Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution

Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the toler...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 246; p. 114196
Main Authors Huang, Rong, Wu, Zhimin, Zhao, Xinlin, Li, Feng, Wang, Weidong, Guo, Yuan, Li, Zhian, Wu, Jingtao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals. •The biomass of P. glomerata did not affect by the 10 μM or 30 μM Cd/Pb/Cu/Zn exposure.•The order of total Cd/Pb/Cu/Zn extraction of a single plant was Cd > Zn > Pb > Cu.•P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity.•Cd/Pb/Cu/Zn exposure decreased the secretion of oxalic, tartaric, citric acid, and DOC in the root.
AbstractList Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.
Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.
Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals. •The biomass of P. glomerata did not affect by the 10 μM or 30 μM Cd/Pb/Cu/Zn exposure.•The order of total Cd/Pb/Cu/Zn extraction of a single plant was Cd > Zn > Pb > Cu.•P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity.•Cd/Pb/Cu/Zn exposure decreased the secretion of oxalic, tartaric, citric acid, and DOC in the root.
ArticleNumber 114196
Author Wu, Jingtao
Huang, Rong
Guo, Yuan
Wang, Weidong
Li, Feng
Zhao, Xinlin
Li, Zhian
Wu, Zhimin
Author_xml – sequence: 1
  givenname: Rong
  surname: Huang
  fullname: Huang, Rong
  organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
– sequence: 2
  givenname: Zhimin
  surname: Wu
  fullname: Wu, Zhimin
  organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
– sequence: 3
  givenname: Xinlin
  orcidid: 0000-0001-8282-238X
  surname: Zhao
  fullname: Zhao, Xinlin
  organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
– sequence: 4
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
– sequence: 5
  givenname: Weidong
  surname: Wang
  fullname: Wang, Weidong
  organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
– sequence: 6
  givenname: Yuan
  surname: Guo
  fullname: Guo, Yuan
  email: guoyuan@caas.cn
  organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
– sequence: 7
  givenname: Zhian
  orcidid: 0000-0003-1969-6645
  surname: Li
  fullname: Li, Zhian
  organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
– sequence: 8
  givenname: Jingtao
  orcidid: 0000-0003-0377-9681
  surname: Wu
  fullname: Wu, Jingtao
  email: wujingtao@scbg.ac.cn
  organization: Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
BookMark eNqFUbFuFDEQtVCQuAT-gMIlxd1he23vbgokdAoQKRIU0NBYs_Y4-LS3PmxvpPw93iw0FFCNZua9p3nzLsnFFCck5DVne864fnvco404PewFE2LPueS9fkY2nPVsJySXF2TDuGx3WvHmBbnM-cgYa5hSGzJ98eB9AHo_xhMmKEBDpkB_PJ5rZ-18mkcoMVELkwsOCl7Tg6O1od8nWuJYUZPFLYUhx3QuIU5bWuose0zbJ5wLuaQwzMvuJXnuYcz46ne9It8-3Hw9fNrdff54e3h_t7NS8bLT0DLWSue10k5KKXQ9v9PAnWJOgcBe97zvZS-rxb66bqRiYJuGN7xTLTZX5HbVdRGO5pzCCdKjiRDM0yCmewOpBDui6TvdCeuxQxgka4ZB-XbowNvBtZ6Lvmq9WbXOKf6cMRdzCtniOMKEcc5GtEJpJVizQK9XqE0x54Te2FBgMV5fEkbDmVkCM0ezBmaWwMwaWCXLv8h_7v4P7d1Kw_rPh4DJZBuwZuJCQluq4fBvgV8UA7Ld
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142199
crossref_primary_10_1016_j_scitotenv_2024_170577
crossref_primary_10_1007_s10653_023_01767_6
crossref_primary_10_48130_cas_0024_0018
crossref_primary_10_1016_j_scitotenv_2024_169900
crossref_primary_10_1016_j_scitotenv_2025_178637
Cites_doi 10.1016/j.scitotenv.2018.03.161
10.1093/treephys/tpq070
10.1080/15226514.2019.1663488
10.1186/s40168-019-0750-2
10.1590/S1677-04202012000400008
10.1016/j.envint.2016.04.042
10.1016/j.chemosphere.2021.131820
10.1007/s00128-011-0226-y
10.1016/j.envpol.2009.04.035
10.1007/s11738-015-1870-3
10.1007/s12155-015-9688-9
10.1007/s11104-009-0171-2
10.1007/s10534-009-9287-3
10.1016/j.envpol.2021.117159
10.1016/j.ecoenv.2019.02.068
10.15244/pjoes/92545
10.1016/j.chemosphere.2017.04.095
10.1007/s10311-010-0297-8
10.1016/j.envexpbot.2015.05.001
10.1007/s10123-018-0012-3
10.1007/s10534-011-9457-y
10.1016/j.ecoenv.2019.110049
10.1016/j.envpol.2013.07.025
10.1590/S0103-90162011000500009
10.1016/j.jenvman.2012.01.033
10.1016/j.chemosphere.2020.126692
10.1080/15226514.2019.1612844
10.3389/fpls.2015.00299
10.1080/15226514.2015.1058333
10.3389/fpls.2016.00918
10.1080/07352689.2020.1792179
10.1016/j.ecoenv.2018.07.041
10.1016/j.chemosphere.2019.124536
10.1016/j.jhazmat.2019.03.016
10.1016/j.jenvman.2019.05.126
10.3389/fpls.2018.01476
10.1007/s10646-013-1126-1
10.1016/j.scitotenv.2018.06.068
10.1016/j.ecoenv.2010.09.003
10.1016/j.envpol.2016.05.080
10.1007/s11356-016-7323-8
10.1080/15226514.2020.1754758
10.1016/j.jhazmat.2020.122482
10.1016/j.pbi.2017.06.004
10.1007/s10725-019-00548-5
10.1016/j.scitotenv.2020.137581
10.1007/s11368-017-1697-1
10.1007/s11356-018-2005-3
10.1023/A:1022530217289
10.1016/j.jhazmat.2010.04.031
10.1007/s11356-012-1413-z
10.1016/S1001-0742(09)60080-2
10.3389/fpls.2013.00175
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOA
DOI 10.1016/j.ecoenv.2022.114196
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_98682cfe8eab403bb5f7b8afcbd7f129
10_1016_j_ecoenv_2022_114196
S0147651322010363
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
ID FETCH-LOGICAL-c451t-6a70074df656d4442614786a1d50d5a2e96919949409092023450ac33131857e3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:19:50 EDT 2025
Fri Jul 11 13:30:24 EDT 2025
Tue Jul 01 04:00:39 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:41:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bioaccumulation
Root exudation
Element distribution
Phytoextraction
Heavy metal
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-6a70074df656d4442614786a1d50d5a2e96919949409092023450ac33131857e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8282-238X
0000-0003-0377-9681
0000-0003-1969-6645
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651322010363
PQID 2725652039
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_98682cfe8eab403bb5f7b8afcbd7f129
proquest_miscellaneous_2725652039
crossref_citationtrail_10_1016_j_ecoenv_2022_114196
crossref_primary_10_1016_j_ecoenv_2022_114196
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_114196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Ecotoxicology and environmental safety
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Barbosa, Boleo, Sildella, Costa, Duarte (bib4) 2015; 8
Yu, Liu, Long, Chen (bib51) 2020; 22
Hu, Chen, Tao (bib19) 2016; 92–93
Yuan, Xiong, Yao, Liu, Yin (bib52) 2019; 237
Liu, Li, Song, Guo (bib28) 2018; 633
Huang, Guo, Yao, Zhang, Hu (bib20) 2016; 18
Sun, Zhou, Cui, Liu, Fan (bib44) 2020; 90
Gomes, Marques, Martins, Carneio, Soares (bib13) 2012; 24
Tripathi, Singh, Singh, Chauhan, Dubey (bib45) 2015; 37
Liu, Ali, Yang, Tao, Ren (bib29) 2019; 371
Gomes, Marques, Nogueira, de Castro, Soares (bib12) 2011; 68
Chen, Wang, Yeh (bib10) 2017; 39
Hak, Ritchie, Dummee (bib17) 2020; 189
Gupta, Huang, Nicoloso (bib16) 2013; 22
Yao, Yuan, Zhuang, Wan, Wang, Zhang (bib50) 2018; 162
Calgaroto, Cargnelutti, Rossato, Farias, Nunes (bib7) 2011; 24
Ullah, Heng, Munis, Fahad, Yang (bib46) 2015; 117
Chen, Shafi, Wang, Wu, Ye (bib8) 2016; 23
Fahr, Laplaze, Bendaou, Hocher (bib11) 2013; 4
Haydon, Roman, Arshad (bib18) 2015; 6
Mei, Liu, Fan, Guo, Wu (bib33) 2021; 755
Zhang, Zhang, Xu, Li, Gong, Jia (bib55) 2010; 180
Bernardy, Farias, Pereira (bib5) 2020; 253
Yang, Dai, Skuza, Wei (bib49) 2020; 393
Zhang, Chen, Du, Zhang, Han (bib54) 2019; 20
Yang, Li, Lu, Duan, Huang (bib48) 2018; 642
Pereira, Dorneles, Bernardy (bib37) 2018; 25
Jourand, Ducousso, Reid, Majorel (bib24) 2010; 30
Baker, Brooks (bib3) 1989; 1
Magdziak, Kozlowska, Kaczmarek, Mleczek, Chadzinikolau, Drzewiecka (bib32) 2011; 74
Sterckeman, Thomine (bib42) 2020; 39
Gupta, Nicoloso, Schetinger (bib15) 2011; 86
Montiel-Rozas, Madejon, Madejon (bib35) 2016; 216
Agustina, Santos, Marta (bib1) 2012; 102
Chen, Wagmode, Sun, Kuramae, Hu (bib9) 2019; 7
Javed, Lindberg, Greger (bib23) 2013; 20
Huang, Dong, Mao, Zhuang, Paz-Ferreiro (bib21) 2020; 721
Guo, Li (bib14) 2019; 28
Nagajyoti, Lee, Sreekanth (bib36) 2010; 8
Saffari, Saffari (bib41) 2020; 22
Quartacci, Barbara, Gonnelli, Gabbrielli (bib39) 2009; 157
Mei, Wu, Liu, Wu, Hong (bib34) 2022; 286
Rajendran, Priya, Khoo, Hoang, Ng (bib40) 2021; 287
Liu, Zhang, Mo, Yao, Wang (bib27) 2017; 181
Pratush, Kumar, Hu (bib38) 2018; 21
Huang, Cui, Luo, Mao, Zhuang, Li (bib22) 2021; 283
Suman, Uhlik, Viktorova, Macek (bib43) 2018; 9
Ashraf, Ali, Zahir, Ashraf, Asghar (bib2) 2019; 174
Vareda, Valente, Duraes (bib47) 2019; 246
Ma, Zheng, Wei, Ai, Zhang, Zhou (bib30) 2017; 17
Kim, Owens, Kwon (bib25) 2010; 22
Ma, Oliveira, Freitas, Zhang (bib31) 2016; 7
Calgaroto, Castro, Cargnelutti (bib6) 2010; 23
Zembala, Filek, Walas, Mrowiec (bib53) 2010; 329
Li, Tao, Liang, Shohag (bib26) 2013; 182
Zhao, Lombi, McGrath (bib56) 2003; 249
Zhao (10.1016/j.ecoenv.2022.114196_bib56) 2003; 249
Mei (10.1016/j.ecoenv.2022.114196_bib34) 2022; 286
Yao (10.1016/j.ecoenv.2022.114196_bib50) 2018; 162
Huang (10.1016/j.ecoenv.2022.114196_bib20) 2016; 18
Hak (10.1016/j.ecoenv.2022.114196_bib17) 2020; 189
Vareda (10.1016/j.ecoenv.2022.114196_bib47) 2019; 246
Barbosa (10.1016/j.ecoenv.2022.114196_bib4) 2015; 8
Agustina (10.1016/j.ecoenv.2022.114196_bib1) 2012; 102
Chen (10.1016/j.ecoenv.2022.114196_bib8) 2016; 23
Chen (10.1016/j.ecoenv.2022.114196_bib10) 2017; 39
Saffari (10.1016/j.ecoenv.2022.114196_bib41) 2020; 22
Ma (10.1016/j.ecoenv.2022.114196_bib31) 2016; 7
Gomes (10.1016/j.ecoenv.2022.114196_bib13) 2012; 24
Liu (10.1016/j.ecoenv.2022.114196_bib28) 2018; 633
Fahr (10.1016/j.ecoenv.2022.114196_bib11) 2013; 4
Ashraf (10.1016/j.ecoenv.2022.114196_bib2) 2019; 174
Kim (10.1016/j.ecoenv.2022.114196_bib25) 2010; 22
Sun (10.1016/j.ecoenv.2022.114196_bib44) 2020; 90
Guo (10.1016/j.ecoenv.2022.114196_bib14) 2019; 28
Magdziak (10.1016/j.ecoenv.2022.114196_bib32) 2011; 74
Yu (10.1016/j.ecoenv.2022.114196_bib51) 2020; 22
Haydon (10.1016/j.ecoenv.2022.114196_bib18) 2015; 6
Yuan (10.1016/j.ecoenv.2022.114196_bib52) 2019; 237
Gupta (10.1016/j.ecoenv.2022.114196_bib15) 2011; 86
Rajendran (10.1016/j.ecoenv.2022.114196_bib40) 2021; 287
Liu (10.1016/j.ecoenv.2022.114196_bib29) 2019; 371
Nagajyoti (10.1016/j.ecoenv.2022.114196_bib36) 2010; 8
Jourand (10.1016/j.ecoenv.2022.114196_bib24) 2010; 30
Gupta (10.1016/j.ecoenv.2022.114196_bib16) 2013; 22
Zhang (10.1016/j.ecoenv.2022.114196_bib54) 2019; 20
Ullah (10.1016/j.ecoenv.2022.114196_bib46) 2015; 117
Tripathi (10.1016/j.ecoenv.2022.114196_bib45) 2015; 37
Ma (10.1016/j.ecoenv.2022.114196_bib30) 2017; 17
Mei (10.1016/j.ecoenv.2022.114196_bib33) 2021; 755
Calgaroto (10.1016/j.ecoenv.2022.114196_bib6) 2010; 23
Sterckeman (10.1016/j.ecoenv.2022.114196_bib42) 2020; 39
Yang (10.1016/j.ecoenv.2022.114196_bib48) 2018; 642
Zembala (10.1016/j.ecoenv.2022.114196_bib53) 2010; 329
Huang (10.1016/j.ecoenv.2022.114196_bib21) 2020; 721
Calgaroto (10.1016/j.ecoenv.2022.114196_bib7) 2011; 24
Baker (10.1016/j.ecoenv.2022.114196_bib3) 1989; 1
Montiel-Rozas (10.1016/j.ecoenv.2022.114196_bib35) 2016; 216
Chen (10.1016/j.ecoenv.2022.114196_bib9) 2019; 7
Gomes (10.1016/j.ecoenv.2022.114196_bib12) 2011; 68
Liu (10.1016/j.ecoenv.2022.114196_bib27) 2017; 181
Yang (10.1016/j.ecoenv.2022.114196_bib49) 2020; 393
Javed (10.1016/j.ecoenv.2022.114196_bib23) 2013; 20
Quartacci (10.1016/j.ecoenv.2022.114196_bib39) 2009; 157
Pereira (10.1016/j.ecoenv.2022.114196_bib37) 2018; 25
Pratush (10.1016/j.ecoenv.2022.114196_bib38) 2018; 21
Li (10.1016/j.ecoenv.2022.114196_bib26) 2013; 182
Bernardy (10.1016/j.ecoenv.2022.114196_bib5) 2020; 253
Hu (10.1016/j.ecoenv.2022.114196_bib19) 2016; 92–93
Zhang (10.1016/j.ecoenv.2022.114196_bib55) 2010; 180
Suman (10.1016/j.ecoenv.2022.114196_bib43) 2018; 9
Huang (10.1016/j.ecoenv.2022.114196_bib22) 2021; 283
References_xml – volume: 181
  start-page: 382
  year: 2017
  end-page: 389
  ident: bib27
  article-title: Decapitation improves the efficiency of Cd phytoextraction by
  publication-title: Chemosphere
– volume: 28
  start-page: 2611
  year: 2019
  end-page: 2621
  ident: bib14
  article-title: Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of
  publication-title: Pol. J. Environ. Stud.
– volume: 92–93
  start-page: 515
  year: 2016
  end-page: 532
  ident: bib19
  article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review
  publication-title: Environ. Int.
– volume: 174
  start-page: 714
  year: 2019
  end-page: 727
  ident: bib2
  article-title: Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils
  publication-title: Ecotox. Environ. Safe
– volume: 22
  start-page: 1204
  year: 2020
  end-page: 1214
  ident: bib41
  article-title: Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of
  publication-title: Int. J. Phytoremediat.
– volume: 189
  start-page: 11049
  year: 2020
  ident: bib17
  article-title: Bioaccumulation and physiological responses of the Coontail,
  publication-title: Ecotox. Environ. Safe
– volume: 157
  start-page: 2697
  year: 2009
  end-page: 2703
  ident: bib39
  article-title: Naturally-assisted metal phytoextraction by
  publication-title: Environ. Pollut.
– volume: 102
  start-page: 50
  year: 2012
  end-page: 54
  ident: bib1
  article-title: Absorption and translocation of copper, zinc and chromium by
  publication-title: J. Environ. Manag
– volume: 182
  start-page: 248
  year: 2013
  end-page: 255
  ident: bib26
  article-title: Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator
  publication-title: Environ. Pollut.
– volume: 393
  year: 2020
  ident: bib49
  article-title: The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 383
  year: 2020
  end-page: 391
  ident: bib51
  article-title: Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids
  publication-title: Int. J. Phytoremediat.
– volume: 8
  start-page: 1500
  year: 2015
  end-page: 1511
  ident: bib4
  article-title: Phytoremediation of heavy metal-contaminated soils using the perennial energy crops
  publication-title: Bioenerg. Res.
– volume: 8
  start-page: 199
  year: 2010
  end-page: 216
  ident: bib36
  article-title: Heavy metals, occurrence and toxicity for plants: a review
  publication-title: Environ. Chem. Lett.
– volume: 721
  year: 2020
  ident: bib21
  article-title: Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils
  publication-title: Sci. Total Environ.
– volume: 86
  start-page: 272
  year: 2011
  end-page: 277
  ident: bib15
  article-title: Lead induced responses of
  publication-title: B. Environ. Contam. Tox.
– volume: 371
  start-page: 233
  year: 2019
  end-page: 242
  ident: bib29
  article-title: A newly discovered Cd-hyperaccumulator
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 136
  year: 2019
  ident: bib9
  article-title: Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
  publication-title: Microbiome
– volume: 180
  start-page: 303
  year: 2010
  end-page: 308
  ident: bib55
  article-title: Tolerance and accumulation characteristics of cadmium in
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 322
  year: 2020
  end-page: 359
  ident: bib42
  article-title: Mechanisms of cadmium accumulation in plants
  publication-title: Crit. Rev. Plant Sci.
– volume: 23
  start-page: 295
  year: 2010
  end-page: 305
  ident: bib6
  article-title: Antioxidant system activation by mercury in
  publication-title: Biometals
– volume: 68
  start-page: 566
  year: 2011
  end-page: 573
  ident: bib12
  article-title: Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in
  publication-title: Sci. Agr.
– volume: 755
  year: 2021
  ident: bib33
  article-title: Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings (
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 18548
  year: 2018
  end-page: 18558
  ident: bib37
  article-title: Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in
  publication-title: Environ. Sci. Pollut. Res.
– volume: 4
  start-page: 175
  year: 2013
  ident: bib11
  article-title: Effect of lead on root growth
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 1153
  year: 2019
  end-page: 1160
  ident: bib54
  article-title: Accumulation and subcellular distribution of heavy metal in Paulownia fortunei cultivated in lead-zinc slag amended with peat
  publication-title: Int. J. Phytoremediat.
– volume: 30
  start-page: 1311
  year: 2010
  end-page: 1319
  ident: bib24
  article-title: Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant
  publication-title: Tree Physiol.
– volume: 21
  start-page: 97
  year: 2018
  end-page: 106
  ident: bib38
  article-title: Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review
  publication-title: Int. Microbiol.
– volume: 283
  year: 2021
  ident: bib22
  article-title: Effects of plant growth regulator and chelating agenton the phytoextraction of heavy metals by
  publication-title: Environ. Pollut.
– volume: 37
  start-page: 139
  year: 2015
  ident: bib45
  article-title: Micronutrients and their diverse role in agricultural crops: advances and future prospective
  publication-title: Acta, Physiol. Plant.
– volume: 162
  start-page: 571
  year: 2018
  end-page: 580
  ident: bib50
  article-title: Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in
  publication-title: Ecotox. Environ. Safe
– volume: 23
  start-page: 20977
  year: 2016
  end-page: 20984
  ident: bib8
  article-title: Organic acid compounds in root exudation of Moso Bamboo (
  publication-title: Environ. Sci. Pollut. Res.
– volume: 90
  start-page: 29
  year: 2020
  end-page: 40
  ident: bib44
  article-title: Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil
  publication-title: Plant Growth Regul.
– volume: 642
  start-page: 690
  year: 2018
  end-page: 700
  ident: bib48
  article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment
  publication-title: Sci. Total Environ.
– volume: 286
  year: 2022
  ident: bib34
  article-title: Dynamics of low-molecular-weight organic acids for the extraction and sequestration of arsenic species and heavy metals using mangrove sediments
  publication-title: Chemosphere
– volume: 24
  start-page: 959
  year: 2011
  end-page: 971
  ident: bib7
  article-title: Zinc alleviates mercury-induced oxidative stress in
  publication-title: Biometals
– volume: 17
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib30
  article-title: Potential use of cotton for remediating heavy metal-polluted soils in southern China
  publication-title: J. Soil Sediment.
– volume: 246
  start-page: 101
  year: 2019
  end-page: 118
  ident: bib47
  article-title: Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review
  publication-title: J. Environ. Manag.
– volume: 237
  year: 2019
  ident: bib52
  article-title: A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability
  publication-title: Chemosphere
– volume: 117
  start-page: 28
  year: 2015
  end-page: 40
  ident: bib46
  article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review
  publication-title: Environ. Exp. Bot.
– volume: 74
  start-page: 33
  year: 2011
  end-page: 40
  ident: bib32
  article-title: Inflfluence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 216
  start-page: 273
  year: 2016
  end-page: 281
  ident: bib35
  article-title: Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination
  publication-title: Environ. Pollut.
– volume: 22
  start-page: 1403
  year: 2013
  end-page: 1412
  ident: bib16
  article-title: Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in
  publication-title: Ecotoxicology
– volume: 18
  start-page: 33
  year: 2016
  end-page: 40
  ident: bib20
  article-title: Organic acids, amino acids compositions in the root exudates and Cu accumulation in castor (
  publication-title: Int. J. Phytoremediat.
– volume: 1
  start-page: 81
  year: 1989
  end-page: 126
  ident: bib3
  article-title: Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry
  publication-title: Biorecovery
– volume: 20
  start-page: 1876
  year: 2013
  end-page: 1880
  ident: bib23
  article-title: Changes in pH and organic acids in mucilage of
  publication-title: Environ. Sci. Pollut. Res.
– volume: 287
  year: 2021
  ident: bib40
  article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils
  publication-title: Chemosphere
– volume: 22
  start-page: 98
  year: 2010
  end-page: 105
  ident: bib25
  article-title: Influence of Indian mustard (
  publication-title: J. Environ. Sci.
– volume: 39
  start-page: 66
  year: 2017
  end-page: 72
  ident: bib10
  article-title: Role of root exudates in metal acquisition and tolerance
  publication-title: Curr. Opin. Plant Biol.
– volume: 329
  start-page: 457
  year: 2010
  end-page: 468
  ident: bib53
  article-title: Effect of selenium on macro- and micro-element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress
  publication-title: Plant Soil
– volume: 633
  start-page: 206
  year: 2018
  end-page: 219
  ident: bib28
  article-title: Remediation techniques for heavy metal-contaminated soils: Principles and applicability
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 918
  year: 2016
  ident: bib31
  article-title: Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation
  publication-title: Front. Plant Sci.
– volume: 253
  year: 2020
  ident: bib5
  article-title: Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in
  publication-title: Chemosphere
– volume: 6
  start-page: 299
  year: 2015
  ident: bib18
  article-title: Nutrient homeostasis within the plant circadian network
  publication-title: Front. Plant Sci.
– volume: 24
  start-page: 293
  year: 2012
  end-page: 304
  ident: bib13
  article-title: Cd-tolerance markers of
  publication-title: Braz. J. Plant Physiol.
– volume: 249
  start-page: 37
  year: 2003
  end-page: 43
  ident: bib56
  article-title: Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator
  publication-title: Plant Soil
– volume: 9
  start-page: 1476
  year: 2018
  ident: bib43
  article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?
  publication-title: Front. Plant Sci.
– volume: 633
  start-page: 206
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib28
  article-title: Remediation techniques for heavy metal-contaminated soils: Principles and applicability
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.161
– volume: 30
  start-page: 1311
  issue: 10
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib24
  article-title: Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpq070
– volume: 22
  start-page: 383
  issue: 4
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib51
  article-title: Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2019.1663488
– volume: 7
  start-page: 136
  issue: 1
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib9
  article-title: Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0750-2
– volume: 24
  start-page: 293
  issue: 4
  year: 2012
  ident: 10.1016/j.ecoenv.2022.114196_bib13
  article-title: Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: anatomical and physiological features
  publication-title: Braz. J. Plant Physiol.
  doi: 10.1590/S1677-04202012000400008
– volume: 92–93
  start-page: 515
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114196_bib19
  article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.04.042
– volume: 286
  year: 2022
  ident: 10.1016/j.ecoenv.2022.114196_bib34
  article-title: Dynamics of low-molecular-weight organic acids for the extraction and sequestration of arsenic species and heavy metals using mangrove sediments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131820
– volume: 86
  start-page: 272
  year: 2011
  ident: 10.1016/j.ecoenv.2022.114196_bib15
  article-title: Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions
  publication-title: B. Environ. Contam. Tox.
  doi: 10.1007/s00128-011-0226-y
– volume: 157
  start-page: 2697
  year: 2009
  ident: 10.1016/j.ecoenv.2022.114196_bib39
  article-title: Naturally-assisted metal phytoextraction by Brassica carinata: Role of root exudates
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.04.035
– volume: 37
  start-page: 139
  issue: 7
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114196_bib45
  article-title: Micronutrients and their diverse role in agricultural crops: advances and future prospective
  publication-title: Acta, Physiol. Plant.
  doi: 10.1007/s11738-015-1870-3
– volume: 8
  start-page: 1500
  issue: 4
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114196_bib4
  article-title: Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L.
  publication-title: Bioenerg. Res.
  doi: 10.1007/s12155-015-9688-9
– volume: 329
  start-page: 457
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib53
  article-title: Effect of selenium on macro- and micro-element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0171-2
– volume: 23
  start-page: 295
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib6
  article-title: Antioxidant system activation by mercury in Pfaffia glomerata plantlets
  publication-title: Biometals
  doi: 10.1007/s10534-009-9287-3
– volume: 283
  year: 2021
  ident: 10.1016/j.ecoenv.2022.114196_bib22
  article-title: Effects of plant growth regulator and chelating agenton the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117159
– volume: 174
  start-page: 714
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib2
  article-title: Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils
  publication-title: Ecotox. Environ. Safe
  doi: 10.1016/j.ecoenv.2019.02.068
– volume: 28
  start-page: 2611
  issue: 4
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib14
  article-title: Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of Senna occidentalis in heavy metal-contaminated soil
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/92545
– volume: 181
  start-page: 382
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114196_bib27
  article-title: Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.04.095
– volume: 8
  start-page: 199
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib36
  article-title: Heavy metals, occurrence and toxicity for plants: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-010-0297-8
– volume: 117
  start-page: 28
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114196_bib46
  article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.05.001
– volume: 1
  start-page: 81
  issue: 2
  year: 1989
  ident: 10.1016/j.ecoenv.2022.114196_bib3
  article-title: Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry
  publication-title: Biorecovery
– volume: 21
  start-page: 97
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib38
  article-title: Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review
  publication-title: Int. Microbiol.
  doi: 10.1007/s10123-018-0012-3
– volume: 24
  start-page: 959
  year: 2011
  ident: 10.1016/j.ecoenv.2022.114196_bib7
  article-title: Zinc alleviates mercury-induced oxidative stress in Pfaffifia glomerata (Spreng.) Pedersen
  publication-title: Biometals
  doi: 10.1007/s10534-011-9457-y
– volume: 189
  start-page: 11049
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib17
  article-title: Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination
  publication-title: Ecotox. Environ. Safe
  doi: 10.1016/j.ecoenv.2019.110049
– volume: 182
  start-page: 248
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114196_bib26
  article-title: Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.07.025
– volume: 68
  start-page: 566
  year: 2011
  ident: 10.1016/j.ecoenv.2022.114196_bib12
  article-title: Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens
  publication-title: Sci. Agr.
  doi: 10.1590/S0103-90162011000500009
– volume: 102
  start-page: 50
  year: 2012
  ident: 10.1016/j.ecoenv.2022.114196_bib1
  article-title: Absorption and translocation of copper, zinc and chromium by Sesbania virgate
  publication-title: J. Environ. Manag
  doi: 10.1016/j.jenvman.2012.01.033
– volume: 253
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib5
  article-title: Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126692
– volume: 755
  year: 2021
  ident: 10.1016/j.ecoenv.2022.114196_bib33
  article-title: Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings (Avicennia marina): Arsenic phytoextraction, removal, and detoxification
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 1153
  issue: 11
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib54
  article-title: Accumulation and subcellular distribution of heavy metal in Paulownia fortunei cultivated in lead-zinc slag amended with peat
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2019.1612844
– volume: 6
  start-page: 299
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114196_bib18
  article-title: Nutrient homeostasis within the plant circadian network
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00299
– volume: 18
  start-page: 33
  issue: 1
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114196_bib20
  article-title: Organic acids, amino acids compositions in the root exudates and Cu accumulation in castor (Ricinus communis L.) under Cu stress
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2015.1058333
– volume: 7
  start-page: 918
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114196_bib31
  article-title: Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00918
– volume: 39
  start-page: 322
  issue: 4
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib42
  article-title: Mechanisms of cadmium accumulation in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2020.1792179
– volume: 162
  start-page: 571
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib50
  article-title: Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica chinensis
  publication-title: Ecotox. Environ. Safe
  doi: 10.1016/j.ecoenv.2018.07.041
– volume: 237
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib52
  article-title: A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124536
– volume: 371
  start-page: 233
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib29
  article-title: A newly discovered Cd-hyperaccumulator Lantana camara L
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.03.016
– volume: 246
  start-page: 101
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114196_bib47
  article-title: Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.05.126
– volume: 9
  start-page: 1476
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib43
  article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01476
– volume: 22
  start-page: 1403
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114196_bib16
  article-title: Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-013-1126-1
– volume: 642
  start-page: 690
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib48
  article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.068
– volume: 74
  start-page: 33
  year: 2011
  ident: 10.1016/j.ecoenv.2022.114196_bib32
  article-title: Inflfluence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2010.09.003
– volume: 216
  start-page: 273
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114196_bib35
  article-title: Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.080
– volume: 23
  start-page: 20977
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114196_bib8
  article-title: Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7323-8
– volume: 22
  start-page: 1204
  issue: 11
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib41
  article-title: Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2020.1754758
– volume: 287
  year: 2021
  ident: 10.1016/j.ecoenv.2022.114196_bib40
  article-title: A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils
  publication-title: Chemosphere
– volume: 393
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib49
  article-title: The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122482
– volume: 39
  start-page: 66
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114196_bib10
  article-title: Role of root exudates in metal acquisition and tolerance
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.06.004
– volume: 90
  start-page: 29
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib44
  article-title: Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-019-00548-5
– volume: 721
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114196_bib21
  article-title: Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137581
– volume: 17
  start-page: 1
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114196_bib30
  article-title: Potential use of cotton for remediating heavy metal-polluted soils in southern China
  publication-title: J. Soil Sediment.
  doi: 10.1007/s11368-017-1697-1
– volume: 25
  start-page: 18548
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114196_bib37
  article-title: Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2005-3
– volume: 249
  start-page: 37
  year: 2003
  ident: 10.1016/j.ecoenv.2022.114196_bib56
  article-title: Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens
  publication-title: Plant Soil
  doi: 10.1023/A:1022530217289
– volume: 180
  start-page: 303
  issue: 1–3
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib55
  article-title: Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.04.031
– volume: 20
  start-page: 1876
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114196_bib23
  article-title: Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-1413-z
– volume: 22
  start-page: 98
  issue: 1
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114196_bib25
  article-title: Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60080-2
– volume: 4
  start-page: 175
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114196_bib11
  article-title: Effect of lead on root growth
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00175
SSID ssj0003055
Score 2.3944724
Snippet Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114196
SubjectTerms Bioaccumulation
Element distribution
Heavy metal
Phytoextraction
Root exudation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIAgiuio-v4jg8QXbfDStN112WQTFgwuLl5CPiT5520pfn-B_byZpl9XLu0hPLWkbMtOZ36QzvyHkdd0mPwdKMRUqwaT2FbNRclYL2VatA6tzUdjHT835hfxwqS5vtPrCnLBCD1wW7k3XNi33EVqwTlbCORW1a230LuiYnBVa3-TzlmBqtsHIY1WSFzVrVC2Wormc2ZXiOuh_pdiQc6TKrZGw_4ZTytz9f_mmf6x0dj1n98m9GTPSd2WuD8gt6I_J7dPMN_37mNwtW2-0VBQ9JP3naGPcWPptO-CW02TpZkct_Z5CztF6v7_Cll3DSD2WtGDE_5aeBJpO6NeeTsMWsNkGrKl1u2HMJmVNpwxwYVzncQHpdudOWY_Ixdnpl5NzNrdVYF6qemKN1QgcQkxQLkiJMZTUbWProKqgLIeu6ZAxuEuhX9Vhe3WpKuuFqLHSWoN4TI76oYcnhEITgHtwWqXg1rs6HUJrJ7sGEkzifEXEsq7Gz5zj2Ppia5bksh-mSMOgNEyRxoqw67t-Fs6NA-Pfo8iuxyJjdr6Q9MjMemQO6dGK6EXgZgYfBVSkR20OvP7Voh8mfZv4w8X2MOx3husEKBWvRPf0f0zxGbmDry2VkM_J0TTu4UWCRJN7mbX_D6ssBzs
  priority: 102
  providerName: Directory of Open Access Journals
Title Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution
URI https://dx.doi.org/10.1016/j.ecoenv.2022.114196
https://www.proquest.com/docview/2725652039
https://doaj.org/article/98682cfe8eab403bb5f7b8afcbd7f129
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiSDIoafierpE8HHrtmnStL6dyx2r4uGDB4cvIR_Ts7K2R7cr-OLfbiZpT8-XA-lTwjQtmel8pDO_IeRVVno7B0IkwqV5wqVNE11zlmQ5L9PSgJahKOzjWbE-5-8vxMUeWU21MJhWOer-qNODth5nluNuLq-aZolpSbIQGE1hr4ICET-5n_Ey_frXnzQPRLSKaYwyQeqpfC7kePkID9ofPkpkDEFzM4Tu_8s8BRT_G1bqH30djNDpA3Iweo_0OL7gQ7IH7SG5exKQp38ekvvxEI7G2qJHpP1U67puNL3cdHj4NGjabKmmX33w2Wtrd9-xeVfXU4vFLRj7v6ErR_2Afmnp0G0A227Agmqz7fqgXBZ0CK4u9ItA5xB4d-yZ9Zicn558Xq2TscFCYrnIhqTQEl0IV3unznGO0RSXZaEzJ1InNIOqqBA7uPJBYFpho3UuUm3zPMOaawn5E7Lfdi08JRQKB8yCkcKHudZk_sqlNLwqwDtMjM1IPu2rsiP6ODbB2KgpzeybitxQyA0VuTEjyfVdVxF94xb6t8iya1rEzg4TXX-pRuFRVVmUzNZQgjY8zY0RtTSlrq1xsvbuz4zIieHqhij6pZpbHv9ykg_lv1L89aJb6HZbxaR3LQVL8-rZf69-RO7hKBZCPif7Q7-DF94jGsw8iPyc3Dl-92F9Ng_nCr8BWFkJDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQlhKCAujyNBLcNmzh2nCBxgNJqSx_i0EoVF2M7TptqSapstlUv_Cn-IB4nKZRLJaQqpziOE81M5uHMzAfwJkqdnbOcBzwP44AJEwaqYDSIYpaGqbZK-KKw3b1kesC-HPLDJfg11MJgWmWv-zud7rV1PzLpqTk5LcsJpiWJhGM0hVgFyYBgvW0vzl3cNv-w9dkx-S2lmxv769OghxYIDONRGyRKoPHMC-fO5IxhHMFEmqgo52HOFbVZkmHX3MyFP2GGEOOMh8rEcYTVxsLGbt1bcJs5dYGwCe9-_skrwRZaXd6kCPD1hno9n1TmQkpbnbmwlFLs0hshVsBf9tDDBlwxi_8YCG_1Nh_A_d5dJR87ijyEJVutwp0N3-r6YhXudbt-pCtmegTV10IVRanI0azG3a5WkXJOFDl20W6jjFn8QLSwuiEGq2lws-E9Wc-JOyHfKtLWM4s4H3ZMlJ7XjddmY9J639o2Yz8vx06_PUjXYzi4EbI_geWqruwaEJvklhqrBXdxtdGRO2IhNMsS6zw0SkcQD3SVpm93jqgbMznktZ3IjhsSuSE7bowguLzrtGv3cc38T8iyy7nYrNsP1M2R7KVVZmmSUlPY1CrNwlhrXgidqsLoXBTO3xqBGBgur8i-W6q85vGvB_mQTi3gvx5V2Xoxl1Q4X5bTMM6e_vfqr-DudH93R-5s7W0_gxW80lVhPofltlnYF84da_VLL_4Evt_09_YbRaM-_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pfaffia+glomerata+is+a+hyperaccumulator+candidate%3A+Cd+and+Zn+tolerance%2C+absorption%2C+transfer%2C+and+distribution&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Huang%2C+Rong&rft.au=Wu%2C+Zhimin&rft.au=Zhao%2C+Xinlin&rft.au=Li%2C+Feng&rft.date=2022-11-01&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=246&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.114196&rft.externalDocID=S0147651322010363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon