Feedback control of the acoustic pressure in ultrasonic wave propagation
The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constituti...
Saved in:
Published in | Optimization Vol. 68; no. 10; pp. 1811 - 1854 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.10.2019
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just
in time; this leads to a singular control problem and to non-standard Riccati equations. |
---|---|
AbstractList | The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just
in time; this leads to a singular control problem and to non-standard Riccati equations. The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in ultrasound wave propagation, and where the paradox of infinite speed of propagation of thermal signals is eliminated; the use of the constitutive Cattaneo law for the heat flux, in place of the Fourier law, accounts for its being of third order in time. A great deal of attention has been recently devoted to its linearization - referred to in the literature as the Moore-Gibson-Thompson equation - whose analysis poses already several questions and mathematical challenges. In this work, we consider and solve a quadratic control problem associated with the linear equation, formulated consistently with the goal of keeping the acoustic pressure close to a reference pressure during ultrasound excitation, as required in medical and industrial applications. While optimal control problems with smooth controls have been considered in the recent literature, we aim at relying on controls which are just [Formula omitted.] in time; this leads to a singular control problem and to non-standard Riccati equations. |
Author | Bucci, Francesca Lasiecka, Irena |
Author_xml | – sequence: 1 givenname: Francesca surname: Bucci fullname: Bucci, Francesca organization: Dipartimento di Matematica, Università degli Studi di Firenze – sequence: 2 givenname: Irena surname: Lasiecka fullname: Lasiecka, Irena email: lasiecka@memphis.edu organization: IBS, Polish Academy of Sciences |
BookMark | eNqFkM1KAzEUhYNUsK0-gjDgemp-Zya4UYq1QsGNrkMmk2jqNKlJxtK3d8bWjQtdXbj3nHM53wSMnHcagEsEZwhW8BpiQhAndIYhqmaIQQoZOgFjBDHPKadsBMaDJh9EZ2AS4xpCjApMx2C50LqppXrPlHcp-DbzJktvOpPKdzFZlW2DjrELOrMu69oUZPSuX-_kp-5vfitfZbLenYNTI9uoL45zCl4W98_zZb56enic361yRRlKOTOkQIgzbChhsC5qbkhJa8Ik5gg2CFJWwKKSVCrCcVMhgygrS95oIg2tDZmCq0Nu__uj0zGJte-C618KjCtecVjRslexg0oFH2PQRmyD3ciwFwiKAZr4gSYGaOIIrffd_PIpm7779cVt-6_79uC2zviwkTsf2kYkuW99MEE6ZaMgf0d8AUf0hfc |
CitedBy_id | crossref_primary_10_1016_j_jde_2020_11_047 crossref_primary_10_1088_1751_8121_ab61cc crossref_primary_10_1007_s11012_022_01551_3 crossref_primary_10_1007_s11424_024_3565_6 crossref_primary_10_3934_eect_2020085 crossref_primary_10_1016_j_jde_2021_05_011 crossref_primary_10_3934_dcdss_2022020 crossref_primary_10_1515_revce_2021_0086 crossref_primary_10_1007_s10957_022_02017_y crossref_primary_10_1007_s00245_024_10144_3 crossref_primary_10_1007_s10884_022_10164_z crossref_primary_10_3934_dcdss_2022107 crossref_primary_10_1002_mma_7462 crossref_primary_10_1007_s00021_020_00522_6 crossref_primary_10_1016_j_nonrwa_2021_103384 crossref_primary_10_3934_dcds_2022066 crossref_primary_10_1016_j_jde_2021_08_030 crossref_primary_10_33993_jnaat532_1486 crossref_primary_10_1007_s00028_022_00788_5 crossref_primary_10_1007_s00028_019_00549_x crossref_primary_10_2478_candc_2022_0013 crossref_primary_10_1142_S0219199720500698 crossref_primary_10_5802_crmath_231 crossref_primary_10_1007_s10231_022_01295_7 |
Cites_doi | 10.1016/j.physleta.2004.03.067 10.1080/14786445108646736 10.1007/s00245-016-9340-x 10.3934/dcdsb.2014.19.2189 10.1016/j.jmaa.2015.02.076 10.1002/mma.1576 10.1016/j.physleta.2010.04.054 10.1137/120867433 10.1016/j.jcp.2015.08.051 10.1016/j.jmaa.2009.03.043 10.1137/1.9781611970821 10.1142/S0218202512500352 10.1137/0330058 10.1016/j.aml.2016.07.008 10.3934/eect.2016010 10.3934/eect.2015.4.447 10.1121/1.1918525 10.1103/PhysRevLett.94.154301 10.3934/eect.2013.2.281 10.3934/eect.2016008 10.1007/s00245-016-9365-1 10.1090/memo/0852 10.1007/978-0-85729-043-4 10.1007/BF02191985 10.1016/j.jde.2016.06.025 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1080/02331934.2018.1504051 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4945 |
EndPage | 1854 |
ExternalDocumentID | 10_1080_02331934_2018_1504051 1504051 |
Genre | Article |
GrantInformation_xml | – fundername: Groupement de Recherche Européen (GDRE) – fundername: Università degli Studi di Firenze grantid: DMS-1713506 |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c451t-5f3611952f4350b6b9f374b35a2910d10456068a4ac392d81f145779de3af4bf3 |
ISSN | 0233-1934 |
IngestDate | Wed Aug 13 11:17:04 EDT 2025 Thu Apr 24 23:44:08 EDT 2025 Tue Jul 01 03:52:12 EDT 2025 Wed Dec 25 09:07:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-5f3611952f4350b6b9f374b35a2910d10456068a4ac392d81f145779de3af4bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/full/10.1080/02331934.2018.1504051 |
PQID | 2289890847 |
PQPubID | 27961 |
PageCount | 44 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02331934_2018_1504051 proquest_journals_2289890847 crossref_primary_10_1080_02331934_2018_1504051 crossref_citationtrail_10_1080_02331934_2018_1504051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-03 |
PublicationDateYYYYMMDD | 2019-10-03 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | CIT0030 CIT0010 CIT0032 CIT0034 CIT0011 Lasiecka I (CIT0021) 1997; 36 CIT0033 Lasiecka I (CIT0013) 2000 Kaltenbacher B (CIT0017) 2011; 40 Triggiani R. (CIT0022) 1994; 7 Bensoussan A (CIT0012) 1994 CIT0036 CIT0035 CIT0016 Professor Stokes. (CIT0023) 1851; 4 CIT0018 CIT0019 Louis D (CIT0037) 1991; 105 CIT0020 Cattaneo C. (CIT0007) 1958; 247 Acquistapace P (CIT0015) 2005; 10 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – volume-title: Representation of control of infinite dimensional systems year: 1994 ident: CIT0012 – ident: CIT0002 doi: 10.1016/j.physleta.2004.03.067 – volume: 7 start-page: 1109 year: 1994 ident: CIT0022 publication-title: Diff Int Equat – volume: 4 start-page: 305 issue: 1 year: 1851 ident: CIT0023 publication-title: Philos Mag Series doi: 10.1080/14786445108646736 – ident: CIT0011 doi: 10.1007/s00245-016-9340-x – ident: CIT0003 doi: 10.3934/dcdsb.2014.19.2189 – ident: CIT0010 doi: 10.1016/j.jmaa.2015.02.076 – ident: CIT0018 doi: 10.1002/mma.1576 – ident: CIT0005 doi: 10.1016/j.physleta.2010.04.054 – ident: CIT0016 doi: 10.1137/120867433 – ident: CIT0027 doi: 10.1016/j.jcp.2015.08.051 – ident: CIT0009 doi: 10.1016/j.jmaa.2009.03.043 – ident: CIT0028 doi: 10.1137/1.9781611970821 – volume: 36 start-page: 67 year: 1997 ident: CIT0021 publication-title: Appl Math Optim – ident: CIT0024 doi: 10.1142/S0218202512500352 – ident: CIT0019 doi: 10.1137/0330058 – ident: CIT0036 doi: 10.1016/j.aml.2016.07.008 – volume: 105 start-page: 157 year: 1991 ident: CIT0037 publication-title: Annales de la Societé Scientifique de Bruxelles – volume-title: Control of partial differential equations, encyclopedia of mathematics and its applications year: 2000 ident: CIT0013 – ident: CIT0035 doi: 10.3934/eect.2016010 – ident: CIT0004 doi: 10.3934/eect.2015.4.447 – ident: CIT0006 doi: 10.1121/1.1918525 – volume: 40 start-page: 971 issue: 4 year: 2011 ident: CIT0017 publication-title: Control Cybernet – ident: CIT0033 doi: 10.1103/PhysRevLett.94.154301 – ident: CIT0008 doi: 10.3934/eect.2013.2.281 – ident: CIT0032 doi: 10.3934/eect.2016008 – volume: 10 start-page: 1389 issue: 12 year: 2005 ident: CIT0015 publication-title: Adv Diff Equat – ident: CIT0030 doi: 10.1007/s00245-016-9365-1 – volume: 247 start-page: 431 year: 1958 ident: CIT0007 publication-title: C.R. Acad Sci Paris – ident: CIT0026 doi: 10.1090/memo/0852 – ident: CIT0025 doi: 10.1007/978-0-85729-043-4 – ident: CIT0020 doi: 10.1007/BF02191985 – ident: CIT0034 doi: 10.1016/j.jde.2016.06.025 |
SSID | ssj0021624 |
Score | 2.38059 |
Snippet | The Jordan-Moore-Gibson-Thompson equation is a prominent example of a Partial Differential Equation model which describes the acoustic velocity potential in... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1811 |
SubjectTerms | Acoustic propagation Acoustic velocity Acoustics Feedback control Fourier law Heat flux Industrial applications Linear equations non-standard Riccati equations Optimal control Partial differential equations Propagation singular boundary control Ultrasonic imaging Ultrasound Ultrasound waves Wave propagation |
Title | Feedback control of the acoustic pressure in ultrasonic wave propagation |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1504051 https://www.proquest.com/docview/2289890847 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBZbe9kOY5-sazd02K04WJb8oWPpGrKStReHhV2EJEsQ2rojcRjs1--VLdkuDeu6izEOsoLeR48eWe8HQp9jmDLWcBlVRtqImUoBD7qIZQPUJ1XFCXUBzt8ustmCnS_TZahm76NLGjXRv3fGlfyPVeEZ2NVFyT7Csv1L4QHcg33hChaG6z_ZeApLj5L6qnc49wf-wHJtka7j1svVHRGs6uPtdbOWm7bgzS9XcgioE8hkMIxXqJfAITc-OLPfq2-1XgWZC8QyuPfM5WZl9FWrQL-uTVeKO3xFILz1R6O93ct7BT36osUdFyWURqD1ur2_6bjSec4w3mWDDGSaFWPQxCNqBClBdnK2d3KEHlwHztuumIBMBSVJhkUqHMxfXIrpYj4X5dmyfIr2E9gcALvtn8y-_Pjeb7RJ1hYz7v90iNxyOdV3dXNHk9zJWHtvhW5lR_kSvfD7BXzSGf8VemLq1-j5KIvkGzQLMMAeBvjWYoABDjDAAQZ4VeMBBtjBAI9g8BYtpmfl6SzyBTIizVLSRKmlmUvZl1gQvbHKFLc0Z4qmMgEVWBEn1-OskExqkMFVQSxhaZ7zylBpmbL0Hdqrb2vzHmGrXSp_onnOY6ZiKlklbZUzaZI4qXhxgFgYIqF99nhXxORakJBk1o-scCMr_MgeoEnf7GeXPuWhBnw8_qJpgWk7TAr6QNujYCzhZ-lGJIkrkBqDCPvw958P0bNhYhyhvWa9NR9BcDbqk8fXH3wlelc |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGA2tKHDtJPSJEVaDtVCQ2y45thEAtKilI_HrunAS1IMTAbJ2V2Pf4zrr7jpCzGEzGO6kj67SPhLMG_CB2LDtwfdpYyTg2OPcHWfdO3Nyn9zO9MFhWiTm0r4gigq9G48bH6KYk7hziDGgOxycR1m4BpAHUARnQUiqzHHWdx4OvpItlYbAtikQo03Tx_LbNXHyaYy_94a1DCOqsk6L5-Kry5Kk1LU2r-PjG6_i_v9sgazVCpReVSm2SBTfaIqszvIXbpNuBmGd08UTrSnc69hSQJAX3GqaD0VBeO504-jii0-dyol-Rgpe-6zcHa5CoPwSN2CF3navhZTeqRzJEhUhZGaWeZ0gSl3iAWbHJjPQ8F4anOgHcYRkCxDhra6ELAF62zTwTaZ5L67j2wni-SxZH45HbI9QXSB7PCpnLWJiYa2G1t7nQLokTK9v7RDQXoYqarxzHZjwr1tCa1gel8KBUfVD7pPUl9lIRdvwlIGdvWZXhpcRXY00U_0P2qFEJVdv-q0oSHMkZQ9g_-MfWp2S5O-z3VO96cHtIVmBJhhpCfkQWy8nUHQMWKs1JUPZPQ4r5DQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLa7PHLy2Nk3abo6ilvW1eHDBW0iaRGSlLrtdBX-9k7SVVREPnsOENpnHN2HmG4SOIzAZa7gMtJE2YEYr8IOuY9mA65NKc0Jdg_NtP-0N2NVD0lYTTpqySpdD25oowvtqZ9wjbduKuBMIM6A41L2IkG4IiAZAByRAC6lrtHRdHFH_M-ciqZ9r60QCJ9M28fy2zZfw9IW89Iez9hEoX0Wq_fa68GQYTisVFu_faB3_9XNraKXBp_i0Vqh1NGfKDbQ8w1q4iXo5RDwliyFu6tzxi8WAIzE4Vz8bDPvi2unY4KcST5-rsZw4Al78Jl8NrEGa_uj1YQsN8ov7s17QDGQICpaQKkgsTR1FXGwBZEUqVdzSjCmayBhQhyYOHkZpVzJZAOzSXWIJS7KMa0OlZcrSbTRfvpRmB2FbOOp4UvCMR0xFVDItrc6YNHEUa97tINbegygatnI3NONZkJbUtDko4Q5KNAfVQeGn2Kim6_hLgM9esqj8O4mth5oI-ofsfqsRorH8iYhjN5AzgqC_-4-tj9Di3Xkubi7713toCVa4LyCk-2i-Gk_NAQChSh16Vf8AJ4X3sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback+control+of+the+acoustic+pressure+in+ultrasonic+wave+propagation&rft.jtitle=Optimization&rft.au=Bucci%2C+Francesca&rft.au=Lasiecka%2C+Irena&rft.date=2019-10-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=10&rft.spage=1811&rft_id=info:doi/10.1080%2F02331934.2018.1504051&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |