The Molecular Mechanism of Ginsenoside Analogs Activating TMEM16A

The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseas...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 118; no. 1; pp. 262 - 272
Main Authors Guo, Shuai, Chen, Yafei F., Shi, Sai, Pang, Chunli L., Wang, Xuzhao Z., Zhang, Hailin L., Zhan, Yong, An, Hailong L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.01.2020
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.
AbstractList The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.
The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.
The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α -helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.
Author Shi, Sai
An, Hailong L.
Wang, Xuzhao Z.
Guo, Shuai
Pang, Chunli L.
Chen, Yafei F.
Zhang, Hailin L.
Zhan, Yong
AuthorAffiliation 2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
3 Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
4 Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
AuthorAffiliation_xml – name: 2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China
– name: 1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– name: 3 Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
– name: 4 Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0002-5342-9666
  surname: Guo
  fullname: Guo, Shuai
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 2
  givenname: Yafei F.
  surname: Chen
  fullname: Chen, Yafei F.
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
– sequence: 3
  givenname: Sai
  orcidid: 0000-0001-9211-2824
  surname: Shi
  fullname: Shi, Sai
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 4
  givenname: Chunli L.
  surname: Pang
  fullname: Pang, Chunli L.
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
– sequence: 5
  givenname: Xuzhao Z.
  surname: Wang
  fullname: Wang, Xuzhao Z.
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 6
  givenname: Hailin L.
  surname: Zhang
  fullname: Zhang, Hailin L.
  organization: Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
– sequence: 7
  givenname: Yong
  surname: Zhan
  fullname: Zhan, Yong
  email: zhany@hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 8
  givenname: Hailong L.
  surname: An
  fullname: An, Hailong L.
  email: hailong_an@hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31818463$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-P0zAUxC20iO0WPgAXlCOXhPfiP0mEhBStlgVpKy7lbDnOS-sqtYudVtpvT6ruIuCwJx_e_GbkmRt25YMnxt4jFAioPu2K7rArSsCmQCwA5Su2QCnKHKBWV2wBACrnopHX7CalHQCWEvANu-ZYYy0UX7B2vaVsFUayx9HEbEV2a7xL-ywM2b3ziXxIrqes9WYMm5S1dnInMzm_ydaruxWq9i17PZgx0bund8l-fr1b337LH37cf79tH3IrJE55NYfXoje8t8NA2AjeQEdQA3GSYJTi2EuJ_dAoC6oZpODSVFDaSom6Ux1fsi8X38Ox21NvyU_RjPoQ3d7ERx2M0_9evNvqTThp1Uiu5s8u2ccngxh-HSlNeu-SpXE0nsIx6ZKXXFSVwrP0w99Zf0Kee5sF1UVgY0gp0qCtm-ZawjnajRpBnxfSOz0vpM8LaUQ9LzST-B_5bP4S8_nC0NzvyVHUyTrylnoXyU66D-4F-jfGZads
CitedBy_id crossref_primary_10_1007_s00232_021_00188_9
crossref_primary_10_1021_acsami_2c08503
crossref_primary_10_3389_fphar_2021_643489
crossref_primary_10_1016_j_apsb_2020_12_003
crossref_primary_10_2147_JEP_S255377
crossref_primary_10_1016_j_biopha_2022_113392
crossref_primary_10_3390_ijms222010930
crossref_primary_10_1016_j_abb_2020_108650
crossref_primary_10_1021_acs_jafc_2c03009
crossref_primary_10_1016_j_bcp_2020_114062
crossref_primary_10_1016_j_ijbiomac_2024_134057
crossref_primary_10_1016_j_csbj_2020_03_015
crossref_primary_10_1021_acs_jafc_1c08375
crossref_primary_10_1016_j_tips_2022_06_006
crossref_primary_10_1021_acs_jafc_2c06723
crossref_primary_10_3389_fcell_2020_616139
Cites_doi 10.1007/s00424-014-1572-5
10.1248/bpb.b14-00441
10.1038/nature07313
10.1007/s00232-011-9350-1
10.1371/journal.pone.0133656
10.1002/jcc.21720
10.1111/bph.13841
10.1126/science.1163518
10.1007/s00424-017-2028-5
10.1093/nar/gku340
10.1152/physrev.00006.2016
10.1113/jphysiol.2014.277152
10.1016/j.jgr.2017.05.005
10.1002/jcc.20290
10.1016/j.jgr.2017.05.002
10.1038/nature25024
10.1371/journal.pone.0144715
10.1002/jcc.21256
10.1371/journal.pone.0038030
10.1007/s12272-011-0719-6
10.1016/0263-7855(96)00018-5
10.1016/j.jphotobiol.2016.10.034
10.1016/j.cell.2008.09.003
10.1007/s00424-017-1934-x
10.1371/journal.pone.0086734
10.1073/pnas.0911935106
10.1161/CIRCRESAHA.112.264440
10.1152/ajplung.00103.2017
10.1016/j.biopha.2017.09.059
10.1007/s00232-017-9975-9
10.1002/jcc.20084
10.1111/j.1582-4934.2011.01333.x
10.1038/nature13984
10.1002/jcp.27529
10.1007/s00232-018-0052-9
10.1038/nature24652
ContentType Journal Article
Copyright 2019 Biophysical Society
Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2019 Biophysical Society. 2019 Biophysical Society
Copyright_xml – notice: 2019 Biophysical Society
– notice: Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2019 Biophysical Society. 2019 Biophysical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bpj.2019.11.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 272
ExternalDocumentID PMC6953646
31818463
10_1016_j_bpj_2019_11_015
S0006349519309385
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AHPSJ
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFKRA
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
RIG
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c451t-701284da3dcffe194390be080e3e50a6631d551df96c069f5435a702c7648b6b3
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 14:24:46 EDT 2025
Fri Jul 11 07:49:44 EDT 2025
Wed Feb 19 02:28:01 EST 2025
Tue Jul 01 00:50:16 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Fri Feb 23 02:48:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-701284da3dcffe194390be080e3e50a6631d551df96c069f5435a702c7648b6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5342-9666
0000-0001-9211-2824
OpenAccessLink http://www.cell.com/article/S0006349519309385/pdf
PMID 31818463
PQID 2323477616
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953646
proquest_miscellaneous_2323477616
pubmed_primary_31818463
crossref_citationtrail_10_1016_j_bpj_2019_11_015
crossref_primary_10_1016_j_bpj_2019_11_015
elsevier_sciencedirect_doi_10_1016_j_bpj_2019_11_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-07
PublicationDateYYYYMMDD 2020-01-07
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2020
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Singh, Gibbons, Farrugia (bib10) 2014; 592
Ganguly, Kumar, Rastogi (bib16) 2018; 42
Yu, Duran, Hartzell (bib31) 2012; 110
Sui, Wu, Zhang (bib35) 2015; 10
Lee, Jung, Whang (bib15) 2011; 34
Ni, Kuan, Chen (bib34) 2014; 9
Dang, Feng, Jan (bib8) 2017; 552
Guo, Chen, Zhan (bib11) 2017; 469
Christensen (bib20) 2009; 55
Tan, Yu, Li (bib18) 2014; 37
Fedigan, Bradley, Sergeant (bib12) 2017; 469
Yao, Namkung, Verkman (bib32) 2012; 7
Seo, Park, Namkung (bib36) 2015; 10
Humphrey, Dalke, Schulten (bib24) 1996; 14
Chai, Chen, An (bib6) 2017; 250
Biasini, Bienert, Schwede (bib22) 2014; 42
Cipriani, Serboiu, Vannucchi (bib29) 2011; 15
Case, Cheatham, Woods (bib27) 2005; 26
Morris, Huey, Olson (bib23) 2009; 30
Unni, Huang, Baker (bib25) 2011; 32
Brunner, Lim, Dutzler (bib30) 2014; 516
Chen, An, Zhan (bib21) 2011; 240
Kang, Lee, Cho (bib1) 2017; 313
Huang, Guo, An (bib38) 2018; 251
Zhang, Li, Zhang (bib37) 2017; 174
Schroeder, Cheng, Jan (bib3) 2008; 134
Guo, Chen, Zhan (bib7) 2019; 234
Shafei, El-Bakly, Ellithy (bib5) 2017; 95
Caputo, Caci, Galietta (bib4) 2008; 322
Huang, Rock, Jan (bib13) 2009; 106
Berridge (bib28) 2016; 96
Paulino, Kalienkova, Dutzler (bib9) 2017; 552
Kaku, Miyata, Kinoshita (bib17) 1975; 25
Liu, Zhang, Zhang (bib33) 2015; 467
Kang, Huang, Lim (bib14) 2016; 165
Yang, Cho, Oh (bib2) 2008; 455
Pettersen, Goddard, Ferrin (bib26) 2004; 25
Lee, Min, Kim (bib19) 2018; 42
Guo (10.1016/j.bpj.2019.11.015_bib11) 2017; 469
Yao (10.1016/j.bpj.2019.11.015_bib32) 2012; 7
Sui (10.1016/j.bpj.2019.11.015_bib35) 2015; 10
Zhang (10.1016/j.bpj.2019.11.015_bib37) 2017; 174
Singh (10.1016/j.bpj.2019.11.015_bib10) 2014; 592
Pettersen (10.1016/j.bpj.2019.11.015_bib26) 2004; 25
Morris (10.1016/j.bpj.2019.11.015_bib23) 2009; 30
Christensen (10.1016/j.bpj.2019.11.015_bib20) 2009; 55
Lee (10.1016/j.bpj.2019.11.015_bib15) 2011; 34
Liu (10.1016/j.bpj.2019.11.015_bib33) 2015; 467
Biasini (10.1016/j.bpj.2019.11.015_bib22) 2014; 42
Huang (10.1016/j.bpj.2019.11.015_bib38) 2018; 251
Humphrey (10.1016/j.bpj.2019.11.015_bib24) 1996; 14
Case (10.1016/j.bpj.2019.11.015_bib27) 2005; 26
Paulino (10.1016/j.bpj.2019.11.015_bib9) 2017; 552
Lee (10.1016/j.bpj.2019.11.015_bib19) 2018; 42
Caputo (10.1016/j.bpj.2019.11.015_bib4) 2008; 322
Ni (10.1016/j.bpj.2019.11.015_bib34) 2014; 9
Shafei (10.1016/j.bpj.2019.11.015_bib5) 2017; 95
Seo (10.1016/j.bpj.2019.11.015_bib36) 2015; 10
Chai (10.1016/j.bpj.2019.11.015_bib6) 2017; 250
Yang (10.1016/j.bpj.2019.11.015_bib2) 2008; 455
Unni (10.1016/j.bpj.2019.11.015_bib25) 2011; 32
Guo (10.1016/j.bpj.2019.11.015_bib7) 2019; 234
Kang (10.1016/j.bpj.2019.11.015_bib1) 2017; 313
Brunner (10.1016/j.bpj.2019.11.015_bib30) 2014; 516
Cipriani (10.1016/j.bpj.2019.11.015_bib29) 2011; 15
Fedigan (10.1016/j.bpj.2019.11.015_bib12) 2017; 469
Kang (10.1016/j.bpj.2019.11.015_bib14) 2016; 165
Chen (10.1016/j.bpj.2019.11.015_bib21) 2011; 240
Schroeder (10.1016/j.bpj.2019.11.015_bib3) 2008; 134
Huang (10.1016/j.bpj.2019.11.015_bib13) 2009; 106
Yu (10.1016/j.bpj.2019.11.015_bib31) 2012; 110
Kaku (10.1016/j.bpj.2019.11.015_bib17) 1975; 25
Berridge (10.1016/j.bpj.2019.11.015_bib28) 2016; 96
Tan (10.1016/j.bpj.2019.11.015_bib18) 2014; 37
Dang (10.1016/j.bpj.2019.11.015_bib8) 2017; 552
Ganguly (10.1016/j.bpj.2019.11.015_bib16) 2018; 42
References_xml – volume: 469
  start-page: 1443
  year: 2017
  end-page: 1455
  ident: bib12
  article-title: Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal
  publication-title: Pflugers Arch
– volume: 15
  start-page: 2411
  year: 2011
  end-page: 2420
  ident: bib29
  article-title: NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum
  publication-title: J. Cell. Mol. Med
– volume: 95
  start-page: 1209
  year: 2017
  end-page: 1218
  ident: bib5
  article-title: A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer
  publication-title: Biomed. Pharmacother
– volume: 469
  start-page: 681
  year: 2017
  end-page: 692
  ident: bib11
  article-title: Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of Guinea pig ileum
  publication-title: Pflugers Arch
– volume: 174
  start-page: 2334
  year: 2017
  end-page: 2345
  ident: bib37
  article-title: Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects
  publication-title: Br. J. Pharmacol
– volume: 42
  start-page: 463
  year: 2018
  end-page: 469
  ident: bib16
  article-title: Influence of phytochemical composition on
  publication-title: J. Ginseng Res
– volume: 134
  start-page: 1019
  year: 2008
  end-page: 1029
  ident: bib3
  article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit
  publication-title: Cell
– volume: 106
  start-page: 21413
  year: 2009
  end-page: 21418
  ident: bib13
  article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: e0144715
  year: 2015
  ident: bib35
  article-title: Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells
  publication-title: PLoS One
– volume: 37
  start-page: 1788
  year: 2014
  end-page: 1794
  ident: bib18
  article-title: Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus
  publication-title: Biol. Pharm. Bull
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib26
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem
– volume: 96
  start-page: 1261
  year: 2016
  end-page: 1296
  ident: bib28
  article-title: The inositol trisphosphate/calcium signaling pathway in health and disease
  publication-title: Physiol. Rev
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 2791
  ident: bib23
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem
– volume: 322
  start-page: 590
  year: 2008
  end-page: 594
  ident: bib4
  article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity
  publication-title: Science
– volume: 250
  start-page: 483
  year: 2017
  end-page: 492
  ident: bib6
  article-title: Identification of resveratrol, an herbal compound, as an activator of the calcium-activated chloride channel, TMEM16A
  publication-title: J. Membr. Biol
– volume: 32
  start-page: 1488
  year: 2011
  end-page: 1491
  ident: bib25
  article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR
  publication-title: J. Comput. Chem
– volume: 455
  start-page: 1210
  year: 2008
  end-page: 1215
  ident: bib2
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
– volume: 110
  start-page: 990
  year: 2012
  end-page: 999
  ident: bib31
  article-title: Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology
  publication-title: Circ. Res
– volume: 467
  start-page: 1417
  year: 2015
  end-page: 1430
  ident: bib33
  article-title: Characterization of the effects of Cl
  publication-title: Pflugers Arch
– volume: 7
  start-page: e38030
  year: 2012
  ident: bib32
  article-title: Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A
  publication-title: PLoS One
– volume: 25
  start-page: 539
  year: 1975
  end-page: 547
  ident: bib17
  article-title: Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. II. Pharmacological part
  publication-title: Arzneimittelforschung
– volume: 26
  start-page: 1668
  year: 2005
  end-page: 1688
  ident: bib27
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem
– volume: 516
  start-page: 207
  year: 2014
  end-page: 212
  ident: bib30
  article-title: X-ray structure of a calcium-activated TMEM16 lipid scramblase
  publication-title: Nature
– volume: 592
  start-page: 4051
  year: 2014
  end-page: 4068
  ident: bib10
  article-title: Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal
  publication-title: J. Physiol
– volume: 42
  start-page: 476
  year: 2018
  end-page: 484
  ident: bib19
  article-title: Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways
  publication-title: J. Ginseng Res
– volume: 552
  start-page: 426
  year: 2017
  end-page: 429
  ident: bib8
  article-title: Cryo-EM structures of the TMEM16A calcium-activated chloride channel
  publication-title: Nature
– volume: 42
  start-page: W252
  year: 2014
  end-page: W258
  ident: bib22
  article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
  publication-title: Nucleic Acids Res
– volume: 55
  start-page: 1
  year: 2009
  end-page: 99
  ident: bib20
  article-title: Ginsenosides chemistry, biosynthesis, analysis, and potential health effects
  publication-title: Adv. Food Nutr. Res
– volume: 313
  start-page: L466
  year: 2017
  end-page: L476
  ident: bib1
  article-title: Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol
– volume: 9
  start-page: e86734
  year: 2014
  ident: bib34
  article-title: Activation and inhibition of TMEM16A calcium-activated chloride channels
  publication-title: PLoS One
– volume: 10
  start-page: e0133656
  year: 2015
  ident: bib36
  article-title: Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines
  publication-title: PLoS One
– volume: 552
  start-page: 421
  year: 2017
  end-page: 425
  ident: bib9
  article-title: Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM
  publication-title: Nature
– volume: 240
  start-page: 121
  year: 2011
  end-page: 129
  ident: bib21
  article-title: Direct or indirect regulation of calcium-activated chloride channel by calcium
  publication-title: J. Membr. Biol
– volume: 165
  start-page: 232
  year: 2016
  end-page: 239
  ident: bib14
  article-title: Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes
  publication-title: J. Photochem. Photobiol. B
– volume: 34
  start-page: 1201
  year: 2011
  end-page: 1208
  ident: bib15
  article-title: The antidiabetic effect of ginsenoside Rb2 via activation of AMPK
  publication-title: Arch. Pharm. Res
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38, 27–28
  ident: bib24
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph
– volume: 234
  start-page: 8698
  year: 2019
  end-page: 8708
  ident: bib7
  article-title: Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects
  publication-title: J. Cell. Physiol
– volume: 251
  start-page: 747
  year: 2018
  end-page: 756
  ident: bib38
  article-title: The natural compound cinnamaldehyde is a novel activator of calcium-activated chloride channel
  publication-title: J. Membr. Biol
– volume: 467
  start-page: 1417
  year: 2015
  ident: 10.1016/j.bpj.2019.11.015_bib33
  article-title: Characterization of the effects of Cl− channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl− channels
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-014-1572-5
– volume: 37
  start-page: 1788
  year: 2014
  ident: 10.1016/j.bpj.2019.11.015_bib18
  article-title: Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus
  publication-title: Biol. Pharm. Bull
  doi: 10.1248/bpb.b14-00441
– volume: 455
  start-page: 1210
  year: 2008
  ident: 10.1016/j.bpj.2019.11.015_bib2
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
  doi: 10.1038/nature07313
– volume: 240
  start-page: 121
  year: 2011
  ident: 10.1016/j.bpj.2019.11.015_bib21
  article-title: Direct or indirect regulation of calcium-activated chloride channel by calcium
  publication-title: J. Membr. Biol
  doi: 10.1007/s00232-011-9350-1
– volume: 10
  start-page: e0133656
  year: 2015
  ident: 10.1016/j.bpj.2019.11.015_bib36
  article-title: Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133656
– volume: 32
  start-page: 1488
  year: 2011
  ident: 10.1016/j.bpj.2019.11.015_bib25
  article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.21720
– volume: 25
  start-page: 539
  year: 1975
  ident: 10.1016/j.bpj.2019.11.015_bib17
  article-title: Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. II. Pharmacological part
  publication-title: Arzneimittelforschung
– volume: 174
  start-page: 2334
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib37
  article-title: Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects
  publication-title: Br. J. Pharmacol
  doi: 10.1111/bph.13841
– volume: 322
  start-page: 590
  year: 2008
  ident: 10.1016/j.bpj.2019.11.015_bib4
  article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity
  publication-title: Science
  doi: 10.1126/science.1163518
– volume: 469
  start-page: 1443
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib12
  article-title: Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-017-2028-5
– volume: 42
  start-page: W252
  year: 2014
  ident: 10.1016/j.bpj.2019.11.015_bib22
  article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku340
– volume: 96
  start-page: 1261
  year: 2016
  ident: 10.1016/j.bpj.2019.11.015_bib28
  article-title: The inositol trisphosphate/calcium signaling pathway in health and disease
  publication-title: Physiol. Rev
  doi: 10.1152/physrev.00006.2016
– volume: 592
  start-page: 4051
  year: 2014
  ident: 10.1016/j.bpj.2019.11.015_bib10
  article-title: Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal
  publication-title: J. Physiol
  doi: 10.1113/jphysiol.2014.277152
– volume: 42
  start-page: 476
  year: 2018
  ident: 10.1016/j.bpj.2019.11.015_bib19
  article-title: Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways
  publication-title: J. Ginseng Res
  doi: 10.1016/j.jgr.2017.05.005
– volume: 26
  start-page: 1668
  year: 2005
  ident: 10.1016/j.bpj.2019.11.015_bib27
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.20290
– volume: 42
  start-page: 463
  year: 2018
  ident: 10.1016/j.bpj.2019.11.015_bib16
  article-title: Influence of phytochemical composition on in vitro antioxidant and reducing activities of Indian ginseng [Withania somnifera (L.) Dunal] root extracts
  publication-title: J. Ginseng Res
  doi: 10.1016/j.jgr.2017.05.002
– volume: 552
  start-page: 426
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib8
  article-title: Cryo-EM structures of the TMEM16A calcium-activated chloride channel
  publication-title: Nature
  doi: 10.1038/nature25024
– volume: 10
  start-page: e0144715
  year: 2015
  ident: 10.1016/j.bpj.2019.11.015_bib35
  article-title: Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144715
– volume: 30
  start-page: 2785
  year: 2009
  ident: 10.1016/j.bpj.2019.11.015_bib23
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.21256
– volume: 7
  start-page: e38030
  year: 2012
  ident: 10.1016/j.bpj.2019.11.015_bib32
  article-title: Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038030
– volume: 34
  start-page: 1201
  year: 2011
  ident: 10.1016/j.bpj.2019.11.015_bib15
  article-title: The antidiabetic effect of ginsenoside Rb2 via activation of AMPK
  publication-title: Arch. Pharm. Res
  doi: 10.1007/s12272-011-0719-6
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.bpj.2019.11.015_bib24
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph
  doi: 10.1016/0263-7855(96)00018-5
– volume: 165
  start-page: 232
  year: 2016
  ident: 10.1016/j.bpj.2019.11.015_bib14
  article-title: Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2016.10.034
– volume: 134
  start-page: 1019
  year: 2008
  ident: 10.1016/j.bpj.2019.11.015_bib3
  article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.003
– volume: 469
  start-page: 681
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib11
  article-title: Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of Guinea pig ileum
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-017-1934-x
– volume: 55
  start-page: 1
  year: 2009
  ident: 10.1016/j.bpj.2019.11.015_bib20
  article-title: Ginsenosides chemistry, biosynthesis, analysis, and potential health effects
  publication-title: Adv. Food Nutr. Res
– volume: 9
  start-page: e86734
  year: 2014
  ident: 10.1016/j.bpj.2019.11.015_bib34
  article-title: Activation and inhibition of TMEM16A calcium-activated chloride channels
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086734
– volume: 106
  start-page: 21413
  year: 2009
  ident: 10.1016/j.bpj.2019.11.015_bib13
  article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911935106
– volume: 110
  start-page: 990
  year: 2012
  ident: 10.1016/j.bpj.2019.11.015_bib31
  article-title: Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology
  publication-title: Circ. Res
  doi: 10.1161/CIRCRESAHA.112.264440
– volume: 313
  start-page: L466
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib1
  article-title: Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol
  doi: 10.1152/ajplung.00103.2017
– volume: 95
  start-page: 1209
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib5
  article-title: A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer
  publication-title: Biomed. Pharmacother
  doi: 10.1016/j.biopha.2017.09.059
– volume: 250
  start-page: 483
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib6
  article-title: Identification of resveratrol, an herbal compound, as an activator of the calcium-activated chloride channel, TMEM16A
  publication-title: J. Membr. Biol
  doi: 10.1007/s00232-017-9975-9
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.bpj.2019.11.015_bib26
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.20084
– volume: 15
  start-page: 2411
  year: 2011
  ident: 10.1016/j.bpj.2019.11.015_bib29
  article-title: NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum
  publication-title: J. Cell. Mol. Med
  doi: 10.1111/j.1582-4934.2011.01333.x
– volume: 516
  start-page: 207
  year: 2014
  ident: 10.1016/j.bpj.2019.11.015_bib30
  article-title: X-ray structure of a calcium-activated TMEM16 lipid scramblase
  publication-title: Nature
  doi: 10.1038/nature13984
– volume: 234
  start-page: 8698
  year: 2019
  ident: 10.1016/j.bpj.2019.11.015_bib7
  article-title: Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects
  publication-title: J. Cell. Physiol
  doi: 10.1002/jcp.27529
– volume: 251
  start-page: 747
  year: 2018
  ident: 10.1016/j.bpj.2019.11.015_bib38
  article-title: The natural compound cinnamaldehyde is a novel activator of calcium-activated chloride channel
  publication-title: J. Membr. Biol
  doi: 10.1007/s00232-018-0052-9
– volume: 552
  start-page: 421
  year: 2017
  ident: 10.1016/j.bpj.2019.11.015_bib9
  article-title: Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM
  publication-title: Nature
  doi: 10.1038/nature24652
SSID ssj0012501
Score 2.4182644
Snippet The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Animals
Anoctamin-1 - chemistry
Anoctamin-1 - metabolism
Binding Sites
CHO Cells
Cricetulus
Dose-Response Relationship, Drug
Ginsenosides - chemistry
Ginsenosides - metabolism
Ginsenosides - pharmacology
Guinea Pigs
Hydrophobic and Hydrophilic Interactions
Models, Molecular
Protein Conformation
Static Electricity
Title The Molecular Mechanism of Ginsenoside Analogs Activating TMEM16A
URI https://dx.doi.org/10.1016/j.bpj.2019.11.015
https://www.ncbi.nlm.nih.gov/pubmed/31818463
https://www.proquest.com/docview/2323477616
https://pubmed.ncbi.nlm.nih.gov/PMC6953646
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KQfAivq2PsoInITZpNrvNsZZWEeKphd6W7CM1RZNi68F_70wexar04DW7C8vsZOab3Zn5CLlRShsDgY8Droo5zHDrxL3Yd0RgGNdagEpggXP0zB8n7GkaTBtkUNfCYFplZftLm15Y6-pLp5JmZ5GmWOML7hXwPUAQCMt7WGjus15RxDe9X78kgIuvWPO4g7Prl80ix0st5pjdFd5hI09kxv3bN_3Gnj9TKL_5pNE-2avAJO2X-z0gDZsdkp2SXvLziPRBB2hU89_SyGKVb7p8o3lCH1K8VM6RrJNiY5J8tqR9XXKdZTM6joaRx_vHZDIajgePTkWZ4GgWeCtHFP7GxL7RSWK9EOCGqyygQuvbwI0BXngGMJJJQq5dHiYBoKVYuF0tOOsprvwT0szyzJ4RGkIklxgLIxaCLl_FntaJG3c1clYpa1vErYUlddVPHGktXmWdODaXIF-J8oU4Q4J8W-R2vWRRNtPYNpnVJyA3NEKCsd-27Lo-LQl_Cj5_xJnNP5YSsKPPhOAeb5HT8vTWuwDLBqEu91tEbJzregJ24d4cydKXohs3xwdwxs__t90LstvFCB4vdcQlaa7eP-wVwJyVahd63C7un74Ao4H6mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUNVeUOkztNBFai-VXPxY7yaHHsKrCWBOQcpt632YGoEdkSDE7-of7IwfUUMRBySufmk1s575vt3Z-QC-aG2sReLjYariHrfCeWk3jTwZWy6MkTgl6IBzciIGp_xwHI-X4E97FobKKpvYX8f0Klo3V7Yba25P8pzO-GJ6RXyPEARpebetrDxytzfI26Y_hnvo5K9heLA_2h14jbSAZ3gczDxZxWWbRtZkmUMij9RfO0RPLnKxn2IaDixiCZv1hPFFL4sRVaTSD40UvKuFjvC7z2AF0YekaDAc78y3LhBTNDJ9wqPhtVupVVGZnpxTOVnvO3UOJSne-5Ph_2D3bs3mP0nw4BWsNuiV9WsDrcGSK17D81rP8vYN9HHSsaQV3GWJo2PF-fSSlRn7mdMqdknqoIw6oZRnU9Y3tbhaccZGyX4SiP5bOH0SQ76D5aIs3AdgPaSOmXV4xyHLi3QaGJP5aWhIJEs71wG_NZYyTQNz0tG4UG2l2rlC-yqyLxIbhfbtwLf5K5O6e8dDD_PWA2phCirMLg-9ttV6S-GvSfstaeHK66lCsBpxKUUgOvC-9t58FBhKkVuLqANywa_zB6jt9-KdIv9dtf8WtOPOxfrjhvsZXgxGybE6Hp4cfYSXIS0f0IqS_ATLs6trt4EYa6Y3qznN4NdT_0R_Ae3HNWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Molecular+Mechanism+of+Ginsenoside+Analogs+Activating+TMEM16A&rft.jtitle=Biophysical+journal&rft.au=Guo%2C+Shuai&rft.au=Chen%2C+Yafei+F&rft.au=Shi%2C+Sai&rft.au=Pang%2C+Chunli+L&rft.date=2020-01-07&rft.eissn=1542-0086&rft.volume=118&rft.issue=1&rft.spage=262&rft_id=info:doi/10.1016%2Fj.bpj.2019.11.015&rft_id=info%3Apmid%2F31818463&rft.externalDocID=31818463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon