PyLCP: A Python package for computing laser cooling physics
We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and inte...
Saved in:
Published in | Computer physics communications Vol. 270; p. 108166 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S→30P1 transition in 88Sr and 87Sr. |
---|---|
AbstractList | We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams’ geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow
1
S
0
→
3
P
1
transition in
88
Sr and
87
Sr. We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S→30P1 transition in 88Sr and 87Sr. We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow S → P transition in Sr and Sr. We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S0 → 3P1 transition in 88Sr and 87Sr.We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S0 → 3P1 transition in 88Sr and 87Sr. |
ArticleNumber | 108166 |
Author | Eckel, Stephen Norrgard, Eric B. Barker, Daniel S. Scherschligt, Julia |
AuthorAffiliation | b Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA a Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA |
AuthorAffiliation_xml | – name: a Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA – name: b Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA |
Author_xml | – sequence: 1 givenname: Stephen orcidid: 0000-0002-8887-0320 surname: Eckel fullname: Eckel, Stephen email: stephen.eckel@nist.gov organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA – sequence: 2 givenname: Daniel S. orcidid: 0000-0002-4614-5833 surname: Barker fullname: Barker, Daniel S. organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA – sequence: 3 givenname: Eric B. orcidid: 0000-0002-8715-4648 surname: Norrgard fullname: Norrgard, Eric B. organization: Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, MD 20899, USA – sequence: 4 givenname: Julia orcidid: 0000-0003-4965-0103 surname: Scherschligt fullname: Scherschligt, Julia organization: Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36733946$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFr2zAYxUXpaNOuf8Auw8ddnH6fZEvWCoMS1nYQWA7bWciylChzLE9yCvnvZ5O2rD30JB56v_fgexfktAudJeQTwhwB-fV2bnozp0Bx1BVyfkJmWAmZU1kUp2QGgJAXvCzPyUVKWwAQQrIzcs64YEwWfEZuVoflYvU1u81Wh2ETuqzX5o9e28yFmJmw6_eD79ZZq5OddGgn1W8OyZv0kXxwuk326um9JL_vvv9aPOTLn_c_FrfL3BQlDnlBXd04MLJmpqHOuRocMMt0w6Uu67KmjlYNMnBWCMHBOQqIrDRVpVEKwS7Jt2Nuv693tjG2G6JuVR_9TseDCtqr1z-d36h1eFSyklAKHAO-PAXE8Hdv06B2PhnbtrqzYZ8UHUsQS45stH7-v-ul5Plio0EcDSaGlKJ1yvhBDz5M1b5VCGraRm3VuI2atlHHbUYS35DP4e8xN0fGjvd99DaqZLztjG18tGZQTfDv0P8A2TWmgg |
CitedBy_id | crossref_primary_10_1364_OE_545401 crossref_primary_10_1007_s11433_023_2132_6 crossref_primary_10_1103_PhysRevA_108_033105 crossref_primary_10_1103_PhysRevA_108_062821 crossref_primary_10_1103_PhysRevA_105_053117 crossref_primary_10_1103_PhysRevA_108_032809 crossref_primary_10_1103_PhysRevA_110_033103 crossref_primary_10_1088_1367_2630_ad02ea crossref_primary_10_3390_app14167062 crossref_primary_10_1103_PhysRevApplied_20_034042 crossref_primary_10_1103_PhysRevA_110_023110 crossref_primary_10_1016_j_cpc_2024_109374 crossref_primary_10_1038_s42254_024_00756_7 crossref_primary_10_1088_1361_6455_acee3a crossref_primary_10_1103_PhysRevApplied_23_014004 |
Cites_doi | 10.1103/PhysRevA.21.1606 10.1103/RevModPhys.70.1003 10.1080/09500340.2017.1401679 10.1103/RevModPhys.81.1051 10.1016/j.cpc.2018.02.004 10.1103/PhysRevLett.90.113002 10.1088/1367-2630/18/12/123017 10.1103/PhysRevA.98.023404 10.1103/RevModPhys.87.637 10.1038/nnano.2013.47 10.1016/j.cpc.2012.02.021 10.1016/S0030-4018(96)00660-8 10.1103/PhysRevLett.93.073003 10.1103/PhysRevA.52.1423 10.1364/JOSAB.6.002084 10.1364/JOSAB.6.002058 10.1119/1.13886 10.1103/PhysRevLett.78.1420 10.1088/1367-2630/17/1/015007 10.1063/1.5088164 10.1364/JOSAB.6.002023 10.1103/PhysRevA.92.053401 10.1103/PhysRevA.98.063415 10.1103/PhysRevLett.64.408 10.1051/jphys:0198200430110161700 10.1103/PhysRevLett.55.48 10.1063/1.5084004 10.1364/JOSAB.30.002869 10.1103/PhysRevLett.66.2593 10.1038/s41586-018-0605-1 10.1126/science.aay6428 10.1088/2058-9565/abb9c5 10.1103/PhysRevLett.59.2631 10.1103/PhysRevA.90.063404 10.1103/PhysRevA.87.063411 10.1063/1.5026238 10.1103/RevModPhys.90.025008 10.1103/PhysRevApplied.11.064023 10.1007/978-1-4612-1470-0 10.1364/OE.378632 10.1103/RevModPhys.90.035005 10.1016/j.cpc.2012.11.019 10.1016/0030-4018(93)90387-K 10.1126/science.aam5538 10.1063/5.0019551 10.1038/s42005-019-0181-1 10.1063/1.4904066 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.cpc.2021.108166 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2944 |
ExternalDocumentID | PMC9890571 36733946 10_1016_j_cpc_2021_108166 S0010465521002782 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c451t-42fbdf0c9b3cd2fffb0f03e3ad69a5b5b2f28d130fe77760ff201135c88a19773 |
IEDL.DBID | .~1 |
ISSN | 0010-4655 |
IngestDate | Thu Aug 21 18:38:24 EDT 2025 Fri Jul 11 12:32:27 EDT 2025 Mon Jul 21 05:19:15 EDT 2025 Tue Jul 01 02:40:34 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Fri Feb 23 02:44:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Atomic physics Laser cooling Python atomic physics laser cooling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-42fbdf0c9b3cd2fffb0f03e3ad69a5b5b2f28d130fe77760ff201135c88a19773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4614-5833 0000-0003-4965-0103 0000-0002-8715-4648 0000-0002-8887-0320 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9890571 |
PMID | 36733946 |
PQID | 2773115613 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9890571 proquest_miscellaneous_2773115613 pubmed_primary_36733946 crossref_citationtrail_10_1016_j_cpc_2021_108166 crossref_primary_10_1016_j_cpc_2021_108166 elsevier_sciencedirect_doi_10_1016_j_cpc_2021_108166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computer physics communications |
PublicationTitleAlternate | Comput Phys Commun |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Milonni (br0320) 1984; 52 Bergmann, Theuer, Shore (br0360) 1998; 70 Söding, Grimm, Ovchinnikov, Bouyer, Salomon (br0480) 1997; 78 Hutzler (br0120) 2020; 5 Norrgard, Barker, Eckel, Fedchak, Klimov, Scherschligt (br0130) 2019; 2 Pezzè, Smerzi, Oberthaler, Schmied, Treutlein (br0090) 2018; 90 Townsend, Edwards, Cooper, Zetie, Foot, Steane, Szriftgiser, Perrin, Dalibard (br0540) 1995; 52 Cohen, Jadeja, Sula, Venturelli, Deans, Marmugi, Renzoni (br0080) 2019; 114 Sitaram, Elgee, Campbell, Klimov, Eckel, Barker (br0520) 2020; 91 Ungar, Weiss, Riis, Chu (br0290) 1989; 6 Safronova, Budker, Demille, Kimball, Derevianko, Clark (br0110) 2018; 90 Chu, Hollberg, Bjorkholm, Cable, Ashkin (br0370) 1985; 55 Campbell, Hutson, Marti, Goban, Darkwah Oppong, McNally, Sonderhouse, Robinson, Zhang, Bloom, Ye (br0020) 2017; 358 br0260 Devlin, Tarbutt (br0380) 2016; 18 Cronin, Schmiedmayer, Pritchard (br0040) 2009; 81 Boller, Imamoglu, Harris (br0350) 1991; 66 Tarbutt, Steimle (br0470) 2015; 92 Becker, Lachmann, Seidel, Ahlers, Dinkelaker, Grosse, Hellmig, Müntinga, Schkolnik, Wendrich, Wenzlawski, Weps, Corgier, Franz, Gaaloul, Herr, Lüdtke, Popp, Amri, Duncker, Erbe, Kohfeldt, Kubelka-Lange, Braxmaier, Charron, Ertmer, Krutzik, Lämmerzahl, Peters, Schleich, Sengstock, Walser, Wicht, Windpassinger, Rasel (br0050) 2018; 562 Lu, Miao, Metcalf (br0340) 2005; 71 Dalibard, Dupont-Roc, Cohen-Tannoudji (br0310) 1982; 43 Johansson, Nation, Nori (br0220) 2012; 183 Xu, Jaffe, Panda, Kristensen, Clark, Müller (br0060) 2019; 366 Krämer, Plankensteiner, Ostermann, Ritsch (br0250) 2018; 227 Nshii, Vangeleyn, Cotter, Griffin, Hinds, Ironside, See, Sinclair, Riis, Arnold (br0500) 2013; 8 Lett, Phillips, Rolston, Tanner, Watts, Westbrook (br0160) 1989; 6 Tarbutt (br0330) 2015; 17 Lee, Grover, Orozco, Rolston (br0490) 2013; 30 Kitching (br0070) 2018; 5 br0270 Barker, Norrgard, Klimov, Fedchak, Scherschligt, Eckel (br0510) 2019; 11 Dalibard, Cohen-Tannoudji (br0170) 1989; 6 Bartolotta, Norcia, Cline, Thompson, Holland (br0190) 2018; 98 Johansson, Nation, Nori (br0230) 2013; 184 Katori, Ido, Isoya, Kuwata-Gonokami (br0430) 1999; 82 Loftus, Ido, Ludlow, Boyd, Ye (br0440) 2004; 93 Gordon, Ashkin (br0280) 1980; 21 Stellmer (br0450) 2013 Haubrich, Höpe, Meschede (br0400) 1993; 102 br0240 Rushton, Aldous, Himsworth (br0180) 2014; 85 Hanley, Huillery, Keegan, Bounds, Boddy, Faoro, Jones (br0420) 2018; 65 Foot (br0140) 2005 br0210 Bruzewicz, Chiaverini, McConnell, Sage (br0100) 2019; 6 Raab, Prentiss, Cable, Chu, Pritchard (br0200) 1987; 59 Devlin, Tarbutt (br0300) 2018; 98 Grier, Ferrier-Barbut, Rem, Delehaye, Khaykovich, Chevy, Salomon (br0390) 2013; 87 Mukaiyama, Katori, Ido, Li, Kuwata-Gonokami (br0410) 2003; 90 Metcalf, van der Straten (br0150) 1999 Elvin, Hoth, Wright, Lewis, McGilligan, Arnold, Griffin, Riis (br0030) 2019; 27 Walker, Sesko, Wieman (br0530) 1990; 64 Ludlow, Boyd, Ye, Peik, Schmidt (br0010) 2015; 87 Flemming, Tuboy, Milori, Marcassa, Zilio, Bagnato (br0460) 1997; 135 Camara, Kaiser, Labeyrie (br0550) 2014; 90 Tarbutt (10.1016/j.cpc.2021.108166_br0330) 2015; 17 Campbell (10.1016/j.cpc.2021.108166_br0020) 2017; 358 Becker (10.1016/j.cpc.2021.108166_br0050) 2018; 562 Söding (10.1016/j.cpc.2021.108166_br0480) 1997; 78 Flemming (10.1016/j.cpc.2021.108166_br0460) 1997; 135 Pezzè (10.1016/j.cpc.2021.108166_br0090) 2018; 90 Krämer (10.1016/j.cpc.2021.108166_br0250) 2018; 227 Nshii (10.1016/j.cpc.2021.108166_br0500) 2013; 8 Devlin (10.1016/j.cpc.2021.108166_br0380) 2016; 18 Lee (10.1016/j.cpc.2021.108166_br0490) 2013; 30 Ungar (10.1016/j.cpc.2021.108166_br0290) 1989; 6 Devlin (10.1016/j.cpc.2021.108166_br0300) 2018; 98 Barker (10.1016/j.cpc.2021.108166_br0510) 2019; 11 Boller (10.1016/j.cpc.2021.108166_br0350) 1991; 66 Milonni (10.1016/j.cpc.2021.108166_br0320) 1984; 52 Raab (10.1016/j.cpc.2021.108166_br0200) 1987; 59 Walker (10.1016/j.cpc.2021.108166_br0530) 1990; 64 Rushton (10.1016/j.cpc.2021.108166_br0180) 2014; 85 Mukaiyama (10.1016/j.cpc.2021.108166_br0410) 2003; 90 Stellmer (10.1016/j.cpc.2021.108166_br0450) 2013 Haubrich (10.1016/j.cpc.2021.108166_br0400) 1993; 102 Xu (10.1016/j.cpc.2021.108166_br0060) 2019; 366 Tarbutt (10.1016/j.cpc.2021.108166_br0470) 2015; 92 Foot (10.1016/j.cpc.2021.108166_br0140) 2005 Dalibard (10.1016/j.cpc.2021.108166_br0170) 1989; 6 Bartolotta (10.1016/j.cpc.2021.108166_br0190) 2018; 98 Katori (10.1016/j.cpc.2021.108166_br0430) 1999; 82 Hanley (10.1016/j.cpc.2021.108166_br0420) 2018; 65 Johansson (10.1016/j.cpc.2021.108166_br0220) 2012; 183 Safronova (10.1016/j.cpc.2021.108166_br0110) 2018; 90 Grier (10.1016/j.cpc.2021.108166_br0390) 2013; 87 Lett (10.1016/j.cpc.2021.108166_br0160) 1989; 6 Metcalf (10.1016/j.cpc.2021.108166_br0150) 1999 Camara (10.1016/j.cpc.2021.108166_br0550) 2014; 90 Lu (10.1016/j.cpc.2021.108166_br0340) 2005; 71 Townsend (10.1016/j.cpc.2021.108166_br0540) 1995; 52 Ludlow (10.1016/j.cpc.2021.108166_br0010) 2015; 87 Cronin (10.1016/j.cpc.2021.108166_br0040) 2009; 81 Loftus (10.1016/j.cpc.2021.108166_br0440) 2004; 93 Gordon (10.1016/j.cpc.2021.108166_br0280) 1980; 21 Chu (10.1016/j.cpc.2021.108166_br0370) 1985; 55 Sitaram (10.1016/j.cpc.2021.108166_br0520) 2020; 91 Bergmann (10.1016/j.cpc.2021.108166_br0360) 1998; 70 Hutzler (10.1016/j.cpc.2021.108166_br0120) 2020; 5 Elvin (10.1016/j.cpc.2021.108166_br0030) 2019; 27 Cohen (10.1016/j.cpc.2021.108166_br0080) 2019; 114 Bruzewicz (10.1016/j.cpc.2021.108166_br0100) 2019; 6 Kitching (10.1016/j.cpc.2021.108166_br0070) 2018; 5 Norrgard (10.1016/j.cpc.2021.108166_br0130) 2019; 2 Johansson (10.1016/j.cpc.2021.108166_br0230) 2013; 184 Dalibard (10.1016/j.cpc.2021.108166_br0310) 1982; 43 |
References_xml | – volume: 55 start-page: 48 year: 1985 end-page: 51 ident: br0370 publication-title: Phys. Rev. Lett. – volume: 21 start-page: 1606 year: 1980 end-page: 1617 ident: br0280 publication-title: Phys. Rev. A – volume: 90 year: 2018 ident: br0090 publication-title: Rev. Mod. Phys. – volume: 114 year: 2019 ident: br0080 publication-title: Appl. Phys. Lett. – volume: 71 year: 2005 ident: br0340 publication-title: Phys. Rev. A – volume: 8 start-page: 321 year: 2013 end-page: 324 ident: br0500 publication-title: Nat. Nanotechnol. – volume: 183 start-page: 1760 year: 2012 ident: br0220 publication-title: Comput. Phys. Commun. – ident: br0260 – volume: 2 start-page: 77 year: 2019 ident: br0130 publication-title: Commun. Phys. – volume: 66 start-page: 2593 year: 1991 end-page: 2596 ident: br0350 publication-title: Phys. Rev. Lett. – volume: 135 start-page: 269 year: 1997 end-page: 272 ident: br0460 publication-title: Opt. Commun. – volume: 90 year: 2003 ident: br0410 publication-title: Phys. Rev. Lett. – volume: 227 start-page: 109 year: 2018 end-page: 116 ident: br0250 publication-title: Comput. Phys. Commun. – volume: 17 year: 2015 ident: br0330 publication-title: New J. Phys. – volume: 562 start-page: 391 year: 2018 end-page: 395 ident: br0050 publication-title: Nature – volume: 52 start-page: 340 year: 1984 end-page: 343 ident: br0320 publication-title: Am. J. Phys. – volume: 5 year: 2018 ident: br0070 publication-title: Appl. Phys. Rev. – volume: 90 year: 2014 ident: br0550 publication-title: Phys. Rev. A – ident: br0240 – volume: 87 start-page: 637 year: 2015 end-page: 701 ident: br0010 publication-title: Rev. Mod. Phys. – volume: 184 start-page: 1234 year: 2013 ident: br0230 publication-title: Comput. Phys. Commun. – volume: 81 start-page: 1051 year: 2009 end-page: 1129 ident: br0040 publication-title: Rev. Mod. Phys. – volume: 5 year: 2020 ident: br0120 publication-title: Quantum Sci. Technol. – volume: 30 start-page: 2869 year: 2013 end-page: 2874 ident: br0490 publication-title: J. Opt. Soc. Am. B – volume: 65 start-page: 667 year: 2018 end-page: 676 ident: br0420 publication-title: J. Mod. Opt. – year: 1999 ident: br0150 article-title: Laser Cooling and Trapping publication-title: Graduate Texts in Contemporary Physics – volume: 18 year: 2016 ident: br0380 publication-title: New J. Phys. – volume: 43 start-page: 1617 year: 1982 end-page: 1638 ident: br0310 publication-title: J. Phys. France – volume: 366 start-page: 745 year: 2019 end-page: 749 ident: br0060 publication-title: Science – volume: 78 start-page: 1420 year: 1997 end-page: 1423 ident: br0480 publication-title: Phys. Rev. Lett. – volume: 91 year: 2020 ident: br0520 publication-title: Rev. Sci. Instrum. – volume: 93 year: 2004 ident: br0440 publication-title: Phys. Rev. Lett. – volume: 6 year: 2019 ident: br0100 publication-title: Appl. Phys. Rev. – volume: 6 start-page: 2084 year: 1989 end-page: 2107 ident: br0160 publication-title: J. Opt. Soc. Am. B – volume: 90 year: 2018 ident: br0110 publication-title: Rev. Mod. Phys. – volume: 98 year: 2018 ident: br0190 publication-title: Phys. Rev. A – volume: 70 start-page: 1003 year: 1998 end-page: 1025 ident: br0360 publication-title: Rev. Mod. Phys. – volume: 27 year: 2019 ident: br0030 publication-title: Opt. Express – year: 2013 ident: br0450 article-title: Degenerate quantum gases of strontium – volume: 358 start-page: 90 year: 2017 end-page: 94 ident: br0020 publication-title: Science – volume: 102 start-page: 225 year: 1993 end-page: 230 ident: br0400 publication-title: Opt. Commun. – volume: 64 start-page: 408 year: 1990 end-page: 411 ident: br0530 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 2023 year: 1989 end-page: 2045 ident: br0170 publication-title: J. Opt. Soc. Am. B – volume: 6 start-page: 2058 year: 1989 end-page: 2071 ident: br0290 publication-title: J. Opt. Soc. Am. B – ident: br0210 – volume: 92 year: 2015 ident: br0470 publication-title: Phys. Rev. A – volume: 59 start-page: 2631 year: 1987 end-page: 2634 ident: br0200 publication-title: Phys. Rev. Lett. – ident: br0270 – volume: 52 start-page: 1423 year: 1995 end-page: 1440 ident: br0540 publication-title: Phys. Rev. A – volume: 87 year: 2013 ident: br0390 publication-title: Phys. Rev. A – volume: 85 year: 2014 ident: br0180 publication-title: Rev. Sci. Instrum. – volume: 11 year: 2019 ident: br0510 publication-title: Phys. Rev. Appl. – volume: 98 year: 2018 ident: br0300 publication-title: Phys. Rev. A – year: 2005 ident: br0140 article-title: Atomic Physics publication-title: Oxford Master Series in Physics – volume: 82 start-page: 1116 year: 1999 end-page: 1119 ident: br0430 – volume: 21 start-page: 1606 year: 1980 ident: 10.1016/j.cpc.2021.108166_br0280 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.21.1606 – volume: 70 start-page: 1003 year: 1998 ident: 10.1016/j.cpc.2021.108166_br0360 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.70.1003 – volume: 65 start-page: 667 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0420 publication-title: J. Mod. Opt. doi: 10.1080/09500340.2017.1401679 – volume: 81 start-page: 1051 year: 2009 ident: 10.1016/j.cpc.2021.108166_br0040 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.1051 – volume: 227 start-page: 109 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0250 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.02.004 – volume: 90 year: 2003 ident: 10.1016/j.cpc.2021.108166_br0410 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.113002 – volume: 18 year: 2016 ident: 10.1016/j.cpc.2021.108166_br0380 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/12/123017 – volume: 98 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0190 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.023404 – year: 2005 ident: 10.1016/j.cpc.2021.108166_br0140 article-title: Atomic Physics – volume: 87 start-page: 637 year: 2015 ident: 10.1016/j.cpc.2021.108166_br0010 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.637 – volume: 8 start-page: 321 year: 2013 ident: 10.1016/j.cpc.2021.108166_br0500 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.47 – volume: 183 start-page: 1760 year: 2012 ident: 10.1016/j.cpc.2021.108166_br0220 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.02.021 – volume: 135 start-page: 269 year: 1997 ident: 10.1016/j.cpc.2021.108166_br0460 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(96)00660-8 – volume: 93 year: 2004 ident: 10.1016/j.cpc.2021.108166_br0440 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.073003 – volume: 52 start-page: 1423 year: 1995 ident: 10.1016/j.cpc.2021.108166_br0540 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.1423 – volume: 82 start-page: 1116 year: 1999 ident: 10.1016/j.cpc.2021.108166_br0430 – volume: 6 start-page: 2084 year: 1989 ident: 10.1016/j.cpc.2021.108166_br0160 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.6.002084 – volume: 6 start-page: 2058 year: 1989 ident: 10.1016/j.cpc.2021.108166_br0290 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.6.002058 – volume: 52 start-page: 340 year: 1984 ident: 10.1016/j.cpc.2021.108166_br0320 publication-title: Am. J. Phys. doi: 10.1119/1.13886 – volume: 78 start-page: 1420 year: 1997 ident: 10.1016/j.cpc.2021.108166_br0480 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1420 – volume: 17 year: 2015 ident: 10.1016/j.cpc.2021.108166_br0330 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/1/015007 – volume: 6 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0100 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5088164 – volume: 6 start-page: 2023 year: 1989 ident: 10.1016/j.cpc.2021.108166_br0170 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.6.002023 – volume: 92 year: 2015 ident: 10.1016/j.cpc.2021.108166_br0470 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.053401 – volume: 98 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0300 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.063415 – volume: 64 start-page: 408 year: 1990 ident: 10.1016/j.cpc.2021.108166_br0530 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.408 – volume: 43 start-page: 1617 year: 1982 ident: 10.1016/j.cpc.2021.108166_br0310 publication-title: J. Phys. France doi: 10.1051/jphys:0198200430110161700 – volume: 55 start-page: 48 year: 1985 ident: 10.1016/j.cpc.2021.108166_br0370 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.48 – volume: 114 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0080 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5084004 – volume: 30 start-page: 2869 year: 2013 ident: 10.1016/j.cpc.2021.108166_br0490 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.30.002869 – volume: 66 start-page: 2593 year: 1991 ident: 10.1016/j.cpc.2021.108166_br0350 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2593 – volume: 562 start-page: 391 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0050 publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 366 start-page: 745 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0060 publication-title: Science doi: 10.1126/science.aay6428 – volume: 5 year: 2020 ident: 10.1016/j.cpc.2021.108166_br0120 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abb9c5 – volume: 59 start-page: 2631 year: 1987 ident: 10.1016/j.cpc.2021.108166_br0200 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2631 – volume: 90 year: 2014 ident: 10.1016/j.cpc.2021.108166_br0550 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.063404 – volume: 87 year: 2013 ident: 10.1016/j.cpc.2021.108166_br0390 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.063411 – year: 2013 ident: 10.1016/j.cpc.2021.108166_br0450 – volume: 5 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0070 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5026238 – volume: 90 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0110 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.025008 – volume: 11 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0510 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064023 – year: 1999 ident: 10.1016/j.cpc.2021.108166_br0150 article-title: Laser Cooling and Trapping doi: 10.1007/978-1-4612-1470-0 – volume: 27 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0030 publication-title: Opt. Express doi: 10.1364/OE.378632 – volume: 90 year: 2018 ident: 10.1016/j.cpc.2021.108166_br0090 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.035005 – volume: 184 start-page: 1234 year: 2013 ident: 10.1016/j.cpc.2021.108166_br0230 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.019 – volume: 102 start-page: 225 year: 1993 ident: 10.1016/j.cpc.2021.108166_br0400 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90387-K – volume: 358 start-page: 90 year: 2017 ident: 10.1016/j.cpc.2021.108166_br0020 publication-title: Science doi: 10.1126/science.aam5538 – volume: 91 year: 2020 ident: 10.1016/j.cpc.2021.108166_br0520 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0019551 – volume: 2 start-page: 77 year: 2019 ident: 10.1016/j.cpc.2021.108166_br0130 publication-title: Commun. Phys. doi: 10.1038/s42005-019-0181-1 – volume: 85 year: 2014 ident: 10.1016/j.cpc.2021.108166_br0180 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4904066 – volume: 71 year: 2005 ident: 10.1016/j.cpc.2021.108166_br0340 publication-title: Phys. Rev. A |
SSID | ssj0007793 |
Score | 2.4824195 |
Snippet | We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108166 |
SubjectTerms | Atomic physics Laser cooling Python |
Title | PyLCP: A Python package for computing laser cooling physics |
URI | https://dx.doi.org/10.1016/j.cpc.2021.108166 https://www.ncbi.nlm.nih.gov/pubmed/36733946 https://www.proquest.com/docview/2773115613 https://pubmed.ncbi.nlm.nih.gov/PMC9890571 |
Volume | 270 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQq5W4oF32QXnJK3FCCnVi52E4VRWobBdUrai2Nyt2bCigUG3LgQu_nRknKZRFPewpSmJLzjf2zBfPw4TsO6Mjx_M4sMzlgdBMBDnjNjCJZkVWaBlKzB0-v0h6Q_FzFI9WSLfJhcGwylr3Vzrda-v6SbtGsz0ZjzHHF_2TMdgf7z5DPSxEirP88OklzCNN68K7oG-wdePZ9DFeZoJVDKMQI-1CXyjxXdv0L_d8G0L5yiadfiLrNZmknWq8n8mKLTfIRx_UaaZfyPHg8Vd3cEQ7dPCIJQIo_B_fgv6gQFSp8cc5gOGiwJ8t3uPxPVe02uqYfiXD05PLbi-oD0sIjIjDWSAipwvHjNTcFJFzTjMHoPO8SGQe6xhEEmUFWCxn0zRNmHNo-nlssiwPgQTyb2S1vC_tJqFFbBKw-tzAchehNFnOdGilA3UAAIuoRVgDkzJ1JXE80OJONSFjNwqQVYisqpBtkYN5l0lVRmNZY9FgrxbmggI1v6zbj0ZOCtYIOj7y0t4_TFUEnwfMF5hLi3yv5DYfBU9SzqWA3umCROcNsP724ptyfO3rcMtMAtsNt_5vuNtkLcJUCr-ds0NWZ38f7C4QnJne8zN4j3zonPV7F3jt__7TfwY50PrH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5CRWi7oMF-dWPDSDtNinBiO4nHqapABUrVA0jcrNixoQyFai0H_vu9lx_Vuk0cOCaxJefZ_t5nv-fPAN-Cs0kQhYo8D0UkLZdRwYWPXGp5mZdWx5rODl9M0tGVPLtW1xsw7M7CUFpli_0Nptdo3b45bK15OJ_N6IwvxScV-p86fIY4vEnqVKoHm4PT89FkBchZ1mrvIuRQhS64Wad5uTkJGSYxJdvFtVbif93Tv_Tz7yzKP9zSyRvYbvkkGzRN3oENX-3CVp3X6RZv4Wj6NB5Of7ABmz6RSgDDJfJPhBCGXJW5-kYH9F0MKbSnZ7rB54Y1ux2Ld3B1cnw5HEXtfQmRkypeRjIJtgzcaStcmYQQLA9od1GUqS6UVdgrSV6i0wo-y7KUh0DeXyiX50WMPFC8h171UPmPwErlUnT8wuGMl7F2ecFt7HVARJASV9N94J2ZjGvFxOlOi3vTZY3dGbSsIcuaxrJ9-L6qMm-UNJ4rLDvbm7XhYBDpn6t20PWTwWlCsY-i8g-PC5Pg7yH5RfLShw9Nv61aIdJMCC2xdrbWo6sCJMG9_qWa3dZS3DrXSHjjTy9r7j68Gl1ejM34dHL-GV4ndLKi3t3Zg97y16P_gnxnab-24_k3-Cz71Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyLCP%3A+A+Python+package+for+computing+laser+cooling+physics&rft.jtitle=Computer+physics+communications&rft.au=Eckel%2C+Stephen&rft.au=Barker%2C+Daniel+S.&rft.au=Norrgard%2C+Eric+B.&rft.au=Scherschligt%2C+Julia&rft.date=2022-01-01&rft.issn=0010-4655&rft.volume=270&rft_id=info:doi/10.1016%2Fj.cpc.2021.108166&rft.externalDocID=PMC9890571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |