A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints wit...
Saved in:
Published in | Journal of biomechanics Vol. 119; p. 110331 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
15.04.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2021.110331 |
Cover
Abstract | Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. |
---|---|
AbstractList | Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R
≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations. |
ArticleNumber | 110331 |
Author | Arjmand, N. Rajaee, M.A. Shirazi-Adl, A. |
Author_xml | – sequence: 1 givenname: M.A. surname: Rajaee fullname: Rajaee, M.A. organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: N. orcidid: 0000-0001-7972-042X surname: Arjmand fullname: Arjmand, N. email: arjmand@sharif.edu organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: A. surname: Shirazi-Adl fullname: Shirazi-Adl, A. organization: Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique, Montréal, Québec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33631665$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi1URKeFV6gssWGTwZc440gIUY24SZXYwNpynBPVGccebGdQd7wDb8iT4DadzWzKyrL8_b-PzneBznzwgNAVJWtKaPN2XI-dDROY2zUjjK4pJZzTZ2hF5YZXjEtyhlakvFQta8k5ukhpJIRs6k37Ap1z3nDaNGKFfl1jHw7gsAnz3kGPpzmZ2YW0AwdZOzxYbzPgcpvAZzyFvsBhwPkWcNpbD_jv7z94G222puBw0G7W2Qb_AMXZ75ZMwtbjVCbGWaddeomeD9olePV4XqIfnz5-336pbr59_rq9vqlMLWiuGkMEZ4MhvKZ6YLyT_SAEl0xKxutuaJlgDQhZsEFLIze0JroXpjNGdLQHfoneLL37GH7OkLKabDLgnPYQ5qRY3dZMEslZQV-foGOYoy_TKSZIK9qGcFGoq0dq7ibo1T7aScc7dVxpAd4tgIkhpQiDMjY_bCRHbZ2iRN0bVKM6GlT3BtVisMSbk_jxhyeDH5Zg2TUcLESVjAVvoLcRTFZ9sE9XvD-pMK7oL153cPc_Bf8Ay7XPDg |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2023_107709 crossref_primary_10_3390_bioengineering12030263 crossref_primary_10_1007_s12541_023_00866_9 crossref_primary_10_3390_bioengineering10080917 crossref_primary_10_1109_TIM_2024_3451588 crossref_primary_10_1016_j_jbiomech_2022_111173 crossref_primary_10_1038_s41598_021_97288_2 crossref_primary_10_3390_bioengineering10030315 crossref_primary_10_1016_j_jbiomech_2021_110430 crossref_primary_10_1016_j_clinbiomech_2022_105816 crossref_primary_10_1007_s00586_022_07262_3 crossref_primary_10_1016_j_jbiomech_2024_111974 crossref_primary_10_3389_fbioe_2023_1223007 |
Cites_doi | 10.1016/j.apergo.2014.11.002 10.1016/j.jbiomech.2017.07.014 10.1007/s00586-006-0240-7 10.1097/BRS.0000000000000262 10.1097/00007632-199105000-00009 10.1007/s10439-018-2078-7 10.1016/j.jmbbm.2020.104136 10.1016/j.jbiomech.2004.11.022 10.1097/00007632-199411000-00007 10.1016/j.jbiomech.2012.05.040 10.1097/BRS.0b013e31829a6fa6 10.1016/j.clinbiomech.2006.03.006 10.1016/j.medengphy.2011.09.014 10.1007/s10237-016-0792-3 10.1007/s00586-005-0953-z 10.1016/j.jbiomech.2017.10.033 10.1016/0021-9290(94)E0040-A 10.1016/S0268-0033(00)00103-0 10.1007/s10237-011-0290-6 10.1016/j.jbiomech.2018.10.009 10.1186/1748-7161-10-S1-O19 10.1016/0021-9290(87)90281-8 10.1016/j.medengphy.2014.07.009 10.1115/1.4031417 10.1016/j.jbiomech.2020.109728 10.1016/j.medengphy.2017.05.006 10.1016/j.jbiomech.2015.12.038 10.1097/BRS.0000000000000888 10.1016/j.jbiomech.2017.03.011 10.1016/j.jbiomech.2007.08.010 10.1007/BF02584304 10.1016/j.jbiomech.2019.109441 10.3389/fbioe.2020.00614 10.1080/10255842.2014.961440 10.1115/1.4030408 10.1016/0268-0033(95)00035-6 10.1186/s12891-016-0942-x 10.1016/j.jbiomech.2017.10.027 10.1016/j.jbiomech.2009.09.032 10.1016/j.medengphy.2018.04.019 10.1016/j.jmbbm.2018.01.012 10.1016/j.medengphy.2015.05.018 10.1007/s00586-006-0263-0 10.1016/j.jbiomech.2020.109740 10.1016/j.jbiomech.2004.11.030 10.1016/j.jbiomech.2015.11.011 10.1097/01.brs.0000250177.84168.ba 10.1002/cnm.3182 10.1016/j.clinbiomech.2009.05.008 10.1016/j.jbiomech.2014.04.002 10.1007/s00586-014-3450-4 10.1016/j.jbiomech.2019.109579 10.1007/s00586-006-0292-8 10.1097/00007632-198901000-00019 10.1007/s10237-016-0846-6 10.1080/10255842.2016.1257707 10.1097/00007632-198809000-00011 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2021.110331 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 33631665 10_1016_j_jbiomech_2021_110331 S0021929021001111 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-6c0532fc0341af23b8df5538288234bf92526e58c05fa8c87140ad5cbcc5b1de3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Sep 04 22:11:16 EDT 2025 Wed Aug 13 08:54:46 EDT 2025 Thu Apr 03 07:09:25 EDT 2025 Tue Jul 01 00:44:18 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 23 02:46:22 EST 2024 Tue Aug 26 16:32:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coupled model Intradiscal pressure Musculoskeletal Spine Kinematics Finite element |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-6c0532fc0341af23b8df5538288234bf92526e58c05fa8c87140ad5cbcc5b1de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7972-042X |
PMID | 33631665 |
PQID | 2509596035 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2494280832 proquest_journals_2509596035 pubmed_primary_33631665 crossref_citationtrail_10_1016_j_jbiomech_2021_110331 crossref_primary_10_1016_j_jbiomech_2021_110331 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2021_110331 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2021_110331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Wade, Robertson, Thambyah, Broom (b0285) 2015; 40 Mohammadi, Arjmand, Shirazi-Adl (b0180) 2015; 37 Samadi, Arjmand (b0215) 2018; 58 Rohlmann, Burra, Zander, Bergmann (b0210) 2007; 16 Naserkhaki, El-Rich (b0185) 2017; 20 Wilke, Herkommer, Werner, Liebsch (b0290) 2020; 8 Shirazi-Adl, Drouin (b0250) 1987; 20 Ghezelbash, Eskandari, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon (b0105) 2018; 70 Shiraz-Adl (b0235) 1991; 16 Schmidt, Shirazi-Adl (b0220) 2018; 79 Arjmand, Gagnon, Plamondon, Shirazi-Adl, Lariviere (b0025) 2009; 24 Bazrgari, Shirazi-Adl, Arjmand (b0050) 2007; 16 Ghezelbash, Schmidt, Shirazi-Adl, El-Rich (b0115) 2020 Marouane, Shirazi-Adl, Adouni (b0170) 2017; 16 Putzer, Auer, Malpica, Suess, Dendorfer (b0195) 2016; 17 Shirazi-Adl (b0245) 2006; 39 Zhang, Mannen, Sis, Cadel, Wong, Wang, Cheng, Friis, Anderson (b0300) 2020; 100 Ghezelbash, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon (b0120) 2016; 15 Liu, Khalaf, Naserkhaki, El-Rich (b0155) 2018; 70 Shirazi-Adl (b0240) 1994; 19 Wilke, Neef, Hinz, Seidel, Claes (b0295) 2001; 16 Cholewicki, McGill (b0070) 1996; 11 Breau, Shirazi-Adl, De Guise (b0060) 1991; 19 Dreischarf, Zander, Shirazi-Adl, Puttlitz, Adam, Chen, Goel, Kiapour, Kim, Labus, Little, Park, Wang, Wilke, Rohlmann, Schmidt (b0090) 2014; 47 Khoddam-Khorasani, Arjmand, Shirazi-Adl (b0140) 2018; 46 Senteler, Aiyangar, Weisse, Farshad, Snedeker (b0225) 2018; 70 Dehghan-Hamani, Arjmand, Shirazi-Adl (b0080) 2019; 35 Guehring, Unglaub, Lorenz, Omlor, Wilke, Kroeber (b0125) 2005; 15 Tremblay, Brailovski, Mac-Thiong, Petit (b0265) 2015; 10 Hajihosseinali, Arjmand, Shirazi-Adl, Farahmand, Ghiasi (b0130) 2014; 36 Pearcy, Bogduk (b0190) 1988; 13 Arshad, Zander, Bashkuev, Schmidt (b0040) 2017; 46 Arjmand, Shirazi-Adl (b0030) 2006; 39 Stemper, Baisden, Yoganandan, Shender, Maiman (b0255) 2014; 21 Arjmand, Shirazi-Adl, Bazrgari (b0035) 2006; 21 Arjmand, Gagnon, Plamondon, Shirazi-Adl, Lariviere (b0020) 2010; 43 Liu, El-Rich (b0165) 2020 Gardner-Morse, Stokes, Churchill, Badger (b0100) 2002; 91 Shiraz-Adl (b0230) 1989; 14 Dreischarf, Shirazi-Adl, Arjmand, Rohlmann, Schmidt (b0085) 2016; 49 Eskandari, Arjmand, Shirazi-Adl, Farahmand (b0095) 2017; 57 Liu, Khalaf, Adeeb, El-Rich (b0160) 2019; 82 Vergroesen, van der Veen, van Royen, Kingma, Smit (b0275) 2014; 23 Christophy, Faruk Senan, Lotz, O'Reilly (b0075) 2012; 11 Meng, Bruno, Cheng, Wang, Bouxsein, Anderson (b0175) 2015; 137 Li (b0150) 2021; 113 Rajasekaran, Bajaj, Tubaki, Kanna, Shetty (b0205) 2013; 38 Bazrgari, Shirazi-Adl, Trottier, Mathieu (b0055) 2008; 41 Vadapalli, Sairyo, Goel, Robon, Biyani, Khandha, Ebraheim (b0270) 2006; 31 Han, Zander, Taylor, Rohlmann (b0135) 2012; 34 Arjmand, Shirazi-Adl, Parnianpour (b0015) 2007; 16 Adouni, Shirazi-Adl, Shirazi (b0005) 2012; 45 Bashkuev, Vergroesen, Dreischarf, Schilling, van der Veen, Schmidt, Kingma (b0045) 2016; 49 Khoddam-Khorasani, Arjmand, Shirazi-Adl (b0145) 2020; 104 Wade, Robertson, Thambyah, Broom (b0280) 2014; 39 Bruno, Bouxsein, Anderson (b0065) 2015; 137 Ghezelbash, Arjmand, Shirazi-Adl (b0110) 2015; 18 Rajaee, Arjmand, Shirazi-Adl, Plamondon, Schmidt (b0200) 2015; 48 Stokes, Gardner-Morse (b0260) 1995; 28 Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0240) 1994; 19 Vadapalli (10.1016/j.jbiomech.2021.110331_b0270) 2006; 31 Vergroesen (10.1016/j.jbiomech.2021.110331_b0275) 2014; 23 Bruno (10.1016/j.jbiomech.2021.110331_b0065) 2015; 137 Wade (10.1016/j.jbiomech.2021.110331_b0280) 2014; 39 Putzer (10.1016/j.jbiomech.2021.110331_b0195) 2016; 17 Bashkuev (10.1016/j.jbiomech.2021.110331_b0045) 2016; 49 Pearcy (10.1016/j.jbiomech.2021.110331_b0190) 1988; 13 Bazrgari (10.1016/j.jbiomech.2021.110331_b0050) 2007; 16 Meng (10.1016/j.jbiomech.2021.110331_b0175) 2015; 137 Arjmand (10.1016/j.jbiomech.2021.110331_b0030) 2006; 39 Arshad (10.1016/j.jbiomech.2021.110331_b0040) 2017; 46 Dreischarf (10.1016/j.jbiomech.2021.110331_b0085) 2016; 49 Shiraz-Adl (10.1016/j.jbiomech.2021.110331_b0230) 1989; 14 Eskandari (10.1016/j.jbiomech.2021.110331_b0095) 2017; 57 Naserkhaki (10.1016/j.jbiomech.2021.110331_b0185) 2017; 20 Khoddam-Khorasani (10.1016/j.jbiomech.2021.110331_b0145) 2020; 104 Rohlmann (10.1016/j.jbiomech.2021.110331_b0210) 2007; 16 Hajihosseinali (10.1016/j.jbiomech.2021.110331_b0130) 2014; 36 Khoddam-Khorasani (10.1016/j.jbiomech.2021.110331_b0140) 2018; 46 Senteler (10.1016/j.jbiomech.2021.110331_b0225) 2018; 70 Christophy (10.1016/j.jbiomech.2021.110331_b0075) 2012; 11 Liu (10.1016/j.jbiomech.2021.110331_b0160) 2019; 82 Bazrgari (10.1016/j.jbiomech.2021.110331_b0055) 2008; 41 Arjmand (10.1016/j.jbiomech.2021.110331_b0035) 2006; 21 Rajasekaran (10.1016/j.jbiomech.2021.110331_b0205) 2013; 38 Liu (10.1016/j.jbiomech.2021.110331_b0155) 2018; 70 Mohammadi (10.1016/j.jbiomech.2021.110331_b0180) 2015; 37 Zhang (10.1016/j.jbiomech.2021.110331_b0300) 2020; 100 Dehghan-Hamani (10.1016/j.jbiomech.2021.110331_b0080) 2019; 35 Ghezelbash (10.1016/j.jbiomech.2021.110331_b0105) 2018; 70 Marouane (10.1016/j.jbiomech.2021.110331_b0170) 2017; 16 Arjmand (10.1016/j.jbiomech.2021.110331_b0020) 2010; 43 Adouni (10.1016/j.jbiomech.2021.110331_b0005) 2012; 45 Li (10.1016/j.jbiomech.2021.110331_b0150) 2021; 113 Shiraz-Adl (10.1016/j.jbiomech.2021.110331_b0235) 1991; 16 Stokes (10.1016/j.jbiomech.2021.110331_b0260) 1995; 28 Arjmand (10.1016/j.jbiomech.2021.110331_b0015) 2007; 16 Samadi (10.1016/j.jbiomech.2021.110331_b0215) 2018; 58 Tremblay (10.1016/j.jbiomech.2021.110331_b0265) 2015; 10 Breau (10.1016/j.jbiomech.2021.110331_b0060) 1991; 19 Liu (10.1016/j.jbiomech.2021.110331_b0165) 2020 Wilke (10.1016/j.jbiomech.2021.110331_b0295) 2001; 16 Cholewicki (10.1016/j.jbiomech.2021.110331_b0070) 1996; 11 Wade (10.1016/j.jbiomech.2021.110331_b0285) 2015; 40 Dreischarf (10.1016/j.jbiomech.2021.110331_b0090) 2014; 47 Guehring (10.1016/j.jbiomech.2021.110331_b0125) 2005; 15 Ghezelbash (10.1016/j.jbiomech.2021.110331_b0115) 2020 Ghezelbash (10.1016/j.jbiomech.2021.110331_b0110) 2015; 18 Ghezelbash (10.1016/j.jbiomech.2021.110331_b0120) 2016; 15 Arjmand (10.1016/j.jbiomech.2021.110331_b0025) 2009; 24 Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0250) 1987; 20 Han (10.1016/j.jbiomech.2021.110331_b0135) 2012; 34 Gardner-Morse (10.1016/j.jbiomech.2021.110331_b0100) 2002; 91 Wilke (10.1016/j.jbiomech.2021.110331_b0290) 2020; 8 Rajaee (10.1016/j.jbiomech.2021.110331_b0200) 2015; 48 Stemper (10.1016/j.jbiomech.2021.110331_b0255) 2014; 21 Schmidt (10.1016/j.jbiomech.2021.110331_b0220) 2018; 79 Shirazi-Adl (10.1016/j.jbiomech.2021.110331_b0245) 2006; 39 |
References_xml | – volume: 57 start-page: 18 year: 2017 end-page: 26 ident: b0095 article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine publication-title: J. Biomech. – volume: 16 start-page: 687 year: 2007 end-page: 699 ident: b0050 article-title: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads publication-title: Eur. Spine J. – volume: 49 start-page: 833 year: 2016 end-page: 845 ident: b0085 article-title: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies publication-title: J. Biomech. – volume: 104 year: 2020 ident: b0145 article-title: Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study publication-title: J. Biomech. – volume: 48 start-page: 22 year: 2015 end-page: 32 ident: b0200 article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities publication-title: Appl. Ergon. – volume: 137 start-page: 101008 year: 2015 ident: b0175 article-title: Incorporating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculoskeletal model-method and performance in flexed postures publication-title: J. Biomech. Eng. – volume: 16 start-page: 701 year: 2007 end-page: 709 ident: b0015 article-title: Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels publication-title: Eur. Spine J. – volume: 137 start-page: 081003 year: 2015 ident: b0065 article-title: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage publication-title: J. Biomech. Eng. – volume: 58 start-page: 13 year: 2018 end-page: 22 ident: b0215 article-title: A novel stability-based EMG-assisted optimization method for the spine publication-title: Med. Eng. Phys. – volume: 20 start-page: 601 year: 1987 end-page: 613 ident: b0250 article-title: Load-bearing role of facets in a lumbar segment under sagittal plane loadings publication-title: J. Biomech. – volume: 24 start-page: 533 year: 2009 end-page: 541 ident: b0025 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. – volume: 21 start-page: 668 year: 2006 end-page: 675 ident: b0035 article-title: Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks publication-title: Clin. Biomech. – volume: 41 start-page: 412 year: 2008 end-page: 421 ident: b0055 article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities publication-title: J. Biomech. – volume: 19 start-page: 291 year: 1991 end-page: 302 ident: b0060 article-title: Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation publication-title: Ann. Biomed. Eng. – volume: 70 start-page: 149 year: 2018 end-page: 156 ident: b0105 article-title: Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models publication-title: J. Biomech. – volume: 15 start-page: 597 year: 2005 end-page: 604 ident: b0125 article-title: Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model publication-title: Eur. Spine J. – volume: 79 start-page: 309 year: 2018 end-page: 313 ident: b0220 article-title: Temporal and spatial variations of pressure within intervertebral disc nuclei publication-title: J. Mech. Behav. Biomed. Mater. – volume: 16 start-page: 533 year: 1991 end-page: 541 ident: b0235 article-title: Finite-element evaluation of contact loads on facets of an L2–L3 lumbar segment in complex loads publication-title: Spine – volume: 16 start-page: S111 year: 2001 end-page: S126 ident: b0295 article-title: Intradiscal pressure together with anthropometric data–a data set for the validation of models publication-title: Clin. Biomech. – volume: 11 start-page: 1 year: 1996 end-page: 15 ident: b0070 article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain publication-title: Clin. Biomech. – volume: 39 start-page: 1018 year: 2014 end-page: 1028 ident: b0280 article-title: How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion publication-title: Spine – volume: 70 start-page: 43 year: 2018 end-page: 50 ident: b0155 article-title: Load-sharing in the lumbosacral spine in neutral standing and flexed postures – a combined finite element and inverse static study publication-title: J. Biomech. – volume: 100 year: 2020 ident: b0300 article-title: Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: a structured review and meta-regression analysis publication-title: J. Biomech. – volume: 8 year: 2020 ident: b0290 article-title: In vitro analysis of the intradiscal pressure of the thoracic Spine publication-title: Front. Bioeng. Biotechnol. – volume: 14 start-page: 96 year: 1989 end-page: 103 ident: b0230 article-title: Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse publication-title: Spine – volume: 35 start-page: e3182 year: 2019 ident: b0080 article-title: Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 10 year: 2015 ident: b0265 article-title: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests publication-title: Scoliosis – volume: 34 start-page: 709 year: 2012 end-page: 716 ident: b0135 article-title: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces publication-title: Med. Eng. Phys. – volume: 39 start-page: 267 year: 2006 end-page: 275 ident: b0245 article-title: Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element publication-title: J. Biomech. – year: 2020 ident: b0115 article-title: Internal load-sharing in the human passive lumbar spine: review of in vitro and finite element model studies publication-title: J. Biomech. – volume: 18 start-page: 1760 year: 2015 end-page: 1767 ident: b0110 article-title: Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 45 start-page: 2149 year: 2012 end-page: 2156 ident: b0005 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. – volume: 38 start-page: 1491 year: 2013 end-page: 1500 ident: b0205 article-title: ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects publication-title: Spine – volume: 113 year: 2021 ident: b0150 article-title: Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait publication-title: J. Mech. Behav. Biomed. Mater. – volume: 39 start-page: 510 year: 2006 end-page: 521 ident: b0030 article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions publication-title: J. Biomech. – volume: 16 start-page: 1223 year: 2007 end-page: 1231 ident: b0210 article-title: Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis publication-title: Eur. Spine J. – volume: 16 start-page: 693 year: 2017 end-page: 703 ident: b0170 article-title: 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint publication-title: Biomech. Model. Mechanobiol. – volume: 43 start-page: 485 year: 2010 end-page: 491 ident: b0020 article-title: A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings publication-title: J. Biomech. – volume: 20 start-page: 550 year: 2017 end-page: 557 ident: b0185 article-title: Sensitivity of lumbar spine response to follower load and flexion moment: finite element study publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 49 start-page: 864 year: 2016 end-page: 868 ident: b0045 article-title: Intradiscal pressure measurements: a challenge or a routine? publication-title: J. Biomech. – volume: 11 start-page: 19 year: 2012 end-page: 34 ident: b0075 article-title: A musculoskeletal model for the lumbar spine publication-title: Biomech. Model. Mechanobiol. – volume: 47 start-page: 1757 year: 2014 end-page: 1766 ident: b0090 article-title: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together publication-title: J. Biomech. – volume: 28 start-page: 173 year: 1995 end-page: 175 ident: b0260 article-title: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness publication-title: J. Biomech. – volume: 23 start-page: 2359 year: 2014 end-page: 2368 ident: b0275 article-title: Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness publication-title: Eur. Spine J. – volume: 19 start-page: 2407 year: 1994 end-page: 2414 ident: b0240 article-title: Biomechanics of the lumbar spine in sagittal/lateral moments publication-title: Spine – volume: 13 start-page: 1033 year: 1988 end-page: 1041 ident: b0190 article-title: Instantaneous axes of rotation of the lumbar intervertebral joints publication-title: Spine – volume: 91 start-page: 167 year: 2002 end-page: 172 ident: b0100 article-title: Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom publication-title: Stud. Health Technol. Inform. – volume: 46 start-page: 54 year: 2017 end-page: 62 ident: b0040 article-title: Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination publication-title: Med. Eng. Phys. – volume: 15 start-page: 1699 year: 2016 end-page: 1712 ident: b0120 article-title: Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation publication-title: Biomech. Model. Mechanobiol. – volume: 31 start-page: E992 year: 2006 end-page: E998 ident: b0270 article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study publication-title: Spine – year: 2020 ident: b0165 article-title: Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: a combined finite element and Musculoskeletal study publication-title: J. Biomech. – volume: 40 start-page: 891 year: 2015 end-page: 901 ident: b0285 article-title: “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure: a mechanical and microstructural investigation publication-title: Spine – volume: 21 start-page: 608 year: 2014 end-page: 613 ident: b0255 article-title: Mechanical yield of the lumbar annulus: a possible contributor to instability publication-title: J. Neurosurg.: Spine – volume: 37 start-page: 792 year: 2015 end-page: 800 ident: b0180 article-title: Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches publication-title: Med. Eng. Phys. – volume: 36 start-page: 1296 year: 2014 end-page: 1304 ident: b0130 article-title: A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces publication-title: Med. Eng. Phys. – volume: 17 start-page: 95 year: 2016 ident: b0195 article-title: A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion publication-title: BMC Musculoskeletal Disorders – volume: 46 start-page: 1830 year: 2018 end-page: 1843 ident: b0140 article-title: Trunk hybrid passive-active musculoskeletal modeling to determine the detailed T12–S1 response under in vivo loads publication-title: Ann. Biomed. Eng. – volume: 82 start-page: 116 year: 2019 end-page: 123 ident: b0160 article-title: Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: a combined musculoskeletal and finite element simulation study publication-title: J. Biomech. – volume: 70 start-page: 140 year: 2018 end-page: 148 ident: b0225 article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path publication-title: J. Biomech. – volume: 48 start-page: 22 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0200 article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2014.11.002 – volume: 70 start-page: 149 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0105 article-title: Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.07.014 – volume: 16 start-page: 687 year: 2007 ident: 10.1016/j.jbiomech.2021.110331_b0050 article-title: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads publication-title: Eur. Spine J. doi: 10.1007/s00586-006-0240-7 – volume: 39 start-page: 1018 year: 2014 ident: 10.1016/j.jbiomech.2021.110331_b0280 article-title: How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion publication-title: Spine doi: 10.1097/BRS.0000000000000262 – volume: 16 start-page: 533 year: 1991 ident: 10.1016/j.jbiomech.2021.110331_b0235 article-title: Finite-element evaluation of contact loads on facets of an L2–L3 lumbar segment in complex loads publication-title: Spine doi: 10.1097/00007632-199105000-00009 – volume: 46 start-page: 1830 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0140 article-title: Trunk hybrid passive-active musculoskeletal modeling to determine the detailed T12–S1 response under in vivo loads publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2078-7 – volume: 113 year: 2021 ident: 10.1016/j.jbiomech.2021.110331_b0150 article-title: Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.104136 – volume: 39 start-page: 267 year: 2006 ident: 10.1016/j.jbiomech.2021.110331_b0245 article-title: Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.11.022 – volume: 19 start-page: 2407 year: 1994 ident: 10.1016/j.jbiomech.2021.110331_b0240 article-title: Biomechanics of the lumbar spine in sagittal/lateral moments publication-title: Spine doi: 10.1097/00007632-199411000-00007 – volume: 45 start-page: 2149 year: 2012 ident: 10.1016/j.jbiomech.2021.110331_b0005 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.040 – volume: 38 start-page: 1491 year: 2013 ident: 10.1016/j.jbiomech.2021.110331_b0205 article-title: ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects publication-title: Spine doi: 10.1097/BRS.0b013e31829a6fa6 – volume: 21 start-page: 668 year: 2006 ident: 10.1016/j.jbiomech.2021.110331_b0035 article-title: Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2006.03.006 – volume: 34 start-page: 709 year: 2012 ident: 10.1016/j.jbiomech.2021.110331_b0135 article-title: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.09.014 – volume: 15 start-page: 1699 year: 2016 ident: 10.1016/j.jbiomech.2021.110331_b0120 article-title: Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0792-3 – volume: 15 start-page: 597 year: 2005 ident: 10.1016/j.jbiomech.2021.110331_b0125 article-title: Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model publication-title: Eur. Spine J. doi: 10.1007/s00586-005-0953-z – volume: 70 start-page: 43 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0155 article-title: Load-sharing in the lumbosacral spine in neutral standing and flexed postures – a combined finite element and inverse static study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.10.033 – volume: 28 start-page: 173 year: 1995 ident: 10.1016/j.jbiomech.2021.110331_b0260 article-title: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness publication-title: J. Biomech. doi: 10.1016/0021-9290(94)E0040-A – volume: 16 start-page: S111 year: 2001 ident: 10.1016/j.jbiomech.2021.110331_b0295 article-title: Intradiscal pressure together with anthropometric data–a data set for the validation of models publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(00)00103-0 – volume: 11 start-page: 19 year: 2012 ident: 10.1016/j.jbiomech.2021.110331_b0075 article-title: A musculoskeletal model for the lumbar spine publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-011-0290-6 – volume: 82 start-page: 116 year: 2019 ident: 10.1016/j.jbiomech.2021.110331_b0160 article-title: Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: a combined musculoskeletal and finite element simulation study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.10.009 – volume: 10 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0265 article-title: Factors affecting intradiscal pressure measurement during in vitro biomechanical tests publication-title: Scoliosis doi: 10.1186/1748-7161-10-S1-O19 – volume: 20 start-page: 601 year: 1987 ident: 10.1016/j.jbiomech.2021.110331_b0250 article-title: Load-bearing role of facets in a lumbar segment under sagittal plane loadings publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90281-8 – volume: 36 start-page: 1296 year: 2014 ident: 10.1016/j.jbiomech.2021.110331_b0130 article-title: A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.07.009 – volume: 137 start-page: 101008 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0175 article-title: Incorporating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculoskeletal model-method and performance in flexed postures publication-title: J. Biomech. Eng. doi: 10.1115/1.4031417 – volume: 104 year: 2020 ident: 10.1016/j.jbiomech.2021.110331_b0145 article-title: Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109728 – volume: 46 start-page: 54 year: 2017 ident: 10.1016/j.jbiomech.2021.110331_b0040 article-title: Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.05.006 – volume: 49 start-page: 833 year: 2016 ident: 10.1016/j.jbiomech.2021.110331_b0085 article-title: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.12.038 – volume: 40 start-page: 891 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0285 article-title: “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure: a mechanical and microstructural investigation publication-title: Spine doi: 10.1097/BRS.0000000000000888 – volume: 57 start-page: 18 year: 2017 ident: 10.1016/j.jbiomech.2021.110331_b0095 article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.03.011 – volume: 41 start-page: 412 year: 2008 ident: 10.1016/j.jbiomech.2021.110331_b0055 article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.08.010 – volume: 19 start-page: 291 year: 1991 ident: 10.1016/j.jbiomech.2021.110331_b0060 article-title: Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584304 – year: 2020 ident: 10.1016/j.jbiomech.2021.110331_b0115 article-title: Internal load-sharing in the human passive lumbar spine: review of in vitro and finite element model studies publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109441 – volume: 8 year: 2020 ident: 10.1016/j.jbiomech.2021.110331_b0290 article-title: In vitro analysis of the intradiscal pressure of the thoracic Spine publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00614 – volume: 18 start-page: 1760 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0110 article-title: Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2014.961440 – volume: 137 start-page: 081003 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0065 article-title: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage publication-title: J. Biomech. Eng. doi: 10.1115/1.4030408 – volume: 11 start-page: 1 year: 1996 ident: 10.1016/j.jbiomech.2021.110331_b0070 article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain publication-title: Clin. Biomech. doi: 10.1016/0268-0033(95)00035-6 – volume: 17 start-page: 95 year: 2016 ident: 10.1016/j.jbiomech.2021.110331_b0195 article-title: A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion publication-title: BMC Musculoskeletal Disorders doi: 10.1186/s12891-016-0942-x – volume: 70 start-page: 140 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0225 article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.10.027 – volume: 43 start-page: 485 year: 2010 ident: 10.1016/j.jbiomech.2021.110331_b0020 article-title: A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.032 – volume: 58 start-page: 13 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0215 article-title: A novel stability-based EMG-assisted optimization method for the spine publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2018.04.019 – volume: 79 start-page: 309 year: 2018 ident: 10.1016/j.jbiomech.2021.110331_b0220 article-title: Temporal and spatial variations of pressure within intervertebral disc nuclei publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.01.012 – volume: 37 start-page: 792 year: 2015 ident: 10.1016/j.jbiomech.2021.110331_b0180 article-title: Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.05.018 – volume: 21 start-page: 608 year: 2014 ident: 10.1016/j.jbiomech.2021.110331_b0255 article-title: Mechanical yield of the lumbar annulus: a possible contributor to instability publication-title: J. Neurosurg.: Spine – volume: 16 start-page: 701 year: 2007 ident: 10.1016/j.jbiomech.2021.110331_b0015 article-title: Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels publication-title: Eur. Spine J. doi: 10.1007/s00586-006-0263-0 – year: 2020 ident: 10.1016/j.jbiomech.2021.110331_b0165 article-title: Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: a combined finite element and Musculoskeletal study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109740 – volume: 39 start-page: 510 year: 2006 ident: 10.1016/j.jbiomech.2021.110331_b0030 article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.11.030 – volume: 49 start-page: 864 year: 2016 ident: 10.1016/j.jbiomech.2021.110331_b0045 article-title: Intradiscal pressure measurements: a challenge or a routine? publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.11.011 – volume: 91 start-page: 167 year: 2002 ident: 10.1016/j.jbiomech.2021.110331_b0100 article-title: Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom publication-title: Stud. Health Technol. Inform. – volume: 31 start-page: E992 year: 2006 ident: 10.1016/j.jbiomech.2021.110331_b0270 article-title: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study publication-title: Spine doi: 10.1097/01.brs.0000250177.84168.ba – volume: 35 start-page: e3182 year: 2019 ident: 10.1016/j.jbiomech.2021.110331_b0080 article-title: Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3182 – volume: 24 start-page: 533 year: 2009 ident: 10.1016/j.jbiomech.2021.110331_b0025 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2009.05.008 – volume: 47 start-page: 1757 year: 2014 ident: 10.1016/j.jbiomech.2021.110331_b0090 article-title: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.04.002 – volume: 23 start-page: 2359 year: 2014 ident: 10.1016/j.jbiomech.2021.110331_b0275 article-title: Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness publication-title: Eur. Spine J. doi: 10.1007/s00586-014-3450-4 – volume: 100 year: 2020 ident: 10.1016/j.jbiomech.2021.110331_b0300 article-title: Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: a structured review and meta-regression analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109579 – volume: 16 start-page: 1223 year: 2007 ident: 10.1016/j.jbiomech.2021.110331_b0210 article-title: Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis publication-title: Eur. Spine J. doi: 10.1007/s00586-006-0292-8 – volume: 14 start-page: 96 year: 1989 ident: 10.1016/j.jbiomech.2021.110331_b0230 article-title: Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse publication-title: Spine doi: 10.1097/00007632-198901000-00019 – volume: 16 start-page: 693 year: 2017 ident: 10.1016/j.jbiomech.2021.110331_b0170 article-title: 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0846-6 – volume: 20 start-page: 550 year: 2017 ident: 10.1016/j.jbiomech.2021.110331_b0185 article-title: Sensitivity of lumbar spine response to follower load and flexion moment: finite element study publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1257707 – volume: 13 start-page: 1033 year: 1988 ident: 10.1016/j.jbiomech.2021.110331_b0190 article-title: Instantaneous axes of rotation of the lumbar intervertebral joints publication-title: Spine doi: 10.1097/00007632-198809000-00011 |
SSID | ssj0007479 |
Score | 2.4395459 |
Snippet | Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110331 |
SubjectTerms | Compression Coupled model Finite element Finite element method Intervertebral discs Intradiscal pressure Joints (anatomy) Kinematics Ligaments Load Mathematical models Muscles Musculoskeletal Optimization Spine Spine (lumbar) Thorax Trunk muscles Vertebrae |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgeEGx5LBQ0SIibaeLY3uSEVoiqQionKu3Nsh1b6u42WchuETf-A_-QX8LYcdIegHKOx4ozry-eFyGvKzR9Dv0yrb2WlFec08r4ksrMahQiVCgW6p1PP8mTM_5xIRbpwq1LaZWDTYyGum5tuCM_QlddCYTbhXi3-ULD1KgQXU0jNG6TO7F1GcrzbDH-cIXe8CnFI6cIA7JrFcLLt8tY3x4DEiwP2fD9oLk_Oqe_gc_ohI4fkPsJPcK8Z_dDcss1E3Iwb_DP-eI7vIGYzxkvyidk_1qrwQm5e5qC6Afk2xya9tKtwba7zdrVcLEL2ahtt0IXhFgc_HkAouD6zHKIw3Kg9YBYEboN7gG_fvyEYUgCXDUMj4u-7ppVT9PBeQMdHh-2ult1j8jZ8YfP709omr9ALRf5lkobxkZ4m6Gn054Vpqy9QAPJEJUX3PiKCSadKHGZ16UtQ-8_XQtrrBUmr13xmOw1beOeEtAzb-vMFMb6nHvNNcskrheOSy2Nt1Mihg-vbGpOHmZkrNWQhbZUA8NUYJjqGTYlRyPdpm_PcSPFbOCrGopP0Vwq9CA3UlYjZYInPez4L9rDQYRUMhKduhLpKXk1Pkb1DjEb3bh2h2tQfViJOJlNyZNe9MaDFoUscinFs39v_pzcC28SQmC5OCR7KAfuBSKprXkZ1eU3QTsd0w priority: 102 providerName: ProQuest |
Title | A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929021001111 https://dx.doi.org/10.1016/j.jbiomech.2021.110331 https://www.ncbi.nlm.nih.gov/pubmed/33631665 https://www.proquest.com/docview/2509596035 https://www.proquest.com/docview/2494280832 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6ssyD6IDqr6-i6HEF86840aTLt47jsMio7iLgwbyVNE5jLtoOdUXwR_4P_0F_iSZvWFZQVfGlpm1OS5ly-NOcC8CIh1WfILge5VTKIkigKkszGgRxpRUxEAsVcvPPFTE4vozdzMd-D0zYWxrlVet3f6PRaW_s7Q_81h5vFwsX4krSxxC1aXMF0WgLtM55I0YP9yeu301mnkAkxe0-PMHAE1wKFlyfLOsy93pdgoXOKb-rN_dFG_Q2D1rbo_D7c8yASJ00_H8CeKfpwMCloAX31BV9i7dZZ_y_vw91rGQf7cPvC76UfwOcJFuUns0Zd7jZrk-PVzjmlltWKLBFBcrQLh0fRNA7mWNfMwdIiQUasNvQO_PHtO7a1EvBX3vC60cddsWpoKlwUWNHwcauqVfUQLs_PPpxOA1-GIdCRCLeB1K56hNUjMnjKMp7FuRWkJxmBcx5lNmGCSSNiamZVrGOXAlDlQmdaiyzMDX8EvaIszGNANbY6H2U80zaMrIoUG0lqL0wklcysHoBoP3yqfY5yVypjnbbOaMu0nbDUTVjaTNgAhh3dpsnScSPFuJ3XtI1BJa2ZkiG5kTLpKH_j1H-iPWpZKPW6okoJhCaCFpJcDOB595ik3G3dqMKUO2pDUsRigstsAIcN63UD5VzyUErx5D869hTuuCu3TRaKI-gRk5hnhLa22THcOvka0nE8Hx97yaLzq7PZu_c_ATPcLMs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHpTDASMBbWOLYXvKAUIFNHVsrhDZpb57j2NLaLimkZdob_4H_wY_il3CcxN0egPGy5_hYcc7tc84N4EWKps-gXw5yq0TAUsaCNLNJIEKtUIhQoairdx6OxOCAfTzkhyvw09fCuLRKbxNrQ52X2v0j30BXnXKE2zF_O_sSuKlRLrrqR2g0YrFrzk7xyla92fmA_H1J6fbW_vtB0E4VCDTj0TwQ2g1DsDpE-60sjbMktxzVniLWjFlmU8qpMDzBZVYlOnEd7VTOdaY1z6LcxLjvNVhlrqK1A6vvtkafPi9tP4LzNqkkChB4hBdqksevx3VFfR0CoZHLv29G2_3RHf4N7tZub_sO3G7xKuk3AnYXVkzRhbV-gXf1kzPyitQZpPWv-S7cutDcsAvXh23Yfg1O-6Qov5kp0eViNjU5OVm4_NeymqDTQ_RP7LGDvsQ0ueykHs9DSksQnZJqhnuQX99_ED-WgZy3KK8XfV0Uk4amIscFqfD4ZK6qSXUPDq6EN_ehU5SFeQhEbVqdh1mcaRsxq5iiocD13DChRGZ1D7j_8FK37dDdVI6p9HlvY-kZJh3DZMOwHmws6WZNQ5BLKTY9X6Uvd0UDLdFnXUqZLilbQNQAnf-iXfciJFuzVMlzJerB8-VjNCguSqQKUy5wDSosTRCZ0x48aERvedA4FnEkBH_0782fwY3B_nBP7u2Mdh_DTfdWLgAX8XXooEyYJ4jj5tnTVnkIHF21vv4GH2Nbzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLDlsaXAIAG3sIkTe5MDQivKqqW04kClvRnHsaXubpOl2aXqjf_Av-Hn8EsY59UegHLpOR4rzrw-Z14ALxIyfYb8spdZJbwoiSIvSW3sCV8rEiJSKObqnQ8Oxe5R9GHCJ2vws62FcWmVrU2sDHVWaPePfECuOuEEt0M-sE1axKed8dvFV89NkHKR1nacRi0i--b8jK5v5Zu9HeL1S8bG7z-_2_WaCQOejniw9IR2gxGs9smWK8vCNM4sJxPACHeGUWoTxpkwPKZlVsU6dt3tVMZ1qjVPg8yEtO8NuDkMCVWRLg0n3WXP9aVv0ksCjyCIf6k6efp6WtXWV8EQFrhM_HrI3R8d49-Ab-UAx3fhToNccVSL2j1YM3kPNkc53dpPzvEVVrmk1U_6Hty-1OawBxsHTQB_E85GmBffzBx1sVrMTYYnK5cJW5Qzcn90D0B77EAwmjqrHatBPVhYJJyK5YL2wF_ff2A7oAEvmpVXi05X-aymKfE4x5KOj0tVzsr7cHQtnHkA63mRm0eAamh15qdhqm0QWRUp5gtaz00klEit7gNvP7zUTWN0N59jLtsMuKlsGSYdw2TNsD4MOrpF3RrkSophy1fZFr6SqZbkva6kTDrKBhrVkOe_aLdbEZKNgSrlhTr14Xn3mEyLixep3BQrWkOqy2LC6KwPD2vR6w4ahiIMhOBb_978GWyQlsqPe4f7j-GWeykXiQv4NqyTSJgnBOiW6dNKcxC-XLeq_gZAAV6V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+coupled+musculoskeletal+finite+element+model+of+the+spine+%E2%80%93+Critical+evaluation+of+trunk+models+in+some+tasks&rft.jtitle=Journal+of+biomechanics&rft.au=Rajaee%2C+M.A.&rft.au=Arjmand%2C+N.&rft.au=Shirazi-Adl%2C+A.&rft.date=2021-04-15&rft.issn=0021-9290&rft.volume=119&rft.spage=110331&rft_id=info:doi/10.1016%2Fj.jbiomech.2021.110331&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2021_110331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |