The Molecular Mechanism of Ginsenoside Analogs Activating TMEM16A
The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseas...
Saved in:
Published in | Biophysical journal Vol. 118; no. 1; pp. 262 - 272 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.01.2020
The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening. |
---|---|
AbstractList | The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening. The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening. The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α -helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening. |
Author | Shi, Sai An, Hailong L. Wang, Xuzhao Z. Guo, Shuai Pang, Chunli L. Chen, Yafei F. Zhang, Hailin L. Zhan, Yong |
AuthorAffiliation | 2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China 1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China 3 Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China 4 Department of Pharmacology, Hebei Medical University, Shijiazhuang, China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China – name: 1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – name: 3 Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China – name: 4 Department of Pharmacology, Hebei Medical University, Shijiazhuang, China |
Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0002-5342-9666 surname: Guo fullname: Guo, Shuai organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 2 givenname: Yafei F. surname: Chen fullname: Chen, Yafei F. organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China – sequence: 3 givenname: Sai orcidid: 0000-0001-9211-2824 surname: Shi fullname: Shi, Sai organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 4 givenname: Chunli L. surname: Pang fullname: Pang, Chunli L. organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China – sequence: 5 givenname: Xuzhao Z. surname: Wang fullname: Wang, Xuzhao Z. organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 6 givenname: Hailin L. surname: Zhang fullname: Zhang, Hailin L. organization: Department of Pharmacology, Hebei Medical University, Shijiazhuang, China – sequence: 7 givenname: Yong surname: Zhan fullname: Zhan, Yong email: zhany@hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 8 givenname: Hailong L. surname: An fullname: An, Hailong L. email: hailong_an@hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31818463$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU-P0zAUxC20iO0WPgAXlCOXhPfiP0mEhBStlgVpKy7lbDnOS-sqtYudVtpvT6ruIuCwJx_e_GbkmRt25YMnxt4jFAioPu2K7rArSsCmQCwA5Su2QCnKHKBWV2wBACrnopHX7CalHQCWEvANu-ZYYy0UX7B2vaVsFUayx9HEbEV2a7xL-ywM2b3ziXxIrqes9WYMm5S1dnInMzm_ydaruxWq9i17PZgx0bund8l-fr1b337LH37cf79tH3IrJE55NYfXoje8t8NA2AjeQEdQA3GSYJTi2EuJ_dAoC6oZpODSVFDaSom6Ux1fsi8X38Ox21NvyU_RjPoQ3d7ERx2M0_9evNvqTThp1Uiu5s8u2ccngxh-HSlNeu-SpXE0nsIx6ZKXXFSVwrP0w99Zf0Kee5sF1UVgY0gp0qCtm-ZawjnajRpBnxfSOz0vpM8LaUQ9LzST-B_5bP4S8_nC0NzvyVHUyTrylnoXyU66D-4F-jfGZads |
CitedBy_id | crossref_primary_10_1007_s00232_021_00188_9 crossref_primary_10_1021_acsami_2c08503 crossref_primary_10_3389_fphar_2021_643489 crossref_primary_10_1016_j_apsb_2020_12_003 crossref_primary_10_2147_JEP_S255377 crossref_primary_10_1016_j_biopha_2022_113392 crossref_primary_10_3390_ijms222010930 crossref_primary_10_1016_j_abb_2020_108650 crossref_primary_10_1021_acs_jafc_2c03009 crossref_primary_10_1016_j_bcp_2020_114062 crossref_primary_10_1016_j_ijbiomac_2024_134057 crossref_primary_10_1016_j_csbj_2020_03_015 crossref_primary_10_1021_acs_jafc_1c08375 crossref_primary_10_1016_j_tips_2022_06_006 crossref_primary_10_1021_acs_jafc_2c06723 crossref_primary_10_3389_fcell_2020_616139 |
Cites_doi | 10.1007/s00424-014-1572-5 10.1248/bpb.b14-00441 10.1038/nature07313 10.1007/s00232-011-9350-1 10.1371/journal.pone.0133656 10.1002/jcc.21720 10.1111/bph.13841 10.1126/science.1163518 10.1007/s00424-017-2028-5 10.1093/nar/gku340 10.1152/physrev.00006.2016 10.1113/jphysiol.2014.277152 10.1016/j.jgr.2017.05.005 10.1002/jcc.20290 10.1016/j.jgr.2017.05.002 10.1038/nature25024 10.1371/journal.pone.0144715 10.1002/jcc.21256 10.1371/journal.pone.0038030 10.1007/s12272-011-0719-6 10.1016/0263-7855(96)00018-5 10.1016/j.jphotobiol.2016.10.034 10.1016/j.cell.2008.09.003 10.1007/s00424-017-1934-x 10.1371/journal.pone.0086734 10.1073/pnas.0911935106 10.1161/CIRCRESAHA.112.264440 10.1152/ajplung.00103.2017 10.1016/j.biopha.2017.09.059 10.1007/s00232-017-9975-9 10.1002/jcc.20084 10.1111/j.1582-4934.2011.01333.x 10.1038/nature13984 10.1002/jcp.27529 10.1007/s00232-018-0052-9 10.1038/nature24652 |
ContentType | Journal Article |
Copyright | 2019 Biophysical Society Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2019 Biophysical Society. 2019 Biophysical Society |
Copyright_xml | – notice: 2019 Biophysical Society – notice: Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2019 Biophysical Society. 2019 Biophysical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2019.11.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 272 |
ExternalDocumentID | PMC6953646 31818463 10_1016_j_bpj_2019_11_015 S0006349519309385 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AHPSJ ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- RIG S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c451t-701284da3dcffe194390be080e3e50a6631d551df96c069f5435a702c7648b6b3 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 14:24:46 EDT 2025 Fri Jul 11 07:49:44 EDT 2025 Wed Feb 19 02:28:01 EST 2025 Tue Jul 01 00:50:16 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Fri Feb 23 02:48:02 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-701284da3dcffe194390be080e3e50a6631d551df96c069f5435a702c7648b6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5342-9666 0000-0001-9211-2824 |
OpenAccessLink | http://www.cell.com/article/S0006349519309385/pdf |
PMID | 31818463 |
PQID | 2323477616 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953646 proquest_miscellaneous_2323477616 pubmed_primary_31818463 crossref_citationtrail_10_1016_j_bpj_2019_11_015 crossref_primary_10_1016_j_bpj_2019_11_015 elsevier_sciencedirect_doi_10_1016_j_bpj_2019_11_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-07 |
PublicationDateYYYYMMDD | 2020-01-07 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2020 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Singh, Gibbons, Farrugia (bib10) 2014; 592 Ganguly, Kumar, Rastogi (bib16) 2018; 42 Yu, Duran, Hartzell (bib31) 2012; 110 Sui, Wu, Zhang (bib35) 2015; 10 Lee, Jung, Whang (bib15) 2011; 34 Ni, Kuan, Chen (bib34) 2014; 9 Dang, Feng, Jan (bib8) 2017; 552 Guo, Chen, Zhan (bib11) 2017; 469 Christensen (bib20) 2009; 55 Tan, Yu, Li (bib18) 2014; 37 Fedigan, Bradley, Sergeant (bib12) 2017; 469 Yao, Namkung, Verkman (bib32) 2012; 7 Seo, Park, Namkung (bib36) 2015; 10 Humphrey, Dalke, Schulten (bib24) 1996; 14 Chai, Chen, An (bib6) 2017; 250 Biasini, Bienert, Schwede (bib22) 2014; 42 Cipriani, Serboiu, Vannucchi (bib29) 2011; 15 Case, Cheatham, Woods (bib27) 2005; 26 Morris, Huey, Olson (bib23) 2009; 30 Unni, Huang, Baker (bib25) 2011; 32 Brunner, Lim, Dutzler (bib30) 2014; 516 Chen, An, Zhan (bib21) 2011; 240 Kang, Lee, Cho (bib1) 2017; 313 Huang, Guo, An (bib38) 2018; 251 Zhang, Li, Zhang (bib37) 2017; 174 Schroeder, Cheng, Jan (bib3) 2008; 134 Guo, Chen, Zhan (bib7) 2019; 234 Shafei, El-Bakly, Ellithy (bib5) 2017; 95 Caputo, Caci, Galietta (bib4) 2008; 322 Huang, Rock, Jan (bib13) 2009; 106 Berridge (bib28) 2016; 96 Paulino, Kalienkova, Dutzler (bib9) 2017; 552 Kaku, Miyata, Kinoshita (bib17) 1975; 25 Liu, Zhang, Zhang (bib33) 2015; 467 Kang, Huang, Lim (bib14) 2016; 165 Yang, Cho, Oh (bib2) 2008; 455 Pettersen, Goddard, Ferrin (bib26) 2004; 25 Lee, Min, Kim (bib19) 2018; 42 Guo (10.1016/j.bpj.2019.11.015_bib11) 2017; 469 Yao (10.1016/j.bpj.2019.11.015_bib32) 2012; 7 Sui (10.1016/j.bpj.2019.11.015_bib35) 2015; 10 Zhang (10.1016/j.bpj.2019.11.015_bib37) 2017; 174 Singh (10.1016/j.bpj.2019.11.015_bib10) 2014; 592 Pettersen (10.1016/j.bpj.2019.11.015_bib26) 2004; 25 Morris (10.1016/j.bpj.2019.11.015_bib23) 2009; 30 Christensen (10.1016/j.bpj.2019.11.015_bib20) 2009; 55 Lee (10.1016/j.bpj.2019.11.015_bib15) 2011; 34 Liu (10.1016/j.bpj.2019.11.015_bib33) 2015; 467 Biasini (10.1016/j.bpj.2019.11.015_bib22) 2014; 42 Huang (10.1016/j.bpj.2019.11.015_bib38) 2018; 251 Humphrey (10.1016/j.bpj.2019.11.015_bib24) 1996; 14 Case (10.1016/j.bpj.2019.11.015_bib27) 2005; 26 Paulino (10.1016/j.bpj.2019.11.015_bib9) 2017; 552 Lee (10.1016/j.bpj.2019.11.015_bib19) 2018; 42 Caputo (10.1016/j.bpj.2019.11.015_bib4) 2008; 322 Ni (10.1016/j.bpj.2019.11.015_bib34) 2014; 9 Shafei (10.1016/j.bpj.2019.11.015_bib5) 2017; 95 Seo (10.1016/j.bpj.2019.11.015_bib36) 2015; 10 Chai (10.1016/j.bpj.2019.11.015_bib6) 2017; 250 Yang (10.1016/j.bpj.2019.11.015_bib2) 2008; 455 Unni (10.1016/j.bpj.2019.11.015_bib25) 2011; 32 Guo (10.1016/j.bpj.2019.11.015_bib7) 2019; 234 Kang (10.1016/j.bpj.2019.11.015_bib1) 2017; 313 Brunner (10.1016/j.bpj.2019.11.015_bib30) 2014; 516 Cipriani (10.1016/j.bpj.2019.11.015_bib29) 2011; 15 Fedigan (10.1016/j.bpj.2019.11.015_bib12) 2017; 469 Kang (10.1016/j.bpj.2019.11.015_bib14) 2016; 165 Chen (10.1016/j.bpj.2019.11.015_bib21) 2011; 240 Schroeder (10.1016/j.bpj.2019.11.015_bib3) 2008; 134 Huang (10.1016/j.bpj.2019.11.015_bib13) 2009; 106 Yu (10.1016/j.bpj.2019.11.015_bib31) 2012; 110 Kaku (10.1016/j.bpj.2019.11.015_bib17) 1975; 25 Berridge (10.1016/j.bpj.2019.11.015_bib28) 2016; 96 Tan (10.1016/j.bpj.2019.11.015_bib18) 2014; 37 Dang (10.1016/j.bpj.2019.11.015_bib8) 2017; 552 Ganguly (10.1016/j.bpj.2019.11.015_bib16) 2018; 42 |
References_xml | – volume: 469 start-page: 1443 year: 2017 end-page: 1455 ident: bib12 article-title: Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal publication-title: Pflugers Arch – volume: 15 start-page: 2411 year: 2011 end-page: 2420 ident: bib29 article-title: NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum publication-title: J. Cell. Mol. Med – volume: 95 start-page: 1209 year: 2017 end-page: 1218 ident: bib5 article-title: A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer publication-title: Biomed. Pharmacother – volume: 469 start-page: 681 year: 2017 end-page: 692 ident: bib11 article-title: Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of Guinea pig ileum publication-title: Pflugers Arch – volume: 174 start-page: 2334 year: 2017 end-page: 2345 ident: bib37 article-title: Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects publication-title: Br. J. Pharmacol – volume: 42 start-page: 463 year: 2018 end-page: 469 ident: bib16 article-title: Influence of phytochemical composition on publication-title: J. Ginseng Res – volume: 134 start-page: 1019 year: 2008 end-page: 1029 ident: bib3 article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit publication-title: Cell – volume: 106 start-page: 21413 year: 2009 end-page: 21418 ident: bib13 article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: e0144715 year: 2015 ident: bib35 article-title: Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells publication-title: PLoS One – volume: 37 start-page: 1788 year: 2014 end-page: 1794 ident: bib18 article-title: Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus publication-title: Biol. Pharm. Bull – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib26 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem – volume: 96 start-page: 1261 year: 2016 end-page: 1296 ident: bib28 article-title: The inositol trisphosphate/calcium signaling pathway in health and disease publication-title: Physiol. Rev – volume: 30 start-page: 2785 year: 2009 end-page: 2791 ident: bib23 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J. Comput. Chem – volume: 322 start-page: 590 year: 2008 end-page: 594 ident: bib4 article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity publication-title: Science – volume: 250 start-page: 483 year: 2017 end-page: 492 ident: bib6 article-title: Identification of resveratrol, an herbal compound, as an activator of the calcium-activated chloride channel, TMEM16A publication-title: J. Membr. Biol – volume: 32 start-page: 1488 year: 2011 end-page: 1491 ident: bib25 article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR publication-title: J. Comput. Chem – volume: 455 start-page: 1210 year: 2008 end-page: 1215 ident: bib2 article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance publication-title: Nature – volume: 110 start-page: 990 year: 2012 end-page: 999 ident: bib31 article-title: Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology publication-title: Circ. Res – volume: 467 start-page: 1417 year: 2015 end-page: 1430 ident: bib33 article-title: Characterization of the effects of Cl publication-title: Pflugers Arch – volume: 7 start-page: e38030 year: 2012 ident: bib32 article-title: Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A publication-title: PLoS One – volume: 25 start-page: 539 year: 1975 end-page: 547 ident: bib17 article-title: Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. II. Pharmacological part publication-title: Arzneimittelforschung – volume: 26 start-page: 1668 year: 2005 end-page: 1688 ident: bib27 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem – volume: 516 start-page: 207 year: 2014 end-page: 212 ident: bib30 article-title: X-ray structure of a calcium-activated TMEM16 lipid scramblase publication-title: Nature – volume: 592 start-page: 4051 year: 2014 end-page: 4068 ident: bib10 article-title: Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal publication-title: J. Physiol – volume: 42 start-page: 476 year: 2018 end-page: 484 ident: bib19 article-title: Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways publication-title: J. Ginseng Res – volume: 552 start-page: 426 year: 2017 end-page: 429 ident: bib8 article-title: Cryo-EM structures of the TMEM16A calcium-activated chloride channel publication-title: Nature – volume: 42 start-page: W252 year: 2014 end-page: W258 ident: bib22 article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information publication-title: Nucleic Acids Res – volume: 55 start-page: 1 year: 2009 end-page: 99 ident: bib20 article-title: Ginsenosides chemistry, biosynthesis, analysis, and potential health effects publication-title: Adv. Food Nutr. Res – volume: 313 start-page: L466 year: 2017 end-page: L476 ident: bib1 article-title: Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol – volume: 9 start-page: e86734 year: 2014 ident: bib34 article-title: Activation and inhibition of TMEM16A calcium-activated chloride channels publication-title: PLoS One – volume: 10 start-page: e0133656 year: 2015 ident: bib36 article-title: Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines publication-title: PLoS One – volume: 552 start-page: 421 year: 2017 end-page: 425 ident: bib9 article-title: Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM publication-title: Nature – volume: 240 start-page: 121 year: 2011 end-page: 129 ident: bib21 article-title: Direct or indirect regulation of calcium-activated chloride channel by calcium publication-title: J. Membr. Biol – volume: 165 start-page: 232 year: 2016 end-page: 239 ident: bib14 article-title: Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes publication-title: J. Photochem. Photobiol. B – volume: 34 start-page: 1201 year: 2011 end-page: 1208 ident: bib15 article-title: The antidiabetic effect of ginsenoside Rb2 via activation of AMPK publication-title: Arch. Pharm. Res – volume: 14 start-page: 33 year: 1996 end-page: 38, 27–28 ident: bib24 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph – volume: 234 start-page: 8698 year: 2019 end-page: 8708 ident: bib7 article-title: Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects publication-title: J. Cell. Physiol – volume: 251 start-page: 747 year: 2018 end-page: 756 ident: bib38 article-title: The natural compound cinnamaldehyde is a novel activator of calcium-activated chloride channel publication-title: J. Membr. Biol – volume: 467 start-page: 1417 year: 2015 ident: 10.1016/j.bpj.2019.11.015_bib33 article-title: Characterization of the effects of Cl− channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl− channels publication-title: Pflugers Arch doi: 10.1007/s00424-014-1572-5 – volume: 37 start-page: 1788 year: 2014 ident: 10.1016/j.bpj.2019.11.015_bib18 article-title: Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus publication-title: Biol. Pharm. Bull doi: 10.1248/bpb.b14-00441 – volume: 455 start-page: 1210 year: 2008 ident: 10.1016/j.bpj.2019.11.015_bib2 article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance publication-title: Nature doi: 10.1038/nature07313 – volume: 240 start-page: 121 year: 2011 ident: 10.1016/j.bpj.2019.11.015_bib21 article-title: Direct or indirect regulation of calcium-activated chloride channel by calcium publication-title: J. Membr. Biol doi: 10.1007/s00232-011-9350-1 – volume: 10 start-page: e0133656 year: 2015 ident: 10.1016/j.bpj.2019.11.015_bib36 article-title: Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines publication-title: PLoS One doi: 10.1371/journal.pone.0133656 – volume: 32 start-page: 1488 year: 2011 ident: 10.1016/j.bpj.2019.11.015_bib25 article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR publication-title: J. Comput. Chem doi: 10.1002/jcc.21720 – volume: 25 start-page: 539 year: 1975 ident: 10.1016/j.bpj.2019.11.015_bib17 article-title: Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. II. Pharmacological part publication-title: Arzneimittelforschung – volume: 174 start-page: 2334 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib37 article-title: Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects publication-title: Br. J. Pharmacol doi: 10.1111/bph.13841 – volume: 322 start-page: 590 year: 2008 ident: 10.1016/j.bpj.2019.11.015_bib4 article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity publication-title: Science doi: 10.1126/science.1163518 – volume: 469 start-page: 1443 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib12 article-title: Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal publication-title: Pflugers Arch doi: 10.1007/s00424-017-2028-5 – volume: 42 start-page: W252 year: 2014 ident: 10.1016/j.bpj.2019.11.015_bib22 article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information publication-title: Nucleic Acids Res doi: 10.1093/nar/gku340 – volume: 96 start-page: 1261 year: 2016 ident: 10.1016/j.bpj.2019.11.015_bib28 article-title: The inositol trisphosphate/calcium signaling pathway in health and disease publication-title: Physiol. Rev doi: 10.1152/physrev.00006.2016 – volume: 592 start-page: 4051 year: 2014 ident: 10.1016/j.bpj.2019.11.015_bib10 article-title: Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal publication-title: J. Physiol doi: 10.1113/jphysiol.2014.277152 – volume: 42 start-page: 476 year: 2018 ident: 10.1016/j.bpj.2019.11.015_bib19 article-title: Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways publication-title: J. Ginseng Res doi: 10.1016/j.jgr.2017.05.005 – volume: 26 start-page: 1668 year: 2005 ident: 10.1016/j.bpj.2019.11.015_bib27 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem doi: 10.1002/jcc.20290 – volume: 42 start-page: 463 year: 2018 ident: 10.1016/j.bpj.2019.11.015_bib16 article-title: Influence of phytochemical composition on in vitro antioxidant and reducing activities of Indian ginseng [Withania somnifera (L.) Dunal] root extracts publication-title: J. Ginseng Res doi: 10.1016/j.jgr.2017.05.002 – volume: 552 start-page: 426 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib8 article-title: Cryo-EM structures of the TMEM16A calcium-activated chloride channel publication-title: Nature doi: 10.1038/nature25024 – volume: 10 start-page: e0144715 year: 2015 ident: 10.1016/j.bpj.2019.11.015_bib35 article-title: Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells publication-title: PLoS One doi: 10.1371/journal.pone.0144715 – volume: 30 start-page: 2785 year: 2009 ident: 10.1016/j.bpj.2019.11.015_bib23 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J. Comput. Chem doi: 10.1002/jcc.21256 – volume: 7 start-page: e38030 year: 2012 ident: 10.1016/j.bpj.2019.11.015_bib32 article-title: Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A publication-title: PLoS One doi: 10.1371/journal.pone.0038030 – volume: 34 start-page: 1201 year: 2011 ident: 10.1016/j.bpj.2019.11.015_bib15 article-title: The antidiabetic effect of ginsenoside Rb2 via activation of AMPK publication-title: Arch. Pharm. Res doi: 10.1007/s12272-011-0719-6 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.bpj.2019.11.015_bib24 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph doi: 10.1016/0263-7855(96)00018-5 – volume: 165 start-page: 232 year: 2016 ident: 10.1016/j.bpj.2019.11.015_bib14 article-title: Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2016.10.034 – volume: 134 start-page: 1019 year: 2008 ident: 10.1016/j.bpj.2019.11.015_bib3 article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit publication-title: Cell doi: 10.1016/j.cell.2008.09.003 – volume: 469 start-page: 681 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib11 article-title: Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of Guinea pig ileum publication-title: Pflugers Arch doi: 10.1007/s00424-017-1934-x – volume: 55 start-page: 1 year: 2009 ident: 10.1016/j.bpj.2019.11.015_bib20 article-title: Ginsenosides chemistry, biosynthesis, analysis, and potential health effects publication-title: Adv. Food Nutr. Res – volume: 9 start-page: e86734 year: 2014 ident: 10.1016/j.bpj.2019.11.015_bib34 article-title: Activation and inhibition of TMEM16A calcium-activated chloride channels publication-title: PLoS One doi: 10.1371/journal.pone.0086734 – volume: 106 start-page: 21413 year: 2009 ident: 10.1016/j.bpj.2019.11.015_bib13 article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911935106 – volume: 110 start-page: 990 year: 2012 ident: 10.1016/j.bpj.2019.11.015_bib31 article-title: Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology publication-title: Circ. Res doi: 10.1161/CIRCRESAHA.112.264440 – volume: 313 start-page: L466 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib1 article-title: Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol doi: 10.1152/ajplung.00103.2017 – volume: 95 start-page: 1209 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib5 article-title: A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer publication-title: Biomed. Pharmacother doi: 10.1016/j.biopha.2017.09.059 – volume: 250 start-page: 483 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib6 article-title: Identification of resveratrol, an herbal compound, as an activator of the calcium-activated chloride channel, TMEM16A publication-title: J. Membr. Biol doi: 10.1007/s00232-017-9975-9 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.bpj.2019.11.015_bib26 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem doi: 10.1002/jcc.20084 – volume: 15 start-page: 2411 year: 2011 ident: 10.1016/j.bpj.2019.11.015_bib29 article-title: NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum publication-title: J. Cell. Mol. Med doi: 10.1111/j.1582-4934.2011.01333.x – volume: 516 start-page: 207 year: 2014 ident: 10.1016/j.bpj.2019.11.015_bib30 article-title: X-ray structure of a calcium-activated TMEM16 lipid scramblase publication-title: Nature doi: 10.1038/nature13984 – volume: 234 start-page: 8698 year: 2019 ident: 10.1016/j.bpj.2019.11.015_bib7 article-title: Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects publication-title: J. Cell. Physiol doi: 10.1002/jcp.27529 – volume: 251 start-page: 747 year: 2018 ident: 10.1016/j.bpj.2019.11.015_bib38 article-title: The natural compound cinnamaldehyde is a novel activator of calcium-activated chloride channel publication-title: J. Membr. Biol doi: 10.1007/s00232-018-0052-9 – volume: 552 start-page: 421 year: 2017 ident: 10.1016/j.bpj.2019.11.015_bib9 article-title: Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM publication-title: Nature doi: 10.1038/nature24652 |
SSID | ssj0012501 |
Score | 2.4182644 |
Snippet | The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | Animals Anoctamin-1 - chemistry Anoctamin-1 - metabolism Binding Sites CHO Cells Cricetulus Dose-Response Relationship, Drug Ginsenosides - chemistry Ginsenosides - metabolism Ginsenosides - pharmacology Guinea Pigs Hydrophobic and Hydrophilic Interactions Models, Molecular Protein Conformation Static Electricity |
Title | The Molecular Mechanism of Ginsenoside Analogs Activating TMEM16A |
URI | https://dx.doi.org/10.1016/j.bpj.2019.11.015 https://www.ncbi.nlm.nih.gov/pubmed/31818463 https://www.proquest.com/docview/2323477616 https://pubmed.ncbi.nlm.nih.gov/PMC6953646 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KQfAivq2PsoInITZpNrvNsZZWEeKphd6W7CM1RZNi68F_70wexar04DW7C8vsZOab3Zn5CLlRShsDgY8Droo5zHDrxL3Yd0RgGNdagEpggXP0zB8n7GkaTBtkUNfCYFplZftLm15Y6-pLp5JmZ5GmWOML7hXwPUAQCMt7WGjus15RxDe9X78kgIuvWPO4g7Prl80ix0st5pjdFd5hI09kxv3bN_3Gnj9TKL_5pNE-2avAJO2X-z0gDZsdkp2SXvLziPRBB2hU89_SyGKVb7p8o3lCH1K8VM6RrJNiY5J8tqR9XXKdZTM6joaRx_vHZDIajgePTkWZ4GgWeCtHFP7GxL7RSWK9EOCGqyygQuvbwI0BXngGMJJJQq5dHiYBoKVYuF0tOOsprvwT0szyzJ4RGkIklxgLIxaCLl_FntaJG3c1clYpa1vErYUlddVPHGktXmWdODaXIF-J8oU4Q4J8W-R2vWRRNtPYNpnVJyA3NEKCsd-27Lo-LQl_Cj5_xJnNP5YSsKPPhOAeb5HT8vTWuwDLBqEu91tEbJzregJ24d4cydKXohs3xwdwxs__t90LstvFCB4vdcQlaa7eP-wVwJyVahd63C7un74Ao4H6mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUNVeUOkztNBFai-VXPxY7yaHHsKrCWBOQcpt632YGoEdkSDE7-of7IwfUUMRBySufmk1s575vt3Z-QC-aG2sReLjYariHrfCeWk3jTwZWy6MkTgl6IBzciIGp_xwHI-X4E97FobKKpvYX8f0Klo3V7Yba25P8pzO-GJ6RXyPEARpebetrDxytzfI26Y_hnvo5K9heLA_2h14jbSAZ3gczDxZxWWbRtZkmUMij9RfO0RPLnKxn2IaDixiCZv1hPFFL4sRVaTSD40UvKuFjvC7z2AF0YekaDAc78y3LhBTNDJ9wqPhtVupVVGZnpxTOVnvO3UOJSne-5Ph_2D3bs3mP0nw4BWsNuiV9WsDrcGSK17D81rP8vYN9HHSsaQV3GWJo2PF-fSSlRn7mdMqdknqoIw6oZRnU9Y3tbhaccZGyX4SiP5bOH0SQ76D5aIs3AdgPaSOmXV4xyHLi3QaGJP5aWhIJEs71wG_NZYyTQNz0tG4UG2l2rlC-yqyLxIbhfbtwLf5K5O6e8dDD_PWA2phCirMLg-9ttV6S-GvSfstaeHK66lCsBpxKUUgOvC-9t58FBhKkVuLqANywa_zB6jt9-KdIv9dtf8WtOPOxfrjhvsZXgxGybE6Hp4cfYSXIS0f0IqS_ATLs6trt4EYa6Y3qznN4NdT_0R_Ae3HNWk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Molecular+Mechanism+of+Ginsenoside+Analogs+Activating+TMEM16A&rft.jtitle=Biophysical+journal&rft.au=Guo%2C+Shuai&rft.au=Chen%2C+Yafei+F&rft.au=Shi%2C+Sai&rft.au=Pang%2C+Chunli+L&rft.date=2020-01-07&rft.eissn=1542-0086&rft.volume=118&rft.issue=1&rft.spage=262&rft_id=info:doi/10.1016%2Fj.bpj.2019.11.015&rft_id=info%3Apmid%2F31818463&rft.externalDocID=31818463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |