A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks

Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 119; p. 110331
Main Authors Rajaee, M.A., Arjmand, N., Shirazi-Adl, A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 15.04.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2021.110331

Cover

Abstract Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
AbstractList Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R  ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
ArticleNumber 110331
Author Arjmand, N.
Rajaee, M.A.
Shirazi-Adl, A.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Rajaee
  fullname: Rajaee, M.A.
  organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: N.
  orcidid: 0000-0001-7972-042X
  surname: Arjmand
  fullname: Arjmand, N.
  email: arjmand@sharif.edu
  organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 3
  givenname: A.
  surname: Shirazi-Adl
  fullname: Shirazi-Adl, A.
  organization: Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique, Montréal, Québec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33631665$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFV6gssWGTwZc440gIUY24SZXYwNpynBPVGccebGdQd7wDb8iT4DadzWzKyrL8_b-PzneBznzwgNAVJWtKaPN2XI-dDROY2zUjjK4pJZzTZ2hF5YZXjEtyhlakvFQta8k5ukhpJIRs6k37Ap1z3nDaNGKFfl1jHw7gsAnz3kGPpzmZ2YW0AwdZOzxYbzPgcpvAZzyFvsBhwPkWcNpbD_jv7z94G222puBw0G7W2Qb_AMXZ75ZMwtbjVCbGWaddeomeD9olePV4XqIfnz5-336pbr59_rq9vqlMLWiuGkMEZ4MhvKZ6YLyT_SAEl0xKxutuaJlgDQhZsEFLIze0JroXpjNGdLQHfoneLL37GH7OkLKabDLgnPYQ5qRY3dZMEslZQV-foGOYoy_TKSZIK9qGcFGoq0dq7ibo1T7aScc7dVxpAd4tgIkhpQiDMjY_bCRHbZ2iRN0bVKM6GlT3BtVisMSbk_jxhyeDH5Zg2TUcLESVjAVvoLcRTFZ9sE9XvD-pMK7oL153cPc_Bf8Ay7XPDg
CitedBy_id crossref_primary_10_1016_j_cmpb_2023_107709
crossref_primary_10_3390_bioengineering12030263
crossref_primary_10_1007_s12541_023_00866_9
crossref_primary_10_3390_bioengineering10080917
crossref_primary_10_1109_TIM_2024_3451588
crossref_primary_10_1016_j_jbiomech_2022_111173
crossref_primary_10_1038_s41598_021_97288_2
crossref_primary_10_3390_bioengineering10030315
crossref_primary_10_1016_j_jbiomech_2021_110430
crossref_primary_10_1016_j_clinbiomech_2022_105816
crossref_primary_10_1007_s00586_022_07262_3
crossref_primary_10_1016_j_jbiomech_2024_111974
crossref_primary_10_3389_fbioe_2023_1223007
Cites_doi 10.1016/j.apergo.2014.11.002
10.1016/j.jbiomech.2017.07.014
10.1007/s00586-006-0240-7
10.1097/BRS.0000000000000262
10.1097/00007632-199105000-00009
10.1007/s10439-018-2078-7
10.1016/j.jmbbm.2020.104136
10.1016/j.jbiomech.2004.11.022
10.1097/00007632-199411000-00007
10.1016/j.jbiomech.2012.05.040
10.1097/BRS.0b013e31829a6fa6
10.1016/j.clinbiomech.2006.03.006
10.1016/j.medengphy.2011.09.014
10.1007/s10237-016-0792-3
10.1007/s00586-005-0953-z
10.1016/j.jbiomech.2017.10.033
10.1016/0021-9290(94)E0040-A
10.1016/S0268-0033(00)00103-0
10.1007/s10237-011-0290-6
10.1016/j.jbiomech.2018.10.009
10.1186/1748-7161-10-S1-O19
10.1016/0021-9290(87)90281-8
10.1016/j.medengphy.2014.07.009
10.1115/1.4031417
10.1016/j.jbiomech.2020.109728
10.1016/j.medengphy.2017.05.006
10.1016/j.jbiomech.2015.12.038
10.1097/BRS.0000000000000888
10.1016/j.jbiomech.2017.03.011
10.1016/j.jbiomech.2007.08.010
10.1007/BF02584304
10.1016/j.jbiomech.2019.109441
10.3389/fbioe.2020.00614
10.1080/10255842.2014.961440
10.1115/1.4030408
10.1016/0268-0033(95)00035-6
10.1186/s12891-016-0942-x
10.1016/j.jbiomech.2017.10.027
10.1016/j.jbiomech.2009.09.032
10.1016/j.medengphy.2018.04.019
10.1016/j.jmbbm.2018.01.012
10.1016/j.medengphy.2015.05.018
10.1007/s00586-006-0263-0
10.1016/j.jbiomech.2020.109740
10.1016/j.jbiomech.2004.11.030
10.1016/j.jbiomech.2015.11.011
10.1097/01.brs.0000250177.84168.ba
10.1002/cnm.3182
10.1016/j.clinbiomech.2009.05.008
10.1016/j.jbiomech.2014.04.002
10.1007/s00586-014-3450-4
10.1016/j.jbiomech.2019.109579
10.1007/s00586-006-0292-8
10.1097/00007632-198901000-00019
10.1007/s10237-016-0846-6
10.1080/10255842.2016.1257707
10.1097/00007632-198809000-00011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2021.110331
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 33631665
10_1016_j_jbiomech_2021_110331
S0021929021001111
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-6c0532fc0341af23b8df5538288234bf92526e58c05fa8c87140ad5cbcc5b1de3
IEDL.DBID AIKHN
ISSN 0021-9290
1873-2380
IngestDate Thu Sep 04 22:11:16 EDT 2025
Wed Aug 13 08:54:46 EDT 2025
Thu Apr 03 07:09:25 EDT 2025
Tue Jul 01 00:44:18 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Fri Feb 23 02:46:22 EST 2024
Tue Aug 26 16:32:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Coupled model
Intradiscal pressure
Musculoskeletal
Spine
Kinematics
Finite element
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-6c0532fc0341af23b8df5538288234bf92526e58c05fa8c87140ad5cbcc5b1de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7972-042X
PMID 33631665
PQID 2509596035
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2494280832
proquest_journals_2509596035
pubmed_primary_33631665
crossref_citationtrail_10_1016_j_jbiomech_2021_110331
crossref_primary_10_1016_j_jbiomech_2021_110331
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2021_110331
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2021_110331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Wade, Robertson, Thambyah, Broom (b0285) 2015; 40
Mohammadi, Arjmand, Shirazi-Adl (b0180) 2015; 37
Samadi, Arjmand (b0215) 2018; 58
Rohlmann, Burra, Zander, Bergmann (b0210) 2007; 16
Naserkhaki, El-Rich (b0185) 2017; 20
Wilke, Herkommer, Werner, Liebsch (b0290) 2020; 8
Shirazi-Adl, Drouin (b0250) 1987; 20
Ghezelbash, Eskandari, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon (b0105) 2018; 70
Shiraz-Adl (b0235) 1991; 16
Schmidt, Shirazi-Adl (b0220) 2018; 79
Arjmand, Gagnon, Plamondon, Shirazi-Adl, Lariviere (b0025) 2009; 24
Bazrgari, Shirazi-Adl, Arjmand (b0050) 2007; 16
Ghezelbash, Schmidt, Shirazi-Adl, El-Rich (b0115) 2020
Marouane, Shirazi-Adl, Adouni (b0170) 2017; 16
Putzer, Auer, Malpica, Suess, Dendorfer (b0195) 2016; 17
Shirazi-Adl (b0245) 2006; 39
Zhang, Mannen, Sis, Cadel, Wong, Wang, Cheng, Friis, Anderson (b0300) 2020; 100
Ghezelbash, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon (b0120) 2016; 15
Liu, Khalaf, Naserkhaki, El-Rich (b0155) 2018; 70
Shirazi-Adl (b0240) 1994; 19
Wilke, Neef, Hinz, Seidel, Claes (b0295) 2001; 16
Cholewicki, McGill (b0070) 1996; 11
Breau, Shirazi-Adl, De Guise (b0060) 1991; 19
Dreischarf, Zander, Shirazi-Adl, Puttlitz, Adam, Chen, Goel, Kiapour, Kim, Labus, Little, Park, Wang, Wilke, Rohlmann, Schmidt (b0090) 2014; 47
Khoddam-Khorasani, Arjmand, Shirazi-Adl (b0140) 2018; 46
Senteler, Aiyangar, Weisse, Farshad, Snedeker (b0225) 2018; 70
Dehghan-Hamani, Arjmand, Shirazi-Adl (b0080) 2019; 35
Guehring, Unglaub, Lorenz, Omlor, Wilke, Kroeber (b0125) 2005; 15
Tremblay, Brailovski, Mac-Thiong, Petit (b0265) 2015; 10
Hajihosseinali, Arjmand, Shirazi-Adl, Farahmand, Ghiasi (b0130) 2014; 36
Pearcy, Bogduk (b0190) 1988; 13
Arshad, Zander, Bashkuev, Schmidt (b0040) 2017; 46
Arjmand, Shirazi-Adl (b0030) 2006; 39
Stemper, Baisden, Yoganandan, Shender, Maiman (b0255) 2014; 21
Arjmand, Shirazi-Adl, Bazrgari (b0035) 2006; 21
Arjmand, Gagnon, Plamondon, Shirazi-Adl, Lariviere (b0020) 2010; 43
Liu, El-Rich (b0165) 2020
Gardner-Morse, Stokes, Churchill, Badger (b0100) 2002; 91
Shiraz-Adl (b0230) 1989; 14
Dreischarf, Shirazi-Adl, Arjmand, Rohlmann, Schmidt (b0085) 2016; 49
Eskandari, Arjmand, Shirazi-Adl, Farahmand (b0095) 2017; 57
Liu, Khalaf, Adeeb, El-Rich (b0160) 2019; 82
Vergroesen, van der Veen, van Royen, Kingma, Smit (b0275) 2014; 23
Christophy, Faruk Senan, Lotz, O'Reilly (b0075) 2012; 11
Meng, Bruno, Cheng, Wang, Bouxsein, Anderson (b0175) 2015; 137
Li (b0150) 2021; 113
Rajasekaran, Bajaj, Tubaki, Kanna, Shetty (b0205) 2013; 38
Bazrgari, Shirazi-Adl, Trottier, Mathieu (b0055) 2008; 41
Vadapalli, Sairyo, Goel, Robon, Biyani, Khandha, Ebraheim (b0270) 2006; 31
Han, Zander, Taylor, Rohlmann (b0135) 2012; 34
Arjmand, Shirazi-Adl, Parnianpour (b0015) 2007; 16
Adouni, Shirazi-Adl, Shirazi (b0005) 2012; 45
Bashkuev, Vergroesen, Dreischarf, Schilling, van der Veen, Schmidt, Kingma (b0045) 2016; 49
Khoddam-Khorasani, Arjmand, Shirazi-Adl (b0145) 2020; 104
Wade, Robertson, Thambyah, Broom (b0280) 2014; 39
Bruno, Bouxsein, Anderson (b0065) 2015; 137
Ghezelbash, Arjmand, Shirazi-Adl (b0110) 2015; 18
Rajaee, Arjmand, Shirazi-Adl, Plamondon, Schmidt (b0200) 2015; 48
Stokes, Gardner-Morse (b0260) 1995; 28
Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0240) 1994; 19
Vadapalli (10.1016/j.jbiomech.2021.110331_b0270) 2006; 31
Vergroesen (10.1016/j.jbiomech.2021.110331_b0275) 2014; 23
Bruno (10.1016/j.jbiomech.2021.110331_b0065) 2015; 137
Wade (10.1016/j.jbiomech.2021.110331_b0280) 2014; 39
Putzer (10.1016/j.jbiomech.2021.110331_b0195) 2016; 17
Bashkuev (10.1016/j.jbiomech.2021.110331_b0045) 2016; 49
Pearcy (10.1016/j.jbiomech.2021.110331_b0190) 1988; 13
Bazrgari (10.1016/j.jbiomech.2021.110331_b0050) 2007; 16
Meng (10.1016/j.jbiomech.2021.110331_b0175) 2015; 137
Arjmand (10.1016/j.jbiomech.2021.110331_b0030) 2006; 39
Arshad (10.1016/j.jbiomech.2021.110331_b0040) 2017; 46
Dreischarf (10.1016/j.jbiomech.2021.110331_b0085) 2016; 49
Shiraz-Adl (10.1016/j.jbiomech.2021.110331_b0230) 1989; 14
Eskandari (10.1016/j.jbiomech.2021.110331_b0095) 2017; 57
Naserkhaki (10.1016/j.jbiomech.2021.110331_b0185) 2017; 20
Khoddam-Khorasani (10.1016/j.jbiomech.2021.110331_b0145) 2020; 104
Rohlmann (10.1016/j.jbiomech.2021.110331_b0210) 2007; 16
Hajihosseinali (10.1016/j.jbiomech.2021.110331_b0130) 2014; 36
Khoddam-Khorasani (10.1016/j.jbiomech.2021.110331_b0140) 2018; 46
Senteler (10.1016/j.jbiomech.2021.110331_b0225) 2018; 70
Christophy (10.1016/j.jbiomech.2021.110331_b0075) 2012; 11
Liu (10.1016/j.jbiomech.2021.110331_b0160) 2019; 82
Bazrgari (10.1016/j.jbiomech.2021.110331_b0055) 2008; 41
Arjmand (10.1016/j.jbiomech.2021.110331_b0035) 2006; 21
Rajasekaran (10.1016/j.jbiomech.2021.110331_b0205) 2013; 38
Liu (10.1016/j.jbiomech.2021.110331_b0155) 2018; 70
Mohammadi (10.1016/j.jbiomech.2021.110331_b0180) 2015; 37
Zhang (10.1016/j.jbiomech.2021.110331_b0300) 2020; 100
Dehghan-Hamani (10.1016/j.jbiomech.2021.110331_b0080) 2019; 35
Ghezelbash (10.1016/j.jbiomech.2021.110331_b0105) 2018; 70
Marouane (10.1016/j.jbiomech.2021.110331_b0170) 2017; 16
Arjmand (10.1016/j.jbiomech.2021.110331_b0020) 2010; 43
Adouni (10.1016/j.jbiomech.2021.110331_b0005) 2012; 45
Li (10.1016/j.jbiomech.2021.110331_b0150) 2021; 113
Shiraz-Adl (10.1016/j.jbiomech.2021.110331_b0235) 1991; 16
Stokes (10.1016/j.jbiomech.2021.110331_b0260) 1995; 28
Arjmand (10.1016/j.jbiomech.2021.110331_b0015) 2007; 16
Samadi (10.1016/j.jbiomech.2021.110331_b0215) 2018; 58
Tremblay (10.1016/j.jbiomech.2021.110331_b0265) 2015; 10
Breau (10.1016/j.jbiomech.2021.110331_b0060) 1991; 19
Liu (10.1016/j.jbiomech.2021.110331_b0165) 2020
Wilke (10.1016/j.jbiomech.2021.110331_b0295) 2001; 16
Cholewicki (10.1016/j.jbiomech.2021.110331_b0070) 1996; 11
Wade (10.1016/j.jbiomech.2021.110331_b0285) 2015; 40
Dreischarf (10.1016/j.jbiomech.2021.110331_b0090) 2014; 47
Guehring (10.1016/j.jbiomech.2021.110331_b0125) 2005; 15
Ghezelbash (10.1016/j.jbiomech.2021.110331_b0115) 2020
Ghezelbash (10.1016/j.jbiomech.2021.110331_b0110) 2015; 18
Ghezelbash (10.1016/j.jbiomech.2021.110331_b0120) 2016; 15
Arjmand (10.1016/j.jbiomech.2021.110331_b0025) 2009; 24
Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0250) 1987; 20
Han (10.1016/j.jbiomech.2021.110331_b0135) 2012; 34
Gardner-Morse (10.1016/j.jbiomech.2021.110331_b0100) 2002; 91
Wilke (10.1016/j.jbiomech.2021.110331_b0290) 2020; 8
Rajaee (10.1016/j.jbiomech.2021.110331_b0200) 2015; 48
Stemper (10.1016/j.jbiomech.2021.110331_b0255) 2014; 21
Schmidt (10.1016/j.jbiomech.2021.110331_b0220) 2018; 79
Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0245) 2006; 39
References_xml – volume: 57
  start-page: 18
  year: 2017
  end-page: 26
  ident: b0095
  article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine
  publication-title: J. Biomech.
– volume: 16
  start-page: 687
  year: 2007
  end-page: 699
  ident: b0050
  article-title: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads
  publication-title: Eur. Spine J.
– volume: 49
  start-page: 833
  year: 2016
  end-page: 845
  ident: b0085
  article-title: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies
  publication-title: J. Biomech.
– volume: 104
  year: 2020
  ident: b0145
  article-title: Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study
  publication-title: J. Biomech.
– volume: 48
  start-page: 22
  year: 2015
  end-page: 32
  ident: b0200
  article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities
  publication-title: Appl. Ergon.
– volume: 137
  start-page: 101008
  year: 2015
  ident: b0175
  article-title: Incorporating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculoskeletal model-method and performance in flexed postures
  publication-title: J. Biomech. Eng.
– volume: 16
  start-page: 701
  year: 2007
  end-page: 709
  ident: b0015
  article-title: Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels
  publication-title: Eur. Spine J.
– volume: 137
  start-page: 081003
  year: 2015
  ident: b0065
  article-title: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage
  publication-title: J. Biomech. Eng.
– volume: 58
  start-page: 13
  year: 2018
  end-page: 22
  ident: b0215
  article-title: A novel stability-based EMG-assisted optimization method for the spine
  publication-title: Med. Eng. Phys.
– volume: 20
  start-page: 601
  year: 1987
  end-page: 613
  ident: b0250
  article-title: Load-bearing role of facets in a lumbar segment under sagittal plane loadings
  publication-title: J. Biomech.
– volume: 24
  start-page: 533
  year: 2009
  end-page: 541
  ident: b0025
  article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models
  publication-title: Clin. Biomech.
– volume: 21
  start-page: 668
  year: 2006
  end-page: 675
  ident: b0035
  article-title: Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks
  publication-title: Clin. Biomech.
– volume: 41
  start-page: 412
  year: 2008
  end-page: 421
  ident: b0055
  article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities
  publication-title: J. Biomech.
– volume: 19
  start-page: 291
  year: 1991
  end-page: 302
  ident: b0060
  article-title: Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation
  publication-title: Ann. Biomed. Eng.
– volume: 70
  start-page: 149
  year: 2018
  end-page: 156
  ident: b0105
  article-title: Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models
  publication-title: J. Biomech.
– volume: 15
  start-page: 597
  year: 2005
  end-page: 604
  ident: b0125
  article-title: Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model
  publication-title: Eur. Spine J.
– volume: 79
  start-page: 309
  year: 2018
  end-page: 313
  ident: b0220
  article-title: Temporal and spatial variations of pressure within intervertebral disc nuclei
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 16
  start-page: 533
  year: 1991
  end-page: 541
  ident: b0235
  article-title: Finite-element evaluation of contact loads on facets of an L2–L3 lumbar segment in complex loads
  publication-title: Spine
– volume: 16
  start-page: S111
  year: 2001
  end-page: S126
  ident: b0295
  article-title: Intradiscal pressure together with anthropometric data–a data set for the validation of models
  publication-title: Clin. Biomech.
– volume: 11
  start-page: 1
  year: 1996
  end-page: 15
  ident: b0070
  article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain
  publication-title: Clin. Biomech.
– volume: 39
  start-page: 1018
  year: 2014
  end-page: 1028
  ident: b0280
  article-title: How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion
  publication-title: Spine
– volume: 70
  start-page: 43
  year: 2018
  end-page: 50
  ident: b0155
  article-title: Load-sharing in the lumbosacral spine in neutral standing and flexed postures – a combined finite element and inverse static study
  publication-title: J. Biomech.
– volume: 100
  year: 2020
  ident: b0300
  article-title: Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: a structured review and meta-regression analysis
  publication-title: J. Biomech.
– volume: 8
  year: 2020
  ident: b0290
  article-title: In vitro analysis of the intradiscal pressure of the thoracic Spine
  publication-title: Front. Bioeng. Biotechnol.
– volume: 14
  start-page: 96
  year: 1989
  end-page: 103
  ident: b0230
  article-title: Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse
  publication-title: Spine
– volume: 35
  start-page: e3182
  year: 2019
  ident: b0080
  article-title: Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 10
  year: 2015
  ident: b0265
  article-title: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests
  publication-title: Scoliosis
– volume: 34
  start-page: 709
  year: 2012
  end-page: 716
  ident: b0135
  article-title: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces
  publication-title: Med. Eng. Phys.
– volume: 39
  start-page: 267
  year: 2006
  end-page: 275
  ident: b0245
  article-title: Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element
  publication-title: J. Biomech.
– year: 2020
  ident: b0115
  article-title: Internal load-sharing in the human passive lumbar spine: review of in vitro and finite element model studies
  publication-title: J. Biomech.
– volume: 18
  start-page: 1760
  year: 2015
  end-page: 1767
  ident: b0110
  article-title: Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 45
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: b0005
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
– volume: 38
  start-page: 1491
  year: 2013
  end-page: 1500
  ident: b0205
  article-title: ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects
  publication-title: Spine
– volume: 113
  year: 2021
  ident: b0150
  article-title: Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 39
  start-page: 510
  year: 2006
  end-page: 521
  ident: b0030
  article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions
  publication-title: J. Biomech.
– volume: 16
  start-page: 1223
  year: 2007
  end-page: 1231
  ident: b0210
  article-title: Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis
  publication-title: Eur. Spine J.
– volume: 16
  start-page: 693
  year: 2017
  end-page: 703
  ident: b0170
  article-title: 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint
  publication-title: Biomech. Model. Mechanobiol.
– volume: 43
  start-page: 485
  year: 2010
  end-page: 491
  ident: b0020
  article-title: A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings
  publication-title: J. Biomech.
– volume: 20
  start-page: 550
  year: 2017
  end-page: 557
  ident: b0185
  article-title: Sensitivity of lumbar spine response to follower load and flexion moment: finite element study
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 49
  start-page: 864
  year: 2016
  end-page: 868
  ident: b0045
  article-title: Intradiscal pressure measurements: a challenge or a routine?
  publication-title: J. Biomech.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 34
  ident: b0075
  article-title: A musculoskeletal model for the lumbar spine
  publication-title: Biomech. Model. Mechanobiol.
– volume: 47
  start-page: 1757
  year: 2014
  end-page: 1766
  ident: b0090
  article-title: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together
  publication-title: J. Biomech.
– volume: 28
  start-page: 173
  year: 1995
  end-page: 175
  ident: b0260
  article-title: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness
  publication-title: J. Biomech.
– volume: 23
  start-page: 2359
  year: 2014
  end-page: 2368
  ident: b0275
  article-title: Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness
  publication-title: Eur. Spine J.
– volume: 19
  start-page: 2407
  year: 1994
  end-page: 2414
  ident: b0240
  article-title: Biomechanics of the lumbar spine in sagittal/lateral moments
  publication-title: Spine
– volume: 13
  start-page: 1033
  year: 1988
  end-page: 1041
  ident: b0190
  article-title: Instantaneous axes of rotation of the lumbar intervertebral joints
  publication-title: Spine
– volume: 91
  start-page: 167
  year: 2002
  end-page: 172
  ident: b0100
  article-title: Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom
  publication-title: Stud. Health Technol. Inform.
– volume: 46
  start-page: 54
  year: 2017
  end-page: 62
  ident: b0040
  article-title: Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination
  publication-title: Med. Eng. Phys.
– volume: 15
  start-page: 1699
  year: 2016
  end-page: 1712
  ident: b0120
  article-title: Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation
  publication-title: Biomech. Model. Mechanobiol.
– volume: 31
  start-page: E992
  year: 2006
  end-page: E998
  ident: b0270
  article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study
  publication-title: Spine
– year: 2020
  ident: b0165
  article-title: Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: a combined finite element and Musculoskeletal study
  publication-title: J. Biomech.
– volume: 40
  start-page: 891
  year: 2015
  end-page: 901
  ident: b0285
  article-title: “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure: a mechanical and microstructural investigation
  publication-title: Spine
– volume: 21
  start-page: 608
  year: 2014
  end-page: 613
  ident: b0255
  article-title: Mechanical yield of the lumbar annulus: a possible contributor to instability
  publication-title: J. Neurosurg.: Spine
– volume: 37
  start-page: 792
  year: 2015
  end-page: 800
  ident: b0180
  article-title: Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches
  publication-title: Med. Eng. Phys.
– volume: 36
  start-page: 1296
  year: 2014
  end-page: 1304
  ident: b0130
  article-title: A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces
  publication-title: Med. Eng. Phys.
– volume: 17
  start-page: 95
  year: 2016
  ident: b0195
  article-title: A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion
  publication-title: BMC Musculoskeletal Disorders
– volume: 46
  start-page: 1830
  year: 2018
  end-page: 1843
  ident: b0140
  article-title: Trunk hybrid passive-active musculoskeletal modeling to determine the detailed T12–S1 response under in vivo loads
  publication-title: Ann. Biomed. Eng.
– volume: 82
  start-page: 116
  year: 2019
  end-page: 123
  ident: b0160
  article-title: Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: a combined musculoskeletal and finite element simulation study
  publication-title: J. Biomech.
– volume: 70
  start-page: 140
  year: 2018
  end-page: 148
  ident: b0225
  article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
  publication-title: J. Biomech.
– volume: 48
  start-page: 22
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0200
  article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2014.11.002
– volume: 70
  start-page: 149
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0105
  article-title: Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.07.014
– volume: 16
  start-page: 687
  year: 2007
  ident: 10.1016/j.jbiomech.2021.110331_b0050
  article-title: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-006-0240-7
– volume: 39
  start-page: 1018
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110331_b0280
  article-title: How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion
  publication-title: Spine
  doi: 10.1097/BRS.0000000000000262
– volume: 16
  start-page: 533
  year: 1991
  ident: 10.1016/j.jbiomech.2021.110331_b0235
  article-title: Finite-element evaluation of contact loads on facets of an L2–L3 lumbar segment in complex loads
  publication-title: Spine
  doi: 10.1097/00007632-199105000-00009
– volume: 46
  start-page: 1830
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0140
  article-title: Trunk hybrid passive-active musculoskeletal modeling to determine the detailed T12–S1 response under in vivo loads
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2078-7
– volume: 113
  year: 2021
  ident: 10.1016/j.jbiomech.2021.110331_b0150
  article-title: Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2020.104136
– volume: 39
  start-page: 267
  year: 2006
  ident: 10.1016/j.jbiomech.2021.110331_b0245
  article-title: Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.11.022
– volume: 19
  start-page: 2407
  year: 1994
  ident: 10.1016/j.jbiomech.2021.110331_b0240
  article-title: Biomechanics of the lumbar spine in sagittal/lateral moments
  publication-title: Spine
  doi: 10.1097/00007632-199411000-00007
– volume: 45
  start-page: 2149
  year: 2012
  ident: 10.1016/j.jbiomech.2021.110331_b0005
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.040
– volume: 38
  start-page: 1491
  year: 2013
  ident: 10.1016/j.jbiomech.2021.110331_b0205
  article-title: ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31829a6fa6
– volume: 21
  start-page: 668
  year: 2006
  ident: 10.1016/j.jbiomech.2021.110331_b0035
  article-title: Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2006.03.006
– volume: 34
  start-page: 709
  year: 2012
  ident: 10.1016/j.jbiomech.2021.110331_b0135
  article-title: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.09.014
– volume: 15
  start-page: 1699
  year: 2016
  ident: 10.1016/j.jbiomech.2021.110331_b0120
  article-title: Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0792-3
– volume: 15
  start-page: 597
  year: 2005
  ident: 10.1016/j.jbiomech.2021.110331_b0125
  article-title: Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-005-0953-z
– volume: 70
  start-page: 43
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0155
  article-title: Load-sharing in the lumbosacral spine in neutral standing and flexed postures – a combined finite element and inverse static study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.033
– volume: 28
  start-page: 173
  year: 1995
  ident: 10.1016/j.jbiomech.2021.110331_b0260
  article-title: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)E0040-A
– volume: 16
  start-page: S111
  year: 2001
  ident: 10.1016/j.jbiomech.2021.110331_b0295
  article-title: Intradiscal pressure together with anthropometric data–a data set for the validation of models
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(00)00103-0
– volume: 11
  start-page: 19
  year: 2012
  ident: 10.1016/j.jbiomech.2021.110331_b0075
  article-title: A musculoskeletal model for the lumbar spine
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-011-0290-6
– volume: 82
  start-page: 116
  year: 2019
  ident: 10.1016/j.jbiomech.2021.110331_b0160
  article-title: Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: a combined musculoskeletal and finite element simulation study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.10.009
– volume: 10
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0265
  article-title: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests
  publication-title: Scoliosis
  doi: 10.1186/1748-7161-10-S1-O19
– volume: 20
  start-page: 601
  year: 1987
  ident: 10.1016/j.jbiomech.2021.110331_b0250
  article-title: Load-bearing role of facets in a lumbar segment under sagittal plane loadings
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90281-8
– volume: 36
  start-page: 1296
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110331_b0130
  article-title: A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.07.009
– volume: 137
  start-page: 101008
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0175
  article-title: Incorporating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculoskeletal model-method and performance in flexed postures
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4031417
– volume: 104
  year: 2020
  ident: 10.1016/j.jbiomech.2021.110331_b0145
  article-title: Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109728
– volume: 46
  start-page: 54
  year: 2017
  ident: 10.1016/j.jbiomech.2021.110331_b0040
  article-title: Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.05.006
– volume: 49
  start-page: 833
  year: 2016
  ident: 10.1016/j.jbiomech.2021.110331_b0085
  article-title: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.12.038
– volume: 40
  start-page: 891
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0285
  article-title: “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure: a mechanical and microstructural investigation
  publication-title: Spine
  doi: 10.1097/BRS.0000000000000888
– volume: 57
  start-page: 18
  year: 2017
  ident: 10.1016/j.jbiomech.2021.110331_b0095
  article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.03.011
– volume: 41
  start-page: 412
  year: 2008
  ident: 10.1016/j.jbiomech.2021.110331_b0055
  article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.08.010
– volume: 19
  start-page: 291
  year: 1991
  ident: 10.1016/j.jbiomech.2021.110331_b0060
  article-title: Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584304
– year: 2020
  ident: 10.1016/j.jbiomech.2021.110331_b0115
  article-title: Internal load-sharing in the human passive lumbar spine: review of in vitro and finite element model studies
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109441
– volume: 8
  year: 2020
  ident: 10.1016/j.jbiomech.2021.110331_b0290
  article-title: In vitro analysis of the intradiscal pressure of the thoracic Spine
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00614
– volume: 18
  start-page: 1760
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0110
  article-title: Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2014.961440
– volume: 137
  start-page: 081003
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0065
  article-title: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4030408
– volume: 11
  start-page: 1
  year: 1996
  ident: 10.1016/j.jbiomech.2021.110331_b0070
  article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00035-6
– volume: 17
  start-page: 95
  year: 2016
  ident: 10.1016/j.jbiomech.2021.110331_b0195
  article-title: A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion
  publication-title: BMC Musculoskeletal Disorders
  doi: 10.1186/s12891-016-0942-x
– volume: 70
  start-page: 140
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0225
  article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.027
– volume: 43
  start-page: 485
  year: 2010
  ident: 10.1016/j.jbiomech.2021.110331_b0020
  article-title: A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.032
– volume: 58
  start-page: 13
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0215
  article-title: A novel stability-based EMG-assisted optimization method for the spine
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2018.04.019
– volume: 79
  start-page: 309
  year: 2018
  ident: 10.1016/j.jbiomech.2021.110331_b0220
  article-title: Temporal and spatial variations of pressure within intervertebral disc nuclei
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.01.012
– volume: 37
  start-page: 792
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110331_b0180
  article-title: Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.05.018
– volume: 21
  start-page: 608
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110331_b0255
  article-title: Mechanical yield of the lumbar annulus: a possible contributor to instability
  publication-title: J. Neurosurg.: Spine
– volume: 16
  start-page: 701
  year: 2007
  ident: 10.1016/j.jbiomech.2021.110331_b0015
  article-title: Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-006-0263-0
– year: 2020
  ident: 10.1016/j.jbiomech.2021.110331_b0165
  article-title: Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: a combined finite element and Musculoskeletal study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109740
– volume: 39
  start-page: 510
  year: 2006
  ident: 10.1016/j.jbiomech.2021.110331_b0030
  article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.11.030
– volume: 49
  start-page: 864
  year: 2016
  ident: 10.1016/j.jbiomech.2021.110331_b0045
  article-title: Intradiscal pressure measurements: a challenge or a routine?
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.11.011
– volume: 91
  start-page: 167
  year: 2002
  ident: 10.1016/j.jbiomech.2021.110331_b0100
  article-title: Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom
  publication-title: Stud. Health Technol. Inform.
– volume: 31
  start-page: E992
  year: 2006
  ident: 10.1016/j.jbiomech.2021.110331_b0270
  article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study
  publication-title: Spine
  doi: 10.1097/01.brs.0000250177.84168.ba
– volume: 35
  start-page: e3182
  year: 2019
  ident: 10.1016/j.jbiomech.2021.110331_b0080
  article-title: Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.3182
– volume: 24
  start-page: 533
  year: 2009
  ident: 10.1016/j.jbiomech.2021.110331_b0025
  article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.05.008
– volume: 47
  start-page: 1757
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110331_b0090
  article-title: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.002
– volume: 23
  start-page: 2359
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110331_b0275
  article-title: Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-014-3450-4
– volume: 100
  year: 2020
  ident: 10.1016/j.jbiomech.2021.110331_b0300
  article-title: Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: a structured review and meta-regression analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109579
– volume: 16
  start-page: 1223
  year: 2007
  ident: 10.1016/j.jbiomech.2021.110331_b0210
  article-title: Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-006-0292-8
– volume: 14
  start-page: 96
  year: 1989
  ident: 10.1016/j.jbiomech.2021.110331_b0230
  article-title: Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse
  publication-title: Spine
  doi: 10.1097/00007632-198901000-00019
– volume: 16
  start-page: 693
  year: 2017
  ident: 10.1016/j.jbiomech.2021.110331_b0170
  article-title: 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0846-6
– volume: 20
  start-page: 550
  year: 2017
  ident: 10.1016/j.jbiomech.2021.110331_b0185
  article-title: Sensitivity of lumbar spine response to follower load and flexion moment: finite element study
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1257707
– volume: 13
  start-page: 1033
  year: 1988
  ident: 10.1016/j.jbiomech.2021.110331_b0190
  article-title: Instantaneous axes of rotation of the lumbar intervertebral joints
  publication-title: Spine
  doi: 10.1097/00007632-198809000-00011
SSID ssj0007479
Score 2.4395459
Snippet Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110331
SubjectTerms Compression
Coupled model
Finite element
Finite element method
Intervertebral discs
Intradiscal pressure
Joints (anatomy)
Kinematics
Ligaments
Load
Mathematical models
Muscles
Musculoskeletal
Optimization
Spine
Spine (lumbar)
Thorax
Trunk muscles
Vertebrae
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgeEGx5LBQ0SIibaeLY3uSEVoiqQionKu3Nsh1b6u42WchuETf-A_-QX8LYcdIegHKOx4ozry-eFyGvKzR9Dv0yrb2WlFec08r4ksrMahQiVCgW6p1PP8mTM_5xIRbpwq1LaZWDTYyGum5tuCM_QlddCYTbhXi3-ULD1KgQXU0jNG6TO7F1GcrzbDH-cIXe8CnFI6cIA7JrFcLLt8tY3x4DEiwP2fD9oLk_Oqe_gc_ohI4fkPsJPcK8Z_dDcss1E3Iwb_DP-eI7vIGYzxkvyidk_1qrwQm5e5qC6Afk2xya9tKtwba7zdrVcLEL2ahtt0IXhFgc_HkAouD6zHKIw3Kg9YBYEboN7gG_fvyEYUgCXDUMj4u-7ppVT9PBeQMdHh-2ult1j8jZ8YfP709omr9ALRf5lkobxkZ4m6Gn054Vpqy9QAPJEJUX3PiKCSadKHGZ16UtQ-8_XQtrrBUmr13xmOw1beOeEtAzb-vMFMb6nHvNNcskrheOSy2Nt1Mihg-vbGpOHmZkrNWQhbZUA8NUYJjqGTYlRyPdpm_PcSPFbOCrGopP0Vwq9CA3UlYjZYInPez4L9rDQYRUMhKduhLpKXk1Pkb1DjEb3bh2h2tQfViJOJlNyZNe9MaDFoUscinFs39v_pzcC28SQmC5OCR7KAfuBSKprXkZ1eU3QTsd0w
  priority: 102
  providerName: ProQuest
Title A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929021001111
https://dx.doi.org/10.1016/j.jbiomech.2021.110331
https://www.ncbi.nlm.nih.gov/pubmed/33631665
https://www.proquest.com/docview/2509596035
https://www.proquest.com/docview/2494280832
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6ssyD6IDqr6-i6HEF86840aTLt47jsMio7iLgwbyVNE5jLtoOdUXwR_4P_0F_iSZvWFZQVfGlpm1OS5ly-NOcC8CIh1WfILge5VTKIkigKkszGgRxpRUxEAsVcvPPFTE4vozdzMd-D0zYWxrlVet3f6PRaW_s7Q_81h5vFwsX4krSxxC1aXMF0WgLtM55I0YP9yeu301mnkAkxe0-PMHAE1wKFlyfLOsy93pdgoXOKb-rN_dFG_Q2D1rbo_D7c8yASJ00_H8CeKfpwMCloAX31BV9i7dZZ_y_vw91rGQf7cPvC76UfwOcJFuUns0Zd7jZrk-PVzjmlltWKLBFBcrQLh0fRNA7mWNfMwdIiQUasNvQO_PHtO7a1EvBX3vC60cddsWpoKlwUWNHwcauqVfUQLs_PPpxOA1-GIdCRCLeB1K56hNUjMnjKMp7FuRWkJxmBcx5lNmGCSSNiamZVrGOXAlDlQmdaiyzMDX8EvaIszGNANbY6H2U80zaMrIoUG0lqL0wklcysHoBoP3yqfY5yVypjnbbOaMu0nbDUTVjaTNgAhh3dpsnScSPFuJ3XtI1BJa2ZkiG5kTLpKH_j1H-iPWpZKPW6okoJhCaCFpJcDOB595ik3G3dqMKUO2pDUsRigstsAIcN63UD5VzyUErx5D869hTuuCu3TRaKI-gRk5hnhLa22THcOvka0nE8Hx97yaLzq7PZu_c_ATPcLMs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHpTDASMBbWOLYXvKAUIFNHVsrhDZpb57j2NLaLimkZdob_4H_wY_il3CcxN0egPGy5_hYcc7tc84N4EWKps-gXw5yq0TAUsaCNLNJIEKtUIhQoairdx6OxOCAfTzkhyvw09fCuLRKbxNrQ52X2v0j30BXnXKE2zF_O_sSuKlRLrrqR2g0YrFrzk7xyla92fmA_H1J6fbW_vtB0E4VCDTj0TwQ2g1DsDpE-60sjbMktxzVniLWjFlmU8qpMDzBZVYlOnEd7VTOdaY1z6LcxLjvNVhlrqK1A6vvtkafPi9tP4LzNqkkChB4hBdqksevx3VFfR0CoZHLv29G2_3RHf4N7tZub_sO3G7xKuk3AnYXVkzRhbV-gXf1kzPyitQZpPWv-S7cutDcsAvXh23Yfg1O-6Qov5kp0eViNjU5OVm4_NeymqDTQ_RP7LGDvsQ0ueykHs9DSksQnZJqhnuQX99_ED-WgZy3KK8XfV0Uk4amIscFqfD4ZK6qSXUPDq6EN_ehU5SFeQhEbVqdh1mcaRsxq5iiocD13DChRGZ1D7j_8FK37dDdVI6p9HlvY-kZJh3DZMOwHmws6WZNQ5BLKTY9X6Uvd0UDLdFnXUqZLilbQNQAnf-iXfciJFuzVMlzJerB8-VjNCguSqQKUy5wDSosTRCZ0x48aERvedA4FnEkBH_0782fwY3B_nBP7u2Mdh_DTfdWLgAX8XXooEyYJ4jj5tnTVnkIHF21vv4GH2Nbzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLDlsaXAIAG3sIkTe5MDQivKqqW04kClvRnHsaXubpOl2aXqjf_Av-Hn8EsY59UegHLpOR4rzrw-Z14ALxIyfYb8spdZJbwoiSIvSW3sCV8rEiJSKObqnQ8Oxe5R9GHCJ2vws62FcWmVrU2sDHVWaPePfECuOuEEt0M-sE1axKed8dvFV89NkHKR1nacRi0i--b8jK5v5Zu9HeL1S8bG7z-_2_WaCQOejniw9IR2gxGs9smWK8vCNM4sJxPACHeGUWoTxpkwPKZlVsU6dt3tVMZ1qjVPg8yEtO8NuDkMCVWRLg0n3WXP9aVv0ksCjyCIf6k6efp6WtXWV8EQFrhM_HrI3R8d49-Ab-UAx3fhToNccVSL2j1YM3kPNkc53dpPzvEVVrmk1U_6Hty-1OawBxsHTQB_E85GmBffzBx1sVrMTYYnK5cJW5Qzcn90D0B77EAwmjqrHatBPVhYJJyK5YL2wF_ff2A7oAEvmpVXi05X-aymKfE4x5KOj0tVzsr7cHQtnHkA63mRm0eAamh15qdhqm0QWRUp5gtaz00klEit7gNvP7zUTWN0N59jLtsMuKlsGSYdw2TNsD4MOrpF3RrkSophy1fZFr6SqZbkva6kTDrKBhrVkOe_aLdbEZKNgSrlhTr14Xn3mEyLixep3BQrWkOqy2LC6KwPD2vR6w4ahiIMhOBb_978GWyQlsqPe4f7j-GWeykXiQv4NqyTSJgnBOiW6dNKcxC-XLeq_gZAAV6V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+coupled+musculoskeletal+finite+element+model+of+the+spine+%E2%80%93+Critical+evaluation+of+trunk+models+in+some+tasks&rft.jtitle=Journal+of+biomechanics&rft.au=Rajaee%2C+M.A.&rft.au=Arjmand%2C+N.&rft.au=Shirazi-Adl%2C+A.&rft.date=2021-04-15&rft.issn=0021-9290&rft.volume=119&rft.spage=110331&rft_id=info:doi/10.1016%2Fj.jbiomech.2021.110331&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2021_110331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon