RG and logarithmic CFT multicritical properties of randomly diluted Ising models

A bstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 12; pp. 1 - 27
Main Authors Zinati, R. Ben Alì, Zanusso, O.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Springer
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1029-8479
DOI10.1007/JHEP12(2020)105

Cover

Loading…
Abstract A bstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ -expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT.
AbstractList A bstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ -expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT.
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT.
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ -expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT.
Abstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities is arbitrary. In order to provide realistic candidates for such multicritical behaviors, we discuss several generalizations of the standard randomly diluted Ising’s universality class adopting the ϵ-expansion close to several upper critical dimensions. In the presentation, we spend a special effort in bridging between CFT and RG results and discuss in detail the computation of quantities, which are of prominent interest in the case of logarithmic CFT.
ArticleNumber 105
Author Zanusso, O.
Zinati, R. Ben Alì
Author_xml – sequence: 1
  givenname: R. Ben Alì
  orcidid: 0000-0002-3881-5868
  surname: Zinati
  fullname: Zinati, R. Ben Alì
  email: riccardo.ben_ali_zinati@sorbonne-universite.fr
  organization: Sorbonne Université & CNRS, Laboratoire de Physique Théorique de la Matière Condensée
– sequence: 2
  givenname: O.
  orcidid: 0000-0002-6871-1883
  surname: Zanusso
  fullname: Zanusso, O.
  organization: Università di Pisa and INFN — Sezione di Pisa
BackLink https://hal.science/hal-02899266$$DView record in HAL
BookMark eNp1kU1rGzEYhEVJoUnac6-CXpqDm1eyPlbHYJLYxdBQ0rOQ9eHIaFeutA7k31futrQJ5CQxzDOMNGfoZMiDR-gjgS8EQF5-XV7fEfqZAoULAvwNOiVA1axjUp38d3-HzmrdARBOFJyiu--32AwOp7w1JY4PfbR4cXOP-0Mao21KtCbhfcl7X8boK84BlwbkPj1hF9Nh9A6vahy2uM_Op_oevQ0mVf_hz3mOftxc3y-Ws_W329Xiaj2zjJNxxjvuiLMbGVSgNghpwQvYWMetD9QY6udKSeCUkU44FSyYueg4eIAgmRPzc7Sacl02O70vsTflSWcT9W8hl602rbFNXrtOGLGRjglCmfR84x0PAQIzrKMd2JZ1MWU9mPQsanm11kcNaKcUFeKRNO-nydv-5OfB11Hv8qEM7am6hc8ZlUQc2_HJZUuutfigbRzNGPMwFhOTJqCPo-lpNH0crQm8cZcvuL91XidgImpzDltf_vV5DfkFtIiouw
CitedBy_id crossref_primary_10_1140_epjc_s10052_020_08687_0
crossref_primary_10_1007_JHEP08_2021_060
crossref_primary_10_1007_JHEP12_2020_105
Cites_doi 10.1016/0370-2693(93)90726-X
10.1016/0167-2789(85)90154-X
10.1016/0375-9601(73)90799-8
10.1016/j.aop.2007.10.005
10.1103/PhysRevD.101.105007
10.1007/JHEP07(2017)019
10.1016/0550-3213(93)90528-W
10.1103/PhysRevB.13.1329
10.1142/S0217751X03016860
10.1051/jphys:01982004307099100
10.1080/01411598808245480
10.1007/JHEP05(2018)051
10.1016/j.cpc.2014.02.006
10.1070/PU1995v038n05ABEH000084
10.1088/1751-8113/46/49/494006
10.1016/j.cpc.2008.05.009
10.1007/JHEP04(2017)127
10.1088/1751-8113/46/49/494001
10.1140/epjc/s10052-017-5505-2
10.1007/JHEP04(2019)152
10.1051/jphyslet:0197500360305500
10.1017/CBO9781316036440
10.1103/PhysRevB.65.140402
10.3390/universe5060151
10.1007/JHEP10(2017)201
10.1088/1751-8113/46/49/494003
10.1063/1.30103
10.1142/S0217751X03016859
10.1103/PhysRevB.16.3987
10.1007/JHEP12(2020)105
10.1103/PhysRevB.13.2007
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
DOA
DOI 10.1007/JHEP12(2020)105
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 27
ExternalDocumentID oai_doaj_org_article_d86a6b7d461247e5bed5ff0f4a48280c
oai_HAL_hal_02899266v1
10_1007_JHEP12_2020_105
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
PUEGO
ID FETCH-LOGICAL-c451t-585d1dcb7f9f2cf67c0e60bcd5cef2aa2e39970524186d9fc0a36850e00f74d63
IEDL.DBID C24
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:29:05 EDT 2025
Fri May 09 12:18:27 EDT 2025
Fri Aug 08 01:10:43 EDT 2025
Tue Jul 01 00:58:58 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Fri Feb 21 02:49:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Discrete Symmetries
Random Systems
Renormalization Group
Conformal Field Theory
universality
field theory: conformal
spin
Ising model
quenching
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-585d1dcb7f9f2cf67c0e60bcd5cef2aa2e39970524186d9fc0a36850e00f74d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3881-5868
0000-0002-6871-1883
OpenAccessLink https://link.springer.com/10.1007/JHEP12(2020)105
PQID 2473427166
PQPubID 2034718
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_d86a6b7d461247e5bed5ff0f4a48280c
hal_primary_oai_HAL_hal_02899266v1
proquest_journals_2473427166
crossref_citationtrail_10_1007_JHEP12_2020_105
crossref_primary_10_1007_JHEP12_2020_105
springer_journals_10_1007_JHEP12_2020_105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References CodelloASafariMVaccaGPZanussoOLeading CFT constraints on multi-critical models in d > 2JHEP2017041272017JHEP...04..127C365014110.1007/JHEP04(2017)127[arXiv:1703.04830] [INSPIRE]
R. Ben Alì Zinati, A. Codello and O. Zanusso, to appear, (2020).
T. Nattermann, Theory of the Random Field Ising Model, in Spin Glasses And Random Fields. Series on Directions in Condensed Matter Physics12 (1997) 277, World Scientific, [cond-mat/9705295] [DOI].
A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE].
C.M. Bender, V. Branchina and E. Messina, Ordinary versus PT-symmetric ϕ3quantum field theory, Phys. Rev. D85 (2012) 085001 [arXiv:1201.1244] [INSPIRE].
R. Ben Alì Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech.1801 (2018) 013206 [arXiv:1707.03410] [INSPIRE].
FlohrMBits and pieces in logarithmic conformal field theoryInt. J. Mod. Phys. A20031844972003IJMPA..18.4497F203063210.1142/S0217751X03016859[hep-th/0111228] [INSPIRE]
V.V. Prudnikov, P.V. Prudnikov and A.A. Fedorenko, Stability of critical behavior of weakly disordered systems with respect to the replica symmetry breaking, Phys. Rev. B63 (2001) 184201 [cond-mat/0012401].
CreutzigTRidoutDLogarithmic Conformal Field Theory: Beyond an IntroductionJ. Phys. A2013464006314601210.1088/1751-8113/46/49/494006[arXiv:1303.0847] [INSPIRE]
Martín-GarcíaJMxPerm: fast index canonicalization for tensor computer algebraComput. Phys. Commun.20081795972008CoPhC.179..597M10.1016/j.cpc.2008.05.009[arXiv:0803.0862]
J.L. Cardy, Logarithmic correlations in quenched random magnets and polymers, cond-mat/9911024 [INSPIRE].
A. Codello, M. Safari, G.P. Vacca and O. Zanusso, New universality class in three dimensions: The critical Blume-Capel model, Phys. Rev. D96 (2017) 081701 [arXiv:1706.06887] [INSPIRE].
A. Aharony, Y. Imry and S.-k. Ma, Comments on the critical behavior of random systems, Phys. Rev. B13 (1976) 466.
S. Giombi, R. Huang, I.R. Klebanov, S.S. Pufu and G. Tarnopolsky, The O(N) Model in 4 < d < 6: Instantons and complex CFTs, Phys. Rev. D101 (2020) 045013 [arXiv:1910.02462] [INSPIRE].
A. Pelissetto and E. Vicari, Randomly dilute spin models: A six loop field theoretic study, Phys. Rev. B62 (2000) 6393 [cond-mat/0002402] [INSPIRE].
StephenMJTricritical points in random systemsPhys. Rev. B19761320071976PhRvB..13.2007S10.1103/PhysRevB.13.2007
CardyJLNonperturbative aspects of supersymmetry in statistical mechanicsPhysica D1985151231985PhyD...15..123C10.1016/0167-2789(85)90154-X
C. Itzykson and J.-M. Drouffe, Statistical field theory: volume 2, strong coupling, Monte Carlo methods, conformal field theory and random systems, volume 2, Cambridge University Press, (1991).
J.M. Martín-García, xAct: efficient tensor computer algebra for Mathematica, (2013), http://xact.es/.
ZinatiRBACodelloAGoriGPlatonic Field TheoriesJHEP2019041522019JHEP...04..152Z395392210.1007/JHEP04(2019)152[arXiv:1902.05328] [INSPIRE]
GaberdielMRAn algebraic approach to logarithmic conformal field theoryInt. J. Mod. Phys. A20031845932003IJMPA..18.4593G203063310.1142/S0217751X03016860[hep-th/0111260] [INSPIRE]
M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, volume 9, World Scientific Publishing Company, (1987).
GurarieVLogarithmic operators and logarithmic conformal field theoriesJ. Phys. A201346494003314600910.1088/1751-8113/46/49/494003[arXiv:1303.1113] [INSPIRE]
NutmaTxTras : A field-theory inspired xAct package for mathematicaComput. Phys. Commun.201418517192014CoPhC.185.1719N10.1016/j.cpc.2014.02.006[arXiv:1308.3493] [INSPIRE]
OsbornHStergiouASeeking fixed points in multiple coupling scalar theories in the ϵ expansionJHEP2018050512018JHEP...05..051O383271210.1007/JHEP05(2018)051[arXiv:1707.06165] [INSPIRE]
HogervorstMPaulosMVichiAThe ABC (in any D) of Logarithmic CFTJHEP2017102012017JHEP...10..201H373008910.1007/JHEP10(2017)201[arXiv:1605.03959] [INSPIRE]
DeyPKavirajASinhaAMellin space bootstrap for global symmetryJHEP2017070192017JHEP...07..019D368838110.1007/JHEP07(2017)019[arXiv:1612.05032] [INSPIRE]
DotsenkoVSCritical phenomena and quenched disorderPhys. Usp.1995384571995PhyU...38..457D10.1070/PU1995v038n05ABEH000084[INSPIRE]
CodelloASafariMVaccaGPZanussoOFunctional perturbative RG and CFT data in the ϵ-expansionEur. Phys. J. C201878302018EPJC...78...30C10.1140/epjc/s10052-017-5505-2[arXiv:1705.05558] [INSPIRE]
J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge university press, (1996).
De GennesPCollapse of a polymer chain in poor solventsJ. Physique Lett.1975365510.1051/jphyslet:0197500360305500
PaganiCSonodaHOperator product expansion coefficients in the exact renormalization group formalismPhys. Rev. D20201011050072020PhRvD.101j5007P411150310.1103/PhysRevD.101.105007[arXiv:2001.07015] [INSPIRE]
GrinsteinGLutherAApplication of the renormalization group to phase transitions in disordered systemsPhys. Rev. B19761313291976PhRvB..13.1329G10.1103/PhysRevB.13.1329[INSPIRE]
M. Kompaniets and K.J. Wiese, Fractal dimension of critical curves in the O(n)-symmetric ϕ4model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models, Phys. Rev. E101 (2020) 012104 [arXiv:1908.07502] [INSPIRE].
StephenMMcCauleyJFeynman graph expansion for tricritical exponentsPhys. Lett. A197344891973PhLA...44...89S10.1016/0375-9601(73)90799-8
JayaprakashCKatzHJHigher-order corrections to theϵ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upepsilon}^{\frac{1}{2}} $$\end{document}expansion of the critical behavior of the random ising systemPhys. Rev. B19771639871977PhRvB..16.3987J10.1103/PhysRevB.16.3987
KhmelnitskiiDSecond-order phase transition in inhomogeneous bodiesZh. Eksp. Teor. Fiz.1975411960
O’DwyerJOsbornHE-expansion for Multicritical Fixed Points and Exact Renormalisation Group EquationsAnnals Phys.200832318592008AnPhy.323.1859O242819010.1016/j.aop.2007.10.005[arXiv:0708.2697] [INSPIRE]
A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE].
V. Dotsenko and D.E. Feldman, Replica symmetry breaking and the renormalization group theory of the weakly disordered ferromagnet, J. Phys. A28 (1995) 5183 [cond-mat/9502061].
LubenskyTCHarrisABEffect of randomness on critical behavior of spin modelsAIP Conf. Proc.1975243111975AIPC...24..311L10.1063/1.30103
L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D95 (2017) 085001 [arXiv:1612.08739] [INSPIRE].
P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A38 (1972) 339 [INSPIRE].
V. Dotsenko, A.B. Harris, D. Sherrington and R.B. Stinchcombe, Replica-symmetry breaking in the critical behaviour of the random ferromagnet, J. Phys. A28 (1995) 3093 [cond-mat/9412106].
A.L. Lewis and F.W. Adams, Tricritical behavior in two dimensions. 2. Universal quantities from the ϵ-expansion, Phys. Rev. B18 (1978) 5099 [INSPIRE].
DuplantierBLagrangian tricritical theory of polymer chain solutions near the θ-pointJ. Phys. France19824399166583910.1051/jphys:01982004307099100
C.M. Bender, V. Branchina and E. Messina, Critical behavior of the PT-symmetric iφ3 quantum field theory, Phys. Rev. D87 (2013) 085029 [arXiv:1301.6207] [INSPIRE].
CardyJLogarithmic conformal field theories as limits of ordinary CFTs and some physical applicationsJ. Phys. A201346494001314600710.1088/1751-8113/46/49/494001[arXiv:1302.4279] [INSPIRE]
WetterichCExact evolution equation for the effective potentialPhys. Lett. B1993301901993PhLB..301...90W10.1016/0370-2693(93)90726-X[arXiv:1710.05815] [INSPIRE]
M. Tissier, D. Mouhanna, J. Vidal and B. Delamotte, Randomly dilute Ising model: A nonperturbative approach, Phys. Rev. B65 (2002) 140402 [cond-mat/0109176] [INSPIRE].
HarrisABEffect of random defects on the critical behaviour of Ising modelsJ. Phys.1974716711974JPhC....7.1671H[INSPIRE]
GurarieVLogarithmic operators in conformal field theoryNucl. Phys. B19934105351993NuPhB.410..535G125642210.1016/0550-3213(93)90528-W[hep-th/9303160] [INSPIRE]
VaccaGPCodelloASafariMZanussoOMulti-critical multi-field models: a CFT approach to the leading orderUniverse201951512019Univ....5..151V10.3390/universe5060151[arXiv:1905.01086] [INSPIRE]
NattermannTVillainJRandom-field ising systems: A survey of current theoretical viewsPhase Transitions198811510.1080/01411598808245480
14394_CR29
14394_CR27
14394_CR22
V Gurarie (14394_CR21) 2013; 46
T Creutzig (14394_CR20) 2013; 46
M Hogervorst (14394_CR17) 2017; 10
GP Vacca (14394_CR25) 2019; 5
RBA Zinati (14394_CR36) 2019; 04
H Osborn (14394_CR28) 2018; 05
14394_CR16
A Codello (14394_CR24) 2017; 04
MJ Stephen (14394_CR33) 1976; 13
JM Martín-García (14394_CR48) 2008; 179
14394_CR10
14394_CR54
14394_CR11
14394_CR14
14394_CR15
M Flohr (14394_CR18) 2003; 18
MR Gaberdiel (14394_CR19) 2003; 18
T Nattermann (14394_CR8) 1988; 11
C Pagani (14394_CR26) 2020; 101
B Duplantier (14394_CR35) 1982; 43
C Wetterich (14394_CR44) 1993; 301
J O’Dwyer (14394_CR38) 2008; 323
14394_CR43
14394_CR41
14394_CR42
14394_CR47
14394_CR45
14394_CR46
V Gurarie (14394_CR4) 1993; 410
14394_CR50
D Khmelnitskii (14394_CR51) 1975; 41
J Cardy (14394_CR6) 2013; 46
TC Lubensky (14394_CR53) 1975; 24
VS Dotsenko (14394_CR9) 1995; 38
M Stephen (14394_CR31) 1973; 44
P De Gennes (14394_CR34) 1975; 36
14394_CR39
JL Cardy (14394_CR12) 1985; 15
14394_CR32
A Codello (14394_CR23) 2018; 78
14394_CR37
14394_CR2
14394_CR3
P Dey (14394_CR30) 2017; 07
14394_CR5
G Grinstein (14394_CR13) 1976; 13
C Jayaprakash (14394_CR52) 1977; 16
14394_CR7
14394_CR40
T Nutma (14394_CR49) 2014; 185
AB Harris (14394_CR1) 1974; 7
References_xml – reference: VaccaGPCodelloASafariMZanussoOMulti-critical multi-field models: a CFT approach to the leading orderUniverse201951512019Univ....5..151V10.3390/universe5060151[arXiv:1905.01086] [INSPIRE]
– reference: DotsenkoVSCritical phenomena and quenched disorderPhys. Usp.1995384571995PhyU...38..457D10.1070/PU1995v038n05ABEH000084[INSPIRE]
– reference: A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory (in Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE].
– reference: A.L. Lewis and F.W. Adams, Tricritical behavior in two dimensions. 2. Universal quantities from the ϵ-expansion, Phys. Rev. B18 (1978) 5099 [INSPIRE].
– reference: C. Itzykson and J.-M. Drouffe, Statistical field theory: volume 2, strong coupling, Monte Carlo methods, conformal field theory and random systems, volume 2, Cambridge University Press, (1991).
– reference: R. Ben Alì Zinati, A. Codello and O. Zanusso, to appear, (2020).
– reference: WetterichCExact evolution equation for the effective potentialPhys. Lett. B1993301901993PhLB..301...90W10.1016/0370-2693(93)90726-X[arXiv:1710.05815] [INSPIRE]
– reference: A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE].
– reference: J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge university press, (1996).
– reference: StephenMJTricritical points in random systemsPhys. Rev. B19761320071976PhRvB..13.2007S10.1103/PhysRevB.13.2007
– reference: HogervorstMPaulosMVichiAThe ABC (in any D) of Logarithmic CFTJHEP2017102012017JHEP...10..201H373008910.1007/JHEP10(2017)201[arXiv:1605.03959] [INSPIRE]
– reference: GurarieVLogarithmic operators and logarithmic conformal field theoriesJ. Phys. A201346494003314600910.1088/1751-8113/46/49/494003[arXiv:1303.1113] [INSPIRE]
– reference: S. Giombi, R. Huang, I.R. Klebanov, S.S. Pufu and G. Tarnopolsky, The O(N) Model in 4 < d < 6: Instantons and complex CFTs, Phys. Rev. D101 (2020) 045013 [arXiv:1910.02462] [INSPIRE].
– reference: A. Pelissetto and E. Vicari, Randomly dilute spin models: A six loop field theoretic study, Phys. Rev. B62 (2000) 6393 [cond-mat/0002402] [INSPIRE].
– reference: C.M. Bender, V. Branchina and E. Messina, Critical behavior of the PT-symmetric iφ3 quantum field theory, Phys. Rev. D87 (2013) 085029 [arXiv:1301.6207] [INSPIRE].
– reference: CardyJLNonperturbative aspects of supersymmetry in statistical mechanicsPhysica D1985151231985PhyD...15..123C10.1016/0167-2789(85)90154-X
– reference: OsbornHStergiouASeeking fixed points in multiple coupling scalar theories in the ϵ expansionJHEP2018050512018JHEP...05..051O383271210.1007/JHEP05(2018)051[arXiv:1707.06165] [INSPIRE]
– reference: DuplantierBLagrangian tricritical theory of polymer chain solutions near the θ-pointJ. Phys. France19824399166583910.1051/jphys:01982004307099100
– reference: L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D95 (2017) 085001 [arXiv:1612.08739] [INSPIRE].
– reference: NattermannTVillainJRandom-field ising systems: A survey of current theoretical viewsPhase Transitions198811510.1080/01411598808245480
– reference: GrinsteinGLutherAApplication of the renormalization group to phase transitions in disordered systemsPhys. Rev. B19761313291976PhRvB..13.1329G10.1103/PhysRevB.13.1329[INSPIRE]
– reference: CreutzigTRidoutDLogarithmic Conformal Field Theory: Beyond an IntroductionJ. Phys. A2013464006314601210.1088/1751-8113/46/49/494006[arXiv:1303.0847] [INSPIRE]
– reference: A. Codello, M. Safari, G.P. Vacca and O. Zanusso, New universality class in three dimensions: The critical Blume-Capel model, Phys. Rev. D96 (2017) 081701 [arXiv:1706.06887] [INSPIRE].
– reference: A. Aharony, Y. Imry and S.-k. Ma, Comments on the critical behavior of random systems, Phys. Rev. B13 (1976) 466.
– reference: P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A38 (1972) 339 [INSPIRE].
– reference: De GennesPCollapse of a polymer chain in poor solventsJ. Physique Lett.1975365510.1051/jphyslet:0197500360305500
– reference: C.M. Bender, V. Branchina and E. Messina, Ordinary versus PT-symmetric ϕ3quantum field theory, Phys. Rev. D85 (2012) 085001 [arXiv:1201.1244] [INSPIRE].
– reference: KhmelnitskiiDSecond-order phase transition in inhomogeneous bodiesZh. Eksp. Teor. Fiz.1975411960
– reference: HarrisABEffect of random defects on the critical behaviour of Ising modelsJ. Phys.1974716711974JPhC....7.1671H[INSPIRE]
– reference: GaberdielMRAn algebraic approach to logarithmic conformal field theoryInt. J. Mod. Phys. A20031845932003IJMPA..18.4593G203063310.1142/S0217751X03016860[hep-th/0111260] [INSPIRE]
– reference: GurarieVLogarithmic operators in conformal field theoryNucl. Phys. B19934105351993NuPhB.410..535G125642210.1016/0550-3213(93)90528-W[hep-th/9303160] [INSPIRE]
– reference: R. Ben Alì Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech.1801 (2018) 013206 [arXiv:1707.03410] [INSPIRE].
– reference: FlohrMBits and pieces in logarithmic conformal field theoryInt. J. Mod. Phys. A20031844972003IJMPA..18.4497F203063210.1142/S0217751X03016859[hep-th/0111228] [INSPIRE]
– reference: CardyJLogarithmic conformal field theories as limits of ordinary CFTs and some physical applicationsJ. Phys. A201346494001314600710.1088/1751-8113/46/49/494001[arXiv:1302.4279] [INSPIRE]
– reference: CodelloASafariMVaccaGPZanussoOFunctional perturbative RG and CFT data in the ϵ-expansionEur. Phys. J. C201878302018EPJC...78...30C10.1140/epjc/s10052-017-5505-2[arXiv:1705.05558] [INSPIRE]
– reference: M. Tissier, D. Mouhanna, J. Vidal and B. Delamotte, Randomly dilute Ising model: A nonperturbative approach, Phys. Rev. B65 (2002) 140402 [cond-mat/0109176] [INSPIRE].
– reference: NutmaTxTras : A field-theory inspired xAct package for mathematicaComput. Phys. Commun.201418517192014CoPhC.185.1719N10.1016/j.cpc.2014.02.006[arXiv:1308.3493] [INSPIRE]
– reference: J.L. Cardy, Logarithmic correlations in quenched random magnets and polymers, cond-mat/9911024 [INSPIRE].
– reference: M. Kompaniets and K.J. Wiese, Fractal dimension of critical curves in the O(n)-symmetric ϕ4model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models, Phys. Rev. E101 (2020) 012104 [arXiv:1908.07502] [INSPIRE].
– reference: Martín-GarcíaJMxPerm: fast index canonicalization for tensor computer algebraComput. Phys. Commun.20081795972008CoPhC.179..597M10.1016/j.cpc.2008.05.009[arXiv:0803.0862]
– reference: V. Dotsenko and D.E. Feldman, Replica symmetry breaking and the renormalization group theory of the weakly disordered ferromagnet, J. Phys. A28 (1995) 5183 [cond-mat/9502061].
– reference: V. Dotsenko, A.B. Harris, D. Sherrington and R.B. Stinchcombe, Replica-symmetry breaking in the critical behaviour of the random ferromagnet, J. Phys. A28 (1995) 3093 [cond-mat/9412106].
– reference: O’DwyerJOsbornHE-expansion for Multicritical Fixed Points and Exact Renormalisation Group EquationsAnnals Phys.200832318592008AnPhy.323.1859O242819010.1016/j.aop.2007.10.005[arXiv:0708.2697] [INSPIRE]
– reference: CodelloASafariMVaccaGPZanussoOLeading CFT constraints on multi-critical models in d > 2JHEP2017041272017JHEP...04..127C365014110.1007/JHEP04(2017)127[arXiv:1703.04830] [INSPIRE]
– reference: LubenskyTCHarrisABEffect of randomness on critical behavior of spin modelsAIP Conf. Proc.1975243111975AIPC...24..311L10.1063/1.30103
– reference: M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, volume 9, World Scientific Publishing Company, (1987).
– reference: J.M. Martín-García, xAct: efficient tensor computer algebra for Mathematica, (2013), http://xact.es/.
– reference: JayaprakashCKatzHJHigher-order corrections to theϵ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upepsilon}^{\frac{1}{2}} $$\end{document}expansion of the critical behavior of the random ising systemPhys. Rev. B19771639871977PhRvB..16.3987J10.1103/PhysRevB.16.3987
– reference: V.V. Prudnikov, P.V. Prudnikov and A.A. Fedorenko, Stability of critical behavior of weakly disordered systems with respect to the replica symmetry breaking, Phys. Rev. B63 (2001) 184201 [cond-mat/0012401].
– reference: StephenMMcCauleyJFeynman graph expansion for tricritical exponentsPhys. Lett. A197344891973PhLA...44...89S10.1016/0375-9601(73)90799-8
– reference: DeyPKavirajASinhaAMellin space bootstrap for global symmetryJHEP2017070192017JHEP...07..019D368838110.1007/JHEP07(2017)019[arXiv:1612.05032] [INSPIRE]
– reference: ZinatiRBACodelloAGoriGPlatonic Field TheoriesJHEP2019041522019JHEP...04..152Z395392210.1007/JHEP04(2019)152[arXiv:1902.05328] [INSPIRE]
– reference: PaganiCSonodaHOperator product expansion coefficients in the exact renormalization group formalismPhys. Rev. D20201011050072020PhRvD.101j5007P411150310.1103/PhysRevD.101.105007[arXiv:2001.07015] [INSPIRE]
– reference: T. Nattermann, Theory of the Random Field Ising Model, in Spin Glasses And Random Fields. Series on Directions in Condensed Matter Physics12 (1997) 277, World Scientific, [cond-mat/9705295] [DOI].
– volume: 301
  start-page: 90
  year: 1993
  ident: 14394_CR44
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(93)90726-X
– ident: 14394_CR22
– ident: 14394_CR16
– ident: 14394_CR41
– volume: 15
  start-page: 123
  year: 1985
  ident: 14394_CR12
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90154-X
– volume: 44
  start-page: 89
  year: 1973
  ident: 14394_CR31
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(73)90799-8
– volume: 323
  start-page: 1859
  year: 2008
  ident: 14394_CR38
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2007.10.005
– volume: 101
  start-page: 105007
  year: 2020
  ident: 14394_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.105007
– volume: 07
  start-page: 019
  year: 2017
  ident: 14394_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)019
– volume: 410
  start-page: 535
  year: 1993
  ident: 14394_CR4
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90528-W
– volume: 13
  start-page: 1329
  year: 1976
  ident: 14394_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.1329
– volume: 18
  start-page: 4593
  year: 2003
  ident: 14394_CR19
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X03016860
– volume: 43
  start-page: 991
  year: 1982
  ident: 14394_CR35
  publication-title: J. Phys. France
  doi: 10.1051/jphys:01982004307099100
– ident: 14394_CR32
– volume: 11
  start-page: 5
  year: 1988
  ident: 14394_CR8
  publication-title: Phase Transitions
  doi: 10.1080/01411598808245480
– volume: 05
  start-page: 051
  year: 2018
  ident: 14394_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)051
– ident: 14394_CR40
– volume: 185
  start-page: 1719
  year: 2014
  ident: 14394_CR49
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.02.006
– ident: 14394_CR54
– ident: 14394_CR5
– ident: 14394_CR27
– volume: 38
  start-page: 457
  year: 1995
  ident: 14394_CR9
  publication-title: Phys. Usp.
  doi: 10.1070/PU1995v038n05ABEH000084
– ident: 14394_CR37
– ident: 14394_CR50
– ident: 14394_CR43
– volume: 46
  start-page: 4006
  year: 2013
  ident: 14394_CR20
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/49/494006
– volume: 179
  start-page: 597
  year: 2008
  ident: 14394_CR48
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.05.009
– ident: 14394_CR14
– volume: 04
  start-page: 127
  year: 2017
  ident: 14394_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)127
– volume: 46
  start-page: 494001
  year: 2013
  ident: 14394_CR6
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/49/494001
– ident: 14394_CR47
– volume: 78
  start-page: 30
  year: 2018
  ident: 14394_CR23
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5505-2
– volume: 04
  start-page: 152
  year: 2019
  ident: 14394_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)152
– ident: 14394_CR2
– ident: 14394_CR11
– volume: 36
  start-page: 55
  year: 1975
  ident: 14394_CR34
  publication-title: J. Physique Lett.
  doi: 10.1051/jphyslet:0197500360305500
– volume: 7
  start-page: 1671
  year: 1974
  ident: 14394_CR1
  publication-title: J. Phys.
– ident: 14394_CR46
– ident: 14394_CR3
  doi: 10.1017/CBO9781316036440
– ident: 14394_CR42
– ident: 14394_CR15
– ident: 14394_CR45
  doi: 10.1103/PhysRevB.65.140402
– volume: 5
  start-page: 151
  year: 2019
  ident: 14394_CR25
  publication-title: Universe
  doi: 10.3390/universe5060151
– volume: 10
  start-page: 201
  year: 2017
  ident: 14394_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)201
– volume: 46
  start-page: 494003
  year: 2013
  ident: 14394_CR21
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/49/494003
– volume: 24
  start-page: 311
  year: 1975
  ident: 14394_CR53
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.30103
– volume: 18
  start-page: 4497
  year: 2003
  ident: 14394_CR18
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X03016859
– volume: 41
  start-page: 1960
  year: 1975
  ident: 14394_CR51
  publication-title: Zh. Eksp. Teor. Fiz.
– volume: 16
  start-page: 3987
  year: 1977
  ident: 14394_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.16.3987
– ident: 14394_CR29
– ident: 14394_CR7
  doi: 10.1007/JHEP12(2020)105
– ident: 14394_CR10
– volume: 13
  start-page: 2007
  year: 1976
  ident: 14394_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.2007
– ident: 14394_CR39
SSID ssj0015190
Score 2.3401785
Snippet A bstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the...
We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the impurities...
Abstract We discuss how a spin system, which is subject to quenched disorder, might exhibit multicritical behaviors at criticality if the distribution of the...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Conformal Field Theory
Dilution
Discrete Symmetries
Elementary Particles
General Physics
High energy physics
High Energy Physics - Theory
Ising model
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Random Systems
Regular Article - Theoretical Physics
Relativity Theory
Renormalization Group
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXQTy4h2rSzaM9qriuoiKi4K2kkwSFfeGugv_eSR-6CosXr0k7pDPTzDfJ8A0hB0pq64SF2DNox8KIdlxI72LErhySzOBkOIe8uVXdR3H1JJ-mWn2FmrCKHrhS3LFNlVGFtgJDsdBOFs5K75lHsZgsMAi7L8a8Jpmq7w8Ql7CGyIfp46vu-R1PDjHRZy0eOtVNxaCSqh8jy3MohJxCmb8uRst401kmSzVQpCfVAlfInBuskoWyYBPGa-Tu_oKagaW4dWG2O3nuvwA96zzQskAQ6v4FdBSO2l8DZyodeophyQ77vQ9qX9DfnKWX4aCAls1wxuvksXP-cNaN6-4IMQjJJzHifMstFNpnPgGvNDCnWAFWgvOJMYlD7KGZxBCdKpt5YCaQzTPHmNfCqvYGmR8MB26T0ISLgmmljYFUJFpmuI0VaQY8Zal1XEfkqNFXDjV1eOhg0csb0uNKwXlQMA7IiBx-vTCqWDNmP3oaDPD1WKC7LgfQCfLaCfK_nCAi-2i-HzK6J9d5GAs3qRmikHcekZ3Gunn9o45zFNfGT-ZKRaTVWPx7esait_5j0dtkMciramN2yPzk9c3tIsKZFHulM38CLm70_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA6tpdCXYm1Lt2oJ4oM-bE328mP3Sax4ntIWKQq-LdlJUgW9vd6dhf73zuxlT1uwr0k2LJnJzJeZ4RvGto22PigPeRQwyJVTg7zRMeSIXSUUlcNJikN--25GF-r0Ul-mgNsslVX2NrEz1L4FipHvFcoOVIHo3uxPfuXUNYqyq6mFxnP2QqKnIQ0vh8fLLAKiE9HT-Qi7dzo6OpPFDj73xa6kfnWPPFFH2I_-5YrKIR9hzX_So53XGa6y1wku8oOFfN-wZ2G8xl52ZZswe8vOfhxzN_YcDRi-eedXt9fAD4fnvCsThNTFgE8o4D4l5lTeRo7Oybe3N3-4v0atC56fULiAdy1xZu_YxfDo_HCUpx4JOSgt5zmifS89NDZWsYBoLIhgRANeQ4iFc0VABGKFRkddGl9FEI4o50UQIlrlzeA9Wxm34_CB8UKqRlhjnYMST1pXaMyasgJZitIHaTP2uT-vGhKBOPWxuKl76uPFAdd0wDigM7az_GCy4M54eukXEsByGZFedwPt9Ged7lDtS-NMY71CVKZs0E3wOkYRUcPw3SggY1sovr_2GB18rWmM8qkVashvmbGNXrp1uq6z-kG5MrbbS_xh-omf_vj_rdbZK1q5qH3ZYCvz6V3YRAQzbz51anoPaGbr-A
  priority: 102
  providerName: ProQuest
Title RG and logarithmic CFT multicritical properties of randomly diluted Ising models
URI https://link.springer.com/article/10.1007/JHEP12(2020)105
https://www.proquest.com/docview/2473427166
https://hal.science/hal-02899266
https://doaj.org/article/d86a6b7d461247e5bed5ff0f4a48280c
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xUCUuFdBW3ZZGVsUBDlvZGz92jyFKSBGgCBGJ22p3bBckSFASkPrvGTu7FFpx6MWy_NKux_Z8Y48_A-xrZayTFlPPsZvKSnbTWnmXEnYVmBUVZYZ9yLNzPZrIkyt1tQaivQsTvd3bI8m4UreX3U5Gg7HIDshY54cisJZuKooHL75-uODQHBwQIOEtg8-_lV4pn8jRTyrlOnhAvoCXf52IRkUz3Ib3DUJkvZVId2DNTXfhXfTUxMUHGF8cM7L-Ga1ZZOYur-9ukPWHlyx6BmLzcAG7D3vs80CWymaekT6ys7vb38ze0EBzlv0MOwQsvoKz-AiT4eCyP0qbZxFSlEosUwL4VlisjS98hl4b5E7zGq1C57OqyhyBDsMV6eZc28IjrwLLPHeceyOt7n6Cjels6j4Dy4SsudGmqjCXmVEFrV91XqDIeW6dMAn8aPurxIYzPDxdcVu2bMerDi5DB1OCSuDgucL9ii7j7aJHQQDPxQLPdUyYzX-VzbQpba4rXRsrCYhJ41TtrPKeexpUZCpyTOA7ie9VG6PeaRnSwhFqQfDjUSSw10q3bGbooqTmuvTLQusEDluJ_8l-46O__EfZr7AVoivflz3YWM4f3DdCMMu6A-v58LgDm0eD8_FFJ47gEOp-J-4JUDjJek8F-uyM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gxsiF-IwDqB2jCRxGenr6MXMwBpFlFhZCzJJwG2f6ASSws-yuGv6Uv9HqeSxogjeu_cqkqrrq66qaKoD3UihjudGhozoOecHjsBTOhohdI83SAie9H_LgUGbHfO9EnCzA7-5fGJ9W2enEWlGbSnsf-SbjKuYM0b38PL4KfdcoH13tWmg0YrFvr3_hk236qf8V-fuBsd7OcDsL264CoeYimoWIj01kdKlc6ph2UmlqJS21Edo6VhTMos1WVKBpS6RJnaaFL9JOLaVOcSNjPPcBPORxnPoUwqS3O49aIBqiXfkgqjb3sp2jiK0zRGQbke-Pd8vy1Q0C0J6d-fTLW9j2n3BsbeV6T2C5hadkq5Gnp7BgR8_gUZ0mqqfP4ejbLilGhqDCxDf27OzyXJPt3pDUaYm67ZpAxt7BP_GVWknlCBpDU11eXBNzjlJuDel79wSpW_BMX8DxvVDvJSyOqpF9BYRFvKRKqqLQCXJWpKg8yyTVUUITYyMVwMeOXrluC5b7vhkXeVdquSFw7gmMAyKA9fmGcVOr4-6lXzwD5st8ke16oJqc5u2dzU0iC1kqwxEFcmVFaY1wjjqUaHynUh3AO2TfX2dkW4Pcj_n4bYrY52cUwFrH3bxVD9P8RpgD2Og4fjN9x0ev_P-ot_A4Gx4M8kH_cH8VlvyuJu9mDRZnkx_2NaKnWfmmFlkC3-_7jvwB4FMpfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRsOF-IwDqB2jCRzG7enpx8zBGASGXUCyMZBwG2f6ASSws-yuGv6av87qeSxogjeu_cqkq7rq666a-gDeS6GM5UaHjuo45AWPw1I4GyJ2jTRLC-z075BfD2X_mO-diJMF-N39C-PTKjubWBtqU2n_Rt5jXMWcIbqXPdemRQy3s8_jq9AzSPlIa0en0ajIvr3-hde36afBNsr6A2PZztFWP2wZBkLNRTQLESubyOhSudQx7aTS1EpaaiO0dawomEX_rahAN5dIkzpNC1-wnVpKneJGxrjuA3io4oR69oQk251HMBAZ0a6UEFW9vf7OMGLrDNHZRuS58m55wZosAH3bmU_FvIVz_wnN1h4vewLLLVQlm41uPYUFO3oGj-qUUT19DsNvu6QYGYLGE-_bs7PLc022siNSpyjqlkGBjP1j_8RXbSWVI-gYTXV5cU3MOWq8NWTgnypITcczfQHH97J7L2FxVI3sKyAs4iVVUhWFTlDKIkVDWiapjhKaGBupAD52-5Xrtni559C4yLuyy80G536DsUEEsD6fMG7qdtw99IsXwHyYL7hdN1ST07w9v7lJZCFLZTgiQq6sKK0RzlGH2o13VqoDeIfi-2uN_uZB7tt8LDdFHPQzCmCtk27emoppfqPYAWx0Er_pvuOjV_6_1Ft4jKcjPxgc7q_Ckp_UpOCsweJs8sO-RiA1K9_UGkvg-30fkT-psS2q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RG+and+logarithmic+CFT+multicritical+properties+of+randomly+diluted+Ising+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Zinati%2C+R.+Ben+Al%C3%AC&rft.au=Zanusso%2C+O.&rft.date=2020-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2020&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282020%29105&rft.externalDocID=10_1007_JHEP12_2020_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon