Integrable boundary conditions in the antiferromagnetic Potts model

A bstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latt...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 5; pp. 1 - 35
Main Authors Robertson, Niall F., Pawelkiewicz, Michal, Jacobsen, Jesper Lykke, Saleur, Hubert
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2020
Springer Nature B.V
Springer
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latter model using tools from integrability. We show that there is a simple interpretation of one of the known K -matrices of the D 2 2 model in terms of Temperley-Lieb algebra generators, and use this to present an integrable Hamiltonian that turns out to be in the same universality class as the antiferromagnetic Potts model with free boundary conditions. The intriguing degeneracies in the spectrum observed in related works ([12, 13]) are discussed.
AbstractList A bstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latter model using tools from integrability. We show that there is a simple interpretation of one of the known K -matrices of the D 2 2 model in terms of Temperley-Lieb algebra generators, and use this to present an integrable Hamiltonian that turns out to be in the same universality class as the antiferromagnetic Potts model with free boundary conditions. The intriguing degeneracies in the spectrum observed in related works ([12, 13]) are discussed.
We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D22 Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latter model using tools from integrability. We show that there is a simple interpretation of one of the known K -matrices of the D22 model in terms of Temperley-Lieb algebra generators, and use this to present an integrable Hamiltonian that turns out to be in the same universality class as the antiferromagnetic Potts model with free boundary conditions. The intriguing degeneracies in the spectrum observed in related works ([12, 13]) are discussed.
Abstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 $$ {D}_2^2 $$ Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latter model using tools from integrability. We show that there is a simple interpretation of one of the known K -matrices of the D 2 2 $$ {D}_2^2 $$ model in terms of Temperley-Lieb algebra generators, and use this to present an integrable Hamiltonian that turns out to be in the same universality class as the antiferromagnetic Potts model with free boundary conditions. The intriguing degeneracies in the spectrum observed in related works ([12, 13]) are discussed.
We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine $ {D}_2^2 $ Lie algebra. Using the known relations between the staggered six-vertex model and the antiferromagnetic Potts model, this mapping allows us to study the latter model using tools from integrability. We show that there is a simple interpretation of one of the known K -matrices of the $ {D}_2^2 $ model in terms of Temperley-Lieb algebra generators, and use this to present an integrable Hamiltonian that turns out to be in the same universality class as the antiferromagnetic Potts model with free boundary conditions. The intriguing degeneracies in the spectrum observed in related works ([12, 13]) are discussed.
ArticleNumber 144
Author Saleur, Hubert
Pawelkiewicz, Michal
Robertson, Niall F.
Jacobsen, Jesper Lykke
Author_xml – sequence: 1
  givenname: Niall F.
  surname: Robertson
  fullname: Robertson, Niall F.
  email: niall-fergus.robertson@ipht.fr
  organization: Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique
– sequence: 2
  givenname: Michal
  surname: Pawelkiewicz
  fullname: Pawelkiewicz, Michal
  organization: Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique
– sequence: 3
  givenname: Jesper Lykke
  surname: Jacobsen
  fullname: Jacobsen, Jesper Lykke
  organization: Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique, Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Sorbonne Université, École Normale Supérieure, CNRS, Laboratoire de Physique (LPENS)
– sequence: 4
  givenname: Hubert
  surname: Saleur
  fullname: Saleur, Hubert
  organization: Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique, Department of Physics and Astronomy, University of Southern California
BackLink https://hal.science/hal-02518080$$DView record in HAL
BookMark eNp1kUtvGyEURlGVSM2j625H6qZZuLkXGB7LyEprV5aaRbJGmAFnrDGkgCv13xd3qj4WXYGuzne46LskZzFFT8hbhA8IIG8_r-4foH9PgcINcv6KXCBQvVBc6rO_7q_JZSl7AOxRwwVZrmP1u2y3k--26RgHm793LsVhrGOKpRtjV599Z2Mdg885Hewu-jq67iHVWrpDGvx0Tc6DnYp_8-u8Ik8f7x-Xq8Xmy6f18m6zcLzHupCaMjGEIK3ivXBKoKaWcYnCgWeBB8b9sBXBMZQaFVdBM60AAwUZqPXsiqxn75Ds3rzk8dCWNcmO5ucg5Z2xue02eaOZ3w7aIwYmuLDB8vaYVsIJK-ngXXPdzK5nO_2jWt1tzGkGtEcFCr5hY9_N7EtOX4--VLNPxxzbVw3lIClyKlWjbmfK5VRK9uG3FsGcGjJzQ-bUkGkNtQTMidLIuPP5j_d_kR9BDJJh
CitedBy_id crossref_primary_10_1007_JHEP08_2020_069
crossref_primary_10_1007_JHEP03_2022_175
crossref_primary_10_1007_JHEP04_2022_101
crossref_primary_10_1016_j_nuclphysb_2022_115799
crossref_primary_10_1007_JHEP02_2021_180
crossref_primary_10_1007_JHEP11_2023_095
crossref_primary_10_1007_JHEP01_2022_070
crossref_primary_10_1007_JHEP03_2021_089
crossref_primary_10_1088_1751_8121_acb29f
Cites_doi 10.1007/JHEP10(2019)254
10.1088/1751-8121/aad957
10.1016/0550-3213(89)90014-X
10.1103/PhysRevLett.56.742
10.1016/j.nuclphysb.2012.04.019
10.1016/0550-3213(90)90477-U
10.1016/j.nuclphysb.2007.07.004
10.1088/1751-8113/42/29/292002
10.1007/JHEP08(2019)087
10.1016/0550-3213(91)90402-J
10.1016/0550-3213(87)90332-4
10.1016/j.nuclphysb.2006.02.041
10.1103/PhysRevLett.108.081601
10.1016/j.nuclphysb.2017.09.004
10.1088/1742-5468/2015/09/P09001
10.1007/BF01221646
10.1016/S0550-3213(00)00259-5
10.1016/j.nuclphysb.2013.12.015
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Attribution
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: Attribution
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.1007/JHEP05(2020)144
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 35
ExternalDocumentID oai_doaj_org_article_93ebd9e11f3646afa4192986c6a72dec
oai_HAL_hal_02518080v1
10_1007_JHEP05_2020_144
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
1XC
AAYZH
VOOES
ID FETCH-LOGICAL-c451t-79236dff7a8456c86192a34716c0e3f4f34edb6fc31791848f939801f207f2ae3
IEDL.DBID DOA
ISSN 1029-8479
1126-6708
IngestDate Tue Oct 22 15:12:33 EDT 2024
Tue Oct 15 16:06:08 EDT 2024
Thu Oct 10 18:50:06 EDT 2024
Thu Sep 26 19:47:19 EDT 2024
Sat Dec 16 12:05:28 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Lattice Integrable Models
Conformal Field Theory
Bethe Ansatz
boundary condition
algebra: Lie
model: integrability
Potts model
staggered
affine
model: vertex
algebra: Temperley-Lieb
twist
K-matrix
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-79236dff7a8456c86192a34716c0e3f4f34edb6fc31791848f939801f207f2ae3
OpenAccessLink https://doaj.org/article/93ebd9e11f3646afa4192986c6a72dec
PQID 2407214278
PQPubID 2034718
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_93ebd9e11f3646afa4192986c6a72dec
hal_primary_oai_HAL_hal_02518080v1
proquest_journals_2407214278
crossref_primary_10_1007_JHEP05_2020_144
springer_journals_10_1007_JHEP05_2020_144
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References E. Vernier, J.L. Jacobsen and H. Saleur, A new look at the collapse of two-dimensional polymers, J. Stat. Mech (2015) P09001 [arXiv:1505.07007].
FrahmHMartinsMJPhase diagram of an integrable alternating Uq [sl(2|1)] superspin chainNucl. Phys.2012B 8625042012NuPhB.862..504F292469610.1016/j.nuclphysb.2012.04.019[arXiv:1202.4676] [INSPIRE]
SaleurHThe Antiferromagnetic Potts model in two-dimensions: Berker-Kadanoff phases, antiferromagnetic transition and the role of Beraha numbersNucl. Phys.1991B 3602191991NuPhB.360..219S111878610.1016/0550-3213(91)90402-J[INSPIRE]
BazhanovVVKotousovGAKovalSMLukyanovSLOn the scaling behaviour of the alternating spin chainJHEP2019080872019JHEP...08..087B401335910.1007/JHEP08(2019)087[arXiv:1903.05033] [INSPIRE]
CanduCIkhlefYNonlinear integral equations for the SL(2, ℝ)/U(1) black hole σ-modelJ. Phys.2013A 4641540131169411277.83046[arXiv:1306.2646] [INSPIRE]
M.J. Martins and X.W. Guan, Integrability of theDn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_n^2 $$\end{document}vertex models with open boundary, Nucl. Phys.B 583 (2000) 721 [nlin/0002050].
NepomechieRIPimentaRARetoreALThe integrable quantum group invariantA2n−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {A}_{2n-1}^{(2)} $$\end{document}andDn+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_{n+1}^{(2)} $$\end{document}open spin chainsNucl. Phys.2017B 924862017NuPhB.924...86N10.1016/j.nuclphysb.2017.09.004[arXiv:1707.09260] [INSPIRE]
Y. Ikhlef and J.L. Jacobsen and H. Saleur, A Temperley-Lieb quantum chain with two- and three-site interactions, J. Phys.A 42 (2009) 292002 [arXiv:0901.4685].
IkhlefYJacobsenJLSaleurHThe Z2staggered vertex model and its applicationsJ. Phys.2010A 432252012010JPhA...43v5201I26473401190.81105[arXiv:0911.3003]
FrahmHSeelAThe staggered six-vertex model: conformal invariance and corrections to scalingNucl. Phys.2014B 8793822014NuPhB.879..382F315198810.1016/j.nuclphysb.2013.12.015[arXiv:1311.6911] [INSPIRE]
RobertsonNFJacobsenJLSaleurHConformally invariant boundary conditions in the antiferromagnetic Potts model and the SL(2,ℝ)/U(1) σ-modelJHEP2019102542019JHEP...10..254R405110010.1007/JHEP10(2019)254[arXiv:1906.07565] [INSPIRE]
SaleurHBauerMOn some relations between local height probabilities and conformal invarianceNucl. Phys.1989B 3205911989NuPhB.320..591S100437010.1016/0550-3213(89)90014-X[INSPIRE]
BaxterRJCritical antiferromagnetic square-lattice Potts modelProc. Roy. Soc. London1982383431982RSPSA.383...43B676245
NepomechieRIPimentaRARetoreALTowards the solution of an integrableD22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_2^{(2)} $$\end{document}spin chainJ. Phys.2019A 524340042019JPhA...52Q4004N[arXiv:1905.11144] [INSPIRE]
TemperleyHNVLiebETRelations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problemProc. Roy. Soc. London1971A 3222511971RSPSA.322..251T4982840211.56703
Y. Ikhlef, J.L. Jacobsen and H. Saleur, An Integrable spin chain for the SL(2, ℝ)/U(1) black hole σ-model, Phys. Rev. Lett.108 (2012) 081601 [arXiv:1109.1119] [INSPIRE].
PasquierVTwo-dimensional critical systems labelled by Dynkin diagramsNucl. Phys.1987B 2851621987NuPhB.285..162P89183510.1016/0550-3213(87)90332-4[INSPIRE]
JayaramanTNarainKSSarmadiMHSU(2)kWZW and Zkparafermion models on the torusNucl. Phys.1990B 3434181990NuPhB.343..418J10.1016/0550-3213(90)90477-U[INSPIRE]
AlcarazFCSurface exponents of the quantum XXZ, Ashkin-Teller and Potts modelsJ. Phys.1987A 2063971987JPhA...20.6397A926391
JimboMQuantum r matrix for the generalized Toda systemCommun. Math. Phys.19861025371985CMaPh.102..537J82409010.1007/BF01221646[INSPIRE]
Y. Ikhlef and J.L. Jacobsen and H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nucl. Phys.B 789 (2008) 483 [cond-mat/0612037].
VernierEJacobsenJLSaleurHNon compact conformal field theory and thea22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {a}_2^{(2)} $$\end{document}(Izergin-Korepin) model in regime IIIJ. Phys.2014A 472852021322.81072[arXiv:1404.4497] [INSPIRE]
BloeteHWJCardyJLNightingaleMPConformal invariance, the central charge and universal finite size amplitudes at criticalityPhys. Rev. Lett.1986567421986PhRvL..56..742B10.1103/PhysRevLett.56.742[INSPIRE]
SklyaninEKBoundary conditions for integrable quantum systemsJ. Phys.1988A 2123751988JPhA...21.2375S9532150685.58058[INSPIRE]
J.L. Jacobsen and H. Saleur, The antiferromagnetic transition for the square-lattice Potts model, Nucl. Phys.B 743 (2006) 207 [cond-mat/0512058] [INSPIRE].
R.I. Nepomechie and R.A. Pimenta, NewDn+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_{n+1}^{(2)} $$\end{document}K-matrices with quantum group symmetry, J. Phys.A 51 (2018) 39LT02 [arXiv:1805.10144] [INSPIRE].
HNV Temperley (13082_CR17) 1971; A 322
RI Nepomechie (13082_CR25) 2019; A 52
NF Robertson (13082_CR11) 2019; 10
RI Nepomechie (13082_CR13) 2017; B 924
13082_CR12
M Jimbo (13082_CR15) 1986; 102
RJ Baxter (13082_CR1) 1982; 383
13082_CR10
FC Alcaraz (13082_CR23) 1987; A 20
H Frahm (13082_CR7) 2014; B 879
13082_CR19
HWJ Bloete (13082_CR20) 1986; 56
H Frahm (13082_CR14) 2012; B 862
EK Sklyanin (13082_CR18) 1988; A 21
Y Ikhlef (13082_CR16) 2010; A 43
T Jayaraman (13082_CR24) 1990; B 343
E Vernier (13082_CR9) 2014; A 47
H Saleur (13082_CR21) 1989; B 320
C Candu (13082_CR6) 2013; A 46
13082_CR3
13082_CR4
13082_CR5
VV Bazhanov (13082_CR8) 2019; 08
H Saleur (13082_CR2) 1991; B 360
V Pasquier (13082_CR22) 1987; B 285
13082_CR26
References_xml – volume: 383
  start-page: 43
  year: 1982
  ident: 13082_CR1
  publication-title: Proc. Roy. Soc. London
  contributor:
    fullname: RJ Baxter
– volume: 10
  start-page: 254
  year: 2019
  ident: 13082_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)254
  contributor:
    fullname: NF Robertson
– ident: 13082_CR26
  doi: 10.1088/1751-8121/aad957
– volume: B 320
  start-page: 591
  year: 1989
  ident: 13082_CR21
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(89)90014-X
  contributor:
    fullname: H Saleur
– volume: 56
  start-page: 742
  year: 1986
  ident: 13082_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.742
  contributor:
    fullname: HWJ Bloete
– volume: B 862
  start-page: 504
  year: 2012
  ident: 13082_CR14
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2012.04.019
  contributor:
    fullname: H Frahm
– volume: B 343
  start-page: 418
  year: 1990
  ident: 13082_CR24
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(90)90477-U
  contributor:
    fullname: T Jayaraman
– ident: 13082_CR4
  doi: 10.1016/j.nuclphysb.2007.07.004
– volume: A 21
  start-page: 2375
  year: 1988
  ident: 13082_CR18
  publication-title: J. Phys.
  contributor:
    fullname: EK Sklyanin
– volume: A 322
  start-page: 251
  year: 1971
  ident: 13082_CR17
  publication-title: Proc. Roy. Soc. London
  contributor:
    fullname: HNV Temperley
– ident: 13082_CR19
  doi: 10.1088/1751-8113/42/29/292002
– volume: A 52
  start-page: 434004
  year: 2019
  ident: 13082_CR25
  publication-title: J. Phys.
  contributor:
    fullname: RI Nepomechie
– volume: 08
  start-page: 087
  year: 2019
  ident: 13082_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)087
  contributor:
    fullname: VV Bazhanov
– volume: B 360
  start-page: 219
  year: 1991
  ident: 13082_CR2
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(91)90402-J
  contributor:
    fullname: H Saleur
– volume: A 47
  start-page: 285202
  year: 2014
  ident: 13082_CR9
  publication-title: J. Phys.
  contributor:
    fullname: E Vernier
– volume: B 285
  start-page: 162
  year: 1987
  ident: 13082_CR22
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(87)90332-4
  contributor:
    fullname: V Pasquier
– ident: 13082_CR3
  doi: 10.1016/j.nuclphysb.2006.02.041
– ident: 13082_CR5
  doi: 10.1103/PhysRevLett.108.081601
– volume: B 924
  start-page: 86
  year: 2017
  ident: 13082_CR13
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2017.09.004
  contributor:
    fullname: RI Nepomechie
– ident: 13082_CR10
  doi: 10.1088/1742-5468/2015/09/P09001
– volume: A 43
  start-page: 225201
  year: 2010
  ident: 13082_CR16
  publication-title: J. Phys.
  contributor:
    fullname: Y Ikhlef
– volume: 102
  start-page: 537
  year: 1986
  ident: 13082_CR15
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01221646
  contributor:
    fullname: M Jimbo
– ident: 13082_CR12
  doi: 10.1016/S0550-3213(00)00259-5
– volume: A 46
  start-page: 415401
  year: 2013
  ident: 13082_CR6
  publication-title: J. Phys.
  contributor:
    fullname: C Candu
– volume: B 879
  start-page: 382
  year: 2014
  ident: 13082_CR7
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2013.12.015
  contributor:
    fullname: H Frahm
– volume: A 20
  start-page: 6397
  year: 1987
  ident: 13082_CR23
  publication-title: J. Phys.
  contributor:
    fullname: FC Alcaraz
SSID ssj0015190
Score 2.4830856
Snippet A bstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 Lie algebra....
We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D22 Lie algebra. Using the known...
We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine $ {D}_2^2 $ Lie algebra. Using...
Abstract We present an exact mapping between the staggered six-vertex model and an integrable model constructed from the twisted affine D 2 2 $$ {D}_2^2 $$ Lie...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Antiferromagnetism
Bethe Ansatz
Boundary conditions
Classical and Quantum Gravitation
Conformal Field Theory
Elementary Particles
Free boundaries
General Physics
High energy physics
Lattice Integrable Models
Lie groups
Mapping
Mathematical Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB48EHwRT6wXQXzQh2LbdNP2SdxlZRWVRRR8K2kOFbTVbhX898708AJ9TUIIM0lmvszkG4A9qnuScavcxPo9N0TA7CaJtm6slVbGBsaz9N_54lKMbsKz295t--A2adMquzuxvqh1oeiN_LBh8qLCEEfPLy5VjaLoaltCYxpmsY_CtLP94eX46jOOgP6J1xH6eNHh2Wg49nr7CPi9A0QSP2xRTdmPFuaeEiK_eZu_AqS13TlZhIXWYWTHjYaXYMrkyzBXJ26qyQoMThu-h-zRsKwukVS-M8S4uknFYg85QxePScoJMmVZPMm7nP4tsnFRVRNWF8JZhZuT4fVg5LaFEVwV9vzKJc4_oa2NZIz-j4oJBEmOZkYoz3AbWh4a-l6nOJGPxmFsE56gKbKBF9lAGr4GM3mRm3VgMqD4bRZHWkm05TwLrAjQ4fYj4UuEeg7sdyJKnxv-i7RjOm6kmZI0EUGEDvRJhJ_DiLi6bijKu7Q9B2nCTaYT4_uWi1BIKykKncRCCRkF2igHdlEBP-YYHZ-n1EZoiFgw33wHtjr9pO2Rm6RfG8SBg05nX91_LHrj_6k2YZ5GNhmOWzBTla9mG72QKttpt9oHFhPY5w
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ3UGhMvxs-IVrMxHtoDBlhY4FibNrVR04NNeiPLsqtGBUPRxH_vDh_Vajx4I8tCyOzCvMfMvAE4x74nMVXCDJXtma4mzGYYJsoMEpEIqRxpKax3vrll45k7mXvzFljLXxfp00UTkSw_1E2t22Q8nFpeV3N1q6dJwBqsI3LAPT3A-oY6bqDxiNUI-Py-aMX3lBL92qM8YALkN3T5IyBa-pnRNmzVAJH0qxXdgZZMd2GjTNQUiz0YXFX6DvGzJHHZEin_IJrTJlXqFXlMiYZ0hGMOkMzz7IXfp1inSKZZUSxI2fhmH2aj4d1gbNaNEEzhenZhosYfS5TyeaDxjgiQ9HCq3QoTlqTKVdSVWE4nKIqNBm6gQhpq16Mcy1cOl_QA2mmWykMg3MF4bRz4ieDad9PYUczRANv2mc01tTOg25goeq30LqJG2biyZoTW1IzBNeASTbichkLV5UCW30f1vo9CKuMklLatKHMZVxyjzmHABOO-k0hhwJlegJV7jPvXEY4h-0HVy3fbgE6zPlH9ii2iStoNO4UY0GvW7Ov0Hw999I-5x7CJh1V6YwfaRf4mTzQEKeLTctd9Apte0oY
  priority: 102
  providerName: Springer Nature
Title Integrable boundary conditions in the antiferromagnetic Potts model
URI https://link.springer.com/article/10.1007/JHEP05(2020)144
https://www.proquest.com/docview/2407214278
https://hal.science/hal-02518080
https://doaj.org/article/93ebd9e11f3646afa4192986c6a72dec
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED62jsFeSrtu1GsbxNhD-2BqS7JsP6YhaRa2EsoCfTOyLHWD1hmJW-i_751lb81g9KUvAstGiDvb933c6TuAL9T3pBTOhLmLk1AiYQ7zvHJhVpnKWMdt5Oi88_cLNV3I2VVy9aTVF9WEeXlgb7jTXNiyym0cO6Gk0k5T2jLPlFE65ZU17d83Tnoy1eUPEJdEvZBPlJ7OpuN5lBwj0Y9OkEFsxKBWqh8jy08qhHyCMv9JjLbxZrID2x1QZEO_wV14Zev38LYt2DTrPRh99ToP5Y1lZdsaafXAkNtWvgSL_aoZQjumqRbIrlbLW31d03lFNl82zZq1DXA-wGIy_jGahl1DhNDIJG5C0vpTlXOpzhD3mIzIjxYYXpSJrHDSCWnpWJ0RJDqayczlIscQ5HiUOq6t-Ahb9bK2-8A0p7xtmaWVQYsmouROcQTacapijRQvgOPeRMVvr3tR9ArH3poFWROZgwzgjEz45zESrG4n0I1F58biOTcG8BkdsLHGdPitoDliQaR-eR8HcNj7p-g-tXXhJd6oY0gAJ73P_t7-z6Y_vcSmD-AdrefrHw9hq1nd2SPEKE05gNfZ5HwAb87GF_NLvBpxSaMaDdoXFccFHz4CuRflrw
link.rule.ids 230,315,786,790,870,891,2115,12792,21416,27955,27956,33406,33777,41152,41153,41556,42221,42222,42625,43633,43838,51609,52266,52267,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NJrS9TGMwkY0NC-2hfYiaxK6TPE0MUQK0VR9A6pvl-KNM2hKWZpP238-XDzqQ4NVJrOju7Luf7_w7gC_Y9ySnVvmpDcc-c4DZT1Nt_UQrrYyNTGDxvvNszrMbdrkcL7sDt3VXVtnvic1GrUuFZ-SjlskLG0N8vfvlY9cozK52LTS24CWjnKKdJ5Pz-yyCi06Cns4niEeX2dkiGA8c3A-GDkc88EQNYb_zL7dYDvlfrPkoPdp4nclbeNOFi-Sk1e8uvDDFO9hpyjbVeg9OL1q2h_yHIXnTIKn6SxzC1W0hFvleEBfgEYkVQaaqyp9yVeCtRbIo63pNmjY4-3AzObs-zfyuLYKv2DisfWT849raWCYu-lEJQiBJnZPhKjDUMkuZwct1iiL1aMISm9LUOSIbBbGNpKHvYbsoC3MAREaYvc2TWCvpPDnNI8sjF26HMQ-lA3oeDHoRibuW_UL0PMetNAVK0-EH5sE3FOH9a0hb3QyU1Up0q0Ck1OQ6NWFoKWdcWok56DThiss40kZ5cOwU8GCO7GQqcAyxEHJg_gk9OOz1I7oFtxYb8_Bg2Ots8_iJn_7w_FRH8Cq7nk3F9GJ-9RFe41dtreMhbNfVb_PJxSN1_rkxun-vsdpu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4BVREXRGkR4dFaqAc4RJvEWSc5IV7LQinaQ5G4WY4f20qQQDYg8e-ZyQNKJXrNw4pmbM98mfH3AXwn3ZOcO-1nLhz6MQJmP8uM81OjjbYusoGj884_L8X4Kj6_Hl53_U-zrq2y3xObjdqUmv6RD1omLxKGGLiuLWJyPNq_u_dJQYoqrZ2cxjx8oCSbZBzS0elLRQEzlaCn9gmSwfn4ZBIMdxH6B3uIKd5EpYa8H2PNb2qN_Cvv_KdU2kSg0Qosd6kjO2h9_QnmbLEKH5sWTj37DEdnLfNDfmNZ3oglVU8M0a5pm7LYn4JhsscUdQfZqipv1bSgE4xsUtb1jDWSOF_ganTy62jsdxIJvo6HYe0T-58wziUqxUxIpwSHFMeAI3RguYsdjy0dtNOcaEjTOHUZzzAouShIXKQsX4OFoizsOjAVUSU3TxOjFUZ1nkdORJh6h4kIFYI-D3Z7E8m7lglD9pzHrTUlWROxROzBIZnw5TGisG4ulNVUditCZtzmJrNh6LiIhXKK6tFZKrRQSWSs9mAHHfBmjPHBhaRrhIuID_Mx9GCr94_sFt9Mvk4VD_Z6n73efuejN_4_1DdYxPkmL84uf2zCEr3Utj1uwUJdPdhtTE3q_Gsz554BCh7eow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrable+boundary+conditions+in+the+antiferromagnetic+Potts+model&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Niall+F.+Robertson&rft.au=Michal+Pawelkiewicz&rft.au=Jesper+Lykke+Jacobsen&rft.au=Hubert+Saleur&rft.date=2020-05-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=5&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1007%2FJHEP05%282020%29144&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93ebd9e11f3646afa4192986c6a72dec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon