Feedback control of the acoustic pressure in ultrasonic wave propagation

The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constituti...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 68; no. 10; pp. 1811 - 1854
Main Authors Bucci, Francesca, Lasiecka, Irena
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.10.2019
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just in time; this leads to a singular control problem and to non-standard Riccati equations.
AbstractList The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just in time; this leads to a singular control problem and to non-standard Riccati equations.
The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just [Formula omitted.] in time; this leads to a singular control problem and to non-standard Riccati equations.
Author Bucci, Francesca
Lasiecka, Irena
Author_xml – sequence: 1
  givenname: Francesca
  surname: Bucci
  fullname: Bucci, Francesca
  organization: Dipartimento di Matematica, Università degli Studi di Firenze
– sequence: 2
  givenname: Irena
  surname: Lasiecka
  fullname: Lasiecka, Irena
  email: lasiecka@memphis.edu
  organization: IBS, Polish Academy of Sciences
BookMark eNqFkM1KAzEUhYNUsK0-gjDgemp-Zya4UYq1QsGNrkMmk2jqNKlJxtK3d8bWjQtdXbj3nHM53wSMnHcagEsEZwhW8BpiQhAndIYhqmaIQQoZOgFjBDHPKadsBMaDJh9EZ2AS4xpCjApMx2C50LqppXrPlHcp-DbzJktvOpPKdzFZlW2DjrELOrMu69oUZPSuX-_kp-5vfitfZbLenYNTI9uoL45zCl4W98_zZb56enic361yRRlKOTOkQIgzbChhsC5qbkhJa8Ik5gg2CFJWwKKSVCrCcVMhgygrS95oIg2tDZmCq0Nu__uj0zGJte-C618KjCtecVjRslexg0oFH2PQRmyD3ciwFwiKAZr4gSYGaOIIrffd_PIpm7779cVt-6_79uC2zviwkTsf2kYkuW99MEE6ZaMgf0d8AUf0hfc
CitedBy_id crossref_primary_10_1016_j_jde_2020_11_047
crossref_primary_10_1088_1751_8121_ab61cc
crossref_primary_10_1007_s11012_022_01551_3
crossref_primary_10_1007_s11424_024_3565_6
crossref_primary_10_3934_eect_2020085
crossref_primary_10_1016_j_jde_2021_05_011
crossref_primary_10_3934_dcdss_2022020
crossref_primary_10_1515_revce_2021_0086
crossref_primary_10_1007_s10957_022_02017_y
crossref_primary_10_1007_s00245_024_10144_3
crossref_primary_10_1007_s10884_022_10164_z
crossref_primary_10_3934_dcdss_2022107
crossref_primary_10_1002_mma_7462
crossref_primary_10_1007_s00021_020_00522_6
crossref_primary_10_1016_j_nonrwa_2021_103384
crossref_primary_10_3934_dcds_2022066
crossref_primary_10_1016_j_jde_2021_08_030
crossref_primary_10_33993_jnaat532_1486
crossref_primary_10_1007_s00028_022_00788_5
crossref_primary_10_1007_s00028_019_00549_x
crossref_primary_10_2478_candc_2022_0013
crossref_primary_10_1142_S0219199720500698
crossref_primary_10_5802_crmath_231
crossref_primary_10_1007_s10231_022_01295_7
Cites_doi 10.1016/j.physleta.2004.03.067
10.1080/14786445108646736
10.1007/s00245-016-9340-x
10.3934/dcdsb.2014.19.2189
10.1016/j.jmaa.2015.02.076
10.1002/mma.1576
10.1016/j.physleta.2010.04.054
10.1137/120867433
10.1016/j.jcp.2015.08.051
10.1016/j.jmaa.2009.03.043
10.1137/1.9781611970821
10.1142/S0218202512500352
10.1137/0330058
10.1016/j.aml.2016.07.008
10.3934/eect.2016010
10.3934/eect.2015.4.447
10.1121/1.1918525
10.1103/PhysRevLett.94.154301
10.3934/eect.2013.2.281
10.3934/eect.2016008
10.1007/s00245-016-9365-1
10.1090/memo/0852
10.1007/978-0-85729-043-4
10.1007/BF02191985
10.1016/j.jde.2016.06.025
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2018.1504051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1854
ExternalDocumentID 10_1080_02331934_2018_1504051
1504051
Genre Article
GrantInformation_xml – fundername: Groupement de Recherche Européen (GDRE)
– fundername: Università degli Studi di Firenze
  grantid: DMS-1713506
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c451t-5f3611952f4350b6b9f374b35a2910d10456068a4ac392d81f145779de3af4bf3
ISSN 0233-1934
IngestDate Wed Aug 13 11:17:04 EDT 2025
Thu Apr 24 23:44:08 EDT 2025
Tue Jul 01 03:52:12 EDT 2025
Wed Dec 25 09:07:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-5f3611952f4350b6b9f374b35a2910d10456068a4ac392d81f145779de3af4bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/full/10.1080/02331934.2018.1504051
PQID 2289890847
PQPubID 27961
PageCount 44
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2018_1504051
proquest_journals_2289890847
crossref_primary_10_1080_02331934_2018_1504051
crossref_citationtrail_10_1080_02331934_2018_1504051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-03
PublicationDateYYYYMMDD 2019-10-03
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0032
CIT0034
CIT0011
Lasiecka I (CIT0021) 1997; 36
CIT0033
Lasiecka I (CIT0013) 2000
Kaltenbacher B (CIT0017) 2011; 40
Triggiani R. (CIT0022) 1994; 7
Bensoussan A (CIT0012) 1994
CIT0036
CIT0035
CIT0016
Professor Stokes. (CIT0023) 1851; 4
CIT0018
CIT0019
Louis D (CIT0037) 1991; 105
CIT0020
Cattaneo C. (CIT0007) 1958; 247
Acquistapace P (CIT0015) 2005; 10
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – volume-title: Representation of control of infinite dimensional systems
  year: 1994
  ident: CIT0012
– ident: CIT0002
  doi: 10.1016/j.physleta.2004.03.067
– volume: 7
  start-page: 1109
  year: 1994
  ident: CIT0022
  publication-title: Diff Int Equat
– volume: 4
  start-page: 305
  issue: 1
  year: 1851
  ident: CIT0023
  publication-title: Philos Mag Series
  doi: 10.1080/14786445108646736
– ident: CIT0011
  doi: 10.1007/s00245-016-9340-x
– ident: CIT0003
  doi: 10.3934/dcdsb.2014.19.2189
– ident: CIT0010
  doi: 10.1016/j.jmaa.2015.02.076
– ident: CIT0018
  doi: 10.1002/mma.1576
– ident: CIT0005
  doi: 10.1016/j.physleta.2010.04.054
– ident: CIT0016
  doi: 10.1137/120867433
– ident: CIT0027
  doi: 10.1016/j.jcp.2015.08.051
– ident: CIT0009
  doi: 10.1016/j.jmaa.2009.03.043
– ident: CIT0028
  doi: 10.1137/1.9781611970821
– volume: 36
  start-page: 67
  year: 1997
  ident: CIT0021
  publication-title: Appl Math Optim
– ident: CIT0024
  doi: 10.1142/S0218202512500352
– ident: CIT0019
  doi: 10.1137/0330058
– ident: CIT0036
  doi: 10.1016/j.aml.2016.07.008
– volume: 105
  start-page: 157
  year: 1991
  ident: CIT0037
  publication-title: Annales de la Societé Scientifique de Bruxelles
– volume-title: Control of partial differential equations, encyclopedia of mathematics and its applications
  year: 2000
  ident: CIT0013
– ident: CIT0035
  doi: 10.3934/eect.2016010
– ident: CIT0004
  doi: 10.3934/eect.2015.4.447
– ident: CIT0006
  doi: 10.1121/1.1918525
– volume: 40
  start-page: 971
  issue: 4
  year: 2011
  ident: CIT0017
  publication-title: Control Cybernet
– ident: CIT0033
  doi: 10.1103/PhysRevLett.94.154301
– ident: CIT0008
  doi: 10.3934/eect.2013.2.281
– ident: CIT0032
  doi: 10.3934/eect.2016008
– volume: 10
  start-page: 1389
  issue: 12
  year: 2005
  ident: CIT0015
  publication-title: Adv Diff Equat
– ident: CIT0030
  doi: 10.1007/s00245-016-9365-1
– volume: 247
  start-page: 431
  year: 1958
  ident: CIT0007
  publication-title: C.R. Acad Sci Paris
– ident: CIT0026
  doi: 10.1090/memo/0852
– ident: CIT0025
  doi: 10.1007/978-0-85729-043-4
– ident: CIT0020
  doi: 10.1007/BF02191985
– ident: CIT0034
  doi: 10.1016/j.jde.2016.06.025
SSID ssj0021624
Score 2.38059
Snippet The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1811
SubjectTerms Acoustic propagation
Acoustic velocity
Acoustics
Feedback control
Fourier law
Heat flux
Industrial applications
Linear equations
non-standard Riccati equations
Optimal control
Partial differential equations
Propagation
singular boundary control
Ultrasonic imaging
Ultrasound
Ultrasound waves
Wave propagation
Title Feedback control of the acoustic pressure in ultrasonic wave propagation
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1504051
https://www.proquest.com/docview/2289890847
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBZbe9kOY5-sazd02K04WJb8oWPpGrKStReHhV2EJEsQ2rojcRjs1--VLdkuDeu6izEOsoLeR48eWe8HQp9jmDLWcBlVRtqImUoBD7qIZQPUJ1XFCXUBzt8ustmCnS_TZahm76NLGjXRv3fGlfyPVeEZ2NVFyT7Csv1L4QHcg33hChaG6z_ZeApLj5L6qnc49wf-wHJtka7j1svVHRGs6uPtdbOWm7bgzS9XcgioE8hkMIxXqJfAITc-OLPfq2-1XgWZC8QyuPfM5WZl9FWrQL-uTVeKO3xFILz1R6O93ct7BT36osUdFyWURqD1ur2_6bjSec4w3mWDDGSaFWPQxCNqBClBdnK2d3KEHlwHztuumIBMBSVJhkUqHMxfXIrpYj4X5dmyfIr2E9gcALvtn8y-_Pjeb7RJ1hYz7v90iNxyOdV3dXNHk9zJWHtvhW5lR_kSvfD7BXzSGf8VemLq1-j5KIvkGzQLMMAeBvjWYoABDjDAAQZ4VeMBBtjBAI9g8BYtpmfl6SzyBTIizVLSRKmlmUvZl1gQvbHKFLc0Z4qmMgEVWBEn1-OskExqkMFVQSxhaZ7zylBpmbL0Hdqrb2vzHmGrXSp_onnOY6ZiKlklbZUzaZI4qXhxgFgYIqF99nhXxORakJBk1o-scCMr_MgeoEnf7GeXPuWhBnw8_qJpgWk7TAr6QNujYCzhZ-lGJIkrkBqDCPvw958P0bNhYhyhvWa9NR9BcDbqk8fXH3wlelc
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGA2tKHDtJPSJEVaDtVCQ2y45thEAtKilI_HrunAS1IMTAbJ2V2Pf4zrr7jpCzGEzGO6kj67SPhLMG_CB2LDtwfdpYyTg2OPcHWfdO3Nyn9zO9MFhWiTm0r4gigq9G48bH6KYk7hziDGgOxycR1m4BpAHUARnQUiqzHHWdx4OvpItlYbAtikQo03Tx_LbNXHyaYy_94a1DCOqsk6L5-Kry5Kk1LU2r-PjG6_i_v9sgazVCpReVSm2SBTfaIqszvIXbpNuBmGd08UTrSnc69hSQJAX3GqaD0VBeO504-jii0-dyol-Rgpe-6zcHa5CoPwSN2CF3navhZTeqRzJEhUhZGaWeZ0gSl3iAWbHJjPQ8F4anOgHcYRkCxDhra6ELAF62zTwTaZ5L67j2wni-SxZH45HbI9QXSB7PCpnLWJiYa2G1t7nQLokTK9v7RDQXoYqarxzHZjwr1tCa1gel8KBUfVD7pPUl9lIRdvwlIGdvWZXhpcRXY00U_0P2qFEJVdv-q0oSHMkZQ9g_-MfWp2S5O-z3VO96cHtIVmBJhhpCfkQWy8nUHQMWKs1JUPZPQ4r5DQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLa7PHLy2Nk3abo6ilvW1eHDBW0iaRGSlLrtdBX-9k7SVVREPnsOENpnHN2HmG4SOIzAZa7gMtJE2YEYr8IOuY9mA65NKc0Jdg_NtP-0N2NVD0lYTTpqySpdD25oowvtqZ9wjbduKuBMIM6A41L2IkG4IiAZAByRAC6lrtHRdHFH_M-ciqZ9r60QCJ9M28fy2zZfw9IW89Iez9hEoX0Wq_fa68GQYTisVFu_faB3_9XNraKXBp_i0Vqh1NGfKDbQ8w1q4iXo5RDwliyFu6tzxi8WAIzE4Vz8bDPvi2unY4KcST5-rsZw4Al78Jl8NrEGa_uj1YQsN8ov7s17QDGQICpaQKkgsTR1FXGwBZEUqVdzSjCmayBhQhyYOHkZpVzJZAOzSXWIJS7KMa0OlZcrSbTRfvpRmB2FbOOp4UvCMR0xFVDItrc6YNHEUa97tINbegygatnI3NONZkJbUtDko4Q5KNAfVQeGn2Kim6_hLgM9esqj8O4mth5oI-ofsfqsRorH8iYhjN5AzgqC_-4-tj9Di3Xkubi7713toCVa4LyCk-2i-Gk_NAQChSh16Vf8AJ4X3sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback+control+of+the+acoustic+pressure+in+ultrasonic+wave+propagation&rft.jtitle=Optimization&rft.au=Bucci%2C+Francesca&rft.au=Lasiecka%2C+Irena&rft.date=2019-10-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=10&rft.spage=1811&rft_id=info:doi/10.1080%2F02331934.2018.1504051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon