Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution
Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the toler...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 246; p. 114196 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.
•The biomass of P. glomerata did not affect by the 10 μM or 30 μM Cd/Pb/Cu/Zn exposure.•The order of total Cd/Pb/Cu/Zn extraction of a single plant was Cd > Zn > Pb > Cu.•P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity.•Cd/Pb/Cu/Zn exposure decreased the secretion of oxalic, tartaric, citric acid, and DOC in the root. |
---|---|
AbstractList | Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals. Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals. Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals. •The biomass of P. glomerata did not affect by the 10 μM or 30 μM Cd/Pb/Cu/Zn exposure.•The order of total Cd/Pb/Cu/Zn extraction of a single plant was Cd > Zn > Pb > Cu.•P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity.•Cd/Pb/Cu/Zn exposure decreased the secretion of oxalic, tartaric, citric acid, and DOC in the root. |
ArticleNumber | 114196 |
Author | Wu, Jingtao Huang, Rong Guo, Yuan Wang, Weidong Li, Feng Zhao, Xinlin Li, Zhian Wu, Zhimin |
Author_xml | – sequence: 1 givenname: Rong surname: Huang fullname: Huang, Rong organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China – sequence: 2 givenname: Zhimin surname: Wu fullname: Wu, Zhimin organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China – sequence: 3 givenname: Xinlin orcidid: 0000-0001-8282-238X surname: Zhao fullname: Zhao, Xinlin organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China – sequence: 4 givenname: Feng surname: Li fullname: Li, Feng organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China – sequence: 5 givenname: Weidong surname: Wang fullname: Wang, Weidong organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China – sequence: 6 givenname: Yuan surname: Guo fullname: Guo, Yuan email: guoyuan@caas.cn organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China – sequence: 7 givenname: Zhian orcidid: 0000-0003-1969-6645 surname: Li fullname: Li, Zhian organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China – sequence: 8 givenname: Jingtao orcidid: 0000-0003-0377-9681 surname: Wu fullname: Wu, Jingtao email: wujingtao@scbg.ac.cn organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China |
BookMark | eNqFUbFuFDEQtVCQuAT-gMIlxd1he23vbgokdAoQKRIU0NBYs_Y4-LS3PmxvpPw93iw0FFCNZua9p3nzLsnFFCck5DVne864fnvco404PewFE2LPueS9fkY2nPVsJySXF2TDuGx3WvHmBbnM-cgYa5hSGzJ98eB9AHo_xhMmKEBDpkB_PJ5rZ-18mkcoMVELkwsOCl7Tg6O1od8nWuJYUZPFLYUhx3QuIU5bWuose0zbJ5wLuaQwzMvuJXnuYcz46ne9It8-3Hw9fNrdff54e3h_t7NS8bLT0DLWSue10k5KKXQ9v9PAnWJOgcBe97zvZS-rxb66bqRiYJuGN7xTLTZX5HbVdRGO5pzCCdKjiRDM0yCmewOpBDui6TvdCeuxQxgka4ZB-XbowNvBtZ6Lvmq9WbXOKf6cMRdzCtniOMKEcc5GtEJpJVizQK9XqE0x54Te2FBgMV5fEkbDmVkCM0ezBmaWwMwaWCXLv8h_7v4P7d1Kw_rPh4DJZBuwZuJCQluq4fBvgV8UA7Ld |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142199 crossref_primary_10_1016_j_scitotenv_2024_170577 crossref_primary_10_1007_s10653_023_01767_6 crossref_primary_10_48130_cas_0024_0018 crossref_primary_10_1016_j_scitotenv_2024_169900 crossref_primary_10_1016_j_scitotenv_2025_178637 |
Cites_doi | 10.1016/j.scitotenv.2018.03.161 10.1093/treephys/tpq070 10.1080/15226514.2019.1663488 10.1186/s40168-019-0750-2 10.1590/S1677-04202012000400008 10.1016/j.envint.2016.04.042 10.1016/j.chemosphere.2021.131820 10.1007/s00128-011-0226-y 10.1016/j.envpol.2009.04.035 10.1007/s11738-015-1870-3 10.1007/s12155-015-9688-9 10.1007/s11104-009-0171-2 10.1007/s10534-009-9287-3 10.1016/j.envpol.2021.117159 10.1016/j.ecoenv.2019.02.068 10.15244/pjoes/92545 10.1016/j.chemosphere.2017.04.095 10.1007/s10311-010-0297-8 10.1016/j.envexpbot.2015.05.001 10.1007/s10123-018-0012-3 10.1007/s10534-011-9457-y 10.1016/j.ecoenv.2019.110049 10.1016/j.envpol.2013.07.025 10.1590/S0103-90162011000500009 10.1016/j.jenvman.2012.01.033 10.1016/j.chemosphere.2020.126692 10.1080/15226514.2019.1612844 10.3389/fpls.2015.00299 10.1080/15226514.2015.1058333 10.3389/fpls.2016.00918 10.1080/07352689.2020.1792179 10.1016/j.ecoenv.2018.07.041 10.1016/j.chemosphere.2019.124536 10.1016/j.jhazmat.2019.03.016 10.1016/j.jenvman.2019.05.126 10.3389/fpls.2018.01476 10.1007/s10646-013-1126-1 10.1016/j.scitotenv.2018.06.068 10.1016/j.ecoenv.2010.09.003 10.1016/j.envpol.2016.05.080 10.1007/s11356-016-7323-8 10.1080/15226514.2020.1754758 10.1016/j.jhazmat.2020.122482 10.1016/j.pbi.2017.06.004 10.1007/s10725-019-00548-5 10.1016/j.scitotenv.2020.137581 10.1007/s11368-017-1697-1 10.1007/s11356-018-2005-3 10.1023/A:1022530217289 10.1016/j.jhazmat.2010.04.031 10.1007/s11356-012-1413-z 10.1016/S1001-0742(09)60080-2 10.3389/fpls.2013.00175 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2022.114196 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_98682cfe8eab403bb5f7b8afcbd7f129 10_1016_j_ecoenv_2022_114196 S0147651322010363 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS |
ID | FETCH-LOGICAL-c451t-6a70074df656d4442614786a1d50d5a2e96919949409092023450ac33131857e3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:19:50 EDT 2025 Fri Jul 11 13:30:24 EDT 2025 Tue Jul 01 04:00:39 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:41:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bioaccumulation Root exudation Element distribution Phytoextraction Heavy metal |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-6a70074df656d4442614786a1d50d5a2e96919949409092023450ac33131857e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8282-238X 0000-0003-0377-9681 0000-0003-1969-6645 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651322010363 |
PQID | 2725652039 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_98682cfe8eab403bb5f7b8afcbd7f129 proquest_miscellaneous_2725652039 crossref_citationtrail_10_1016_j_ecoenv_2022_114196 crossref_primary_10_1016_j_ecoenv_2022_114196 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_114196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Barbosa, Boleo, Sildella, Costa, Duarte (bib4) 2015; 8 Yu, Liu, Long, Chen (bib51) 2020; 22 Hu, Chen, Tao (bib19) 2016; 92–93 Yuan, Xiong, Yao, Liu, Yin (bib52) 2019; 237 Liu, Li, Song, Guo (bib28) 2018; 633 Huang, Guo, Yao, Zhang, Hu (bib20) 2016; 18 Sun, Zhou, Cui, Liu, Fan (bib44) 2020; 90 Gomes, Marques, Martins, Carneio, Soares (bib13) 2012; 24 Tripathi, Singh, Singh, Chauhan, Dubey (bib45) 2015; 37 Liu, Ali, Yang, Tao, Ren (bib29) 2019; 371 Gomes, Marques, Nogueira, de Castro, Soares (bib12) 2011; 68 Chen, Wang, Yeh (bib10) 2017; 39 Hak, Ritchie, Dummee (bib17) 2020; 189 Gupta, Huang, Nicoloso (bib16) 2013; 22 Yao, Yuan, Zhuang, Wan, Wang, Zhang (bib50) 2018; 162 Calgaroto, Cargnelutti, Rossato, Farias, Nunes (bib7) 2011; 24 Ullah, Heng, Munis, Fahad, Yang (bib46) 2015; 117 Chen, Shafi, Wang, Wu, Ye (bib8) 2016; 23 Fahr, Laplaze, Bendaou, Hocher (bib11) 2013; 4 Haydon, Roman, Arshad (bib18) 2015; 6 Mei, Liu, Fan, Guo, Wu (bib33) 2021; 755 Zhang, Zhang, Xu, Li, Gong, Jia (bib55) 2010; 180 Bernardy, Farias, Pereira (bib5) 2020; 253 Yang, Dai, Skuza, Wei (bib49) 2020; 393 Zhang, Chen, Du, Zhang, Han (bib54) 2019; 20 Yang, Li, Lu, Duan, Huang (bib48) 2018; 642 Pereira, Dorneles, Bernardy (bib37) 2018; 25 Jourand, Ducousso, Reid, Majorel (bib24) 2010; 30 Baker, Brooks (bib3) 1989; 1 Magdziak, Kozlowska, Kaczmarek, Mleczek, Chadzinikolau, Drzewiecka (bib32) 2011; 74 Sterckeman, Thomine (bib42) 2020; 39 Gupta, Nicoloso, Schetinger (bib15) 2011; 86 Montiel-Rozas, Madejon, Madejon (bib35) 2016; 216 Agustina, Santos, Marta (bib1) 2012; 102 Chen, Wagmode, Sun, Kuramae, Hu (bib9) 2019; 7 Javed, Lindberg, Greger (bib23) 2013; 20 Huang, Dong, Mao, Zhuang, Paz-Ferreiro (bib21) 2020; 721 Guo, Li (bib14) 2019; 28 Nagajyoti, Lee, Sreekanth (bib36) 2010; 8 Saffari, Saffari (bib41) 2020; 22 Quartacci, Barbara, Gonnelli, Gabbrielli (bib39) 2009; 157 Mei, Wu, Liu, Wu, Hong (bib34) 2022; 286 Rajendran, Priya, Khoo, Hoang, Ng (bib40) 2021; 287 Liu, Zhang, Mo, Yao, Wang (bib27) 2017; 181 Pratush, Kumar, Hu (bib38) 2018; 21 Huang, Cui, Luo, Mao, Zhuang, Li (bib22) 2021; 283 Suman, Uhlik, Viktorova, Macek (bib43) 2018; 9 Ashraf, Ali, Zahir, Ashraf, Asghar (bib2) 2019; 174 Vareda, Valente, Duraes (bib47) 2019; 246 Ma, Zheng, Wei, Ai, Zhang, Zhou (bib30) 2017; 17 Kim, Owens, Kwon (bib25) 2010; 22 Ma, Oliveira, Freitas, Zhang (bib31) 2016; 7 Calgaroto, Castro, Cargnelutti (bib6) 2010; 23 Zembala, Filek, Walas, Mrowiec (bib53) 2010; 329 Li, Tao, Liang, Shohag (bib26) 2013; 182 Zhao, Lombi, McGrath (bib56) 2003; 249 Zhao (10.1016/j.ecoenv.2022.114196_bib56) 2003; 249 Mei (10.1016/j.ecoenv.2022.114196_bib34) 2022; 286 Yao (10.1016/j.ecoenv.2022.114196_bib50) 2018; 162 Huang (10.1016/j.ecoenv.2022.114196_bib20) 2016; 18 Hak (10.1016/j.ecoenv.2022.114196_bib17) 2020; 189 Vareda (10.1016/j.ecoenv.2022.114196_bib47) 2019; 246 Barbosa (10.1016/j.ecoenv.2022.114196_bib4) 2015; 8 Agustina (10.1016/j.ecoenv.2022.114196_bib1) 2012; 102 Chen (10.1016/j.ecoenv.2022.114196_bib8) 2016; 23 Chen (10.1016/j.ecoenv.2022.114196_bib10) 2017; 39 Saffari (10.1016/j.ecoenv.2022.114196_bib41) 2020; 22 Ma (10.1016/j.ecoenv.2022.114196_bib31) 2016; 7 Gomes (10.1016/j.ecoenv.2022.114196_bib13) 2012; 24 Liu (10.1016/j.ecoenv.2022.114196_bib28) 2018; 633 Fahr (10.1016/j.ecoenv.2022.114196_bib11) 2013; 4 Ashraf (10.1016/j.ecoenv.2022.114196_bib2) 2019; 174 Kim (10.1016/j.ecoenv.2022.114196_bib25) 2010; 22 Sun (10.1016/j.ecoenv.2022.114196_bib44) 2020; 90 Guo (10.1016/j.ecoenv.2022.114196_bib14) 2019; 28 Magdziak (10.1016/j.ecoenv.2022.114196_bib32) 2011; 74 Yu (10.1016/j.ecoenv.2022.114196_bib51) 2020; 22 Haydon (10.1016/j.ecoenv.2022.114196_bib18) 2015; 6 Yuan (10.1016/j.ecoenv.2022.114196_bib52) 2019; 237 Gupta (10.1016/j.ecoenv.2022.114196_bib15) 2011; 86 Rajendran (10.1016/j.ecoenv.2022.114196_bib40) 2021; 287 Liu (10.1016/j.ecoenv.2022.114196_bib29) 2019; 371 Nagajyoti (10.1016/j.ecoenv.2022.114196_bib36) 2010; 8 Jourand (10.1016/j.ecoenv.2022.114196_bib24) 2010; 30 Gupta (10.1016/j.ecoenv.2022.114196_bib16) 2013; 22 Zhang (10.1016/j.ecoenv.2022.114196_bib54) 2019; 20 Ullah (10.1016/j.ecoenv.2022.114196_bib46) 2015; 117 Tripathi (10.1016/j.ecoenv.2022.114196_bib45) 2015; 37 Ma (10.1016/j.ecoenv.2022.114196_bib30) 2017; 17 Mei (10.1016/j.ecoenv.2022.114196_bib33) 2021; 755 Calgaroto (10.1016/j.ecoenv.2022.114196_bib6) 2010; 23 Sterckeman (10.1016/j.ecoenv.2022.114196_bib42) 2020; 39 Yang (10.1016/j.ecoenv.2022.114196_bib48) 2018; 642 Zembala (10.1016/j.ecoenv.2022.114196_bib53) 2010; 329 Huang (10.1016/j.ecoenv.2022.114196_bib21) 2020; 721 Calgaroto (10.1016/j.ecoenv.2022.114196_bib7) 2011; 24 Baker (10.1016/j.ecoenv.2022.114196_bib3) 1989; 1 Montiel-Rozas (10.1016/j.ecoenv.2022.114196_bib35) 2016; 216 Chen (10.1016/j.ecoenv.2022.114196_bib9) 2019; 7 Gomes (10.1016/j.ecoenv.2022.114196_bib12) 2011; 68 Liu (10.1016/j.ecoenv.2022.114196_bib27) 2017; 181 Yang (10.1016/j.ecoenv.2022.114196_bib49) 2020; 393 Javed (10.1016/j.ecoenv.2022.114196_bib23) 2013; 20 Quartacci (10.1016/j.ecoenv.2022.114196_bib39) 2009; 157 Pereira (10.1016/j.ecoenv.2022.114196_bib37) 2018; 25 Pratush (10.1016/j.ecoenv.2022.114196_bib38) 2018; 21 Li (10.1016/j.ecoenv.2022.114196_bib26) 2013; 182 Bernardy (10.1016/j.ecoenv.2022.114196_bib5) 2020; 253 Hu (10.1016/j.ecoenv.2022.114196_bib19) 2016; 92–93 Zhang (10.1016/j.ecoenv.2022.114196_bib55) 2010; 180 Suman (10.1016/j.ecoenv.2022.114196_bib43) 2018; 9 Huang (10.1016/j.ecoenv.2022.114196_bib22) 2021; 283 |
References_xml | – volume: 181 start-page: 382 year: 2017 end-page: 389 ident: bib27 article-title: Decapitation improves the efficiency of Cd phytoextraction by publication-title: Chemosphere – volume: 28 start-page: 2611 year: 2019 end-page: 2621 ident: bib14 article-title: Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of publication-title: Pol. J. Environ. Stud. – volume: 92–93 start-page: 515 year: 2016 end-page: 532 ident: bib19 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. – volume: 174 start-page: 714 year: 2019 end-page: 727 ident: bib2 article-title: Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils publication-title: Ecotox. Environ. Safe – volume: 22 start-page: 1204 year: 2020 end-page: 1214 ident: bib41 article-title: Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of publication-title: Int. J. Phytoremediat. – volume: 189 start-page: 11049 year: 2020 ident: bib17 article-title: Bioaccumulation and physiological responses of the Coontail, publication-title: Ecotox. Environ. Safe – volume: 157 start-page: 2697 year: 2009 end-page: 2703 ident: bib39 article-title: Naturally-assisted metal phytoextraction by publication-title: Environ. Pollut. – volume: 102 start-page: 50 year: 2012 end-page: 54 ident: bib1 article-title: Absorption and translocation of copper, zinc and chromium by publication-title: J. Environ. Manag – volume: 182 start-page: 248 year: 2013 end-page: 255 ident: bib26 article-title: Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator publication-title: Environ. Pollut. – volume: 393 year: 2020 ident: bib49 article-title: The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in publication-title: J. Hazard. Mater. – volume: 22 start-page: 383 year: 2020 end-page: 391 ident: bib51 article-title: Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids publication-title: Int. J. Phytoremediat. – volume: 8 start-page: 1500 year: 2015 end-page: 1511 ident: bib4 article-title: Phytoremediation of heavy metal-contaminated soils using the perennial energy crops publication-title: Bioenerg. Res. – volume: 8 start-page: 199 year: 2010 end-page: 216 ident: bib36 article-title: Heavy metals, occurrence and toxicity for plants: a review publication-title: Environ. Chem. Lett. – volume: 721 year: 2020 ident: bib21 article-title: Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils publication-title: Sci. Total Environ. – volume: 86 start-page: 272 year: 2011 end-page: 277 ident: bib15 article-title: Lead induced responses of publication-title: B. Environ. Contam. Tox. – volume: 371 start-page: 233 year: 2019 end-page: 242 ident: bib29 article-title: A newly discovered Cd-hyperaccumulator publication-title: J. Hazard. Mater. – volume: 7 start-page: 136 year: 2019 ident: bib9 article-title: Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization publication-title: Microbiome – volume: 180 start-page: 303 year: 2010 end-page: 308 ident: bib55 article-title: Tolerance and accumulation characteristics of cadmium in publication-title: J. Hazard. Mater. – volume: 39 start-page: 322 year: 2020 end-page: 359 ident: bib42 article-title: Mechanisms of cadmium accumulation in plants publication-title: Crit. Rev. Plant Sci. – volume: 23 start-page: 295 year: 2010 end-page: 305 ident: bib6 article-title: Antioxidant system activation by mercury in publication-title: Biometals – volume: 68 start-page: 566 year: 2011 end-page: 573 ident: bib12 article-title: Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in publication-title: Sci. Agr. – volume: 755 year: 2021 ident: bib33 article-title: Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings ( publication-title: Sci. Total Environ. – volume: 25 start-page: 18548 year: 2018 end-page: 18558 ident: bib37 article-title: Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in publication-title: Environ. Sci. Pollut. Res. – volume: 4 start-page: 175 year: 2013 ident: bib11 article-title: Effect of lead on root growth publication-title: Front. Plant Sci. – volume: 20 start-page: 1153 year: 2019 end-page: 1160 ident: bib54 article-title: Accumulation and subcellular distribution of heavy metal in Paulownia fortunei cultivated in lead-zinc slag amended with peat publication-title: Int. J. Phytoremediat. – volume: 30 start-page: 1311 year: 2010 end-page: 1319 ident: bib24 article-title: Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant publication-title: Tree Physiol. – volume: 21 start-page: 97 year: 2018 end-page: 106 ident: bib38 article-title: Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review publication-title: Int. Microbiol. – volume: 283 year: 2021 ident: bib22 article-title: Effects of plant growth regulator and chelating agenton the phytoextraction of heavy metals by publication-title: Environ. Pollut. – volume: 37 start-page: 139 year: 2015 ident: bib45 article-title: Micronutrients and their diverse role in agricultural crops: advances and future prospective publication-title: Acta, Physiol. Plant. – volume: 162 start-page: 571 year: 2018 end-page: 580 ident: bib50 article-title: Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in publication-title: Ecotox. Environ. Safe – volume: 23 start-page: 20977 year: 2016 end-page: 20984 ident: bib8 article-title: Organic acid compounds in root exudation of Moso Bamboo ( publication-title: Environ. Sci. Pollut. Res. – volume: 90 start-page: 29 year: 2020 end-page: 40 ident: bib44 article-title: Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil publication-title: Plant Growth Regul. – volume: 642 start-page: 690 year: 2018 end-page: 700 ident: bib48 article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment publication-title: Sci. Total Environ. – volume: 286 year: 2022 ident: bib34 article-title: Dynamics of low-molecular-weight organic acids for the extraction and sequestration of arsenic species and heavy metals using mangrove sediments publication-title: Chemosphere – volume: 24 start-page: 959 year: 2011 end-page: 971 ident: bib7 article-title: Zinc alleviates mercury-induced oxidative stress in publication-title: Biometals – volume: 17 start-page: 1 year: 2017 end-page: 7 ident: bib30 article-title: Potential use of cotton for remediating heavy metal-polluted soils in southern China publication-title: J. Soil Sediment. – volume: 246 start-page: 101 year: 2019 end-page: 118 ident: bib47 article-title: Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review publication-title: J. Environ. Manag. – volume: 237 year: 2019 ident: bib52 article-title: A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability publication-title: Chemosphere – volume: 117 start-page: 28 year: 2015 end-page: 40 ident: bib46 article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review publication-title: Environ. Exp. Bot. – volume: 74 start-page: 33 year: 2011 end-page: 40 ident: bib32 article-title: Inflfluence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere publication-title: Ecotoxicol. Environ. Saf. – volume: 216 start-page: 273 year: 2016 end-page: 281 ident: bib35 article-title: Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination publication-title: Environ. Pollut. – volume: 22 start-page: 1403 year: 2013 end-page: 1412 ident: bib16 article-title: Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in publication-title: Ecotoxicology – volume: 18 start-page: 33 year: 2016 end-page: 40 ident: bib20 article-title: Organic acids, amino acids compositions in the root exudates and Cu accumulation in castor ( publication-title: Int. J. Phytoremediat. – volume: 1 start-page: 81 year: 1989 end-page: 126 ident: bib3 article-title: Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry publication-title: Biorecovery – volume: 20 start-page: 1876 year: 2013 end-page: 1880 ident: bib23 article-title: Changes in pH and organic acids in mucilage of publication-title: Environ. Sci. Pollut. Res. – volume: 287 year: 2021 ident: bib40 article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils publication-title: Chemosphere – volume: 22 start-page: 98 year: 2010 end-page: 105 ident: bib25 article-title: Influence of Indian mustard ( publication-title: J. Environ. Sci. – volume: 39 start-page: 66 year: 2017 end-page: 72 ident: bib10 article-title: Role of root exudates in metal acquisition and tolerance publication-title: Curr. Opin. Plant Biol. – volume: 329 start-page: 457 year: 2010 end-page: 468 ident: bib53 article-title: Effect of selenium on macro- and micro-element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress publication-title: Plant Soil – volume: 633 start-page: 206 year: 2018 end-page: 219 ident: bib28 article-title: Remediation techniques for heavy metal-contaminated soils: Principles and applicability publication-title: Sci. Total Environ. – volume: 7 start-page: 918 year: 2016 ident: bib31 article-title: Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation publication-title: Front. Plant Sci. – volume: 253 year: 2020 ident: bib5 article-title: Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in publication-title: Chemosphere – volume: 6 start-page: 299 year: 2015 ident: bib18 article-title: Nutrient homeostasis within the plant circadian network publication-title: Front. Plant Sci. – volume: 24 start-page: 293 year: 2012 end-page: 304 ident: bib13 article-title: Cd-tolerance markers of publication-title: Braz. J. Plant Physiol. – volume: 249 start-page: 37 year: 2003 end-page: 43 ident: bib56 article-title: Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator publication-title: Plant Soil – volume: 9 start-page: 1476 year: 2018 ident: bib43 article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? publication-title: Front. Plant Sci. – volume: 633 start-page: 206 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib28 article-title: Remediation techniques for heavy metal-contaminated soils: Principles and applicability publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.161 – volume: 30 start-page: 1311 issue: 10 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib24 article-title: Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations publication-title: Tree Physiol. doi: 10.1093/treephys/tpq070 – volume: 22 start-page: 383 issue: 4 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib51 article-title: Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2019.1663488 – volume: 7 start-page: 136 issue: 1 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib9 article-title: Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization publication-title: Microbiome doi: 10.1186/s40168-019-0750-2 – volume: 24 start-page: 293 issue: 4 year: 2012 ident: 10.1016/j.ecoenv.2022.114196_bib13 article-title: Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: anatomical and physiological features publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202012000400008 – volume: 92–93 start-page: 515 year: 2016 ident: 10.1016/j.ecoenv.2022.114196_bib19 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. doi: 10.1016/j.envint.2016.04.042 – volume: 286 year: 2022 ident: 10.1016/j.ecoenv.2022.114196_bib34 article-title: Dynamics of low-molecular-weight organic acids for the extraction and sequestration of arsenic species and heavy metals using mangrove sediments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131820 – volume: 86 start-page: 272 year: 2011 ident: 10.1016/j.ecoenv.2022.114196_bib15 article-title: Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions publication-title: B. Environ. Contam. Tox. doi: 10.1007/s00128-011-0226-y – volume: 157 start-page: 2697 year: 2009 ident: 10.1016/j.ecoenv.2022.114196_bib39 article-title: Naturally-assisted metal phytoextraction by Brassica carinata: Role of root exudates publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.04.035 – volume: 37 start-page: 139 issue: 7 year: 2015 ident: 10.1016/j.ecoenv.2022.114196_bib45 article-title: Micronutrients and their diverse role in agricultural crops: advances and future prospective publication-title: Acta, Physiol. Plant. doi: 10.1007/s11738-015-1870-3 – volume: 8 start-page: 1500 issue: 4 year: 2015 ident: 10.1016/j.ecoenv.2022.114196_bib4 article-title: Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. publication-title: Bioenerg. Res. doi: 10.1007/s12155-015-9688-9 – volume: 329 start-page: 457 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib53 article-title: Effect of selenium on macro- and micro-element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress publication-title: Plant Soil doi: 10.1007/s11104-009-0171-2 – volume: 23 start-page: 295 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib6 article-title: Antioxidant system activation by mercury in Pfaffia glomerata plantlets publication-title: Biometals doi: 10.1007/s10534-009-9287-3 – volume: 283 year: 2021 ident: 10.1016/j.ecoenv.2022.114196_bib22 article-title: Effects of plant growth regulator and chelating agenton the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117159 – volume: 174 start-page: 714 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib2 article-title: Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils publication-title: Ecotox. Environ. Safe doi: 10.1016/j.ecoenv.2019.02.068 – volume: 28 start-page: 2611 issue: 4 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib14 article-title: Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of Senna occidentalis in heavy metal-contaminated soil publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/92545 – volume: 181 start-page: 382 year: 2017 ident: 10.1016/j.ecoenv.2022.114196_bib27 article-title: Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.095 – volume: 8 start-page: 199 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib36 article-title: Heavy metals, occurrence and toxicity for plants: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-010-0297-8 – volume: 117 start-page: 28 year: 2015 ident: 10.1016/j.ecoenv.2022.114196_bib46 article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.05.001 – volume: 1 start-page: 81 issue: 2 year: 1989 ident: 10.1016/j.ecoenv.2022.114196_bib3 article-title: Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry publication-title: Biorecovery – volume: 21 start-page: 97 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib38 article-title: Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review publication-title: Int. Microbiol. doi: 10.1007/s10123-018-0012-3 – volume: 24 start-page: 959 year: 2011 ident: 10.1016/j.ecoenv.2022.114196_bib7 article-title: Zinc alleviates mercury-induced oxidative stress in Pfaffifia glomerata (Spreng.) Pedersen publication-title: Biometals doi: 10.1007/s10534-011-9457-y – volume: 189 start-page: 11049 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib17 article-title: Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination publication-title: Ecotox. Environ. Safe doi: 10.1016/j.ecoenv.2019.110049 – volume: 182 start-page: 248 year: 2013 ident: 10.1016/j.ecoenv.2022.114196_bib26 article-title: Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.07.025 – volume: 68 start-page: 566 year: 2011 ident: 10.1016/j.ecoenv.2022.114196_bib12 article-title: Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens publication-title: Sci. Agr. doi: 10.1590/S0103-90162011000500009 – volume: 102 start-page: 50 year: 2012 ident: 10.1016/j.ecoenv.2022.114196_bib1 article-title: Absorption and translocation of copper, zinc and chromium by Sesbania virgate publication-title: J. Environ. Manag doi: 10.1016/j.jenvman.2012.01.033 – volume: 253 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib5 article-title: Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126692 – volume: 755 year: 2021 ident: 10.1016/j.ecoenv.2022.114196_bib33 article-title: Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings (Avicennia marina): Arsenic phytoextraction, removal, and detoxification publication-title: Sci. Total Environ. – volume: 20 start-page: 1153 issue: 11 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib54 article-title: Accumulation and subcellular distribution of heavy metal in Paulownia fortunei cultivated in lead-zinc slag amended with peat publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2019.1612844 – volume: 6 start-page: 299 year: 2015 ident: 10.1016/j.ecoenv.2022.114196_bib18 article-title: Nutrient homeostasis within the plant circadian network publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00299 – volume: 18 start-page: 33 issue: 1 year: 2016 ident: 10.1016/j.ecoenv.2022.114196_bib20 article-title: Organic acids, amino acids compositions in the root exudates and Cu accumulation in castor (Ricinus communis L.) under Cu stress publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2015.1058333 – volume: 7 start-page: 918 year: 2016 ident: 10.1016/j.ecoenv.2022.114196_bib31 article-title: Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00918 – volume: 39 start-page: 322 issue: 4 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib42 article-title: Mechanisms of cadmium accumulation in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2020.1792179 – volume: 162 start-page: 571 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib50 article-title: Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica chinensis publication-title: Ecotox. Environ. Safe doi: 10.1016/j.ecoenv.2018.07.041 – volume: 237 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib52 article-title: A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124536 – volume: 371 start-page: 233 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib29 article-title: A newly discovered Cd-hyperaccumulator Lantana camara L publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.03.016 – volume: 246 start-page: 101 year: 2019 ident: 10.1016/j.ecoenv.2022.114196_bib47 article-title: Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.05.126 – volume: 9 start-page: 1476 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib43 article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01476 – volume: 22 start-page: 1403 year: 2013 ident: 10.1016/j.ecoenv.2022.114196_bib16 article-title: Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata publication-title: Ecotoxicology doi: 10.1007/s10646-013-1126-1 – volume: 642 start-page: 690 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib48 article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.068 – volume: 74 start-page: 33 year: 2011 ident: 10.1016/j.ecoenv.2022.114196_bib32 article-title: Inflfluence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2010.09.003 – volume: 216 start-page: 273 year: 2016 ident: 10.1016/j.ecoenv.2022.114196_bib35 article-title: Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.080 – volume: 23 start-page: 20977 year: 2016 ident: 10.1016/j.ecoenv.2022.114196_bib8 article-title: Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7323-8 – volume: 22 start-page: 1204 issue: 11 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib41 article-title: Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2020.1754758 – volume: 287 year: 2021 ident: 10.1016/j.ecoenv.2022.114196_bib40 article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils publication-title: Chemosphere – volume: 393 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib49 article-title: The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122482 – volume: 39 start-page: 66 year: 2017 ident: 10.1016/j.ecoenv.2022.114196_bib10 article-title: Role of root exudates in metal acquisition and tolerance publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.06.004 – volume: 90 start-page: 29 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib44 article-title: Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil publication-title: Plant Growth Regul. doi: 10.1007/s10725-019-00548-5 – volume: 721 year: 2020 ident: 10.1016/j.ecoenv.2022.114196_bib21 article-title: Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137581 – volume: 17 start-page: 1 year: 2017 ident: 10.1016/j.ecoenv.2022.114196_bib30 article-title: Potential use of cotton for remediating heavy metal-polluted soils in southern China publication-title: J. Soil Sediment. doi: 10.1007/s11368-017-1697-1 – volume: 25 start-page: 18548 year: 2018 ident: 10.1016/j.ecoenv.2022.114196_bib37 article-title: Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2005-3 – volume: 249 start-page: 37 year: 2003 ident: 10.1016/j.ecoenv.2022.114196_bib56 article-title: Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens publication-title: Plant Soil doi: 10.1023/A:1022530217289 – volume: 180 start-page: 303 issue: 1–3 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib55 article-title: Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.04.031 – volume: 20 start-page: 1876 year: 2013 ident: 10.1016/j.ecoenv.2022.114196_bib23 article-title: Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1413-z – volume: 22 start-page: 98 issue: 1 year: 2010 ident: 10.1016/j.ecoenv.2022.114196_bib25 article-title: Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60080-2 – volume: 4 start-page: 175 year: 2013 ident: 10.1016/j.ecoenv.2022.114196_bib11 article-title: Effect of lead on root growth publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00175 |
SSID | ssj0003055 |
Score | 2.3944724 |
Snippet | Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114196 |
SubjectTerms | Bioaccumulation Element distribution Heavy metal Phytoextraction Root exudation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIAgiuio-v4jg8QXbfDStN112WQTFgwuLl5CPiT5520pfn-B_byZpl9XLu0hPLWkbMtOZ36QzvyHkdd0mPwdKMRUqwaT2FbNRclYL2VatA6tzUdjHT835hfxwqS5vtPrCnLBCD1wW7k3XNi33EVqwTlbCORW1a230LuiYnBVa3-TzlmBqtsHIY1WSFzVrVC2Wormc2ZXiOuh_pdiQc6TKrZGw_4ZTytz9f_mmf6x0dj1n98m9GTPSd2WuD8gt6I_J7dPMN_37mNwtW2-0VBQ9JP3naGPcWPptO-CW02TpZkct_Z5CztF6v7_Cll3DSD2WtGDE_5aeBJpO6NeeTsMWsNkGrKl1u2HMJmVNpwxwYVzncQHpdudOWY_Ixdnpl5NzNrdVYF6qemKN1QgcQkxQLkiJMZTUbWProKqgLIeu6ZAxuEuhX9Vhe3WpKuuFqLHSWoN4TI76oYcnhEITgHtwWqXg1rs6HUJrJ7sGEkzifEXEsq7Gz5zj2Ppia5bksh-mSMOgNEyRxoqw67t-Fs6NA-Pfo8iuxyJjdr6Q9MjMemQO6dGK6EXgZgYfBVSkR20OvP7Voh8mfZv4w8X2MOx3husEKBWvRPf0f0zxGbmDry2VkM_J0TTu4UWCRJN7mbX_D6ssBzs priority: 102 providerName: Directory of Open Access Journals |
Title | Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution |
URI | https://dx.doi.org/10.1016/j.ecoenv.2022.114196 https://www.proquest.com/docview/2725652039 https://doaj.org/article/98682cfe8eab403bb5f7b8afcbd7f129 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiSDIoafierpE8HHrtmnStL6dyx2r4uGDB4cvIR_Ts7K2R7cr-OLfbiZpT8-XA-lTwjQtmel8pDO_IeRVVno7B0IkwqV5wqVNE11zlmQ5L9PSgJahKOzjWbE-5-8vxMUeWU21MJhWOer-qNODth5nluNuLq-aZolpSbIQGE1hr4ICET-5n_Ey_frXnzQPRLSKaYwyQeqpfC7kePkID9ofPkpkDEFzM4Tu_8s8BRT_G1bqH30djNDpA3Iweo_0OL7gQ7IH7SG5exKQp38ekvvxEI7G2qJHpP1U67puNL3cdHj4NGjabKmmX33w2Wtrd9-xeVfXU4vFLRj7v6ErR_2Afmnp0G0A227Agmqz7fqgXBZ0CK4u9ItA5xB4d-yZ9Zicn558Xq2TscFCYrnIhqTQEl0IV3unznGO0RSXZaEzJ1InNIOqqBA7uPJBYFpho3UuUm3zPMOaawn5E7Lfdi08JRQKB8yCkcKHudZk_sqlNLwqwDtMjM1IPu2rsiP6ODbB2KgpzeybitxQyA0VuTEjyfVdVxF94xb6t8iya1rEzg4TXX-pRuFRVVmUzNZQgjY8zY0RtTSlrq1xsvbuz4zIieHqhij6pZpbHv9ykg_lv1L89aJb6HZbxaR3LQVL8-rZf69-RO7hKBZCPif7Q7-DF94jGsw8iPyc3Dl-92F9Ng_nCr8BWFkJDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQlhKCAujyNBLcNmzh2nCBxgNJqSx_i0EoVF2M7TptqSapstlUv_Cn-IB4nKZRLJaQqpziOE81M5uHMzAfwJkqdnbOcBzwP44AJEwaqYDSIYpaGqbZK-KKw3b1kesC-HPLDJfg11MJgWmWv-zud7rV1PzLpqTk5LcsJpiWJhGM0hVgFyYBgvW0vzl3cNv-w9dkx-S2lmxv769OghxYIDONRGyRKoPHMC-fO5IxhHMFEmqgo52HOFbVZkmHX3MyFP2GGEOOMh8rEcYTVxsLGbt1bcJs5dYGwCe9-_skrwRZaXd6kCPD1hno9n1TmQkpbnbmwlFLs0hshVsBf9tDDBlwxi_8YCG_1Nh_A_d5dJR87ijyEJVutwp0N3-r6YhXudbt-pCtmegTV10IVRanI0azG3a5WkXJOFDl20W6jjFn8QLSwuiEGq2lws-E9Wc-JOyHfKtLWM4s4H3ZMlJ7XjddmY9J639o2Yz8vx06_PUjXYzi4EbI_geWqruwaEJvklhqrBXdxtdGRO2IhNMsS6zw0SkcQD3SVpm93jqgbMznktZ3IjhsSuSE7bowguLzrtGv3cc38T8iyy7nYrNsP1M2R7KVVZmmSUlPY1CrNwlhrXgidqsLoXBTO3xqBGBgur8i-W6q85vGvB_mQTi3gvx5V2Xoxl1Q4X5bTMM6e_vfqr-DudH93R-5s7W0_gxW80lVhPofltlnYF84da_VLL_4Evt_09_YbRaM-_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pfaffia+glomerata+is+a+hyperaccumulator+candidate%3A+Cd+and+Zn+tolerance%2C+absorption%2C+transfer%2C+and+distribution&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Huang%2C+Rong&rft.au=Wu%2C+Zhimin&rft.au=Zhao%2C+Xinlin&rft.au=Li%2C+Feng&rft.date=2022-11-01&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=246&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.114196&rft.externalDocID=S0147651322010363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |