Quantum transport in Dirac and Weyl semimetals: a review
Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meanti...
Saved in:
Published in | Advances in physics: X Vol. 2; no. 3; pp. 518 - 544 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
04.05.2017
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov-de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided. |
---|---|
AbstractList | Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov-de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided. Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov–de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided. |
Author | Wang, Shuo Wang, An-Qi Liao, Zhi-Min Lin, Ben-Chuan Yu, Da-Peng |
Author_xml | – sequence: 1 givenname: Shuo surname: Wang fullname: Wang, Shuo organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University – sequence: 2 givenname: Ben-Chuan surname: Lin fullname: Lin, Ben-Chuan organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University – sequence: 3 givenname: An-Qi surname: Wang fullname: Wang, An-Qi organization: Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 4 givenname: Da-Peng surname: Yu fullname: Yu, Da-Peng organization: Department of Physics, Institute for Quantum Science and Engineering, South University of Science and Technology of China – sequence: 5 givenname: Zhi-Min surname: Liao fullname: Liao, Zhi-Min email: liaozm@pku.edu.cn organization: Collaborative Innovation Center of Quantum Matter |
BookMark | eNqFkV1LHDEYhUNR0Or-BGGg17vmYzJJ2psWWz9AEMHSy_BOkilZZpJtklX235t1XRAv6lXCyXvOe3jyGR2EGBxCZwQvCJb4nDLRdqRVC4qJWBBGBaPqEzre6vPtw8Gb-xGa5bzEGJNOVDM7RvJ-DaGsp6YkCHkVU2l8aH76BKaBYJs_bjM22U1-cgXG_LWBJrlH755O0eFQBTd7PU_Q78tfDxfX89u7q5uLH7dz03JS5gyEEq43AK3DZLBS9oILRaXEtFe2U5xLKQyW1jGijOg7zAluFWktcVZZdoJudrk2wlKvkp8gbXQEr1-EmP5qSMWb0WnXQW8FV51Stu3rCibp4KwhhHEjpalZX3ZZqxT_rV0uehnXKdT6mhLFqaq9ujr1bTdlUsw5uUEbX6D4GCojP2qC9Za83pPXW_L6lXx183fufeePfN93Ph-GmCZ4imm0usBmjGmof2N81uz_Ec-Ucpl9 |
CitedBy_id | crossref_primary_10_1088_1367_2630_ac14ce crossref_primary_10_1103_PhysRevB_101_165402 crossref_primary_10_1103_PhysRevB_97_205119 crossref_primary_10_7498_aps_72_20230672 crossref_primary_10_1103_PhysRevB_109_045437 crossref_primary_10_1134_S0036023621140059 crossref_primary_10_1103_PhysRevE_99_052126 crossref_primary_10_1103_PhysRevB_101_081403 crossref_primary_10_1103_PhysRevB_101_134503 crossref_primary_10_1103_PhysRevB_105_L201101 crossref_primary_10_1360_TB_2023_0307 crossref_primary_10_1007_JHEP02_2024_071 crossref_primary_10_1088_1361_648X_abee3e crossref_primary_10_1103_PhysRevB_104_195108 crossref_primary_10_1103_PhysRevX_9_031036 crossref_primary_10_1038_s41598_022_06431_0 crossref_primary_10_1103_PhysRevB_104_035113 crossref_primary_10_1063_10_0003743 crossref_primary_10_1063_5_0101372 crossref_primary_10_1080_23746149_2021_1884133 crossref_primary_10_1103_PhysRevA_105_023508 crossref_primary_10_3389_felec_2024_1372631 crossref_primary_10_1080_23746149_2022_2065216 crossref_primary_10_1088_0256_307X_40_9_097301 crossref_primary_10_31857_S2686740023050061 crossref_primary_10_1007_s12034_021_02548_6 crossref_primary_10_1088_1361_648X_abd0c2 crossref_primary_10_1103_PhysRevLett_127_187002 crossref_primary_10_1103_PhysRevApplied_8_064020 crossref_primary_10_1103_PhysRevB_102_205134 crossref_primary_10_1103_PhysRevB_99_245105 crossref_primary_10_1103_PhysRevB_102_195110 crossref_primary_10_1103_PhysRevX_9_011039 crossref_primary_10_1103_PhysRevB_99_094512 crossref_primary_10_1103_PhysRevB_109_075169 crossref_primary_10_21468_SciPostPhysProc_11_005 crossref_primary_10_1103_PhysRevB_107_205107 crossref_primary_10_1103_PhysRevResearch_3_013230 crossref_primary_10_1103_PhysRevB_99_155120 crossref_primary_10_1103_PhysRevB_107_235414 crossref_primary_10_1103_PhysRevB_106_085102 crossref_primary_10_1103_RevModPhys_93_025002 crossref_primary_10_1021_acsnano_9b07990 crossref_primary_10_1103_PhysRevB_104_235143 crossref_primary_10_1103_PhysRevB_105_184105 crossref_primary_10_1103_PhysRevA_96_043627 crossref_primary_10_1103_PhysRevB_105_075426 crossref_primary_10_1103_PhysRevB_108_094427 crossref_primary_10_1088_1361_648X_ac37db crossref_primary_10_1103_PhysRevB_103_165144 crossref_primary_10_1103_PhysRevB_99_174306 crossref_primary_10_7566_JPSJ_88_041010 crossref_primary_10_1103_PhysRevB_104_245420 crossref_primary_10_1063_1_5128125 crossref_primary_10_1103_PhysRevLett_130_156402 crossref_primary_10_1103_PhysRevLett_133_236602 crossref_primary_10_1146_annurev_matsci_070218_010023 crossref_primary_10_1103_PhysRevLett_124_257001 crossref_primary_10_1088_1361_6668_ac4c84 crossref_primary_10_1103_PhysRevB_103_235143 crossref_primary_10_1103_PhysRevB_104_155140 crossref_primary_10_1103_PhysRevB_109_085111 crossref_primary_10_1021_acs_chemmater_8b04383 crossref_primary_10_1080_23746149_2017_1414631 crossref_primary_10_1088_2053_1591_ab688b crossref_primary_10_1103_PhysRevA_105_043519 crossref_primary_10_1103_PhysRevB_108_094513 crossref_primary_10_1103_PhysRevLett_122_036602 crossref_primary_10_1103_PhysRevB_100_085436 crossref_primary_10_1021_acs_jpcc_4c01716 crossref_primary_10_1186_s43593_022_00036_w crossref_primary_10_1021_acs_jpclett_8b00640 crossref_primary_10_1103_PhysRevB_109_035120 crossref_primary_10_1063_5_0155940 crossref_primary_10_1103_PhysRevB_106_245410 crossref_primary_10_1088_1402_4896_ad6109 crossref_primary_10_1103_PhysRevB_100_115414 crossref_primary_10_1103_PhysRevMaterials_5_090301 crossref_primary_10_1103_PhysRevB_103_L081402 crossref_primary_10_1103_PhysRevB_102_104404 crossref_primary_10_1080_23746149_2022_2034529 crossref_primary_10_1103_PhysRevB_100_045420 crossref_primary_10_1088_1361_648X_ad7ac0 crossref_primary_10_1103_PhysRevB_108_165144 crossref_primary_10_1088_2053_1583_ab0902 crossref_primary_10_1103_PhysRevB_100_155430 crossref_primary_10_1103_PhysRevB_102_184407 crossref_primary_10_1103_PhysRevResearch_4_L022002 crossref_primary_10_1103_PhysRevB_104_144305 crossref_primary_10_1103_PhysRevLett_121_237701 crossref_primary_10_1088_1367_2630_ac1af6 crossref_primary_10_1103_PhysRevMaterials_4_084203 |
Cites_doi | 10.1038/nmat4457 10.1038/nphys3871 10.1103/PhysRevLett.109.267002 10.1126/sciadv.1501092 10.1016/0370-2693(83)91529-0 10.1038/nnano.2011.19 10.1103/PhysRevB.88.165105 10.1088/1367-2630/9/9/356 10.1038/srep18674 10.1088/1367-2630/18/8/089502 10.1038/srep07328 10.1103/PhysRevB.94.121113 10.1103/PhysRevB.58.2788 10.1088/1367-2630/18/8/085006 10.1103/PhysRevLett.116.257003 10.1103/PhysRevB.93.115414 10.1038/nnano.2015.293 10.1103/PhysRevLett.94.107005 10.1103/PhysRevLett.105.156803 10.1126/science.1219147 10.1103/PhysRevB.93.035116 10.1126/science.1245085 10.1103/PhysRevLett.116.066802 10.1088/0022-3719/5/11/002 10.1103/PhysRevA.85.033640 10.1088/0256-307X/32/9/097102 10.1103/PhysRevB.94.041103 10.1038/nphys3425 10.1103/PhysRevLett.110.186806 10.1103/PhysRevLett.115.217601 10.1103/RevModPhys.59.755 10.1103/PhysRevB.90.165115 10.1070/1063-7869/44/10S/S29 10.1103/PhysRevB.80.081413 10.1021/nl101522j 10.1038/ncomms10303 10.1126/science.aaa9297 10.1038/nmat4787 10.1103/PhysRevB.86.054504 10.1103/PhysRevLett.59.2095 10.1038/nmat3990 10.1103/PhysRevLett.100.096407 10.1103/Physics.4.36 10.1103/PhysRevB.84.075129 10.1038/nphys3036 10.1038/nphys3426 10.1103/PhysRevB.93.161112 10.1007/s11433-016-5798-4 10.1103/PhysRevLett.108.140405 10.1103/PhysRevB.81.125318 10.1103/PhysRevLett.111.246603 10.1038/ncomms13974 10.1088/0022-3719/6/7/010 10.1038/ncomms8779 10.1103/PhysRevLett.114.017001 10.1038/ncomms4786 10.1038/nphys2429 10.1038/ncomms10137 10.1103/PhysRevB.85.035103 10.1007/978-3-662-02781-3 10.1103/PhysRevB.92.075101 10.1103/PhysRevLett.50.1395 10.1038/ncomms6161 10.1063/1.4947433 10.1038/nmat4684 10.1038/nnano.2015.86 10.1088/0953-8984/27/27/275701 10.1103/PhysRevLett.112.037001 10.1103/PhysRevB.84.220504 10.1103/PhysRevLett.104.040502 10.1063/1.4940924 10.1103/PhysRevB.92.081306 10.1103/PhysRevB.93.195119 10.1103/PhysRevB.39.11413 10.1103/PhysRevB.91.214517 10.1021/nl500822g 10.1038/nature13763 10.1038/ncomms11038 10.1007/s11467-016-0636-8 10.1103/PhysRevB.94.085127 10.1103/PhysRevLett.110.126406 10.1103/PhysRevB.90.155316 10.1038/nature18276 10.1103/PhysRevLett.112.096804 10.1038/srep18797 10.1038/srep06106 10.1126/science.1256742 10.1088/0256-307X/32/10/107101 10.1143/JPSJ.67.2857 10.1038/srep27294 10.1126/science.1216466 10.1038/ncomms13741 10.1038/nphys3648 10.1103/PhysRevB.87.100510 10.1063/1.3641424 10.1103/PhysRevLett.115.177001 10.1103/PhysRevB.94.121115 10.1103/PhysRevLett.114.117201 10.1038/ncomms8634 10.1073/pnas.1601262113 10.1038/npjquantmats.2016.14 10.1038/ncomms10769 10.1103/PhysRevB.88.104412 10.1103/PhysRevLett.108.266802 10.1103/PhysRevLett.117.056805 10.1103/PhysRevB.92.205311 10.1103/PhysRevB.93.041109 10.1103/PhysRevB.92.075107 10.1103/PhysRevLett.105.206601 10.1016/0375-9601(83)90631-X 10.1103/PhysRevB.89.235109 10.1103/PhysRevB.91.041203 10.1088/0034-4885/75/7/076501 10.1103/PhysRevLett.102.096807 10.1103/RevModPhys.82.1959 10.1103/PhysRevB.93.165127 10.1103/PhysRevLett.101.120403 10.1103/PhysRevLett.105.177002 10.1103/PhysRevLett.105.077001 10.1126/science.aad8766 10.1143/JPSJ.71.2102 10.1021/acsnano.6b01568 10.1038/nature02073 10.1103/PhysRevB.90.045130 10.1103/PhysRevLett.107.127205 10.1103/PhysRevLett.45.494 10.1021/acsnano.5b06807 10.1103/PhysRevB.79.161408 10.1146/annurev-conmatphys-030212-184337 10.1103/PhysRev.52.365 10.1038/ncomms10903 10.1126/science.aac6089 10.1038/nmat4143 10.1063/1.3680099 10.1038/ncomms11006 10.1103/PhysRevB.92.161107 10.1038/nmat2609 10.1103/PhysRevB.87.174511 10.1038/nphys3372 10.1103/PhysRevB.92.035153 10.1143/JPSJ.40.1027 10.1103/PhysRevLett.115.238102 10.1021/acs.nanolett.6b04194 10.1103/PhysRevLett.102.166808 10.1016/j.aop.2004.05.006 10.1038/ncomms10735 10.1103/PhysRevB.90.195430 10.1103/PhysRevB.93.121112 10.1103/RevModPhys.83.1057 10.1038/ncomms3696 10.1038/ncomms8373 10.1103/PhysRevB.88.125427 10.1103/PhysRevB.83.205101 10.1038/ncomms11615 10.1103/PhysRevB.69.134507 10.1103/RevModPhys.82.3045 10.1103/RevModPhys.80.1083 10.1038/ncomms13013 10.1103/PhysRevLett.113.246402 10.1103/PhysRevLett.113.046401 10.1038/nature04233 10.1103/PhysRevB.91.165133 10.1103/PhysRevLett.114.096804 10.1088/0268-1242/27/12/124003 10.1103/PhysRevLett.96.259701 10.1103/PhysRevLett.115.087001 10.1103/PhysRevLett.113.027603 10.1038/nmat4456 10.1103/PhysRevLett.107.186806 10.1038/nphys3437 10.1126/science.282.5386.85 10.1103/PhysRevLett.117.077201 10.1038/ncomms13142 10.1103/PhysRevLett.95.186603 10.1038/ncomms10639 10.1103/PhysRevLett.49.405 10.1103/PhysRevB.85.241101 10.1038/nature15768 10.1103/PhysRevLett.112.217001 10.1103/PhysRevB.85.155118 10.1038/ncomms8805 10.1021/acsnano.5b02243 10.1016/j.crhy.2013.10.010 10.1103/PhysRevB.23.5632 10.1103/PhysRevLett.96.259702 10.1038/ncomms8804 10.1103/PhysRevB.94.161402 10.1103/PhysRevLett.48.1559 10.1038/nmat4455 10.1103/PhysRevB.94.121112 10.1038/nnano.2016.159 10.1126/science.1242247 10.1103/PhysRevLett.50.1153 10.1038/nphys3947 10.1103/PhysRevB.93.161110 10.1038/ncomms13643 10.1126/science.1259327 10.1021/nl303758w 10.1103/PhysRevB.85.195320 10.1103/PhysRevB.86.115208 10.1103/PhysRevLett.114.166406 |
ContentType | Journal Article |
Copyright | 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2017 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D L7M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/23746149.2017.1327329 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Aerospace Database Advanced Technologies Database with Aerospace Research Library (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2374-6149 |
EndPage | 544 |
ExternalDocumentID | oai_doaj_org_article_e6abd759699d4b288382fedc1135c88c 10_1080_23746149_2017_1327329 1327329 |
Genre | Review |
GrantInformation_xml | – fundername: NSFC grantid: 11234001 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11274014 funderid: 10.13039/501100001809 – fundername: Ministry of Science and Technology grantid: 2016YFA0300802; 2013CB934600 funderid: 10.13039/501100003711 |
GroupedDBID | 0YH 8G5 ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BPHCQ CCPQU DWQXO EBS EJD GNUQQ GROUPED_DOAJ GUQSH H13 M2O M4Z M~E OK1 PIMPY PQQKQ PROAC TDBHL TFW AAFWJ AAYXX ADMLS AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FD 8FK H8D L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-3a797ebcaa4e01fd88b757928802b9d6955887c08de319c7b605104914d1ed9d3 |
IEDL.DBID | BENPR |
ISSN | 2374-6149 |
IngestDate | Wed Aug 27 01:25:31 EDT 2025 Mon Jun 30 07:03:14 EDT 2025 Tue Jul 01 01:13:48 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 Wed Dec 25 09:05:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-3a797ebcaa4e01fd88b757928802b9d6955887c08de319c7b605104914d1ed9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2195299286?pq-origsite=%requestingapplication% |
PQID | 2195299286 |
PQPubID | 3933228 |
PageCount | 27 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_23746149_2017_1327329 crossref_citationtrail_10_1080_23746149_2017_1327329 doaj_primary_oai_doaj_org_article_e6abd759699d4b288382fedc1135c88c proquest_journals_2195299286 crossref_primary_10_1080_23746149_2017_1327329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-04 |
PublicationDateYYYYMMDD | 2017-05-04 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Advances in physics: X |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | Fang C. (CIT0065) 2016 Weng H. (CIT0017) 2015; 5 CIT0113 Belopolski I. (CIT0064) 2016 CIT0112 CIT0114 CIT0117 CIT0116 CIT0119 CIT0118 CIT0001 CIT0122 CIT0121 CIT0003 CIT0124 CIT0002 CIT0123 CIT0005 CIT0126 CIT0004 CIT0125 CIT0007 CIT0128 CIT0006 CIT0127 CIT0009 CIT0008 CIT0129 CIT0010 CIT0131 CIT0012 CIT0133 CIT0011 CIT0132 Neupane M. (CIT0072) 2014; 5 CIT0014 CIT0135 CIT0013 CIT0134 CIT0016 CIT0015 CIT0136 CIT0018 Delplace P. (CIT0022) 2012; 97 CIT0139 CIT0138 CIT0019 CIT0140 Peng H. (CIT0147) 2009; 9 CIT0021 CIT0142 CIT0020 CIT0023 CIT0144 Yang X. J. (CIT0111) 2015 CIT0143 CIT0025 CIT0146 CIT0024 CIT0145 CIT0027 CIT0148 CIT0026 CIT0029 CIT0149 Lv B.Q. (CIT0040) 2015; 5 Zhao Y. (CIT0082) 2015; 5 Xing Y. (CIT0209) 2016 Liang T. (CIT0137) 2013; 4 Xu G. (CIT0195) 2014; 4 Li C. (CIT0115) 2016; 1 CIT0208 CIT0201 CIT0200 CIT0203 CIT0202 CIT0205 CIT0204 CIT0207 CIT0206 Parameswaran S.A. (CIT0141) 2014; 4 CIT0210 Huang X. (CIT0110) 2015; 5 CIT0219 CIT0212 Huang L. N. (CIT0056) 2016 CIT0211 CIT0214 CIT0213 CIT0216 CIT0215 CIT0218 CIT0217 Wang H. (CIT0198) 2016 Ando Y. (CIT0163) 2015 CIT0100 CIT0221 CIT0102 CIT0223 CIT0101 CIT0222 CIT0104 CIT0225 CIT0103 Li Y. P. (CIT0120) 2016 CIT0224 CIT0106 CIT0105 CIT0226 CIT0107 CIT0193 CIT0071 CIT0192 CIT0074 CIT0073 CIT0194 CIT0076 CIT0197 CIT0075 CIT0196 CIT0078 CIT0199 CIT0077 CIT0070 CIT0191 CIT0190 Liang A. (CIT0057) 2016 CIT0079 Borisenko Sergey (CIT0220) CIT0083 CIT0085 CIT0084 CIT0087 CIT0086 CIT0089 CIT0088 CIT0081 CIT0080 CIT0094 CIT0093 CIT0096 CIT0095 CIT0098 CIT0097 CIT0099 CIT0090 CIT0092 Belopolski I. (CIT0061) 2015 Goswami P. (CIT0130) 2015; 92 Wu R. (CIT0108) 2016; 6 Ali M. N. (CIT0091) 2014; 514 CIT0030 CIT0151 CIT0150 CIT0032 CIT0153 CIT0031 CIT0152 CIT0034 CIT0155 CIT0033 CIT0154 Zhang Y. (CIT0109) 2016 CIT0036 CIT0157 CIT0035 CIT0156 CIT0038 CIT0159 CIT0037 CIT0158 CIT0039 CIT0160 CIT0041 CIT0162 CIT0161 CIT0043 CIT0164 CIT0042 CIT0045 CIT0166 CIT0044 CIT0165 CIT0047 CIT0168 CIT0046 CIT0167 CIT0049 CIT0048 CIT0169 CIT0050 CIT0171 CIT0170 CIT0052 CIT0173 CIT0051 CIT0172 CIT0054 CIT0175 CIT0053 CIT0174 CIT0177 CIT0055 CIT0176 Wen X.-G. (CIT0028) 2016 CIT0179 CIT0178 Jiang J. (CIT0058) 2016 CIT0059 CIT0182 CIT0060 CIT0181 CIT0063 CIT0184 CIT0062 CIT0183 CIT0186 CIT0185 CIT0067 CIT0188 CIT0066 CIT0187 CIT0180 CIT0069 CIT0068 CIT0189 |
References_xml | – ident: CIT0049 doi: 10.1038/nmat4457 – ident: CIT0055 doi: 10.1038/nphys3871 – ident: CIT0215 doi: 10.1103/PhysRevLett.109.267002 – ident: CIT0048 doi: 10.1126/sciadv.1501092 – ident: CIT0095 doi: 10.1016/0370-2693(83)91529-0 – ident: CIT0148 doi: 10.1038/nnano.2011.19 – ident: CIT0105 doi: 10.1103/PhysRevB.88.165105 – ident: CIT0018 doi: 10.1088/1367-2630/9/9/356 – year: 2015 ident: CIT0111 publication-title: ArXiv Prepr – ident: CIT0102 doi: 10.1038/srep18674 – ident: CIT0131 doi: 10.1088/1367-2630/18/8/089502 – ident: CIT0121 doi: 10.1038/srep07328 – ident: CIT0060 doi: 10.1103/PhysRevB.94.121113 – ident: CIT0090 doi: 10.1103/PhysRevB.58.2788 – ident: CIT0126 doi: 10.1088/1367-2630/18/8/085006 – ident: CIT0169 doi: 10.1103/PhysRevLett.116.257003 – ident: CIT0099 doi: 10.1103/PhysRevB.93.115414 – ident: CIT0152 doi: 10.1038/nnano.2015.293 – ident: CIT0212 doi: 10.1103/PhysRevLett.94.107005 – ident: CIT0146 doi: 10.1103/PhysRevLett.105.156803 – ident: CIT0183 doi: 10.1126/science.1219147 – ident: CIT0139 doi: 10.1103/PhysRevB.93.035116 – ident: CIT0069 doi: 10.1126/science.1245085 – ident: CIT0220 publication-title: ArXiv Prepr – ident: CIT0045 doi: 10.1103/PhysRevLett.116.066802 – ident: CIT0001 doi: 10.1088/0022-3719/5/11/002 – ident: CIT0021 doi: 10.1103/PhysRevA.85.033640 – ident: CIT0219 doi: 10.1088/0256-307X/32/9/097102 – year: 2016 ident: CIT0109 publication-title: ArXiv Prepr – ident: CIT0123 doi: 10.1103/PhysRevB.94.041103 – ident: CIT0042 doi: 10.1038/nphys3425 – ident: CIT0149 doi: 10.1103/PhysRevLett.110.186806 – ident: CIT0043 doi: 10.1103/PhysRevLett.115.217601 – ident: CIT0155 doi: 10.1103/RevModPhys.59.755 – ident: CIT0138 doi: 10.1103/PhysRevB.90.165115 – ident: CIT0032 doi: 10.1070/1063-7869/44/10S/S29 – ident: CIT0135 doi: 10.1103/PhysRevB.80.081413 – ident: CIT0176 doi: 10.1021/nl101522j – year: 2015 ident: CIT0163 publication-title: ArXiv Prepr – ident: CIT0170 doi: 10.1038/ncomms10303 – ident: CIT0039 doi: 10.1126/science.aaa9297 – ident: CIT0037 doi: 10.1038/nmat4787 – ident: CIT0185 doi: 10.1103/PhysRevB.86.054504 – ident: CIT0029 doi: 10.1103/PhysRevLett.59.2095 – ident: CIT0067 doi: 10.1038/nmat3990 – ident: CIT0156 doi: 10.1103/PhysRevLett.100.096407 – ident: CIT0036 doi: 10.1103/Physics.4.36 – ident: CIT0024 doi: 10.1103/PhysRevB.84.075129 – ident: CIT0160 doi: 10.1038/nphys3036 – ident: CIT0041 doi: 10.1038/nphys3426 – ident: CIT0054 doi: 10.1103/PhysRevB.93.161112 – ident: CIT0084 doi: 10.1007/s11433-016-5798-4 – year: 2016 ident: CIT0058 publication-title: ArXiv Prepr – ident: CIT0013 doi: 10.1103/PhysRevLett.108.140405 – year: 2016 ident: CIT0065 publication-title: Nat. Phys – ident: CIT0175 doi: 10.1103/PhysRevB.81.125318 – ident: CIT0096 doi: 10.1103/PhysRevLett.111.246603 – ident: CIT0199 doi: 10.1038/ncomms13974 – ident: CIT0002 doi: 10.1088/0022-3719/6/7/010 – ident: CIT0078 doi: 10.1038/ncomms8779 – year: 2016 ident: CIT0209 publication-title: ArXiv Prepr – ident: CIT0167 doi: 10.1103/PhysRevLett.114.017001 – volume: 5 start-page: 3786 year: 2014 ident: CIT0072 publication-title: Nat. Commun. doi: 10.1038/ncomms4786 – ident: CIT0226 doi: 10.1038/nphys2429 – ident: CIT0104 doi: 10.1038/ncomms10137 – ident: CIT0044 doi: 10.1103/PhysRevLett.116.066802 – ident: CIT0023 doi: 10.1103/PhysRevB.85.035103 – ident: CIT0034 doi: 10.1007/978-3-662-02781-3 – volume: 92 start-page: 075101 year: 2015 ident: CIT0130 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075101 – ident: CIT0009 doi: 10.1103/PhysRevLett.50.1395 – ident: CIT0143 doi: 10.1038/ncomms6161 – ident: CIT0204 doi: 10.1063/1.4947433 – volume: 5 start-page: 031037 year: 2015 ident: CIT0082 publication-title: Phys. Rev. X – ident: CIT0114 doi: 10.1038/nmat4684 – ident: CIT0166 doi: 10.1038/nnano.2015.86 – ident: CIT0206 doi: 10.1088/0953-8984/27/27/275701 – ident: CIT0161 doi: 10.1103/PhysRevLett.112.037001 – ident: CIT0194 doi: 10.1103/PhysRevB.84.220504 – ident: CIT0179 doi: 10.1103/PhysRevLett.104.040502 – ident: CIT0122 doi: 10.1063/1.4940924 – ident: CIT0088 doi: 10.1103/PhysRevB.92.081306 – ident: CIT0117 doi: 10.1103/PhysRevB.93.195119 – ident: CIT0030 doi: 10.1103/PhysRevB.39.11413 – ident: CIT0208 doi: 10.1103/PhysRevB.91.214517 – ident: CIT0150 doi: 10.1021/nl500822g – volume: 514 start-page: 205 year: 2014 ident: CIT0091 publication-title: Nature doi: 10.1038/nature13763 – volume: 97 start-page: 67004 year: 2012 ident: CIT0022 publication-title: Lett. – year: 2016 ident: CIT0056 publication-title: ArXiv Prepr – ident: CIT0203 doi: 10.1038/ncomms11038 – ident: CIT0103 doi: 10.1007/s11467-016-0636-8 – ident: CIT0062 doi: 10.1103/PhysRevB.94.085127 – ident: CIT0216 doi: 10.1103/PhysRevLett.110.126406 – ident: CIT0026 doi: 10.1103/PhysRevB.90.155316 – ident: CIT0144 doi: 10.1038/nature18276 – volume: 5 start-page: 011029 year: 2015 ident: CIT0017 publication-title: Phys. Rev. X – ident: CIT0027 doi: 10.1103/PhysRevLett.112.096804 – ident: CIT0205 doi: 10.1038/srep18797 – ident: CIT0071 doi: 10.1038/srep06106 – ident: CIT0070 doi: 10.1126/science.1256742 – ident: CIT0052 doi: 10.1088/0256-307X/32/10/107101 – ident: CIT0098 doi: 10.1143/JPSJ.67.2857 – ident: CIT0118 doi: 10.1038/srep27294 – ident: CIT0158 doi: 10.1126/science.1216466 – ident: CIT0142 doi: 10.1038/ncomms13741 – ident: CIT0106 doi: 10.1038/nphys3648 – ident: CIT0159 doi: 10.1103/PhysRevB.87.100510 – ident: CIT0136 doi: 10.1063/1.3641424 – ident: CIT0165 doi: 10.1103/PhysRevLett.115.177001 – ident: CIT0119 doi: 10.1103/PhysRevB.94.121115 – ident: CIT0079 doi: 10.1103/PhysRevLett.114.117201 – ident: CIT0151 doi: 10.1038/ncomms8634 – ident: CIT0200 doi: 10.1073/pnas.1601262113 – ident: CIT0207 doi: 10.1038/npjquantmats.2016.14 – ident: CIT0153 doi: 10.1038/ncomms10769 – ident: CIT0128 doi: 10.1103/PhysRevB.88.104412 – volume: 6 start-page: 021017 year: 2016 ident: CIT0108 publication-title: Phys. Rev. X – ident: CIT0066 doi: 10.1103/PhysRevLett.108.266802 – year: 2016 ident: CIT0064 publication-title: ArXiv Prepr – ident: CIT0224 doi: 10.1103/PhysRevLett.117.056805 – year: 2015 ident: CIT0061 publication-title: ArXiv Prepr – volume: 5 start-page: 031013 year: 2015 ident: CIT0040 publication-title: Phys. Rev. X – year: 2016 ident: CIT0028 publication-title: ArXiv Prepr – ident: CIT0086 doi: 10.1103/PhysRevB.92.205311 – ident: CIT0223 doi: 10.1103/PhysRevB.93.041109 – year: 2016 ident: CIT0120 publication-title: ArXiv Prepr – ident: CIT0107 doi: 10.1103/PhysRevB.92.075107 – ident: CIT0145 doi: 10.1103/PhysRevLett.105.206601 – ident: CIT0004 doi: 10.1016/0375-9601(83)90631-X – year: 2016 ident: CIT0057 publication-title: ArXiv Prepr – ident: CIT0188 doi: 10.1103/PhysRevB.89.235109 – ident: CIT0083 doi: 10.1103/PhysRevB.91.041203 – volume: 1 year: 2016 ident: CIT0115 publication-title: ArXiv Prepr – ident: CIT0180 doi: 10.1088/0034-4885/75/7/076501 – ident: CIT0134 doi: 10.1103/PhysRevLett.102.096807 – ident: CIT0073 doi: 10.1103/RevModPhys.82.1959 – ident: CIT0100 doi: 10.1103/PhysRevB.93.165127 – ident: CIT0171 doi: 10.1103/PhysRevLett.101.120403 – ident: CIT0178 doi: 10.1103/PhysRevLett.105.177002 – ident: CIT0177 doi: 10.1103/PhysRevLett.105.077001 – ident: CIT0047 doi: 10.1126/science.aad8766 – ident: CIT0214 doi: 10.1143/JPSJ.71.2102 – ident: CIT0140 doi: 10.1021/acsnano.6b01568 – ident: CIT0089 doi: 10.1038/nature02073 – ident: CIT0187 doi: 10.1103/PhysRevB.90.045130 – ident: CIT0020 doi: 10.1103/PhysRevLett.107.127205 – ident: CIT0005 doi: 10.1103/PhysRevLett.45.494 – ident: CIT0053 doi: 10.1021/acsnano.5b06807 – ident: CIT0157 doi: 10.1103/PhysRevB.79.161408 – volume: 4 start-page: 031035 year: 2014 ident: CIT0141 publication-title: Phys. Rev. X – ident: CIT0184 doi: 10.1146/annurev-conmatphys-030212-184337 – ident: CIT0035 doi: 10.1103/PhysRev.52.365 – ident: CIT0116 doi: 10.1038/ncomms10903 – ident: CIT0094 doi: 10.1126/science.aac6089 – ident: CIT0077 doi: 10.1038/nmat4143 – ident: CIT0154 doi: 10.1063/1.3680099 – ident: CIT0050 doi: 10.1038/ncomms11006 – ident: CIT0222 doi: 10.1103/PhysRevB.92.161107 – volume: 9 start-page: 225 year: 2009 ident: CIT0147 publication-title: Nat. Mater. doi: 10.1038/nmat2609 – ident: CIT0186 doi: 10.1103/PhysRevB.87.174511 – ident: CIT0080 doi: 10.1038/nphys3372 – ident: CIT0189 doi: 10.1103/PhysRevB.92.035153 – ident: CIT0124 doi: 10.1143/JPSJ.40.1027 – ident: CIT0190 doi: 10.1103/PhysRevLett.115.238102 – volume: 5 start-page: 031203 year: 2015 ident: CIT0110 publication-title: Phys. Rev. X – ident: CIT0113 doi: 10.1021/acs.nanolett.6b04194 – ident: CIT0133 doi: 10.1103/PhysRevLett.102.166808 – ident: CIT0031 doi: 10.1016/j.aop.2004.05.006 – ident: CIT0101 doi: 10.1038/ncomms10735 – ident: CIT0192 doi: 10.1103/PhysRevB.90.195430 – ident: CIT0085 doi: 10.1103/PhysRevB.93.121112 – ident: CIT0011 doi: 10.1103/RevModPhys.83.1057 – volume: 4 start-page: 2696 year: 2013 ident: CIT0137 publication-title: Nat. Commun. doi: 10.1038/ncomms3696 – ident: CIT0016 doi: 10.1038/ncomms8373 – ident: CIT0015 doi: 10.1103/PhysRevB.88.125427 – ident: CIT0019 doi: 10.1103/PhysRevB.83.205101 – ident: CIT0127 doi: 10.1038/ncomms11615 – ident: CIT0213 doi: 10.1103/PhysRevB.69.134507 – ident: CIT0010 doi: 10.1103/RevModPhys.82.3045 – ident: CIT0033 doi: 10.1103/RevModPhys.80.1083 – ident: CIT0132 doi: 10.1038/ncomms13013 – ident: CIT0076 doi: 10.1103/PhysRevLett.113.246402 – ident: CIT0193 doi: 10.1103/PhysRevLett.113.046401 – ident: CIT0074 doi: 10.1038/nature04233 – ident: CIT0218 doi: 10.1103/PhysRevB.91.165133 – ident: CIT0191 doi: 10.1103/PhysRevLett.114.096804 – ident: CIT0182 doi: 10.1088/0268-1242/27/12/124003 – year: 2016 ident: CIT0198 publication-title: ArXiv Prepr – ident: CIT0210 doi: 10.1103/PhysRevLett.96.259701 – ident: CIT0173 doi: 10.1103/PhysRevLett.115.087001 – ident: CIT0068 doi: 10.1103/PhysRevLett.113.027603 – ident: CIT0196 doi: 10.1038/nmat4456 – ident: CIT0025 doi: 10.1103/PhysRevLett.107.186806 – ident: CIT0051 doi: 10.1038/nphys3437 – ident: CIT0217 doi: 10.1126/science.282.5386.85 – ident: CIT0087 doi: 10.1103/PhysRevLett.117.077201 – ident: CIT0112 doi: 10.1038/ncomms13142 – ident: CIT0125 doi: 10.1103/PhysRevLett.95.186603 – ident: CIT0225 doi: 10.1038/ncomms10639 – ident: CIT0007 doi: 10.1103/PhysRevLett.49.405 – ident: CIT0129 doi: 10.1103/PhysRevB.85.241101 – ident: CIT0221 doi: 10.1038/nature15768 – ident: CIT0162 doi: 10.1103/PhysRevLett.112.217001 – ident: CIT0014 doi: 10.1103/PhysRevB.85.155118 – ident: CIT0202 doi: 10.1038/ncomms8805 – ident: CIT0081 doi: 10.1021/acsnano.5b02243 – ident: CIT0093 doi: 10.1016/j.crhy.2013.10.010 – ident: CIT0006 doi: 10.1103/PhysRevB.23.5632 – ident: CIT0211 doi: 10.1103/PhysRevLett.96.259702 – ident: CIT0046 doi: 10.1103/PhysRevLett.116.066802 – ident: CIT0201 doi: 10.1038/ncomms8804 – ident: CIT0092 doi: 10.1103/PhysRevB.94.161402 – ident: CIT0008 doi: 10.1103/PhysRevLett.48.1559 – ident: CIT0197 doi: 10.1038/nmat4455 – ident: CIT0059 doi: 10.1103/PhysRevB.94.121112 – ident: CIT0168 doi: 10.1038/nnano.2016.159 – volume: 4 start-page: 57091 year: 2014 ident: CIT0195 publication-title: Sci. Rep. – ident: CIT0075 doi: 10.1126/science.1242247 – ident: CIT0003 doi: 10.1103/PhysRevLett.50.1153 – ident: CIT0174 doi: 10.1038/nphys3947 – ident: CIT0097 doi: 10.1103/PhysRevB.93.161110 – ident: CIT0063 doi: 10.1038/ncomms13643 – ident: CIT0172 doi: 10.1126/science.1259327 – ident: CIT0181 doi: 10.1021/nl303758w – ident: CIT0012 doi: 10.1103/PhysRevB.85.195320 – ident: CIT0038 doi: 10.1103/PhysRevB.86.115208 – ident: CIT0164 doi: 10.1103/PhysRevLett.114.166406 |
SSID | ssj0001670803 |
Score | 2.484386 |
SecondaryResourceType | review_article |
Snippet | Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi... Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 518 |
SubjectTerms | 72.90.+y Other topics in electronic transport in condensed matter 73.20.-r Electron states at surfaces and interfaces 73.63.-b Electronic transport in nanoscale materials and structures 81.05.Bx Semimetals Dirac semimetals Energy bands Fermi arc Fermi surfaces Fermions Magnetoresistance Magnetoresistivity Metalloids Photoelectric emission Point contact quantum computing Quantum physics Quantum transport Superconductivity Superconductors Topological superconductors Topology Weyl semimetals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iFLyUaiu-aiWHXlc3m-_ebKmIoCBU6i0kkwQE37b07Tv433eS3bWP9vAuvS4bdvjNzleY-Q0hH0HlkG2Xm1aAbwQotLksc4OpN4DgHiNSmXe-uVVX9-L6QT5srPoqPWEjPfAI3HlSPkQtrbI2ilB245oupwiMcQnGQPG-GPM2iql6u6I0pkJ8Htkx7XnHtcBQVGZTmD7DGkzzmlb-CUaVs_8vxtJ_PHQNO5dvyOspX6QXo5z7ZCf1B-RV7duE1Vti7tYIzXpJh5mknD72FP2YB-r7SL-n5ye6SsvHZcIse_WJejoOq7wj95dfv325aqZlCA0IyYaGe2116VzyIrUsR2OCltoiIG0XbFRWSvQX0JqY0KpAB1XMTVgmIkvRRn5IdvsffToiNKXsIXKGBhKEBQiZR6wTy0CAEC2wBREzKg4mpvCysOLJsYlQdAbTFTDdBOaCnL0c-zlSZWw78LlA_vJyYbquD1D_btK_26b_BbGbCnNDvejI41YSx7cIcDJr102mu3LowiXG6M6o9_9DvmOyVz5ZeyTFCdkdfq3TB8xjhnBaf9nfUrTogA priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEA9-IHgRWyu-qiWHXlc3m6-NNxXlUWihoGhPIZkkIvie4u479L93sh9qLcVDj7vsLLsz-c1MwsxvCPkKKvlkqlSUAlwhQCHmkkwFpt4AgjuMSLnf-fsPNb0U367lWE3YDGWVeQ-deqKIzldncDvfjBVxhxXXAqNKbjNh-gC3U5pXZpmsVnm14pIuf01fjlmURhE-9u78S_qPqNSR97-hLv3LVXfx53yTbAyJIz3uLf2BLMX5R7LWFXBCs0XqnwvU0WJG25GtnN7OKTo0BxR_lF7F33e0ibPbWcR0uzmijvZdK5_I5fnZxem0GKYiFCAkawvutNG5hMmJWLIU6tprqU2FQKy8CcpIiY4DyjpEhBdorzLuhGEisBhM4NtkZX4_jzuExpgcBM4QKV4YAJ94wA1j7gwQogQ2IWLUioWBMjxPrrizbGAWHZVpszLtoMwJOXgWe-g5M94TOMkqf344U153N-4fb-yAIBuV80FLo4wJwuchyXWVYgDGuIS6hgkxrw1m2-7EI_XjSSx_5wP2RuvaAcONRV8uMVhXtfr8H6_eJev5squRFHtkpX1cxH3MY1r_pVupT3Rm5RQ priority: 102 providerName: Taylor & Francis |
Title | Quantum transport in Dirac and Weyl semimetals: a review |
URI | https://www.tandfonline.com/doi/abs/10.1080/23746149.2017.1327329 https://www.proquest.com/docview/2195299286 https://doaj.org/article/e6abd759699d4b288382fedc1135c88c |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZoKyQuiKdYKCsfuKaNYzu2uSCKWq2QqABRUU6WPbZRpW62bbIH_j3jrNNFINFrEkfR2N-8MvMNIW-gTT6ZJlW1AFcJaBFzSaYKXW8AwR1apNzv_Om0XZyJj-fyvCTc-lJWOenEUVGHFeQc-SEiS6LqbHT77uq6ylOj8t_VMkJjh-yhCtYYfO0dHZ9-_rrNsrQKXSI-te7o-rDhSqBJyj0qTB1gLKb46F5ujdLI3f8Xc-k_mno0PyePyMPiN9L3m41-TO7F7gm5P9ZvQv-U6C9rFNF6SYeJrJxedBT1mQPqukC_x1-XtI_Li2VEb7t_Sx3dNK08I2cnx98-LKoyFKECIdlQcaeMyhVMTsSapaC1V1KhXHTdeBNaIyXqDah1iIguUL7NsBOGicBiMIE_J7vdqosvCI0xOQicIVC8MAA-8YDxYm4MEKIGNiNikoqFwhieB1dcWlaIRSdh2ixMW4Q5Iwe3y642lBl3LTjKIr99ODNejxdWNz9tAZCNrfNBSdMaE4TPM5J1k2IAxrgErWFGzJ8bZocx4ZE200ksv-MD9qfdtQXCvd0euJf_v_2KPMgvG6sgxT7ZHW7W8TV6KoOfk536x2JeDuV8jPd_A9TE4xo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdYaMEHOKaNYye2kRBqodWWtitArejNxGMbVepmS5MV6p_iNzLOo4tAoqdek9iK5j32zHyEvIIi2KCzkKQCykRAgToX8pBg6A0geIkeKfY7H06LybH4eJKfrJBfQy9MLKscbGJrqN0c4hn5JmpWjqYzU8W78x9JRI2Kt6sDhEYnFvv-8iembPXbvQ_I39dZtrtz9H6S9KgCCYicNQkvpZaxBKgUPmXBKWVlLnFjlWZWu0LnOSoepMp5FE-QtohyKzQTjnmnHcd9b5FVwTGVGZHV7Z3ppy_LU51CYgjGh1YhlW5mXAp0gbEnhskNzP0kb8PZpRNssQL-mpT6j2do3d3ufXKvj1PpVidYD8iKrx6S2229KNSPiPq8QJYsZrQZhqPT04qi_SyBlpWjX_3lGa397HTmMbqv39CSdk0yj8nxjZDrCRlV88o_JdT7UILjDBXTCg1gA3eYn8ZGBCFSYGMiBqoY6CeUR6CMM8P6QaYDMU0kpumJOSYbV8vOuxEd1y3YjiS_-jhO2G4fzC--m15hjS9K62SuC62dsBGTWWXBO2CM56AUjIn-k2GmaQ9YQoeGYvg1P7A2cNf0JqM2SwF_9v_XL8mdydHhgTnYm-4_J3fjxm0Fplgjo-Zi4dcxSmrsi140Kfl209rwGzXMHPs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoqFUvqIVW3UJbH7iGxvGbW1-rpQ8EUhHtyYrHdoXELohkD_33jPOglApx6DXJRMmMv5mxNfMNITugkk-2SkUpoC4EKMRckqnA1BtA8BojUu53_nagZsfi8w85VhM2Q1ll3kOnniii89UZ3BchjRVxbyuuBUaV3GbC9C5upzSv7AOyJg3GelzS5c_Zn2MWpVGEj707d0n_FZU68v5b1KX_uOou_kyfkPUhcaTveks_JStxsUEedgWc0GwSc7REHS3ntB3ZyunpgqJDq4Hij9KT-PuMNnF-Oo-Ybjd7tKZ918ozcjz99P3DrBimIhQgJGsLXmurcwlTLWLJUjDGa6lthUCsvA3KSomOA0oTIsILtFcZd8IyEVgMNvDnZHVxvogvCI0x1RA4Q6R4YQF84gE3jLkzQIgS2ISIUSsOBsrwPLnizLGBWXRUpsvKdIMyJ2T3Wuyi58y4T-B9Vvn1w5nyurtwfvnLDQhyUdU-aGmVtUH4PCTZVCkGYIxLMAYmxN40mGu7E4_Ujydx_J4P2B6t6wYMNw59ucRgXRn18j9e_YY8Ovw4dV_3D75skcf5TlcuKbbJanu5jK8wpWn9627RXgGoEue6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+transport+in+Dirac+and+Weyl+semimetals%3A+a+review&rft.jtitle=Advances+in+physics%3A+X&rft.au=Wang%2C+Shuo&rft.au=Ben-Chuan%2C+Lin&rft.au=An-Qi%2C+Wang&rft.au=Da-Peng%2C+Yu&rft.date=2017-05-04&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=2374-6149&rft.volume=2&rft.issue=3&rft.epage=544&rft_id=info:doi/10.1080%2F23746149.2017.1327329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon |