RG and logarithmic CFT multicritical properties of randomly diluted Ising models
A bstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 12; pp. 1 - 27 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2020
Springer Nature B.V Springer SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1126-6708 1029-8479 |
DOI | 10.1007/JHEP12(2020)105 |
Cover
Loading…
Abstract | A
bstract
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the
ϵ
-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT. |
---|---|
AbstractList | A
bstract
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the
ϵ
-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT. We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT. We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ -expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT. Abstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT. |
ArticleNumber | 105 |
Author | Zanusso, O. Zinati, R. Ben Alì |
Author_xml | – sequence: 1 givenname: R. Ben Alì orcidid: 0000-0002-3881-5868 surname: Zinati fullname: Zinati, R. Ben Alì email: riccardo.ben_ali_zinati@sorbonne-universite.fr organization: Sorbonne Université & CNRS, Laboratoire de Physique Théorique de la Matière Condensée – sequence: 2 givenname: O. orcidid: 0000-0002-6871-1883 surname: Zanusso fullname: Zanusso, O. organization: Università di Pisa and INFN — Sezione di Pisa |
BackLink | https://hal.science/hal-02899266$$DView record in HAL |
BookMark | eNp1kU1rGzEYhEVJoUnac6-CXpqDm1eyPlbHYJLYxdBQ0rOQ9eHIaFeutA7k31futrQJ5CQxzDOMNGfoZMiDR-gjgS8EQF5-XV7fEfqZAoULAvwNOiVA1axjUp38d3-HzmrdARBOFJyiu--32AwOp7w1JY4PfbR4cXOP-0Mao21KtCbhfcl7X8boK84BlwbkPj1hF9Nh9A6vahy2uM_Op_oevQ0mVf_hz3mOftxc3y-Ws_W329Xiaj2zjJNxxjvuiLMbGVSgNghpwQvYWMetD9QY6udKSeCUkU44FSyYueg4eIAgmRPzc7Sacl02O70vsTflSWcT9W8hl602rbFNXrtOGLGRjglCmfR84x0PAQIzrKMd2JZ1MWU9mPQsanm11kcNaKcUFeKRNO-nydv-5OfB11Hv8qEM7am6hc8ZlUQc2_HJZUuutfigbRzNGPMwFhOTJqCPo-lpNH0crQm8cZcvuL91XidgImpzDltf_vV5DfkFtIiouw |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_020_08687_0 crossref_primary_10_1007_JHEP08_2021_060 crossref_primary_10_1007_JHEP12_2020_105 |
Cites_doi | 10.1016/0370-2693(93)90726-X 10.1016/0167-2789(85)90154-X 10.1016/0375-9601(73)90799-8 10.1016/j.aop.2007.10.005 10.1103/PhysRevD.101.105007 10.1007/JHEP07(2017)019 10.1016/0550-3213(93)90528-W 10.1103/PhysRevB.13.1329 10.1142/S0217751X03016860 10.1051/jphys:01982004307099100 10.1080/01411598808245480 10.1007/JHEP05(2018)051 10.1016/j.cpc.2014.02.006 10.1070/PU1995v038n05ABEH000084 10.1088/1751-8113/46/49/494006 10.1016/j.cpc.2008.05.009 10.1007/JHEP04(2017)127 10.1088/1751-8113/46/49/494001 10.1140/epjc/s10052-017-5505-2 10.1007/JHEP04(2019)152 10.1051/jphyslet:0197500360305500 10.1017/CBO9781316036440 10.1103/PhysRevB.65.140402 10.3390/universe5060151 10.1007/JHEP10(2017)201 10.1088/1751-8113/46/49/494003 10.1063/1.30103 10.1142/S0217751X03016859 10.1103/PhysRevB.16.3987 10.1007/JHEP12(2020)105 10.1103/PhysRevB.13.2007 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC DOA |
DOI | 10.1007/JHEP12(2020)105 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 27 |
ExternalDocumentID | oai_doaj_org_article_d86a6b7d461247e5bed5ff0f4a48280c oai_HAL_hal_02899266v1 10_1007_JHEP12_2020_105 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC PUEGO |
ID | FETCH-LOGICAL-c451t-585d1dcb7f9f2cf67c0e60bcd5cef2aa2e39970524186d9fc0a36850e00f74d63 |
IEDL.DBID | C24 |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:29:05 EDT 2025 Fri May 09 12:18:27 EDT 2025 Fri Aug 08 01:10:43 EDT 2025 Tue Jul 01 00:58:58 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Fri Feb 21 02:49:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Discrete Symmetries Random Systems Renormalization Group Conformal Field Theory universality field theory: conformal spin Ising model quenching |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-585d1dcb7f9f2cf67c0e60bcd5cef2aa2e39970524186d9fc0a36850e00f74d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3881-5868 0000-0002-6871-1883 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP12(2020)105 |
PQID | 2473427166 |
PQPubID | 2034718 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d86a6b7d461247e5bed5ff0f4a48280c hal_primary_oai_HAL_hal_02899266v1 proquest_journals_2473427166 crossref_citationtrail_10_1007_JHEP12_2020_105 crossref_primary_10_1007_JHEP12_2020_105 springer_journals_10_1007_JHEP12_2020_105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
References | CodelloASafariMVaccaGPZanussoOLeading CFT constraints on multi-critical models in d > 2JHEP2017041272017JHEP...04..127C365014110.1007/JHEP04(2017)127[arXiv:1703.04830] [INSPIRE] R. Ben Alì Zinati, A. Codello and O. Zanusso, to appear, (2020). T. Nattermann, Theory of the Random Field Ising Model, in Spin Glasses And Random Fields. Series on Directions in Condensed Matter Physics12 (1997) 277, World Scientific, [cond-mat/9705295] [DOI]. A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE]. C.M. Bender, V. Branchina and E. Messina, Ordinary versus PT-symmetric ϕ3quantum field theory, Phys. Rev. D85 (2012) 085001 [arXiv:1201.1244] [INSPIRE]. R. Ben Alì Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech.1801 (2018) 013206 [arXiv:1707.03410] [INSPIRE]. FlohrMBits and pieces in logarithmic conformal field theoryInt. J. Mod. Phys. A20031844972003IJMPA..18.4497F203063210.1142/S0217751X03016859[hep-th/0111228] [INSPIRE] V.V. Prudnikov, P.V. Prudnikov and A.A. Fedorenko, Stability of critical behavior of weakly disordered systems with respect to the replica symmetry breaking, Phys. Rev. B63 (2001) 184201 [cond-mat/0012401]. CreutzigTRidoutDLogarithmic Conformal Field Theory: Beyond an IntroductionJ. Phys. A2013464006314601210.1088/1751-8113/46/49/494006[arXiv:1303.0847] [INSPIRE] Martín-GarcíaJMxPerm: fast index canonicalization for tensor computer algebraComput. Phys. Commun.20081795972008CoPhC.179..597M10.1016/j.cpc.2008.05.009[arXiv:0803.0862] J.L. Cardy, Logarithmic correlations in quenched random magnets and polymers, cond-mat/9911024 [INSPIRE]. A. Codello, M. Safari, G.P. Vacca and O. Zanusso, New universality class in three dimensions: The critical Blume-Capel model, Phys. Rev. D96 (2017) 081701 [arXiv:1706.06887] [INSPIRE]. A. Aharony, Y. Imry and S.-k. Ma, Comments on the critical behavior of random systems, Phys. Rev. B13 (1976) 466. S. Giombi, R. Huang, I.R. Klebanov, S.S. Pufu and G. Tarnopolsky, The O(N) Model in 4 < d < 6: Instantons and complex CFTs, Phys. Rev. D101 (2020) 045013 [arXiv:1910.02462] [INSPIRE]. A. Pelissetto and E. Vicari, Randomly dilute spin models: A six loop field theoretic study, Phys. Rev. B62 (2000) 6393 [cond-mat/0002402] [INSPIRE]. StephenMJTricritical points in random systemsPhys. Rev. B19761320071976PhRvB..13.2007S10.1103/PhysRevB.13.2007 CardyJLNonperturbative aspects of supersymmetry in statistical mechanicsPhysica D1985151231985PhyD...15..123C10.1016/0167-2789(85)90154-X C. Itzykson and J.-M. Drouffe, Statistical field theory: volume 2, strong coupling, Monte Carlo methods, conformal field theory and random systems, volume 2, Cambridge University Press, (1991). J.M. Martín-García, xAct: efficient tensor computer algebra for Mathematica, (2013), http://xact.es/. ZinatiRBACodelloAGoriGPlatonic Field TheoriesJHEP2019041522019JHEP...04..152Z395392210.1007/JHEP04(2019)152[arXiv:1902.05328] [INSPIRE] GaberdielMRAn algebraic approach to logarithmic conformal field theoryInt. J. Mod. Phys. A20031845932003IJMPA..18.4593G203063310.1142/S0217751X03016860[hep-th/0111260] [INSPIRE] M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, volume 9, World Scientific Publishing Company, (1987). GurarieVLogarithmic operators and logarithmic conformal field theoriesJ. Phys. A201346494003314600910.1088/1751-8113/46/49/494003[arXiv:1303.1113] [INSPIRE] NutmaTxTras : A field-theory inspired xAct package for mathematicaComput. Phys. Commun.201418517192014CoPhC.185.1719N10.1016/j.cpc.2014.02.006[arXiv:1308.3493] [INSPIRE] OsbornHStergiouASeeking fixed points in multiple coupling scalar theories in the ϵ expansionJHEP2018050512018JHEP...05..051O383271210.1007/JHEP05(2018)051[arXiv:1707.06165] [INSPIRE] HogervorstMPaulosMVichiAThe ABC (in any D) of Logarithmic CFTJHEP2017102012017JHEP...10..201H373008910.1007/JHEP10(2017)201[arXiv:1605.03959] [INSPIRE] DeyPKavirajASinhaAMellin space bootstrap for global symmetryJHEP2017070192017JHEP...07..019D368838110.1007/JHEP07(2017)019[arXiv:1612.05032] [INSPIRE] DotsenkoVSCritical phenomena and quenched disorderPhys. Usp.1995384571995PhyU...38..457D10.1070/PU1995v038n05ABEH000084[INSPIRE] CodelloASafariMVaccaGPZanussoOFunctional perturbative RG and CFT data in the ϵ-expansionEur. Phys. J. C201878302018EPJC...78...30C10.1140/epjc/s10052-017-5505-2[arXiv:1705.05558] [INSPIRE] J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge university press, (1996). De GennesPCollapse of a polymer chain in poor solventsJ. Physique Lett.1975365510.1051/jphyslet:0197500360305500 PaganiCSonodaHOperator product expansion coefficients in the exact renormalization group formalismPhys. Rev. D20201011050072020PhRvD.101j5007P411150310.1103/PhysRevD.101.105007[arXiv:2001.07015] [INSPIRE] GrinsteinGLutherAApplication of the renormalization group to phase transitions in disordered systemsPhys. Rev. B19761313291976PhRvB..13.1329G10.1103/PhysRevB.13.1329[INSPIRE] M. Kompaniets and K.J. Wiese, Fractal dimension of critical curves in the O(n)-symmetric ϕ4model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models, Phys. Rev. E101 (2020) 012104 [arXiv:1908.07502] [INSPIRE]. StephenMMcCauleyJFeynman graph expansion for tricritical exponentsPhys. Lett. A197344891973PhLA...44...89S10.1016/0375-9601(73)90799-8 JayaprakashCKatzHJHigher-order corrections to theϵ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upepsilon}^{\frac{1}{2}} $$\end{document}expansion of the critical behavior of the random ising systemPhys. Rev. B19771639871977PhRvB..16.3987J10.1103/PhysRevB.16.3987 KhmelnitskiiDSecond-order phase transition in inhomogeneous bodiesZh. Eksp. Teor. Fiz.1975411960 O’DwyerJOsbornHE-expansion for Multicritical Fixed Points and Exact Renormalisation Group EquationsAnnals Phys.200832318592008AnPhy.323.1859O242819010.1016/j.aop.2007.10.005[arXiv:0708.2697] [INSPIRE] A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE]. V. Dotsenko and D.E. Feldman, Replica symmetry breaking and the renormalization group theory of the weakly disordered ferromagnet, J. Phys. A28 (1995) 5183 [cond-mat/9502061]. LubenskyTCHarrisABEffect of randomness on critical behavior of spin modelsAIP Conf. Proc.1975243111975AIPC...24..311L10.1063/1.30103 L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D95 (2017) 085001 [arXiv:1612.08739] [INSPIRE]. P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A38 (1972) 339 [INSPIRE]. V. Dotsenko, A.B. Harris, D. Sherrington and R.B. Stinchcombe, Replica-symmetry breaking in the critical behaviour of the random ferromagnet, J. Phys. A28 (1995) 3093 [cond-mat/9412106]. A.L. Lewis and F.W. Adams, Tricritical behavior in two dimensions. 2. Universal quantities from the ϵ-expansion, Phys. Rev. B18 (1978) 5099 [INSPIRE]. DuplantierBLagrangian tricritical theory of polymer chain solutions near the θ-pointJ. Phys. France19824399166583910.1051/jphys:01982004307099100 C.M. Bender, V. Branchina and E. Messina, Critical behavior of the PT-symmetric iφ3 quantum field theory, Phys. Rev. D87 (2013) 085029 [arXiv:1301.6207] [INSPIRE]. CardyJLogarithmic conformal field theories as limits of ordinary CFTs and some physical applicationsJ. Phys. A201346494001314600710.1088/1751-8113/46/49/494001[arXiv:1302.4279] [INSPIRE] WetterichCExact evolution equation for the effective potentialPhys. Lett. B1993301901993PhLB..301...90W10.1016/0370-2693(93)90726-X[arXiv:1710.05815] [INSPIRE] M. Tissier, D. Mouhanna, J. Vidal and B. Delamotte, Randomly dilute Ising model: A nonperturbative approach, Phys. Rev. B65 (2002) 140402 [cond-mat/0109176] [INSPIRE]. HarrisABEffect of random defects on the critical behaviour of Ising modelsJ. Phys.1974716711974JPhC....7.1671H[INSPIRE] GurarieVLogarithmic operators in conformal field theoryNucl. Phys. B19934105351993NuPhB.410..535G125642210.1016/0550-3213(93)90528-W[hep-th/9303160] [INSPIRE] VaccaGPCodelloASafariMZanussoOMulti-critical multi-field models: a CFT approach to the leading orderUniverse201951512019Univ....5..151V10.3390/universe5060151[arXiv:1905.01086] [INSPIRE] NattermannTVillainJRandom-field ising systems: A survey of current theoretical viewsPhase Transitions198811510.1080/01411598808245480 14394_CR29 14394_CR27 14394_CR22 V Gurarie (14394_CR21) 2013; 46 T Creutzig (14394_CR20) 2013; 46 M Hogervorst (14394_CR17) 2017; 10 GP Vacca (14394_CR25) 2019; 5 RBA Zinati (14394_CR36) 2019; 04 H Osborn (14394_CR28) 2018; 05 14394_CR16 A Codello (14394_CR24) 2017; 04 MJ Stephen (14394_CR33) 1976; 13 JM Martín-García (14394_CR48) 2008; 179 14394_CR10 14394_CR54 14394_CR11 14394_CR14 14394_CR15 M Flohr (14394_CR18) 2003; 18 MR Gaberdiel (14394_CR19) 2003; 18 T Nattermann (14394_CR8) 1988; 11 C Pagani (14394_CR26) 2020; 101 B Duplantier (14394_CR35) 1982; 43 C Wetterich (14394_CR44) 1993; 301 J O’Dwyer (14394_CR38) 2008; 323 14394_CR43 14394_CR41 14394_CR42 14394_CR47 14394_CR45 14394_CR46 V Gurarie (14394_CR4) 1993; 410 14394_CR50 D Khmelnitskii (14394_CR51) 1975; 41 J Cardy (14394_CR6) 2013; 46 TC Lubensky (14394_CR53) 1975; 24 VS Dotsenko (14394_CR9) 1995; 38 M Stephen (14394_CR31) 1973; 44 P De Gennes (14394_CR34) 1975; 36 14394_CR39 JL Cardy (14394_CR12) 1985; 15 14394_CR32 A Codello (14394_CR23) 2018; 78 14394_CR37 14394_CR2 14394_CR3 P Dey (14394_CR30) 2017; 07 14394_CR5 G Grinstein (14394_CR13) 1976; 13 C Jayaprakash (14394_CR52) 1977; 16 14394_CR7 14394_CR40 T Nutma (14394_CR49) 2014; 185 AB Harris (14394_CR1) 1974; 7 |
References_xml | – reference: VaccaGPCodelloASafariMZanussoOMulti-critical multi-field models: a CFT approach to the leading orderUniverse201951512019Univ....5..151V10.3390/universe5060151[arXiv:1905.01086] [INSPIRE] – reference: DotsenkoVSCritical phenomena and quenched disorderPhys. Usp.1995384571995PhyU...38..457D10.1070/PU1995v038n05ABEH000084[INSPIRE] – reference: A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE]. – reference: A.L. Lewis and F.W. Adams, Tricritical behavior in two dimensions. 2. Universal quantities from the ϵ-expansion, Phys. Rev. B18 (1978) 5099 [INSPIRE]. – reference: C. Itzykson and J.-M. Drouffe, Statistical field theory: volume 2, strong coupling, Monte Carlo methods, conformal field theory and random systems, volume 2, Cambridge University Press, (1991). – reference: R. Ben Alì Zinati, A. Codello and O. Zanusso, to appear, (2020). – reference: WetterichCExact evolution equation for the effective potentialPhys. Lett. B1993301901993PhLB..301...90W10.1016/0370-2693(93)90726-X[arXiv:1710.05815] [INSPIRE] – reference: A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE]. – reference: J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge university press, (1996). – reference: StephenMJTricritical points in random systemsPhys. Rev. B19761320071976PhRvB..13.2007S10.1103/PhysRevB.13.2007 – reference: HogervorstMPaulosMVichiAThe ABC (in any D) of Logarithmic CFTJHEP2017102012017JHEP...10..201H373008910.1007/JHEP10(2017)201[arXiv:1605.03959] [INSPIRE] – reference: GurarieVLogarithmic operators and logarithmic conformal field theoriesJ. Phys. A201346494003314600910.1088/1751-8113/46/49/494003[arXiv:1303.1113] [INSPIRE] – reference: S. Giombi, R. Huang, I.R. Klebanov, S.S. Pufu and G. Tarnopolsky, The O(N) Model in 4 < d < 6: Instantons and complex CFTs, Phys. Rev. D101 (2020) 045013 [arXiv:1910.02462] [INSPIRE]. – reference: A. Pelissetto and E. Vicari, Randomly dilute spin models: A six loop field theoretic study, Phys. Rev. B62 (2000) 6393 [cond-mat/0002402] [INSPIRE]. – reference: C.M. Bender, V. Branchina and E. Messina, Critical behavior of the PT-symmetric iφ3 quantum field theory, Phys. Rev. D87 (2013) 085029 [arXiv:1301.6207] [INSPIRE]. – reference: CardyJLNonperturbative aspects of supersymmetry in statistical mechanicsPhysica D1985151231985PhyD...15..123C10.1016/0167-2789(85)90154-X – reference: OsbornHStergiouASeeking fixed points in multiple coupling scalar theories in the ϵ expansionJHEP2018050512018JHEP...05..051O383271210.1007/JHEP05(2018)051[arXiv:1707.06165] [INSPIRE] – reference: DuplantierBLagrangian tricritical theory of polymer chain solutions near the θ-pointJ. Phys. France19824399166583910.1051/jphys:01982004307099100 – reference: L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D95 (2017) 085001 [arXiv:1612.08739] [INSPIRE]. – reference: NattermannTVillainJRandom-field ising systems: A survey of current theoretical viewsPhase Transitions198811510.1080/01411598808245480 – reference: GrinsteinGLutherAApplication of the renormalization group to phase transitions in disordered systemsPhys. Rev. B19761313291976PhRvB..13.1329G10.1103/PhysRevB.13.1329[INSPIRE] – reference: CreutzigTRidoutDLogarithmic Conformal Field Theory: Beyond an IntroductionJ. Phys. A2013464006314601210.1088/1751-8113/46/49/494006[arXiv:1303.0847] [INSPIRE] – reference: A. Codello, M. Safari, G.P. Vacca and O. Zanusso, New universality class in three dimensions: The critical Blume-Capel model, Phys. Rev. D96 (2017) 081701 [arXiv:1706.06887] [INSPIRE]. – reference: A. Aharony, Y. Imry and S.-k. Ma, Comments on the critical behavior of random systems, Phys. Rev. B13 (1976) 466. – reference: P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A38 (1972) 339 [INSPIRE]. – reference: De GennesPCollapse of a polymer chain in poor solventsJ. Physique Lett.1975365510.1051/jphyslet:0197500360305500 – reference: C.M. Bender, V. Branchina and E. Messina, Ordinary versus PT-symmetric ϕ3quantum field theory, Phys. Rev. D85 (2012) 085001 [arXiv:1201.1244] [INSPIRE]. – reference: KhmelnitskiiDSecond-order phase transition in inhomogeneous bodiesZh. Eksp. Teor. Fiz.1975411960 – reference: HarrisABEffect of random defects on the critical behaviour of Ising modelsJ. Phys.1974716711974JPhC....7.1671H[INSPIRE] – reference: GaberdielMRAn algebraic approach to logarithmic conformal field theoryInt. J. Mod. Phys. A20031845932003IJMPA..18.4593G203063310.1142/S0217751X03016860[hep-th/0111260] [INSPIRE] – reference: GurarieVLogarithmic operators in conformal field theoryNucl. Phys. B19934105351993NuPhB.410..535G125642210.1016/0550-3213(93)90528-W[hep-th/9303160] [INSPIRE] – reference: R. Ben Alì Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech.1801 (2018) 013206 [arXiv:1707.03410] [INSPIRE]. – reference: FlohrMBits and pieces in logarithmic conformal field theoryInt. J. Mod. Phys. A20031844972003IJMPA..18.4497F203063210.1142/S0217751X03016859[hep-th/0111228] [INSPIRE] – reference: CardyJLogarithmic conformal field theories as limits of ordinary CFTs and some physical applicationsJ. Phys. A201346494001314600710.1088/1751-8113/46/49/494001[arXiv:1302.4279] [INSPIRE] – reference: CodelloASafariMVaccaGPZanussoOFunctional perturbative RG and CFT data in the ϵ-expansionEur. Phys. J. C201878302018EPJC...78...30C10.1140/epjc/s10052-017-5505-2[arXiv:1705.05558] [INSPIRE] – reference: M. Tissier, D. Mouhanna, J. Vidal and B. Delamotte, Randomly dilute Ising model: A nonperturbative approach, Phys. Rev. B65 (2002) 140402 [cond-mat/0109176] [INSPIRE]. – reference: NutmaTxTras : A field-theory inspired xAct package for mathematicaComput. Phys. Commun.201418517192014CoPhC.185.1719N10.1016/j.cpc.2014.02.006[arXiv:1308.3493] [INSPIRE] – reference: J.L. Cardy, Logarithmic correlations in quenched random magnets and polymers, cond-mat/9911024 [INSPIRE]. – reference: M. Kompaniets and K.J. Wiese, Fractal dimension of critical curves in the O(n)-symmetric ϕ4model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models, Phys. Rev. E101 (2020) 012104 [arXiv:1908.07502] [INSPIRE]. – reference: Martín-GarcíaJMxPerm: fast index canonicalization for tensor computer algebraComput. Phys. Commun.20081795972008CoPhC.179..597M10.1016/j.cpc.2008.05.009[arXiv:0803.0862] – reference: V. Dotsenko and D.E. Feldman, Replica symmetry breaking and the renormalization group theory of the weakly disordered ferromagnet, J. Phys. A28 (1995) 5183 [cond-mat/9502061]. – reference: V. Dotsenko, A.B. Harris, D. Sherrington and R.B. Stinchcombe, Replica-symmetry breaking in the critical behaviour of the random ferromagnet, J. Phys. A28 (1995) 3093 [cond-mat/9412106]. – reference: O’DwyerJOsbornHE-expansion for Multicritical Fixed Points and Exact Renormalisation Group EquationsAnnals Phys.200832318592008AnPhy.323.1859O242819010.1016/j.aop.2007.10.005[arXiv:0708.2697] [INSPIRE] – reference: CodelloASafariMVaccaGPZanussoOLeading CFT constraints on multi-critical models in d > 2JHEP2017041272017JHEP...04..127C365014110.1007/JHEP04(2017)127[arXiv:1703.04830] [INSPIRE] – reference: LubenskyTCHarrisABEffect of randomness on critical behavior of spin modelsAIP Conf. Proc.1975243111975AIPC...24..311L10.1063/1.30103 – reference: M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, volume 9, World Scientific Publishing Company, (1987). – reference: J.M. Martín-García, xAct: efficient tensor computer algebra for Mathematica, (2013), http://xact.es/. – reference: JayaprakashCKatzHJHigher-order corrections to theϵ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upepsilon}^{\frac{1}{2}} $$\end{document}expansion of the critical behavior of the random ising systemPhys. Rev. B19771639871977PhRvB..16.3987J10.1103/PhysRevB.16.3987 – reference: V.V. Prudnikov, P.V. Prudnikov and A.A. Fedorenko, Stability of critical behavior of weakly disordered systems with respect to the replica symmetry breaking, Phys. Rev. B63 (2001) 184201 [cond-mat/0012401]. – reference: StephenMMcCauleyJFeynman graph expansion for tricritical exponentsPhys. Lett. A197344891973PhLA...44...89S10.1016/0375-9601(73)90799-8 – reference: DeyPKavirajASinhaAMellin space bootstrap for global symmetryJHEP2017070192017JHEP...07..019D368838110.1007/JHEP07(2017)019[arXiv:1612.05032] [INSPIRE] – reference: ZinatiRBACodelloAGoriGPlatonic Field TheoriesJHEP2019041522019JHEP...04..152Z395392210.1007/JHEP04(2019)152[arXiv:1902.05328] [INSPIRE] – reference: PaganiCSonodaHOperator product expansion coefficients in the exact renormalization group formalismPhys. Rev. D20201011050072020PhRvD.101j5007P411150310.1103/PhysRevD.101.105007[arXiv:2001.07015] [INSPIRE] – reference: T. Nattermann, Theory of the Random Field Ising Model, in Spin Glasses And Random Fields. Series on Directions in Condensed Matter Physics12 (1997) 277, World Scientific, [cond-mat/9705295] [DOI]. – volume: 301 start-page: 90 year: 1993 ident: 14394_CR44 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(93)90726-X – ident: 14394_CR22 – ident: 14394_CR16 – ident: 14394_CR41 – volume: 15 start-page: 123 year: 1985 ident: 14394_CR12 publication-title: Physica D doi: 10.1016/0167-2789(85)90154-X – volume: 44 start-page: 89 year: 1973 ident: 14394_CR31 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(73)90799-8 – volume: 323 start-page: 1859 year: 2008 ident: 14394_CR38 publication-title: Annals Phys. doi: 10.1016/j.aop.2007.10.005 – volume: 101 start-page: 105007 year: 2020 ident: 14394_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.105007 – volume: 07 start-page: 019 year: 2017 ident: 14394_CR30 publication-title: JHEP doi: 10.1007/JHEP07(2017)019 – volume: 410 start-page: 535 year: 1993 ident: 14394_CR4 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90528-W – volume: 13 start-page: 1329 year: 1976 ident: 14394_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.1329 – volume: 18 start-page: 4593 year: 2003 ident: 14394_CR19 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X03016860 – volume: 43 start-page: 991 year: 1982 ident: 14394_CR35 publication-title: J. Phys. France doi: 10.1051/jphys:01982004307099100 – ident: 14394_CR32 – volume: 11 start-page: 5 year: 1988 ident: 14394_CR8 publication-title: Phase Transitions doi: 10.1080/01411598808245480 – volume: 05 start-page: 051 year: 2018 ident: 14394_CR28 publication-title: JHEP doi: 10.1007/JHEP05(2018)051 – ident: 14394_CR40 – volume: 185 start-page: 1719 year: 2014 ident: 14394_CR49 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.02.006 – ident: 14394_CR54 – ident: 14394_CR5 – ident: 14394_CR27 – volume: 38 start-page: 457 year: 1995 ident: 14394_CR9 publication-title: Phys. Usp. doi: 10.1070/PU1995v038n05ABEH000084 – ident: 14394_CR37 – ident: 14394_CR50 – ident: 14394_CR43 – volume: 46 start-page: 4006 year: 2013 ident: 14394_CR20 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/49/494006 – volume: 179 start-page: 597 year: 2008 ident: 14394_CR48 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.05.009 – ident: 14394_CR14 – volume: 04 start-page: 127 year: 2017 ident: 14394_CR24 publication-title: JHEP doi: 10.1007/JHEP04(2017)127 – volume: 46 start-page: 494001 year: 2013 ident: 14394_CR6 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/49/494001 – ident: 14394_CR47 – volume: 78 start-page: 30 year: 2018 ident: 14394_CR23 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5505-2 – volume: 04 start-page: 152 year: 2019 ident: 14394_CR36 publication-title: JHEP doi: 10.1007/JHEP04(2019)152 – ident: 14394_CR2 – ident: 14394_CR11 – volume: 36 start-page: 55 year: 1975 ident: 14394_CR34 publication-title: J. Physique Lett. doi: 10.1051/jphyslet:0197500360305500 – volume: 7 start-page: 1671 year: 1974 ident: 14394_CR1 publication-title: J. Phys. – ident: 14394_CR46 – ident: 14394_CR3 doi: 10.1017/CBO9781316036440 – ident: 14394_CR42 – ident: 14394_CR15 – ident: 14394_CR45 doi: 10.1103/PhysRevB.65.140402 – volume: 5 start-page: 151 year: 2019 ident: 14394_CR25 publication-title: Universe doi: 10.3390/universe5060151 – volume: 10 start-page: 201 year: 2017 ident: 14394_CR17 publication-title: JHEP doi: 10.1007/JHEP10(2017)201 – volume: 46 start-page: 494003 year: 2013 ident: 14394_CR21 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/49/494003 – volume: 24 start-page: 311 year: 1975 ident: 14394_CR53 publication-title: AIP Conf. Proc. doi: 10.1063/1.30103 – volume: 18 start-page: 4497 year: 2003 ident: 14394_CR18 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X03016859 – volume: 41 start-page: 1960 year: 1975 ident: 14394_CR51 publication-title: Zh. Eksp. Teor. Fiz. – volume: 16 start-page: 3987 year: 1977 ident: 14394_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.3987 – ident: 14394_CR29 – ident: 14394_CR7 doi: 10.1007/JHEP12(2020)105 – ident: 14394_CR10 – volume: 13 start-page: 2007 year: 1976 ident: 14394_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.2007 – ident: 14394_CR39 |
SSID | ssj0015190 |
Score | 2.3401785 |
Snippet | A
bstract
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the... We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities... Abstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the... |
SourceID | doaj hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Conformal Field Theory Dilution Discrete Symmetries Elementary Particles General Physics High energy physics High Energy Physics - Theory Ising model Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Random Systems Regular Article - Theoretical Physics Relativity Theory Renormalization Group String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXQTy4h2rSzaM9qriuoiKi4K2kkwSFfeGugv_eSR-6CosXr0k7pDPTzDfJ8A0hB0pq64SF2DNox8KIdlxI72LErhySzOBkOIe8uVXdR3H1JJ-mWn2FmrCKHrhS3LFNlVGFtgJDsdBOFs5K75lHsZgsMAi7L8a8Jpmq7w8Ql7CGyIfp46vu-R1PDjHRZy0eOtVNxaCSqh8jy3MohJxCmb8uRst401kmSzVQpCfVAlfInBuskoWyYBPGa-Tu_oKagaW4dWG2O3nuvwA96zzQskAQ6v4FdBSO2l8DZyodeophyQ77vQ9qX9DfnKWX4aCAls1wxuvksXP-cNaN6-4IMQjJJzHifMstFNpnPgGvNDCnWAFWgvOJMYlD7KGZxBCdKpt5YCaQzTPHmNfCqvYGmR8MB26T0ISLgmmljYFUJFpmuI0VaQY8Zal1XEfkqNFXDjV1eOhg0csb0uNKwXlQMA7IiBx-vTCqWDNmP3oaDPD1WKC7LgfQCfLaCfK_nCAi-2i-HzK6J9d5GAs3qRmikHcekZ3Gunn9o45zFNfGT-ZKRaTVWPx7esait_5j0dtkMciramN2yPzk9c3tIsKZFHulM38CLm70_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA6tpdCXYm1Lt2oJ4oM-bE328mP3Sax4ntIWKQq-LdlJUgW9vd6dhf73zuxlT1uwr0k2LJnJzJeZ4RvGto22PigPeRQwyJVTg7zRMeSIXSUUlcNJikN--25GF-r0Ul-mgNsslVX2NrEz1L4FipHvFcoOVIHo3uxPfuXUNYqyq6mFxnP2QqKnIQ0vh8fLLAKiE9HT-Qi7dzo6OpPFDj73xa6kfnWPPFFH2I_-5YrKIR9hzX_So53XGa6y1wku8oOFfN-wZ2G8xl52ZZswe8vOfhxzN_YcDRi-eedXt9fAD4fnvCsThNTFgE8o4D4l5lTeRo7Oybe3N3-4v0atC56fULiAdy1xZu_YxfDo_HCUpx4JOSgt5zmifS89NDZWsYBoLIhgRANeQ4iFc0VABGKFRkddGl9FEI4o50UQIlrlzeA9Wxm34_CB8UKqRlhjnYMST1pXaMyasgJZitIHaTP2uT-vGhKBOPWxuKl76uPFAdd0wDigM7az_GCy4M54eukXEsByGZFedwPt9Ged7lDtS-NMY71CVKZs0E3wOkYRUcPw3SggY1sovr_2GB18rWmM8qkVashvmbGNXrp1uq6z-kG5MrbbS_xh-omf_vj_rdbZK1q5qH3ZYCvz6V3YRAQzbz51anoPaGbr-A priority: 102 providerName: ProQuest |
Title | RG and logarithmic CFT multicritical properties of randomly diluted Ising models |
URI | https://link.springer.com/article/10.1007/JHEP12(2020)105 https://www.proquest.com/docview/2473427166 https://hal.science/hal-02899266 https://doaj.org/article/d86a6b7d461247e5bed5ff0f4a48280c |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xUCUuFdBW3ZZGVsUBDlvZGz92jyFKSBGgCBGJ22p3bBckSFASkPrvGTu7FFpx6MWy_NKux_Z8Y48_A-xrZayTFlPPsZvKSnbTWnmXEnYVmBUVZYZ9yLNzPZrIkyt1tQaivQsTvd3bI8m4UreX3U5Gg7HIDshY54cisJZuKooHL75-uODQHBwQIOEtg8-_lV4pn8jRTyrlOnhAvoCXf52IRkUz3Ib3DUJkvZVId2DNTXfhXfTUxMUHGF8cM7L-Ga1ZZOYur-9ukPWHlyx6BmLzcAG7D3vs80CWymaekT6ys7vb38ze0EBzlv0MOwQsvoKz-AiT4eCyP0qbZxFSlEosUwL4VlisjS98hl4b5E7zGq1C57OqyhyBDsMV6eZc28IjrwLLPHeceyOt7n6Cjels6j4Dy4SsudGmqjCXmVEFrV91XqDIeW6dMAn8aPurxIYzPDxdcVu2bMerDi5DB1OCSuDgucL9ii7j7aJHQQDPxQLPdUyYzX-VzbQpba4rXRsrCYhJ41TtrPKeexpUZCpyTOA7ie9VG6PeaRnSwhFqQfDjUSSw10q3bGbooqTmuvTLQusEDluJ_8l-46O__EfZr7AVoivflz3YWM4f3DdCMMu6A-v58LgDm0eD8_FFJ47gEOp-J-4JUDjJek8F-uyM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gxsiF-IwDqB2jCRxGenr6MXMwBpFlFhZCzJJwG2f6ASSws-yuGv6Uv9HqeSxogjeu_cqkqrrq66qaKoD3UihjudGhozoOecHjsBTOhohdI83SAie9H_LgUGbHfO9EnCzA7-5fGJ9W2enEWlGbSnsf-SbjKuYM0b38PL4KfdcoH13tWmg0YrFvr3_hk236qf8V-fuBsd7OcDsL264CoeYimoWIj01kdKlc6ph2UmlqJS21Edo6VhTMos1WVKBpS6RJnaaFL9JOLaVOcSNjPPcBPORxnPoUwqS3O49aIBqiXfkgqjb3sp2jiK0zRGQbke-Pd8vy1Q0C0J6d-fTLW9j2n3BsbeV6T2C5hadkq5Gnp7BgR8_gUZ0mqqfP4ejbLilGhqDCxDf27OzyXJPt3pDUaYm67ZpAxt7BP_GVWknlCBpDU11eXBNzjlJuDel79wSpW_BMX8DxvVDvJSyOqpF9BYRFvKRKqqLQCXJWpKg8yyTVUUITYyMVwMeOXrluC5b7vhkXeVdquSFw7gmMAyKA9fmGcVOr4-6lXzwD5st8ke16oJqc5u2dzU0iC1kqwxEFcmVFaY1wjjqUaHynUh3AO2TfX2dkW4Pcj_n4bYrY52cUwFrH3bxVD9P8RpgD2Og4fjN9x0ev_P-ot_A4Gx4M8kH_cH8VlvyuJu9mDRZnkx_2NaKnWfmmFlkC3-_7jvwB4FMpfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRsOF-IwDqB2jCRzG7enpx8zBGASGXUCyMZBwG2f6ASSws-yuGv6av87qeSxogjeu_cqkq7rq666a-gDeS6GM5UaHjuo45AWPw1I4GyJ2jTRLC-z075BfD2X_mO-diJMF-N39C-PTKjubWBtqU2n_Rt5jXMWcIbqXPdemRQy3s8_jq9AzSPlIa0en0ajIvr3-hde36afBNsr6A2PZztFWP2wZBkLNRTQLESubyOhSudQx7aTS1EpaaiO0dawomEX_rahAN5dIkzpNC1-wnVpKneJGxrjuA3io4oR69oQk251HMBAZ0a6UEFW9vf7OMGLrDNHZRuS58m55wZosAH3bmU_FvIVz_wnN1h4vewLLLVQlm41uPYUFO3oGj-qUUT19DsNvu6QYGYLGE-_bs7PLc022siNSpyjqlkGBjP1j_8RXbSWVI-gYTXV5cU3MOWq8NWTgnypITcczfQHH97J7L2FxVI3sKyAs4iVVUhWFTlDKIkVDWiapjhKaGBupAD52-5Xrtni559C4yLuyy80G536DsUEEsD6fMG7qdtw99IsXwHyYL7hdN1ST07w9v7lJZCFLZTgiQq6sKK0RzlGH2o13VqoDeIfi-2uN_uZB7tt8LDdFHPQzCmCtk27emoppfqPYAWx0Er_pvuOjV_6_1Ft4jKcjPxgc7q_Ckp_UpOCsweJs8sO-RiA1K9_UGkvg-30fkT-psS2q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RG+and+logarithmic+CFT+multicritical+properties+of+randomly+diluted+Ising+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Zinati%2C+R.+Ben+Al%C3%AC&rft.au=Zanusso%2C+O.&rft.date=2020-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2020&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282020%29105&rft.externalDocID=10_1007_JHEP12_2020_105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |