Progress in the synthesis and applications of hexaaluminate-based catalysts
The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate...
Saved in:
Published in | Catalysis reviews. Science and engineering Vol. 64; no. 3; pp. 592 - 630 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Taylor & Francis
03.07.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0161-4940 1520-5703 |
DOI | 10.1080/01614940.2020.1831756 |
Cover
Loading…
Abstract | The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600°C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis, and freeze-drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of CH
4
, partial oxidation, and dry reforming of CH
4
to produce synthetic gas, and the decomposition of N
2
O. Finally, other applications, such as their function as a thermal barrier, are also addressed. |
---|---|
AbstractList | The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600°C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis, and freeze-drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of CH
4
, partial oxidation, and dry reforming of CH
4
to produce synthetic gas, and the decomposition of N
2
O. Finally, other applications, such as their function as a thermal barrier, are also addressed. The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600°C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis, and freeze-drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of CH4, partial oxidation, and dry reforming of CH4 to produce synthetic gas, and the decomposition of N2O. Finally, other applications, such as their function as a thermal barrier, are also addressed. |
Author | Korili, S.A. Gil, A. Torrez-Herrera, J.J. |
Author_xml | – sequence: 1 givenname: J.J. surname: Torrez-Herrera fullname: Torrez-Herrera, J.J. organization: Edificio de los Acebos, Universidad Pública de Navarra – sequence: 2 givenname: S.A. surname: Korili fullname: Korili, S.A. organization: Edificio de los Acebos, Universidad Pública de Navarra – sequence: 3 givenname: A. orcidid: 0000-0001-9323-5981 surname: Gil fullname: Gil, A. email: andoni@unavarra.es organization: Edificio de los Acebos, Universidad Pública de Navarra |
BookMark | eNqFkMtOwzAQRS0EEm3hE5AisU7xI85DbEAVL1EJFt1bk8SmrlI72K4gf49Dy4YFrEaaOffOzJ2iY2ONROiC4DnBJb7CJCdZleE5xTS2SkYKnh-hCeEUp7zA7BhNRiYdoVM09X6DMc5YXk3Q86uzb056n2iThLVM_GBi8donYNoE-r7TDQRtjU-sStbyE6DbbbWBINMavGyTOIZu8MGfoRMFnZfnhzpDq_u71eIxXb48PC1ul2mTcRJSziTNIVO0aUiFZZnLWhZV3YLkVZzUhWxaKmm8UFUlrnLOGACJkCKlqlo2Q5d7297Z9530QWzszpm4UdC8JHmGM55F6npPNc5676QSjQ7fjwQHuhMEizE88ROeGMMTh_Cimv9S905vwQ3_6m72Om2UdVv4sK5rRYChs045MI32gv1t8QUPDojc |
CitedBy_id | crossref_primary_10_1016_j_mineng_2025_109194 crossref_primary_10_1021_acs_iecr_2c03007 crossref_primary_10_1007_s10562_023_04297_z crossref_primary_10_1021_acscatal_1c01695 crossref_primary_10_1016_j_cej_2021_133191 crossref_primary_10_1016_j_ceja_2020_100080 crossref_primary_10_1021_acssuschemeng_0c08914 crossref_primary_10_1016_j_ijhydene_2022_09_131 crossref_primary_10_1002_slct_202304026 crossref_primary_10_1021_acs_jpcc_2c06030 crossref_primary_10_15826_chimtech_2025_12_1_03 crossref_primary_10_1016_S1872_2067_24_60043_4 crossref_primary_10_1039_D3RA08053F crossref_primary_10_3390_catal13111413 crossref_primary_10_1016_j_psep_2023_03_006 crossref_primary_10_1134_S0036023624602071 crossref_primary_10_1016_j_fuel_2024_133090 crossref_primary_10_1016_j_ijhydene_2024_10_119 crossref_primary_10_1016_j_psep_2023_04_023 crossref_primary_10_1039_D4NA00116H crossref_primary_10_1016_j_physb_2024_416628 |
Cites_doi | 10.1023/A:1022181110569 10.1016/j.apcatb.2019.118354 10.1016/0022-4596(86)90007-1 10.1023/A:1019032917062 10.1006/jssc.1996.7141 10.1016/j.mcat.2019.110520 10.1016/S0926-3373(01)00248-X 10.1016/j.jcrysgro.2014.09.015 10.1021/la9908034 10.1039/b900012g 10.1016/S0926-860X(03)00566-0 10.1021/ie070606x 10.1006/jcat.1995.1337 10.1039/c3cy00192j 10.1016/S0926-860X(98)00059-3 10.1016/j.catcom.2009.06.007 10.1016/j.apcata.2015.03.002 10.1016/j.cattod.2017.07.024 10.1016/j.apcatb.2009.02.017 10.1021/cm071168n 10.1016/j.jallcom.2019.06.177 10.1016/S0920-5861(98)00298-3 10.1016/j.apcata.2018.02.006 10.1021/jp500682d 10.1016/S0920-5861(99)00179-0 10.1016/j.apcatb.2010.05.033 10.1006/jcat.1993.1238 10.1016/j.apcatb.2009.09.002 10.1016/j.cattod.2007.10.093 10.1016/j.apcata.2013.01.029 10.1007/BF02697231 10.1016/j.fuproc.2014.12.047 10.1016/j.jechem.2018.02.003 10.1016/j.apcatb.2007.12.004 10.1016/0021-9517(90)90144-9 10.1016/S0257-8972(01)01642-5 10.1023/A:1019039004361 10.3390/catal9010080 10.1002/cctc.201300958 10.1016/S0022-2313(98)00032-5 10.1021/jp9117634 10.1021/jp2067414 10.1039/B303815G 10.1021/cm970109e 10.1016/S0920-5861(99)00178-9 10.1016/S0167-577X(02)00630-4 10.1021/es061894b 10.1016/j.apcatb.2012.10.001 10.1016/j.ceramint.2017.12.202 10.1016/S0272-8842(01)00049-9 10.1016/S0920-5861(03)00238-4 10.1016/S0920-5861(98)00288-0 10.1016/j.apcatb.2007.07.031 10.1021/ie300566n 10.1016/j.ijhydene.2019.02.187 10.1016/S0926-3373(99)00005-3 10.1021/cm0211857 10.1007/s10562-014-1405-3 10.1039/B613602H 10.1039/B417229A 10.1016/0022-4596(84)90131-2 10.1007/s11244-012-9874-3 10.1007/s11144-005-0325-z 10.1023/A:1004625405083 10.1016/j.corsci.2020.108593 10.1016/S0926-3373(00)00247-2 10.1016/S1466-6049(01)00188-X 10.1039/c3ra41660g 10.1002/cctc.201300960 10.1016/0920-5861(95)00241-3 10.1039/b404133j 10.1016/S0955-2219(99)00123-5 10.1016/0022-4596(89)90048-0 10.1023/A:1016622301743 10.1016/j.surfcoat.2019.01.097 10.1039/C5CY02077H 10.1002/aic.15135 10.1016/0926-860X(93)85092-4 10.1016/j.jeurceramsoc.2014.10.030 10.1016/0025-5408(86)90065-6 10.1016/j.surfcoat.2019.02.017 10.1006/jssc.1995.1051 10.1016/S1381-1169(02)00067-5 10.1016/0021-9517(87)90129-1 10.1023/A:1019001821547 10.1006/jssc.1996.0027 10.1016/j.ceramint.2019.02.162 10.1016/j.jnoncrysol.2007.06.069 10.1016/S0920-5861(00)00281-9 10.1023/A:1019092516173 10.1246/bcsj.61.3659 10.1016/0022-4596(84)90199-3 10.1016/S0926-3373(98)00052-6 10.1016/j.matchemphys.2019.04.055 10.1021/la991488o 10.1039/b702502e 10.1179/174367605X62427 10.1016/j.powtec.2020.08.087 10.1016/S0920-5861(98)00270-3 10.1016/j.jallcom.2010.04.198 10.1006/jssc.1996.0039 10.1007/BF02385741 10.1016/S0926-860X(99)00518-9 10.1016/j.jallcom.2006.06.022 10.1016/0920-5861(95)00145-3 10.1016/S0926-860X(02)00240-5 10.1006/jcat.1997.1632 10.1023/A:1019879018935 10.1016/j.apcata.2014.04.019 10.1039/9781847553256-00085 10.1016/0021-9517(89)90277-7 10.1016/S0920-5861(03)00242-6 10.1111/j.1151-2916.1958.tb13529.x 10.1016/j.apenergy.2019.114070 10.1016/j.fuproc.2015.07.024 10.1016/S0920-5861(00)00284-4 10.1016/S0920-5861(00)00283-2 10.1023/A:1019004711495 10.1016/j.jallcom.2018.04.097 10.1039/c3cp54363c 10.1016/j.apcata.2011.01.009 10.1039/c1cy00211b 10.1007/s10562-009-0094-9 10.1016/j.apcata.2018.05.022 10.1023/B:CATL.0000023718.79151.3a 10.1007/s10562-009-9876-3 10.1021/acssuschemeng.8b06308 10.1021/acscatal.8b03855 10.1016/S1872-2067(17)62995-4 10.1006/jcat.2001.3192 10.1038/47450 10.1016/j.apcata.2004.11.013 10.1016/j.jcat.2011.08.001 10.1023/B:REAC.0000028800.54308.88 10.1006/jcat.1998.2220 10.1016/S0926-860X(03)00129-7 10.1023/A:1004604800540 10.1016/j.jcat.2008.04.017 10.1016/j.cattod.2005.11.024 10.1039/b808289h 10.1016/j.ceramint.2019.03.048 10.1016/j.matlet.2019.07.116 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis 2020 2020 Taylor & Francis |
Copyright_xml | – notice: 2020 Taylor & Francis 2020 – notice: 2020 Taylor & Francis |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1080/01614940.2020.1831756 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5703 |
EndPage | 630 |
ExternalDocumentID | 10_1080_01614940_2020_1831756 1831756 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29B 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 COF CS3 DGEBU DKSSO DU5 E.- EBS E~A E~B GCUZY GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NW0 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TCY TEN TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SR 7U5 8BQ 8FD JG9 L7M TASJS |
ID | FETCH-LOGICAL-c451t-53e26a4f2cc190e86ebe79bdae59e26b7ecd2e2004f98096533aa1ebef18f9d3 |
ISSN | 0161-4940 |
IngestDate | Wed Aug 13 06:41:07 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Tue Jul 01 02:57:12 EDT 2025 Wed Dec 25 09:06:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-53e26a4f2cc190e86ebe79bdae59e26b7ecd2e2004f98096533aa1ebef18f9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9323-5981 |
OpenAccessLink | https://hdl.handle.net/2454/40403 |
PQID | 2681640454 |
PQPubID | 53159 |
PageCount | 39 |
ParticipantIDs | crossref_citationtrail_10_1080_01614940_2020_1831756 informaworld_taylorfrancis_310_1080_01614940_2020_1831756 proquest_journals_2681640454 crossref_primary_10_1080_01614940_2020_1831756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-03 |
PublicationDateYYYYMMDD | 2022-07-03 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Catalysis reviews. Science and engineering |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0077 cit0078 cit0111 cit0076 cit0073 Bohre A. (cit0135) 2019; 476 cit0071 Khorramirad M. M. (cit0144) 2019; 364 cit0072 Laassiri S. (cit0026) 2011; 1 Zeng J. (cit0149) 2019; 45 Naoufal D. (cit0035) 1998; 54 cit0117 Padture N. P. (cit0145) 2002; 296 cit0115 cit0066 cit0100 cit0064 Jiang G. (cit0133) 2020; 263 Jana P. (cit0042) 2014; 408 Ashtar M. (cit0008) 2019; 802 cit0062 cit0063 Zhu Y. (cit0116) 2019; 44 cit0061 Sun Y. (cit0143) 2020; 169 Zhang Y. (cit0128) 2013; 129 Roussiere T. (cit0069) 2014; 6 Santiago M. (cit0067) 2008; 257 cit0109 cit0107 cit0105 cit0103 Zhu Y. (cit0119) 2020; 258 cit0104 Groppi G. (cit0044) 1999; 34 cit0068 cit0099 cit0132 cit0012 cit0097 Bukhtiyarova M. V. (cit0121) 2013 cit0130 cit0098 cit0095 cit0096 Beretta A. (cit0005) 2001; 200 cit0094 cit0091 Tian M. (cit0129) 2009; 92 Teng F. (cit0052) 2004 cit0090 Inoue H. (cit0018) 1996; 121 Debsikbar J. C. (cit0036) 1989; 24 Kondratenko E. V. (cit0124) 2010; 99 Djuricic B. (cit0065) 1999; 34 Xu J. G. (cit0040) 2004; 82 cit0017 Tian M. (cit0113) 2016; 62 cit0138 Schwickardi M. (cit0074) 2002; 14 cit0139 cit0015 cit0136 cit0016 cit0137 Machida M. (cit0102) 1995; 26 Huang F. (cit0114) 2019; 29 cit0014 cit0089 cit0086 cit0087 cit0120 Haoran L. (cit0142) 2015; 35 cit0085 cit0082 cit0083 cit0080 cit0081 Zhu S. (cit0093) 2008; 131 Roth R. S. (cit0010) 1958; 41 Lietti L. (cit0084) 2000; 59 Sekizawa K. (cit0031) 1993; 142 Santiago M. (cit0123) 2009; 90 cit0007 cit0004 Zhu Y. (cit0019) 2012; 116 Nugroho S. (cit0023) 2010; 502 cit0003 Astier M. (cit0088) 2004; 95 cit0152 cit0032 Parsland C. H. (cit0131) 2015; 140 cit0030 cit0151 Li X. (cit0106) 2018; 308 Utaka T. (cit0110) 2003; 247 Naga S. M. (cit0150) 2019; 254 Chandra S. (cit0022) 1985; 64 Chu W. L. (cit0108) 2001; 74 Jansen S. R. (cit0025) 1997; 9 Roussiere T. (cit0070) 2014; 6 Majocchi L. (cit0112) 2000; 65 Lietti L. (cit0127) 1998; 53 Chu W. L. (cit0060) 2002; 235 Groppi G. (cit0045) 1995; 114 cit0039 Machida M. (cit0011) 1987; 103 Gardner T. H. (cit0134) 2018; 555 Douy A. (cit0037) 2001; 3 Artizzu P. (cit0033) 1998; 51 cit0020 cit0141 Groppi G. (cit0079) 2001; 35 cit0140 Tian M. (cit0021) 2016; 6 Lietti L. (cit0126) 1999; 21 Woo S. I. (cit0038) 1998; 18 Garapon C. (cit0118) 1998; 79 Sahu P. K. (cit0051) 2003 Machida M. (cit0028) 1989; 120 cit0029 cit0147 cit0027 cit0024 cit0146 cit0056 Groppi G. (cit0006) 1998; 45 cit0053 Cho S. J. (cit0041) 2001; 30 cit0050 Tsukada S. (cit0148) 2019; 363 Zhu S. (cit0092) 2007 Gasperin M. (cit0001) 1984; 54 Bellotto M. (cit0075) 1998; 179 Jiang Z. (cit0054) 2009 Gourier D. (cit0009) 1986; 61 Rezaie H. R. (cit0034) 2009; 10 cit0059 cit0057 cit0058 Park J.-G. (cit0013) 1996; 121 cit0043 Groppi G. (cit0002); 13 Wang Z. (cit0055) 2019; 7 Santiago M. (cit0122) 2007; 41 Perez-Ramirez J. (cit0125) 2007 Machida M. (cit0101) 1990; 123 cit0048 cit0049 cit0046 cit0047 |
References_xml | – ident: cit0058 doi: 10.1023/A:1022181110569 – volume: 263 start-page: 118354 year: 2020 ident: cit0133 publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2019.118354 – volume: 61 start-page: 67 year: 1986 ident: cit0009 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(86)90007-1 – volume: 51 start-page: 69 year: 1998 ident: cit0033 publication-title: Catal. Lett. doi: 10.1023/A:1019032917062 – ident: cit0014 doi: 10.1006/jssc.1996.7141 – volume: 476 start-page: 110520 year: 2019 ident: cit0135 publication-title: Molec. Catal. doi: 10.1016/j.mcat.2019.110520 – volume: 35 start-page: 137 year: 2001 ident: cit0079 publication-title: Appl. Catal. B. Environ. doi: 10.1016/S0926-3373(01)00248-X – volume: 408 start-page: 7 year: 2014 ident: cit0042 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.09.015 – ident: cit0049 doi: 10.1021/la9908034 – start-page: 3225 year: 2009 ident: cit0054 publication-title: Chem. Commun. doi: 10.1039/b900012g – ident: cit0104 doi: 10.1016/S0926-860X(03)00566-0 – ident: cit0080 doi: 10.1021/ie070606x – ident: cit0030 doi: 10.1006/jcat.1995.1337 – ident: cit0083 doi: 10.1039/c3cy00192j – ident: cit0138 – ident: cit0039 doi: 10.1016/S0926-860X(98)00059-3 – ident: cit0057 doi: 10.1016/j.catcom.2009.06.007 – ident: cit0068 doi: 10.1016/j.apcata.2015.03.002 – volume: 308 start-page: 71 year: 2018 ident: cit0106 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.07.024 – volume: 90 start-page: 83 year: 2009 ident: cit0123 publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2009.02.017 – ident: cit0073 doi: 10.1021/cm071168n – volume: 802 start-page: 146 year: 2019 ident: cit0008 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2019.06.177 – ident: cit0003 doi: 10.1016/S0920-5861(98)00298-3 – volume: 555 start-page: 118 year: 2018 ident: cit0134 publication-title: Appl. Catal. A: General doi: 10.1016/j.apcata.2018.02.006 – ident: cit0020 doi: 10.1021/jp500682d – ident: cit0078 doi: 10.1016/S0920-5861(99)00179-0 – volume: 99 start-page: 66 year: 2010 ident: cit0124 publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2010.05.033 – ident: cit0024 – volume: 142 start-page: 655 year: 1993 ident: cit0031 publication-title: J. Catal. doi: 10.1006/jcat.1993.1238 – volume: 92 start-page: 437 year: 2009 ident: cit0129 publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2009.09.002 – volume: 131 start-page: 339 year: 2008 ident: cit0093 publication-title: Catal. Today doi: 10.1016/j.cattod.2007.10.093 – ident: cit0117 doi: 10.1016/j.apcata.2013.01.029 – ident: cit0063 doi: 10.1007/BF02697231 – ident: cit0071 doi: 10.1016/j.fuproc.2014.12.047 – volume: 29 start-page: 50 year: 2019 ident: cit0114 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.02.003 – ident: cit0100 doi: 10.1016/j.apcatb.2007.12.004 – volume: 123 start-page: 477 year: 1990 ident: cit0101 publication-title: J. Catal. doi: 10.1016/0021-9517(90)90144-9 – ident: cit0140 doi: 10.1016/S0257-8972(01)01642-5 – ident: cit0061 doi: 10.1023/A:1019039004361 – ident: cit0130 doi: 10.3390/catal9010080 – volume: 6 start-page: 1447 year: 2014 ident: cit0069 publication-title: Chemcatchem doi: 10.1002/cctc.201300958 – volume: 79 start-page: 161 year: 1998 ident: cit0118 publication-title: J Lumin. doi: 10.1016/S0022-2313(98)00032-5 – ident: cit0090 doi: 10.1021/jp9117634 – volume: 116 start-page: 671 year: 2012 ident: cit0019 publication-title: J. Phys. Chem. C doi: 10.1021/jp2067414 – start-page: 1876 year: 2003 ident: cit0051 publication-title: Chem. Commun. doi: 10.1039/B303815G – volume: 9 start-page: 1516 year: 1997 ident: cit0025 publication-title: Chem. Mater. doi: 10.1021/cm970109e – ident: cit0004 doi: 10.1016/S0920-5861(99)00178-9 – ident: cit0064 doi: 10.1016/S0167-577X(02)00630-4 – volume: 41 start-page: 1704 year: 2007 ident: cit0122 publication-title: Environ. Sci. Technol. doi: 10.1021/es061894b – volume: 129 start-page: 382 year: 2013 ident: cit0128 publication-title: Appl. Catal. B. Environ. doi: 10.1016/j.apcatb.2012.10.001 – ident: cit0147 doi: 10.1016/j.ceramint.2017.12.202 – ident: cit0007 doi: 10.1016/S0272-8842(01)00049-9 – ident: cit0047 doi: 10.1016/S0920-5861(03)00238-4 – ident: cit0046 doi: 10.1016/S0920-5861(98)00288-0 – ident: cit0097 doi: 10.1016/j.apcatb.2007.07.031 – ident: cit0111 doi: 10.1021/ie300566n – volume: 44 start-page: 10218 year: 2019 ident: cit0116 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.187 – volume: 21 start-page: 89 year: 1999 ident: cit0126 publication-title: Appl. Catal. B. Environ. doi: 10.1016/S0926-3373(99)00005-3 – volume: 14 start-page: 3913 year: 2002 ident: cit0074 publication-title: Chem. Mater doi: 10.1021/cm0211857 – ident: cit0132 doi: 10.1007/s10562-014-1405-3 – start-page: 619 year: 2007 ident: cit0125 publication-title: Chem. Commun. doi: 10.1039/B613602H – ident: cit0053 doi: 10.1039/B417229A – volume: 54 start-page: 61 year: 1984 ident: cit0001 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(84)90131-2 – ident: cit0105 doi: 10.1007/s11244-012-9874-3 – ident: cit0086 doi: 10.1007/s11144-005-0325-z – volume: 34 start-page: 2685 year: 1999 ident: cit0065 publication-title: J. Mater. Sci. doi: 10.1023/A:1004625405083 – ident: cit0099 doi: 10.1007/s11244-012-9874-3 – volume: 169 start-page: 108593 year: 2020 ident: cit0143 publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2020.108593 – volume: 30 start-page: 351 year: 2001 ident: cit0041 publication-title: Appl. Catal. B. Environ. doi: 10.1016/S0926-3373(00)00247-2 – ident: cit0139 – volume: 3 start-page: 699 year: 2001 ident: cit0037 publication-title: Int. J. Inorg. Mater. doi: 10.1016/S1466-6049(01)00188-X – ident: cit0066 doi: 10.1039/c3ra41660g – volume: 6 start-page: 1438 year: 2014 ident: cit0070 publication-title: Chemcatchem doi: 10.1002/cctc.201300960 – ident: cit0094 doi: 10.1016/0920-5861(95)00241-3 – volume: 296 start-page: 280 year: 2002 ident: cit0145 publication-title: Appl Sci. – start-page: 1858 year: 2004 ident: cit0052 publication-title: Chem. Commun. doi: 10.1039/b404133j – ident: cit0015 doi: 10.1016/S0955-2219(99)00123-5 – ident: cit0017 doi: 10.1016/0022-4596(89)90048-0 – volume: 10 start-page: 148 year: 2009 ident: cit0034 publication-title: J. Ceramic Process. Res. – volume: 74 start-page: 139 year: 2001 ident: cit0108 publication-title: Catal. Lett. doi: 10.1023/A:1016622301743 – volume: 363 start-page: 95 year: 2019 ident: cit0148 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.01.097 – volume: 6 start-page: 1984 year: 2016 ident: cit0021 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02077H – volume: 62 start-page: 792 year: 2016 ident: cit0113 publication-title: AIChE J. doi: 10.1002/aic.15135 – ident: cit0043 doi: 10.1016/0926-860X(93)85092-4 – volume: 64 start-page: 1120 year: 1985 ident: cit0022 publication-title: Amer. Ceram. Soc. Bull. – volume: 35 start-page: 1297 year: 2015 ident: cit0142 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.10.030 – ident: cit0076 doi: 10.1016/0025-5408(86)90065-6 – volume: 364 start-page: 70 year: 2019 ident: cit0144 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.02.017 – volume: 114 start-page: 326 year: 1995 ident: cit0045 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1995.1051 – ident: cit0096 doi: 10.1016/S1381-1169(02)00067-5 – volume: 103 start-page: 385 year: 1987 ident: cit0011 publication-title: J. Catal. doi: 10.1016/0021-9517(87)90129-1 – volume: 53 start-page: 91 year: 1998 ident: cit0127 publication-title: Catal. Letters doi: 10.1023/A:1019001821547 – volume: 121 start-page: 190 year: 1996 ident: cit0018 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1996.0027 – ident: cit0027 doi: 10.1016/j.ceramint.2019.02.162 – ident: cit0087 doi: 10.1016/j.jnoncrysol.2007.06.069 – ident: cit0077 doi: 10.1016/S0920-5861(00)00281-9 – volume: 65 start-page: 49 year: 2000 ident: cit0112 publication-title: Catal. Letters doi: 10.1023/A:1019092516173 – ident: cit0029 doi: 10.1246/bcsj.61.3659 – ident: cit0016 doi: 10.1016/0022-4596(84)90199-3 – volume: 18 start-page: 317 year: 1998 ident: cit0038 publication-title: Appl. Catal. B. Environ. doi: 10.1016/S0926-3373(98)00052-6 – ident: cit0151 doi: 10.1016/j.matchemphys.2019.04.055 – ident: cit0048 doi: 10.1021/la991488o – start-page: 1695 year: 2007 ident: cit0092 publication-title: Chem. Commun. doi: 10.1039/b702502e – ident: cit0141 doi: 10.1179/174367605X62427 – start-page: 11 year: 2013 ident: cit0121 publication-title: Catal. Sust. Energy – ident: cit0152 doi: 10.1016/j.powtec.2020.08.087 – volume: 45 start-page: 159 year: 1998 ident: cit0006 publication-title: Catal. Today doi: 10.1016/S0920-5861(98)00270-3 – volume: 502 start-page: 466 year: 2010 ident: cit0023 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.04.198 – ident: cit0137 – volume: 121 start-page: 278 year: 1996 ident: cit0013 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1996.0039 – volume: 24 start-page: 3565 year: 1989 ident: cit0036 publication-title: J. Mater. Sci. doi: 10.1007/BF02385741 – ident: cit0062 doi: 10.1016/S0926-860X(99)00518-9 – ident: cit0081 doi: 10.1016/j.jallcom.2006.06.022 – volume: 26 start-page: 239 year: 1995 ident: cit0102 publication-title: Catal. Today doi: 10.1016/0920-5861(95)00145-3 – volume: 235 start-page: 39 year: 2002 ident: cit0060 publication-title: Appl. Catal. A: General doi: 10.1016/S0926-860X(02)00240-5 – ident: cit0082 doi: 10.1006/jcat.1997.1632 – ident: cit0109 doi: 10.1023/A:1019879018935 – ident: cit0120 doi: 10.1016/j.apcata.2014.04.019 – volume: 13 start-page: 85 volume-title: Catalysis ident: cit0002 doi: 10.1039/9781847553256-00085 – volume: 120 start-page: 377 year: 1989 ident: cit0028 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90277-7 – ident: cit0032 doi: 10.1016/S0920-5861(03)00242-6 – volume: 41 start-page: 146 year: 1958 ident: cit0010 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1958.tb13529.x – volume: 258 start-page: 114070 year: 2020 ident: cit0119 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114070 – volume: 140 start-page: 1 year: 2015 ident: cit0131 publication-title: Fuel Proces. Technol. doi: 10.1016/j.fuproc.2015.07.024 – ident: cit0095 doi: 10.1016/S0920-5861(00)00284-4 – ident: cit0059 doi: 10.1023/A:1019879018935 – volume: 59 start-page: 191 year: 2000 ident: cit0084 publication-title: Catal. Today doi: 10.1016/S0920-5861(00)00283-2 – volume: 54 start-page: 141 year: 1998 ident: cit0035 publication-title: Catal. Lett. doi: 10.1023/A:1019004711495 – ident: cit0146 doi: 10.1016/j.jallcom.2018.04.097 – ident: cit0103 doi: 10.1039/c3cp54363c – ident: cit0107 doi: 10.1016/j.apcata.2011.01.009 – volume: 1 start-page: 1124 year: 2011 ident: cit0026 publication-title: Catal. Sci. Technol. doi: 10.1039/c1cy00211b – ident: cit0089 doi: 10.1007/s10562-009-0094-9 – ident: cit0072 doi: 10.1016/j.apcata.2018.05.022 – volume: 95 start-page: 31 year: 2004 ident: cit0088 publication-title: Catal. Lett. doi: 10.1023/B:CATL.0000023718.79151.3a – ident: cit0056 doi: 10.1007/s10562-009-9876-3 – volume: 7 start-page: 8226 year: 2019 ident: cit0055 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06308 – ident: cit0115 doi: 10.1021/acscatal.8b03855 – ident: cit0136 doi: 10.1016/S1872-2067(17)62995-4 – volume: 200 start-page: 45 year: 2001 ident: cit0005 publication-title: J. Catal. doi: 10.1006/jcat.2001.3192 – ident: cit0050 doi: 10.1038/47450 – ident: cit0091 doi: 10.1016/j.apcata.2004.11.013 – ident: cit0012 doi: 10.1016/j.jcat.2011.08.001 – volume: 82 start-page: 19 year: 2004 ident: cit0040 publication-title: React Kinet. Catal. Lett. doi: 10.1023/B:REAC.0000028800.54308.88 – volume: 179 start-page: 597 year: 1998 ident: cit0075 publication-title: J. Catal. doi: 10.1006/jcat.1998.2220 – volume: 247 start-page: 125 year: 2003 ident: cit0110 publication-title: Appl. Catal. A: General doi: 10.1016/S0926-860X(03)00129-7 – volume: 34 start-page: 2609 year: 1999 ident: cit0044 publication-title: J. Mater. Sci. doi: 10.1023/A:1004604800540 – volume: 257 start-page: 152 year: 2008 ident: cit0067 publication-title: J. Catal. doi: 10.1016/j.jcat.2008.04.017 – ident: cit0085 doi: 10.1016/j.cattod.2005.11.024 – ident: cit0098 doi: 10.1039/b808289h – volume: 45 start-page: 11723 year: 2019 ident: cit0149 publication-title: Ceram Int. doi: 10.1016/j.ceramint.2019.03.048 – volume: 254 start-page: 402 year: 2019 ident: cit0150 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.07.116 |
SSID | ssj0004369 |
Score | 2.4707797 |
Snippet | The development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 592 |
SubjectTerms | Catalysts catalytic high-temperature applications Combustion synthesis Drying hexaaluminate hibonite High temperature Insulators magnetoplumbite Methane Oxidation Reforming Sol-gel processes synthesis methods Thermal resistance Thermal shock |
Title | Progress in the synthesis and applications of hexaaluminate-based catalysts |
URI | https://www.tandfonline.com/doi/abs/10.1080/01614940.2020.1831756 https://www.proquest.com/docview/2681640454 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcgAOCAqIloJ84IYcJXES28eqAlZFVEgsUm-R7djSSiiLsqlE--s7jh0npStKuSSryXrymPF4PB5_g9B7pRk1jFfElpkhRak5UUqkxDJmmeaNLIbKc1_PquWP4vS8PF8s5llLF71K9NXOfSX_I1WggVzdLtl7SDYyBQL8BvnCESQMx3-S8TeXXOVMVUhW3F62cHIQIwME62xt2vuEv6UEW7Ruwb8kbvhqPgzRm8uth3OaEAv6gFQSsEqTaAIcXzNBGE4x6q4zV2Rp4NT57NvkNInGfNOt_S7s78lxpH720edACIGH3Cep0nkssoLpp_BoS4kJ9hNmow7Ua25gPUx5UCQ6s5alL4MXBt7KL9DcsukhCRLu5m4GU_ociNz5PTswtP8Y22LGYTZCoQY2tWNTBzYP0MOcsWGVn6Zn07ZaOlREjO85bgBz0Oy7nuaGa3MD-PbWQD94L6tn6GmYduBjr0PP0cK0--jRyVjtbx89mQFTvkBfRs3C6xaDSuGoWRg0AM81C28s3qFZOGrWS7T69HF1siSh7AbRRZn1pKQmr2Rhc63BWzS8gn7OhGqkKQVcUczoJjeuH1rBHXgQpVJm8CebcSsa-grttZvWvEa4SaVIFbd5UTocSunQrrhNpfNzjVDVASrGD1brAEnvKqP8rP8qrgOUxGa_PCbLXQ3EXBp1PwTDrK9cU9M72h6NoqtD19_WecWzqnDolYf3fZY36PHUmY7QXt9dmLfg1_bq3aB9184Jl4s |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB5xUHAUwHGHeOOC1ntJ7CR2iRBoea0o9iQ6y3Zs3QoUEAkS8Ovx5AELCFFQRUoylmOPx58nM98A7BmbM5eLjPo0dpSnVlBjZER9nvvcikLzpvLc-Sgb_uMnl-nlVC4MhlXiGdq3RBGNrcbFjc7oPiTuL8IULnkUjndJuCVwD8x-wFwasDtqOYtGr7mRrClrhyIUZfosns-aebM_vWEv_WCtmy3oaAls3_k28uRqcF-bgX16x-v4va9bhsUOoZL9VqV-wYwrV2D-oC8MtwILUxyGv-H0AiO8gr0kk5IENEmqxzJcqklFQhfI9A9ycuPJf_egdTCIkzKAXIp7aEEaF9JjVVd_YHx0OD4Y0q5CA7U8jWuaMpdkmvvE2gAsnMiCSuTSFNqlMjwxubNF4nAheimQZ4YxrePwko-FlwVbhdnypnRrQIpIy8gIn_AUKQs1EiMJH2mERE6abB14Py3KduzlWETjWsU9yWk3bAqHTXXDtg6DF7Hblr7jKwE5Peeqbvwmvi1yotgXslu9gqjOElQqyUQ4kSLR4cY3mt6F-eH4_EydHY9ON-FngjkY6GNmWzBb39277YCMarPTqP4z6ZL-gA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrcTjQAsUAaXUB65ekthJ7COirGiBFQeQuFm2Y4tVqyxqgsT219eTBywgxIFTpCRjOfZ45vNk_A3AvrE5c7nIqE9jR3lqBTVGRtTnuc-tKDRvKs-dj7OTK_7rOu2zCasurRL30L4limhsNS7u28L3GXEHiFK45FHY3SXhlkAXmC3AxyzAE8zqY9H48Wgka6raoQhFmf4Qz2vNPHFPT8hLXxjrxgONPoHp-94mnvwe3tVmaP89o3V818d9htUOn5LDVqHW4IMr12HpqC8Ltw4rcwyGG3B6gfldwVqSSUkCliTVrAyXalKR0AMy_3ucTD25cfdaB3M4KQPEpehBC9IEkGZVXX2By9Hx5dEJ7eozUMvTuKYpc0mmuU-sDbDCiSwoRC5NoV0qwxOTO1skDpehlwJZZhjTOg4v-Vh4WbBNGJTT0m0BKSItIyN8wlMkLNRIiyR8pBEQOWmybeD9rCjbcZdjCY0_Ku4pTrthUzhsqhu2bRg-iN225B1vCcj5KVd1EzXxbYkTxd6Q3e31Q3V2oFJJJsJ-FGkOd97R9HdYvPgxUmc_x6dfYTnBAxgYYGa7MKj_3rlvARbVZq9R_P-7x_0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+the+synthesis+and+applications+of+hexaaluminate-based+catalysts&rft.jtitle=Catalysis+reviews.+Science+and+engineering&rft.au=Torrez-Herrera%2C+J.J.&rft.au=Korili%2C+S.A.&rft.au=Gil%2C+A.&rft.date=2022-07-03&rft.issn=0161-4940&rft.eissn=1520-5703&rft.volume=64&rft.issue=3&rft.spage=592&rft.epage=630&rft_id=info:doi/10.1080%2F01614940.2020.1831756&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01614940_2020_1831756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-4940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-4940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-4940&client=summon |