Downs (b41) 2021; 198
Fithian, Kelly, Mow (b29) 1990; 252
Stone, Freyer, Turek, Walgenbach, Wadhwa, Crues (b9) 2007; 23
Martínez-Martínez, Rupérez, Martín-Guerrero, Monserrat, Lago, Pareja, Brugger, López-Andújar (b11) 2013; 111
Lee, Kim, Lee (b13) 2020; 10
Bedewi, Elsifey, Saleh, Alfaifi (b15) 2020; 48
Freutel, Galbusera, Ignatius, Dürselen (b22) 2015; 48
Khan, Azam, Yao, Chen (b6) 2022; 222
Lauzeral, Borzacchiello, Kugler, George, Rémond, Hostettler, Chinesta (b30) 2019; 170
Anetzberger, Birkenmaier, Lorenz (b18) 2013
Abdelgaied, Stanley, Galfe, Berry, Ingham, Fisher (b35) 2015; 48
Low, Kruse, Lomas (b14) 2016; 8
Santhanam, Stiehl, Lauria, Hasse, Barjaktarevic, Goldin, Low (b25) 2021; 48
Zhang, Chauhan (b31) 2020; 187
LeRoux, Setton (b48) 2002; 124
Ţiclea, Besançon (b28) 2016; 89
Lento, Akuthota (b43) 2000; 15
Łuczkiewicz, Daszkiewicz, Witkowski, Chróścielewski, Zarzycki (b7) 2015; 48
Blaker, Ashton, Doran, Little, Clarke (b10) 2021; 114
Nesbitt, Siegel, Nelson, Lujan (b8) 2021; 115
Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin, Töyräs, Julkunen, Korhonen (b45) 2015; 48
Sun, Westover, Wu, Laouar, Jomha, Adeeb, Thornton (b33) 2023; 24
Bojairami, Hamedzadeh, Driscoll (b24) 2021; 59
Pellicer-Valero, Rupérez, Martínez-Sanchis, Martín-Guerrero (b27) 2020; 143
Seyfi, Fatouraee, Imeni (b23) 2018; 77
Anh, Nataraja, Chauhan (b44) 2020; 187
Bjelland, Rasheed, Dalen (b50) 2024
Kulseng, Nainamalai, Grøvik, Geitung, Årøen, Gjesdal (b5) 2023; 24
Rasheed, Ayyalasomayajula, Schaarschmidt, Vagstad, Schaathun (b47) 2023; 11
Lu, Mao, Lu, Liu, Wang, Chen (b38) 2012; 2012
Tuijthof, Horeman, Schafroth, Blankevoort, Kerkhoffs (b20) 2011; 19
Danso, Julkunen, Korhonen (b39) 2018; 77
Orton, Batchelor, Ziebarth, Best, Travascio, Jackson (b16) 2023; 18
Tang, Liu, Deng, Zhang, Yin, Zheng (b4) 2020; 190
Delingette, Ayache (b40) 2004; 12
Gaugler, Wirz, Ronken, Hafner, Göpfert, Friederich, Elke (b46) 2015; 23
Lee, Badar, Kahn, Matyas, Qu, Chen, Xia (b17) 2014; 55
Toniolo, Salmaso, Bruno, De Stefani, Stefanini, Gracco, Carniel (b12) 2020; 189
Lee, Husin, Forte, Lee, Kuchenbecker (b19) 2023; 5
Bjelland, Hatledal, Bye, Steinert (b36) 2023
Fischenich, Lewis, Kindsfater, Bailey, Haut Donahue (b2) 2015; 48
Hashemi, Baniassadi, Baghani, George, Remond, Sheidaei (b26) 2020; 19
Sun (10.1016/j.cmpb.2024.108269_b33) 2023; 24
Bjelland (10.1016/j.cmpb.2024.108269_b36) 2023
Sweigart (10.1016/j.cmpb.2024.108269_b49) 2004; 32
Lu (10.1016/j.cmpb.2024.108269_b38) 2012; 2012
Abdin (10.1016/j.cmpb.2024.108269_b32) 2024; 244
Bedewi (10.1016/j.cmpb.2024.108269_b15) 2020; 48
Fithian (10.1016/j.cmpb.2024.108269_b29) 1990; 252
Rothermel (10.1016/j.cmpb.2024.108269_b1) 2018; 34
Rasheed (10.1016/j.cmpb.2024.108269_b47) 2023; 11
Gaugler (10.1016/j.cmpb.2024.108269_b46) 2015; 23
Ţiclea (10.1016/j.cmpb.2024.108269_b28) 2016; 89
Karimi (10.1016/j.cmpb.2024.108269_b41) 2021; 198
Hayes (10.1016/j.cmpb.2024.108269_b37) 1972; 5
Lee (10.1016/j.cmpb.2024.108269_b13) 2020; 10
Zhang (10.1016/j.cmpb.2024.108269_b31) 2020; 187
Martínez-Martínez (10.1016/j.cmpb.2024.108269_b11) 2013; 111
Proctor (10.1016/j.cmpb.2024.108269_b34) 1989; 7
Stone (10.1016/j.cmpb.2024.108269_b9) 2007; 23
Anetzberger (10.1016/j.cmpb.2024.108269_b18) 2013
LeRoux (10.1016/j.cmpb.2024.108269_b48) 2002; 124
Tuijthof (10.1016/j.cmpb.2024.108269_b20) 2011; 19
Lento (10.1016/j.cmpb.2024.108269_b43) 2000; 15
Fischenich (10.1016/j.cmpb.2024.108269_b2) 2015; 48
Bojairami (10.1016/j.cmpb.2024.108269_b24) 2021; 59
Anh (10.1016/j.cmpb.2024.108269_b44) 2020; 187
Łuczkiewicz (10.1016/j.cmpb.2024.108269_b7) 2015; 48
Lee (10.1016/j.cmpb.2024.108269_b19) 2023; 5
Kulseng (10.1016/j.cmpb.2024.108269_b5) 2023; 24
Low (10.1016/j.cmpb.2024.108269_b14) 2016; 8
Pellicer-Valero (10.1016/j.cmpb.2024.108269_b27) 2020; 143
Orton (10.1016/j.cmpb.2024.108269_b16) 2023; 18
Lee (10.1016/j.cmpb.2024.108269_b17) 2014; 55
Delingette (10.1016/j.cmpb.2024.108269_b40) 2004; 12
Santhanam (10.1016/j.cmpb.2024.108269_b25) 2021; 48
Hashemi (10.1016/j.cmpb.2024.108269_b26) 2020; 19
Seyfi (10.1016/j.cmpb.2024.108269_b23) 2018; 77
Freutel (10.1016/j.cmpb.2024.108269_b22) 2015; 48
Lauzeral (10.1016/j.cmpb.2024.108269_b30) 2019; 170
Bjelland (10.1016/j.cmpb.2024.108269_b3) 2022; 10
Jia (10.1016/j.cmpb.2024.108269_b21) 2011; 11
Blaker (10.1016/j.cmpb.2024.108269_b10) 2021; 114
Danso (10.1016/j.cmpb.2024.108269_b39) 2018; 77
Tang (10.1016/j.cmpb.2024.108269_b4) 2020; 190
Nesbitt (10.1016/j.cmpb.2024.108269_b8) 2021; 115
Khan (10.1016/j.cmpb.2024.108269_b6) 2022; 222
Abdelgaied (10.1016/j.cmpb.2024.108269_b35) 2015; 48
Bjelland (10.1016/j.cmpb.2024.108269_b50) 2024
Toniolo (10.1016/j.cmpb.2024.108269_b12) 2020; 189
Lagarias (10.1016/j.cmpb.2024.108269_b42) 1998; 9
Danso (10.1016/j.cmpb.2024.108269_b45) 2015; 48
References_xml – volume: 59
  start-page: 2051
  year: 2021
  end-page: 2061
  ident: b24
  article-title: Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries
  publication-title: Med. Biol. Eng. Comput.
– volume: 2012
  year: 2012
  ident: b38
  article-title: Quantitative imaging of young’s modulus of soft tissues from ultrasound water jet indentation: a finite element study
  publication-title: Comput. Math. Methods Med.
– volume: 244
  year: 2024
  ident: b32
  article-title: MATLAB-based innovative 3D finite element method simulator for optimized real-time hyperthermia analysis
  publication-title: Comput. Methods Programs Biomed.
– volume: 5
  start-page: 496
  year: 2023
  end-page: 506
  ident: b19
  article-title: Learning to estimate palpation forces in robotic surgery from visual-inertial data
  publication-title: IEEE Trans. Med. Robot. Bionics
– volume: 252
  start-page: 19
  year: 1990
  end-page: 31
  ident: b29
  article-title: Material properties and structure-function relationships in the menisci
  publication-title: Clin. Orthopaed. Rel. Res. (1976-2007)
– volume: 8
  start-page: 59
  year: 2016
  end-page: 72
  ident: b14
  article-title: General review of magnetic resonance elastography
  publication-title: World J. Radiol.
– volume: 187
  year: 2020
  ident: b31
  article-title: Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation
  publication-title: Comput. Methods Programs Biomed.
– volume: 48
  start-page: 1343
  year: 2015
  end-page: 1349
  ident: b22
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
– volume: 5
  start-page: 541
  year: 1972
  end-page: 551
  ident: b37
  article-title: A mathematical analysis for indentation tests of articular cartilage
  publication-title: J. Biomech.
– volume: 24
  start-page: 737
  year: 2023
  end-page: 745
  ident: b33
  article-title: Compressive mechanical properties of vitrified porcine menisci are superior to frozen and similar to fresh porcine menisci
  publication-title: Cell Tissue Bank.
– volume: 10
  start-page: 362
  year: 2020
  ident: b13
  article-title: Development of stiffness measurement program using color mapping in shear wave elastography
  publication-title: Diagnostics
– volume: 170
  start-page: 95
  year: 2019
  end-page: 106
  ident: b30
  article-title: A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications
  publication-title: Comput. Methods Programs Biomed.
– volume: 19
  start-page: 1131
  year: 2020
  end-page: 1142
  ident: b26
  article-title: A novel machine learning based computational framework for homogenization of heterogeneous soft materials: Application to liver tissue
  publication-title: Biomech. Model. Mechanobiol.
– volume: 77
  start-page: 337
  year: 2018
  end-page: 346
  ident: b23
  article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 19
  start-page: 248
  year: 2011
  end-page: 254
  ident: b20
  article-title: Probing forces of menisci: what levels are safe for arthroscopic surgery
  publication-title: Knee Surg., Sports Traumatol., Arthrosc.
– volume: 48
  start-page: 1389
  year: 2015
  end-page: 1396
  ident: b35
  article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus
  publication-title: J. Biomech.
– start-page: 1
  year: 2013
  end-page: 9
  ident: b18
  article-title: Meniscectomy: indications, procedure, outcomes, and rehabilitation
  publication-title: Orthopedic Res. Rev.
– volume: 12
  start-page: 453
  year: 2004
  end-page: 550
  ident: b40
  article-title: Soft tissue modeling for surgery simulation
  publication-title: Handb. Numer. Anal.
– volume: 34
  start-page: 979
  year: 2018
  end-page: 987
  ident: b1
  article-title: Are outcomes after meniscal repair age dependent? A systematic review
  publication-title: Arthroscopy: J. Arthrosc. Rel. Surg.
– volume: 189
  year: 2020
  ident: b12
  article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure
  publication-title: Comput. Methods Programs Biomed.
– volume: 7
  start-page: 771
  year: 1989
  end-page: 782
  ident: b34
  article-title: Material properties of the normal medial bovine meniscus
  publication-title: J. Orthopaedic Res.
– volume: 15
  start-page: 55
  year: 2000
  end-page: 62
  ident: b43
  article-title: Meniscal injuries: a critical review
  publication-title: J. Back Musculoskelet. Rehabil.
– volume: 11
  start-page: 1212
  year: 2011
  end-page: 1228
  ident: b21
  article-title: A new tissue resonator indenter device and reliability study
  publication-title: Sensors
– start-page: 459
  year: 2023
  end-page: 465
  ident: b36
  article-title: Implementation and evaluation of an arthroscopic tracker system for intraoperative motion tracking and force registration
  publication-title: Proceedings of the 37th ECMS International Conference on Modelling and Simulation
– volume: 10
  start-page: 45029
  year: 2022
  end-page: 45052
  ident: b3
  article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review
  publication-title: IEEE Access
– volume: 32
  start-page: 1569
  year: 2004
  end-page: 1579
  ident: b49
  article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus
  publication-title: Ann. Biomed. Eng.
– volume: 18
  year: 2023
  ident: b16
  article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy
  publication-title: PLoS One
– volume: 190
  year: 2020
  ident: b4
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Comput. Methods Programs Biomed.
– volume: 48
  start-page: 1499
  year: 2015
  end-page: 1507
  ident: b45
  article-title: Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
– volume: 114
  year: 2021
  ident: b10
  article-title: Sex-and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis
  publication-title: J. Biomech.
– volume: 48
  start-page: 1407
  year: 2015
  end-page: 1411
  ident: b2
  article-title: Effects of degeneration on the compressive and tensile properties of human meniscus
  publication-title: J. Biomech.
– volume: 11
  year: 2023
  ident: b47
  article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing
  publication-title: Front. Bioeng. Biotechnol.
– volume: 111
  start-page: 537
  year: 2013
  end-page: 549
  ident: b11
  article-title: Estimation of the elastic parameters of human liver biomechanical models by means of medical images and evolutionary computation
  publication-title: Comput. Methods Programs Biomed.
– year: 2024
  ident: b50
  article-title: Haptic rendering of arthroscopic meniscus examination in SOFA
  publication-title: 2024 IEEE International Conference of Real-Time Computing and Robotics (RCAR)
– volume: 48
  year: 2020
  ident: b15
  article-title: Shear wave elastography of the knee menisci
  publication-title: J. Int. Med. Res.
– volume: 124
  start-page: 315
  year: 2002
  end-page: 321
  ident: b48
  article-title: Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension
  publication-title: J. Biomech. Eng.
– volume: 9
  start-page: 112
  year: 1998
  end-page: 147
  ident: b42
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J. Optim.
– volume: 23
  start-page: 1141
  year: 2015
  end-page: 1146
  ident: b46
  article-title: Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage
  publication-title: Knee Surg., Sports Traumatol., Arthrosc.
– volume: 77
  start-page: 233
  year: 2018
  end-page: 237
  ident: b39
  article-title: Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression
  publication-title: J. Biomech.
– volume: 187
  year: 2020
  ident: b44
  article-title: Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques
  publication-title: Comput. Methods Programs Biomed.
– volume: 115
  year: 2021
  ident: b8
  article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears
  publication-title: J. Biomech.
– volume: 24
  year: 2023
  ident: b5
  article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol
  publication-title: BMC Musculoskelet. Disord.
– volume: 198
  year: 2021
  ident: b41
  article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole
  publication-title: Comput. Methods Programs Biomed.
– volume: 48
  start-page: 1356
  year: 2015
  end-page: 1363
  ident: b7
  article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics
  publication-title: J. Biomech.
– volume: 55
  start-page: 205
  year: 2014
  end-page: 216
  ident: b17
  article-title: Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI
  publication-title: Connect. Tissue Res.
– volume: 89
  start-page: 2385
  year: 2016
  end-page: 2395
  ident: b28
  article-title: Adaptive observer design for discrete time LTV systems
  publication-title: Internat. J. Control
– volume: 222
  year: 2022
  ident: b6
  article-title: Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI
  publication-title: Comput. Methods Programs Biomed.
– volume: 143
  year: 2020
  ident: b27
  article-title: Real-time biomechanical modeling of the liver using machine learning models trained on finite element method simulations
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 503
  year: 2007
  end-page: 508
  ident: b9
  article-title: Meniscal sizing based on gender, height, and weight
  publication-title: Arthroscopy: J. Arthrosc. Relat. Surg.
– volume: 48
  start-page: 667
  year: 2021
  end-page: 675
  ident: b25
  article-title: An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT
  publication-title: Med. Phys.
– volume: 55
  start-page: 205
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2024.108269_b17
  article-title: Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207.2014.894997
– volume: 2012
  year: 2012
  ident: 10.1016/j.cmpb.2024.108269_b38
  article-title: Quantitative imaging of young’s modulus of soft tissues from ultrasound water jet indentation: a finite element study
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/979847
– volume: 48
  start-page: 1343
  issue: 8
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b22
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.014
– volume: 252
  start-page: 19
  year: 1990
  ident: 10.1016/j.cmpb.2024.108269_b29
  article-title: Material properties and structure-function relationships in the menisci
  publication-title: Clin. Orthopaed. Rel. Res. (1976-2007)
– volume: 19
  start-page: 248
  year: 2011
  ident: 10.1016/j.cmpb.2024.108269_b20
  article-title: Probing forces of menisci: what levels are safe for arthroscopic surgery
  publication-title: Knee Surg., Sports Traumatol., Arthrosc.
  doi: 10.1007/s00167-010-1251-9
– volume: 5
  start-page: 541
  issue: 5
  year: 1972
  ident: 10.1016/j.cmpb.2024.108269_b37
  article-title: A mathematical analysis for indentation tests of articular cartilage
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(72)90010-3
– volume: 187
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b44
  article-title: Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105234
– year: 2024
  ident: 10.1016/j.cmpb.2024.108269_b50
  article-title: Haptic rendering of arthroscopic meniscus examination in SOFA
– volume: 24
  start-page: 737
  issue: 4
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b33
  article-title: Compressive mechanical properties of vitrified porcine menisci are superior to frozen and similar to fresh porcine menisci
  publication-title: Cell Tissue Bank.
  doi: 10.1007/s10561-022-10065-x
– start-page: 459
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b36
  article-title: Implementation and evaluation of an arthroscopic tracker system for intraoperative motion tracking and force registration
– volume: 189
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b12
  article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105319
– volume: 48
  start-page: 1356
  issue: 8
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b7
  article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.002
– volume: 222
  year: 2022
  ident: 10.1016/j.cmpb.2024.108269_b6
  article-title: Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106963
– volume: 190
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b4
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105344
– volume: 10
  start-page: 362
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b13
  article-title: Development of stiffness measurement program using color mapping in shear wave elastography
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10060362
– volume: 48
  start-page: 1499
  issue: 8
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b45
  article-title: Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.048
– volume: 115
  year: 2021
  ident: 10.1016/j.cmpb.2024.108269_b8
  article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110126
– volume: 19
  start-page: 1131
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b26
  article-title: A novel machine learning based computational framework for homogenization of heterogeneous soft materials: Application to liver tissue
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01274-7
– volume: 48
  start-page: 667
  issue: 2
  year: 2021
  ident: 10.1016/j.cmpb.2024.108269_b25
  article-title: An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT
  publication-title: Med. Phys.
  doi: 10.1002/mp.14252
– volume: 8
  start-page: 59
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpb.2024.108269_b14
  article-title: General review of magnetic resonance elastography
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v8.i1.59
– volume: 48
  start-page: 1389
  issue: 8
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b35
  article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.044
– volume: 5
  start-page: 496
  issue: 3
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b19
  article-title: Learning to estimate palpation forces in robotic surgery from visual-inertial data
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2023.3295008
– volume: 15
  start-page: 55
  issue: 2–3
  year: 2000
  ident: 10.1016/j.cmpb.2024.108269_b43
  article-title: Meniscal injuries: a critical review
  publication-title: J. Back Musculoskelet. Rehabil.
  doi: 10.3233/BMR-2000-152-302
– volume: 124
  start-page: 315
  issue: 3
  year: 2002
  ident: 10.1016/j.cmpb.2024.108269_b48
  article-title: Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1468868
– volume: 198
  year: 2021
  ident: 10.1016/j.cmpb.2024.108269_b41
  article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105794
– volume: 48
  issue: 11
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b15
  article-title: Shear wave elastography of the knee menisci
  publication-title: J. Int. Med. Res.
  doi: 10.1177/0300060520976048
– volume: 77
  start-page: 233
  year: 2018
  ident: 10.1016/j.cmpb.2024.108269_b39
  article-title: Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.07.001
– volume: 59
  start-page: 2051
  issue: 10
  year: 2021
  ident: 10.1016/j.cmpb.2024.108269_b24
  article-title: Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-021-02432-9
– volume: 34
  start-page: 979
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2024.108269_b1
  article-title: Are outcomes after meniscal repair age dependent? A systematic review
  publication-title: Arthroscopy: J. Arthrosc. Rel. Surg.
  doi: 10.1016/j.arthro.2017.08.287
– volume: 24
  issue: 1
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b5
  article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-023-06153-y
– volume: 23
  start-page: 1141
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b46
  article-title: Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage
  publication-title: Knee Surg., Sports Traumatol., Arthrosc.
  doi: 10.1007/s00167-014-2926-4
– start-page: 1
  year: 2013
  ident: 10.1016/j.cmpb.2024.108269_b18
  article-title: Meniscectomy: indications, procedure, outcomes, and rehabilitation
  publication-title: Orthopedic Res. Rev.
  doi: 10.2147/ORR.S54669
– volume: 48
  start-page: 1407
  issue: 8
  year: 2015
  ident: 10.1016/j.cmpb.2024.108269_b2
  article-title: Effects of degeneration on the compressive and tensile properties of human meniscus
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.042
– volume: 111
  start-page: 537
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2024.108269_b11
  article-title: Estimation of the elastic parameters of human liver biomechanical models by means of medical images and evolutionary computation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.05.005
– volume: 143
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b27
  article-title: Real-time biomechanical modeling of the liver using machine learning models trained on finite element method simulations
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113083
– volume: 89
  start-page: 2385
  issue: 12
  year: 2016
  ident: 10.1016/j.cmpb.2024.108269_b28
  article-title: Adaptive observer design for discrete time LTV systems
  publication-title: Internat. J. Control
  doi: 10.1080/00207179.2016.1157901
– volume: 77
  start-page: 337
  year: 2018
  ident: 10.1016/j.cmpb.2024.108269_b23
  article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.09.023
– volume: 114
  year: 2021
  ident: 10.1016/j.cmpb.2024.108269_b10
  article-title: Sex-and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110152
– volume: 32
  start-page: 1569
  year: 2004
  ident: 10.1016/j.cmpb.2024.108269_b49
  article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/B:ABME.0000049040.70767.5c
– volume: 11
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b47
  article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1167427
– volume: 11
  start-page: 1212
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2024.108269_b21
  article-title: A new tissue resonator indenter device and reliability study
  publication-title: Sensors
  doi: 10.3390/s110101212
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  ident: 10.1016/j.cmpb.2024.108269_b42
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496303470
– volume: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.cmpb.2024.108269_b16
  article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0280616
– volume: 244
  year: 2024
  ident: 10.1016/j.cmpb.2024.108269_b32
  article-title: MATLAB-based innovative 3D finite element method simulator for optimized real-time hyperthermia analysis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2023.107976
– volume: 12
  start-page: 453
  year: 2004
  ident: 10.1016/j.cmpb.2024.108269_b40
  article-title: Soft tissue modeling for surgery simulation
  publication-title: Handb. Numer. Anal.
– volume: 7
  start-page: 771
  issue: 6
  year: 1989
  ident: 10.1016/j.cmpb.2024.108269_b34
  article-title: Material properties of the normal medial bovine meniscus
  publication-title: J. Orthopaedic Res.
  doi: 10.1002/jor.1100070602
– volume: 23
  start-page: 503
  issue: 5
  year: 2007
  ident: 10.1016/j.cmpb.2024.108269_b9
  article-title: Meniscal sizing based on gender, height, and weight
  publication-title: Arthroscopy: J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2006.12.025
– volume: 187
  year: 2020
  ident: 10.1016/j.cmpb.2024.108269_b31
  article-title: Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105244
– volume: 10
  start-page: 45029
  year: 2022
  ident: 10.1016/j.cmpb.2024.108269_b3
  article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3170108
– volume: 170
  start-page: 95
  year: 2019
  ident: 10.1016/j.cmpb.2024.108269_b30
  article-title: A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.01.003
SSID ssj0002556
Score 2.4096034
Snippet Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108269
SubjectTerms Adaptive observer
Algorithms
Arthroscopic meniscus examination
Arthroscopy
Biomechanical Phenomena
Cadaver
Elastic Modulus
Finite Element Analysis
Humans
Indentation testing
Inverse parameter identification
Male
Menisci, Tibial - diagnostic imaging
Menisci, Tibial - surgery
Meniscus - surgery
Title Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724002645
https://dx.doi.org/10.1016/j.cmpb.2024.108269
https://www.ncbi.nlm.nih.gov/pubmed/38861877
https://www.proquest.com/docview/3085113480
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA_iweGL3Je65yk5uDepu23SpPsocrJ66Msp-BbyiStuW9zdB1_8251p0hXh9MCXQttMGybTmV-a30wI-TUu7AhXgzLhrMu45PBJMeZgQEQRAO6OQ4XJyecXYnLFz67L6zVy3OfCIK0y-f7o0ztvna4MkzaH7XQ6_It1RACNS2RBQljHRHPOJVr54eMzzQNLbMX63uMMW6fEmcjxsrPWwByx4Ei1K5D0_O_g9Br47ILQySeymdAjPYod_EzWfP2FfDxP6-NfiTvFf7VN62M9bzp1iQzU6Z82gaY6qhlmWOIN6gE-w9PorHHLu-Uc2wAmpDNfT-cWzmMeIwWd3GDhy6Z9-EauTn5fHk-ytI9CZnmZLzJpmTbMaSeC1Z5LLSQXNjgHByG0ZAbngQawW66dF3koTRg5qw1Aq1HpDNsi63VT-x1Ci-A1bm1UalAaF7pyho-9Z6EsAcq5YkDyXoHKpiLjuNfFnerZZLcKla5Q6SoqfUAOVjJtLLHxZmvWj4vqk0fB3SmIAG9KlSupF-b1X7mf_dAr-O5wMUXXvlnOFeuwKuPVaEC2o02ses-qSuSVlN_f-dZdspF3Gf9IZftB1hf3S78H2Gdh9jvj3icfjk7_TC6eAK_jA40
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN4LBYwEJxR2EztO9tADAqpd2u2FVurNOH6IRd0kYneFeuFP8Qc7EzuLkKBISL1ESmwn1ow9_hx_MwPwcpyZEZ0GJdIam4hC4JTi3KJCZOYR7o59Sc7JsyM5OREfT_PTLfjZ-8IQrTLa_mDTO2sdnwyjNIftfD78RHFEEI0XxILEZb1nVh648--4b1vuTd-jkl9l2f6H43eTJKYWSIzI01VSGK4rbrWV3mgnCi0LIY23Fi9S6oJXtDWqEM6k2jqZ-rzyI2t0hWhjlNuK43uvwXWB5oLSJrz58YtXQjG9QkDxcULdi546gVRmFm2Fm9JMELcvI5b1n1fDv6HdbtXb34HbEa6yt0Eid2DL1XfhxiweyN8DO6Wfw03rQgBxNreRfdQpnDWexcCtCbl0UgFziNfxbWzR2PXZekl1EISyhavnS4P3wXGSoRK-UKTNpj2_DydXIt0HsF03tXsELPNOUy6lXKPQhNSlrcTYOe7zHLGjzQaQ9gJUJkY1p-QaZ6qnr31VJHRFQldB6AN4vWnThpgel9bmvV5U762K9lXhknNpq3zT6rfx_M92L3rVK5zodHqja9esl4p34JiLcjSAh2FMbHrPy1KmZVE8_s-vPoebk-PZoTqcHh08gVtUEnh0u7C9-rZ2TxF4rapn3UBn8PmqZ9YFo4tBtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intraoperative+identification+of+patient-specific+elastic+modulus+of+the+meniscus+during+arthroscopy&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Rasheed%2C+Bismi&rft.au=Bjelland%2C+%C3%98ystein&rft.au=Dalen%2C+Andreas+F&rft.au=Schaarschmidt%2C+Ute&rft.date=2024-09-01&rft.eissn=1872-7565&rft.volume=254&rft.spage=108269&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108269&rft_id=info%3Apmid%2F38861877&rft.externalDocID=38861877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon