PyLCP: A Python package for computing laser cooling physics

We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and inte...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 270; p. 108166
Main Authors Eckel, Stephen, Barker, Daniel S., Norrgard, Eric B., Scherschligt, Julia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S→30P1 transition in 88Sr and 87Sr.
AbstractList We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams’ geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1 S 0 → 3 P 1 transition in 88 Sr and 87 Sr.
We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S→30P1 transition in 88Sr and 87Sr.
We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow S → P transition in Sr and Sr.
We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S0 → 3P1 transition in 88Sr and 87Sr.We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S0 → 3P1 transition in 88Sr and 87Sr.
ArticleNumber 108166
Author Eckel, Stephen
Norrgard, Eric B.
Barker, Daniel S.
Scherschligt, Julia
AuthorAffiliation b Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
a Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
AuthorAffiliation_xml – name: a Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
– name: b Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
Author_xml – sequence: 1
  givenname: Stephen
  orcidid: 0000-0002-8887-0320
  surname: Eckel
  fullname: Eckel, Stephen
  email: stephen.eckel@nist.gov
  organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
– sequence: 2
  givenname: Daniel S.
  orcidid: 0000-0002-4614-5833
  surname: Barker
  fullname: Barker, Daniel S.
  organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
– sequence: 3
  givenname: Eric B.
  orcidid: 0000-0002-8715-4648
  surname: Norrgard
  fullname: Norrgard, Eric B.
  organization: Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, MD 20899, USA
– sequence: 4
  givenname: Julia
  orcidid: 0000-0003-4965-0103
  surname: Scherschligt
  fullname: Scherschligt, Julia
  organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36733946$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFr2zAYxUXpaNOuf8Auw8ddnH6fZEvWCoMS1nYQWA7bWciylChzLE9yCvnvZ5O2rD30JB56v_fgexfktAudJeQTwhwB-fV2bnozp0Bx1BVyfkJmWAmZU1kUp2QGgJAXvCzPyUVKWwAQQrIzcs64YEwWfEZuVoflYvU1u81Wh2ETuqzX5o9e28yFmJmw6_eD79ZZq5OddGgn1W8OyZv0kXxwuk326um9JL_vvv9aPOTLn_c_FrfL3BQlDnlBXd04MLJmpqHOuRocMMt0w6Uu67KmjlYNMnBWCMHBOQqIrDRVpVEKwS7Jt2Nuv693tjG2G6JuVR_9TseDCtqr1z-d36h1eFSyklAKHAO-PAXE8Hdv06B2PhnbtrqzYZ8UHUsQS45stH7-v-ul5Plio0EcDSaGlKJ1yvhBDz5M1b5VCGraRm3VuI2atlHHbUYS35DP4e8xN0fGjvd99DaqZLztjG18tGZQTfDv0P8A2TWmgg
CitedBy_id crossref_primary_10_1364_OE_545401
crossref_primary_10_1007_s11433_023_2132_6
crossref_primary_10_1103_PhysRevA_108_033105
crossref_primary_10_1103_PhysRevA_108_062821
crossref_primary_10_1103_PhysRevA_105_053117
crossref_primary_10_1103_PhysRevA_108_032809
crossref_primary_10_1103_PhysRevA_110_033103
crossref_primary_10_1088_1367_2630_ad02ea
crossref_primary_10_3390_app14167062
crossref_primary_10_1103_PhysRevApplied_20_034042
crossref_primary_10_1103_PhysRevA_110_023110
crossref_primary_10_1016_j_cpc_2024_109374
crossref_primary_10_1038_s42254_024_00756_7
crossref_primary_10_1088_1361_6455_acee3a
crossref_primary_10_1103_PhysRevApplied_23_014004
Cites_doi 10.1103/PhysRevA.21.1606
10.1103/RevModPhys.70.1003
10.1080/09500340.2017.1401679
10.1103/RevModPhys.81.1051
10.1016/j.cpc.2018.02.004
10.1103/PhysRevLett.90.113002
10.1088/1367-2630/18/12/123017
10.1103/PhysRevA.98.023404
10.1103/RevModPhys.87.637
10.1038/nnano.2013.47
10.1016/j.cpc.2012.02.021
10.1016/S0030-4018(96)00660-8
10.1103/PhysRevLett.93.073003
10.1103/PhysRevA.52.1423
10.1364/JOSAB.6.002084
10.1364/JOSAB.6.002058
10.1119/1.13886
10.1103/PhysRevLett.78.1420
10.1088/1367-2630/17/1/015007
10.1063/1.5088164
10.1364/JOSAB.6.002023
10.1103/PhysRevA.92.053401
10.1103/PhysRevA.98.063415
10.1103/PhysRevLett.64.408
10.1051/jphys:0198200430110161700
10.1103/PhysRevLett.55.48
10.1063/1.5084004
10.1364/JOSAB.30.002869
10.1103/PhysRevLett.66.2593
10.1038/s41586-018-0605-1
10.1126/science.aay6428
10.1088/2058-9565/abb9c5
10.1103/PhysRevLett.59.2631
10.1103/PhysRevA.90.063404
10.1103/PhysRevA.87.063411
10.1063/1.5026238
10.1103/RevModPhys.90.025008
10.1103/PhysRevApplied.11.064023
10.1007/978-1-4612-1470-0
10.1364/OE.378632
10.1103/RevModPhys.90.035005
10.1016/j.cpc.2012.11.019
10.1016/0030-4018(93)90387-K
10.1126/science.aam5538
10.1063/5.0019551
10.1038/s42005-019-0181-1
10.1063/1.4904066
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.cpc.2021.108166
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID PMC9890571
36733946
10_1016_j_cpc_2021_108166
S0010465521002782
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-42fbdf0c9b3cd2fffb0f03e3ad69a5b5b2f28d130fe77760ff201135c88a19773
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Thu Aug 21 18:38:24 EDT 2025
Fri Jul 11 12:32:27 EDT 2025
Mon Jul 21 05:19:15 EDT 2025
Tue Jul 01 02:40:34 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Fri Feb 23 02:44:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Atomic physics
Laser cooling
Python
atomic physics
laser cooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-42fbdf0c9b3cd2fffb0f03e3ad69a5b5b2f28d130fe77760ff201135c88a19773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4614-5833
0000-0003-4965-0103
0000-0002-8715-4648
0000-0002-8887-0320
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9890571
PMID 36733946
PQID 2773115613
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9890571
proquest_miscellaneous_2773115613
pubmed_primary_36733946
crossref_citationtrail_10_1016_j_cpc_2021_108166
crossref_primary_10_1016_j_cpc_2021_108166
elsevier_sciencedirect_doi_10_1016_j_cpc_2021_108166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computer physics communications
PublicationTitleAlternate Comput Phys Commun
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Milonni (br0320) 1984; 52
Bergmann, Theuer, Shore (br0360) 1998; 70
Söding, Grimm, Ovchinnikov, Bouyer, Salomon (br0480) 1997; 78
Hutzler (br0120) 2020; 5
Norrgard, Barker, Eckel, Fedchak, Klimov, Scherschligt (br0130) 2019; 2
Pezzè, Smerzi, Oberthaler, Schmied, Treutlein (br0090) 2018; 90
Townsend, Edwards, Cooper, Zetie, Foot, Steane, Szriftgiser, Perrin, Dalibard (br0540) 1995; 52
Cohen, Jadeja, Sula, Venturelli, Deans, Marmugi, Renzoni (br0080) 2019; 114
Sitaram, Elgee, Campbell, Klimov, Eckel, Barker (br0520) 2020; 91
Ungar, Weiss, Riis, Chu (br0290) 1989; 6
Safronova, Budker, Demille, Kimball, Derevianko, Clark (br0110) 2018; 90
Chu, Hollberg, Bjorkholm, Cable, Ashkin (br0370) 1985; 55
Campbell, Hutson, Marti, Goban, Darkwah Oppong, McNally, Sonderhouse, Robinson, Zhang, Bloom, Ye (br0020) 2017; 358
br0260
Devlin, Tarbutt (br0380) 2016; 18
Cronin, Schmiedmayer, Pritchard (br0040) 2009; 81
Boller, Imamoglu, Harris (br0350) 1991; 66
Tarbutt, Steimle (br0470) 2015; 92
Becker, Lachmann, Seidel, Ahlers, Dinkelaker, Grosse, Hellmig, Müntinga, Schkolnik, Wendrich, Wenzlawski, Weps, Corgier, Franz, Gaaloul, Herr, Lüdtke, Popp, Amri, Duncker, Erbe, Kohfeldt, Kubelka-Lange, Braxmaier, Charron, Ertmer, Krutzik, Lämmerzahl, Peters, Schleich, Sengstock, Walser, Wicht, Windpassinger, Rasel (br0050) 2018; 562
Lu, Miao, Metcalf (br0340) 2005; 71
Dalibard, Dupont-Roc, Cohen-Tannoudji (br0310) 1982; 43
Johansson, Nation, Nori (br0220) 2012; 183
Xu, Jaffe, Panda, Kristensen, Clark, Müller (br0060) 2019; 366
Krämer, Plankensteiner, Ostermann, Ritsch (br0250) 2018; 227
Nshii, Vangeleyn, Cotter, Griffin, Hinds, Ironside, See, Sinclair, Riis, Arnold (br0500) 2013; 8
Lett, Phillips, Rolston, Tanner, Watts, Westbrook (br0160) 1989; 6
Tarbutt (br0330) 2015; 17
Lee, Grover, Orozco, Rolston (br0490) 2013; 30
Kitching (br0070) 2018; 5
br0270
Barker, Norrgard, Klimov, Fedchak, Scherschligt, Eckel (br0510) 2019; 11
Dalibard, Cohen-Tannoudji (br0170) 1989; 6
Bartolotta, Norcia, Cline, Thompson, Holland (br0190) 2018; 98
Johansson, Nation, Nori (br0230) 2013; 184
Katori, Ido, Isoya, Kuwata-Gonokami (br0430) 1999; 82
Loftus, Ido, Ludlow, Boyd, Ye (br0440) 2004; 93
Gordon, Ashkin (br0280) 1980; 21
Stellmer (br0450) 2013
Haubrich, Höpe, Meschede (br0400) 1993; 102
br0240
Rushton, Aldous, Himsworth (br0180) 2014; 85
Hanley, Huillery, Keegan, Bounds, Boddy, Faoro, Jones (br0420) 2018; 65
Foot (br0140) 2005
br0210
Bruzewicz, Chiaverini, McConnell, Sage (br0100) 2019; 6
Raab, Prentiss, Cable, Chu, Pritchard (br0200) 1987; 59
Devlin, Tarbutt (br0300) 2018; 98
Grier, Ferrier-Barbut, Rem, Delehaye, Khaykovich, Chevy, Salomon (br0390) 2013; 87
Mukaiyama, Katori, Ido, Li, Kuwata-Gonokami (br0410) 2003; 90
Metcalf, van der Straten (br0150) 1999
Elvin, Hoth, Wright, Lewis, McGilligan, Arnold, Griffin, Riis (br0030) 2019; 27
Walker, Sesko, Wieman (br0530) 1990; 64
Ludlow, Boyd, Ye, Peik, Schmidt (br0010) 2015; 87
Flemming, Tuboy, Milori, Marcassa, Zilio, Bagnato (br0460) 1997; 135
Camara, Kaiser, Labeyrie (br0550) 2014; 90
Tarbutt (10.1016/j.cpc.2021.108166_br0330) 2015; 17
Campbell (10.1016/j.cpc.2021.108166_br0020) 2017; 358
Becker (10.1016/j.cpc.2021.108166_br0050) 2018; 562
Söding (10.1016/j.cpc.2021.108166_br0480) 1997; 78
Flemming (10.1016/j.cpc.2021.108166_br0460) 1997; 135
Pezzè (10.1016/j.cpc.2021.108166_br0090) 2018; 90
Krämer (10.1016/j.cpc.2021.108166_br0250) 2018; 227
Nshii (10.1016/j.cpc.2021.108166_br0500) 2013; 8
Devlin (10.1016/j.cpc.2021.108166_br0380) 2016; 18
Lee (10.1016/j.cpc.2021.108166_br0490) 2013; 30
Ungar (10.1016/j.cpc.2021.108166_br0290) 1989; 6
Devlin (10.1016/j.cpc.2021.108166_br0300) 2018; 98
Barker (10.1016/j.cpc.2021.108166_br0510) 2019; 11
Boller (10.1016/j.cpc.2021.108166_br0350) 1991; 66
Milonni (10.1016/j.cpc.2021.108166_br0320) 1984; 52
Raab (10.1016/j.cpc.2021.108166_br0200) 1987; 59
Walker (10.1016/j.cpc.2021.108166_br0530) 1990; 64
Rushton (10.1016/j.cpc.2021.108166_br0180) 2014; 85
Mukaiyama (10.1016/j.cpc.2021.108166_br0410) 2003; 90
Stellmer (10.1016/j.cpc.2021.108166_br0450) 2013
Haubrich (10.1016/j.cpc.2021.108166_br0400) 1993; 102
Xu (10.1016/j.cpc.2021.108166_br0060) 2019; 366
Tarbutt (10.1016/j.cpc.2021.108166_br0470) 2015; 92
Foot (10.1016/j.cpc.2021.108166_br0140) 2005
Dalibard (10.1016/j.cpc.2021.108166_br0170) 1989; 6
Bartolotta (10.1016/j.cpc.2021.108166_br0190) 2018; 98
Katori (10.1016/j.cpc.2021.108166_br0430) 1999; 82
Hanley (10.1016/j.cpc.2021.108166_br0420) 2018; 65
Johansson (10.1016/j.cpc.2021.108166_br0220) 2012; 183
Safronova (10.1016/j.cpc.2021.108166_br0110) 2018; 90
Grier (10.1016/j.cpc.2021.108166_br0390) 2013; 87
Lett (10.1016/j.cpc.2021.108166_br0160) 1989; 6
Metcalf (10.1016/j.cpc.2021.108166_br0150) 1999
Camara (10.1016/j.cpc.2021.108166_br0550) 2014; 90
Lu (10.1016/j.cpc.2021.108166_br0340) 2005; 71
Townsend (10.1016/j.cpc.2021.108166_br0540) 1995; 52
Ludlow (10.1016/j.cpc.2021.108166_br0010) 2015; 87
Cronin (10.1016/j.cpc.2021.108166_br0040) 2009; 81
Loftus (10.1016/j.cpc.2021.108166_br0440) 2004; 93
Gordon (10.1016/j.cpc.2021.108166_br0280) 1980; 21
Chu (10.1016/j.cpc.2021.108166_br0370) 1985; 55
Sitaram (10.1016/j.cpc.2021.108166_br0520) 2020; 91
Bergmann (10.1016/j.cpc.2021.108166_br0360) 1998; 70
Hutzler (10.1016/j.cpc.2021.108166_br0120) 2020; 5
Elvin (10.1016/j.cpc.2021.108166_br0030) 2019; 27
Cohen (10.1016/j.cpc.2021.108166_br0080) 2019; 114
Bruzewicz (10.1016/j.cpc.2021.108166_br0100) 2019; 6
Kitching (10.1016/j.cpc.2021.108166_br0070) 2018; 5
Norrgard (10.1016/j.cpc.2021.108166_br0130) 2019; 2
Johansson (10.1016/j.cpc.2021.108166_br0230) 2013; 184
Dalibard (10.1016/j.cpc.2021.108166_br0310) 1982; 43
References_xml – volume: 55
  start-page: 48
  year: 1985
  end-page: 51
  ident: br0370
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 1606
  year: 1980
  end-page: 1617
  ident: br0280
  publication-title: Phys. Rev. A
– volume: 90
  year: 2018
  ident: br0090
  publication-title: Rev. Mod. Phys.
– volume: 114
  year: 2019
  ident: br0080
  publication-title: Appl. Phys. Lett.
– volume: 71
  year: 2005
  ident: br0340
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 321
  year: 2013
  end-page: 324
  ident: br0500
  publication-title: Nat. Nanotechnol.
– volume: 183
  start-page: 1760
  year: 2012
  ident: br0220
  publication-title: Comput. Phys. Commun.
– ident: br0260
– volume: 2
  start-page: 77
  year: 2019
  ident: br0130
  publication-title: Commun. Phys.
– volume: 66
  start-page: 2593
  year: 1991
  end-page: 2596
  ident: br0350
  publication-title: Phys. Rev. Lett.
– volume: 135
  start-page: 269
  year: 1997
  end-page: 272
  ident: br0460
  publication-title: Opt. Commun.
– volume: 90
  year: 2003
  ident: br0410
  publication-title: Phys. Rev. Lett.
– volume: 227
  start-page: 109
  year: 2018
  end-page: 116
  ident: br0250
  publication-title: Comput. Phys. Commun.
– volume: 17
  year: 2015
  ident: br0330
  publication-title: New J. Phys.
– volume: 562
  start-page: 391
  year: 2018
  end-page: 395
  ident: br0050
  publication-title: Nature
– volume: 52
  start-page: 340
  year: 1984
  end-page: 343
  ident: br0320
  publication-title: Am. J. Phys.
– volume: 5
  year: 2018
  ident: br0070
  publication-title: Appl. Phys. Rev.
– volume: 90
  year: 2014
  ident: br0550
  publication-title: Phys. Rev. A
– ident: br0240
– volume: 87
  start-page: 637
  year: 2015
  end-page: 701
  ident: br0010
  publication-title: Rev. Mod. Phys.
– volume: 184
  start-page: 1234
  year: 2013
  ident: br0230
  publication-title: Comput. Phys. Commun.
– volume: 81
  start-page: 1051
  year: 2009
  end-page: 1129
  ident: br0040
  publication-title: Rev. Mod. Phys.
– volume: 5
  year: 2020
  ident: br0120
  publication-title: Quantum Sci. Technol.
– volume: 30
  start-page: 2869
  year: 2013
  end-page: 2874
  ident: br0490
  publication-title: J. Opt. Soc. Am. B
– volume: 65
  start-page: 667
  year: 2018
  end-page: 676
  ident: br0420
  publication-title: J. Mod. Opt.
– year: 1999
  ident: br0150
  article-title: Laser Cooling and Trapping
  publication-title: Graduate Texts in Contemporary Physics
– volume: 18
  year: 2016
  ident: br0380
  publication-title: New J. Phys.
– volume: 43
  start-page: 1617
  year: 1982
  end-page: 1638
  ident: br0310
  publication-title: J. Phys. France
– volume: 366
  start-page: 745
  year: 2019
  end-page: 749
  ident: br0060
  publication-title: Science
– volume: 78
  start-page: 1420
  year: 1997
  end-page: 1423
  ident: br0480
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2020
  ident: br0520
  publication-title: Rev. Sci. Instrum.
– volume: 93
  year: 2004
  ident: br0440
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2019
  ident: br0100
  publication-title: Appl. Phys. Rev.
– volume: 6
  start-page: 2084
  year: 1989
  end-page: 2107
  ident: br0160
  publication-title: J. Opt. Soc. Am. B
– volume: 90
  year: 2018
  ident: br0110
  publication-title: Rev. Mod. Phys.
– volume: 98
  year: 2018
  ident: br0190
  publication-title: Phys. Rev. A
– volume: 70
  start-page: 1003
  year: 1998
  end-page: 1025
  ident: br0360
  publication-title: Rev. Mod. Phys.
– volume: 27
  year: 2019
  ident: br0030
  publication-title: Opt. Express
– year: 2013
  ident: br0450
  article-title: Degenerate quantum gases of strontium
– volume: 358
  start-page: 90
  year: 2017
  end-page: 94
  ident: br0020
  publication-title: Science
– volume: 102
  start-page: 225
  year: 1993
  end-page: 230
  ident: br0400
  publication-title: Opt. Commun.
– volume: 64
  start-page: 408
  year: 1990
  end-page: 411
  ident: br0530
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 2023
  year: 1989
  end-page: 2045
  ident: br0170
  publication-title: J. Opt. Soc. Am. B
– volume: 6
  start-page: 2058
  year: 1989
  end-page: 2071
  ident: br0290
  publication-title: J. Opt. Soc. Am. B
– ident: br0210
– volume: 92
  year: 2015
  ident: br0470
  publication-title: Phys. Rev. A
– volume: 59
  start-page: 2631
  year: 1987
  end-page: 2634
  ident: br0200
  publication-title: Phys. Rev. Lett.
– ident: br0270
– volume: 52
  start-page: 1423
  year: 1995
  end-page: 1440
  ident: br0540
  publication-title: Phys. Rev. A
– volume: 87
  year: 2013
  ident: br0390
  publication-title: Phys. Rev. A
– volume: 85
  year: 2014
  ident: br0180
  publication-title: Rev. Sci. Instrum.
– volume: 11
  year: 2019
  ident: br0510
  publication-title: Phys. Rev. Appl.
– volume: 98
  year: 2018
  ident: br0300
  publication-title: Phys. Rev. A
– year: 2005
  ident: br0140
  article-title: Atomic Physics
  publication-title: Oxford Master Series in Physics
– volume: 82
  start-page: 1116
  year: 1999
  end-page: 1119
  ident: br0430
– volume: 21
  start-page: 1606
  year: 1980
  ident: 10.1016/j.cpc.2021.108166_br0280
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.21.1606
– volume: 70
  start-page: 1003
  year: 1998
  ident: 10.1016/j.cpc.2021.108166_br0360
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.1003
– volume: 65
  start-page: 667
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0420
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2017.1401679
– volume: 81
  start-page: 1051
  year: 2009
  ident: 10.1016/j.cpc.2021.108166_br0040
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.1051
– volume: 227
  start-page: 109
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0250
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.02.004
– volume: 90
  year: 2003
  ident: 10.1016/j.cpc.2021.108166_br0410
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.113002
– volume: 18
  year: 2016
  ident: 10.1016/j.cpc.2021.108166_br0380
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/12/123017
– volume: 98
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0190
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.023404
– year: 2005
  ident: 10.1016/j.cpc.2021.108166_br0140
  article-title: Atomic Physics
– volume: 87
  start-page: 637
  year: 2015
  ident: 10.1016/j.cpc.2021.108166_br0010
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.637
– volume: 8
  start-page: 321
  year: 2013
  ident: 10.1016/j.cpc.2021.108166_br0500
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.47
– volume: 183
  start-page: 1760
  year: 2012
  ident: 10.1016/j.cpc.2021.108166_br0220
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.02.021
– volume: 135
  start-page: 269
  year: 1997
  ident: 10.1016/j.cpc.2021.108166_br0460
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(96)00660-8
– volume: 93
  year: 2004
  ident: 10.1016/j.cpc.2021.108166_br0440
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.073003
– volume: 52
  start-page: 1423
  year: 1995
  ident: 10.1016/j.cpc.2021.108166_br0540
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.1423
– volume: 82
  start-page: 1116
  year: 1999
  ident: 10.1016/j.cpc.2021.108166_br0430
– volume: 6
  start-page: 2084
  year: 1989
  ident: 10.1016/j.cpc.2021.108166_br0160
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.6.002084
– volume: 6
  start-page: 2058
  year: 1989
  ident: 10.1016/j.cpc.2021.108166_br0290
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.6.002058
– volume: 52
  start-page: 340
  year: 1984
  ident: 10.1016/j.cpc.2021.108166_br0320
  publication-title: Am. J. Phys.
  doi: 10.1119/1.13886
– volume: 78
  start-page: 1420
  year: 1997
  ident: 10.1016/j.cpc.2021.108166_br0480
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1420
– volume: 17
  year: 2015
  ident: 10.1016/j.cpc.2021.108166_br0330
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/1/015007
– volume: 6
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0100
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5088164
– volume: 6
  start-page: 2023
  year: 1989
  ident: 10.1016/j.cpc.2021.108166_br0170
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.6.002023
– volume: 92
  year: 2015
  ident: 10.1016/j.cpc.2021.108166_br0470
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.053401
– volume: 98
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0300
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.063415
– volume: 64
  start-page: 408
  year: 1990
  ident: 10.1016/j.cpc.2021.108166_br0530
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.408
– volume: 43
  start-page: 1617
  year: 1982
  ident: 10.1016/j.cpc.2021.108166_br0310
  publication-title: J. Phys. France
  doi: 10.1051/jphys:0198200430110161700
– volume: 55
  start-page: 48
  year: 1985
  ident: 10.1016/j.cpc.2021.108166_br0370
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.48
– volume: 114
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0080
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5084004
– volume: 30
  start-page: 2869
  year: 2013
  ident: 10.1016/j.cpc.2021.108166_br0490
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.30.002869
– volume: 66
  start-page: 2593
  year: 1991
  ident: 10.1016/j.cpc.2021.108166_br0350
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2593
– volume: 562
  start-page: 391
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0050
  publication-title: Nature
  doi: 10.1038/s41586-018-0605-1
– volume: 366
  start-page: 745
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0060
  publication-title: Science
  doi: 10.1126/science.aay6428
– volume: 5
  year: 2020
  ident: 10.1016/j.cpc.2021.108166_br0120
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abb9c5
– volume: 59
  start-page: 2631
  year: 1987
  ident: 10.1016/j.cpc.2021.108166_br0200
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2631
– volume: 90
  year: 2014
  ident: 10.1016/j.cpc.2021.108166_br0550
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.063404
– volume: 87
  year: 2013
  ident: 10.1016/j.cpc.2021.108166_br0390
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.063411
– year: 2013
  ident: 10.1016/j.cpc.2021.108166_br0450
– volume: 5
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0070
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5026238
– volume: 90
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0110
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.025008
– volume: 11
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0510
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.064023
– year: 1999
  ident: 10.1016/j.cpc.2021.108166_br0150
  article-title: Laser Cooling and Trapping
  doi: 10.1007/978-1-4612-1470-0
– volume: 27
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0030
  publication-title: Opt. Express
  doi: 10.1364/OE.378632
– volume: 90
  year: 2018
  ident: 10.1016/j.cpc.2021.108166_br0090
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.035005
– volume: 184
  start-page: 1234
  year: 2013
  ident: 10.1016/j.cpc.2021.108166_br0230
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.019
– volume: 102
  start-page: 225
  year: 1993
  ident: 10.1016/j.cpc.2021.108166_br0400
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90387-K
– volume: 358
  start-page: 90
  year: 2017
  ident: 10.1016/j.cpc.2021.108166_br0020
  publication-title: Science
  doi: 10.1126/science.aam5538
– volume: 91
  year: 2020
  ident: 10.1016/j.cpc.2021.108166_br0520
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0019551
– volume: 2
  start-page: 77
  year: 2019
  ident: 10.1016/j.cpc.2021.108166_br0130
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0181-1
– volume: 85
  year: 2014
  ident: 10.1016/j.cpc.2021.108166_br0180
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4904066
– volume: 71
  year: 2005
  ident: 10.1016/j.cpc.2021.108166_br0340
  publication-title: Phys. Rev. A
SSID ssj0007793
Score 2.4824195
Snippet We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108166
SubjectTerms Atomic physics
Laser cooling
Python
Title PyLCP: A Python package for computing laser cooling physics
URI https://dx.doi.org/10.1016/j.cpc.2021.108166
https://www.ncbi.nlm.nih.gov/pubmed/36733946
https://www.proquest.com/docview/2773115613
https://pubmed.ncbi.nlm.nih.gov/PMC9890571
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQq5W4oF32QXnJK3FCCnVi52E4VRWobBdUrai2Nyt2bCigUG3LgQu_nRknKZRFPewpSmJLzjf2zBfPw4TsO6Mjx_M4sMzlgdBMBDnjNjCJZkVWaBlKzB0-v0h6Q_FzFI9WSLfJhcGwylr3Vzrda-v6SbtGsz0ZjzHHF_2TMdgf7z5DPSxEirP88OklzCNN68K7oG-wdePZ9DFeZoJVDKMQI-1CXyjxXdv0L_d8G0L5yiadfiLrNZmknWq8n8mKLTfIRx_UaaZfyPHg8Vd3cEQ7dPCIJQIo_B_fgv6gQFSp8cc5gOGiwJ8t3uPxPVe02uqYfiXD05PLbi-oD0sIjIjDWSAipwvHjNTcFJFzTjMHoPO8SGQe6xhEEmUFWCxn0zRNmHNo-nlssiwPgQTyb2S1vC_tJqFFbBKw-tzAchehNFnOdGilA3UAAIuoRVgDkzJ1JXE80OJONSFjNwqQVYisqpBtkYN5l0lVRmNZY9FgrxbmggI1v6zbj0ZOCtYIOj7y0t4_TFUEnwfMF5hLi3yv5DYfBU9SzqWA3umCROcNsP724ptyfO3rcMtMAtsNt_5vuNtkLcJUCr-ds0NWZ38f7C4QnJne8zN4j3zonPV7F3jt__7TfwY50PrH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5CRWi7oMF-dWPDSDtNinBiO4nHqapABUrVA0jcrNixoQyFai0H_vu9lx_Vuk0cOCaxJefZ_t5nv-fPAN-Cs0kQhYo8D0UkLZdRwYWPXGp5mZdWx5rODl9M0tGVPLtW1xsw7M7CUFpli_0Nptdo3b45bK15OJ_N6IwvxScV-p86fIY4vEnqVKoHm4PT89FkBchZ1mrvIuRQhS64Wad5uTkJGSYxJdvFtVbif93Tv_Tz7yzKP9zSyRvYbvkkGzRN3oENX-3CVp3X6RZv4Wj6NB5Of7ABmz6RSgDDJfJPhBCGXJW5-kYH9F0MKbSnZ7rB54Y1ux2Ld3B1cnw5HEXtfQmRkypeRjIJtgzcaStcmYQQLA9od1GUqS6UVdgrSV6i0wo-y7KUh0DeXyiX50WMPFC8h171UPmPwErlUnT8wuGMl7F2ecFt7HVARJASV9N94J2ZjGvFxOlOi3vTZY3dGbSsIcuaxrJ9-L6qMm-UNJ4rLDvbm7XhYBDpn6t20PWTwWlCsY-i8g-PC5Pg7yH5RfLShw9Nv61aIdJMCC2xdrbWo6sCJMG9_qWa3dZS3DrXSHjjTy9r7j68Gl1ejM34dHL-GV4ndLKi3t3Zg97y16P_gnxnab-24_k3-Cz71Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyLCP%3A+A+Python+package+for+computing+laser+cooling+physics&rft.jtitle=Computer+physics+communications&rft.au=Eckel%2C+Stephen&rft.au=Barker%2C+Daniel+S.&rft.au=Norrgard%2C+Eric+B.&rft.au=Scherschligt%2C+Julia&rft.date=2022-01-01&rft.issn=0010-4655&rft.volume=270&rft_id=info:doi/10.1016%2Fj.cpc.2021.108166&rft.externalDocID=PMC9890571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon