Quantum transport in Dirac and Weyl semimetals: a review

Topological semimetals  are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meanti...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 2; no. 3; pp. 518 - 544
Main Authors Wang, Shuo, Lin, Ben-Chuan, Wang, An-Qi, Yu, Da-Peng, Liao, Zhi-Min
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.05.2017
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological semimetals  are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov-de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided.
AbstractList Topological semimetals  are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov-de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided.
Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi surface. The angle resolved photoemission spectroscopy experiments help confirm the existence of linear Dirac (Weyl) cone and Fermi arc. Meantime, the transport experiments are very important for its intimate relationship with possible applications. In this concise review, recent developments of quantum transport in two typical topological semimetals, namely Dirac and Weyl semimetals, are described. The 3D Dirac semimetal phase is revealed by the Shubnikov–de Haas oscillations. The Weyl Fermions-related chiral anomaly effect is evident by negative magnetoresistance, thermal power suppression, and nonlocal measurements. The Fermi arc mechanism is discussed and several corresponding transport evidences have been described. The point contact-induced superconductivity in Dirac and Weyl semimetal is also introduced. Perspectives about the development of topological semimetals and topological superconductors are provided.
Author Wang, Shuo
Wang, An-Qi
Liao, Zhi-Min
Lin, Ben-Chuan
Yu, Da-Peng
Author_xml – sequence: 1
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University
– sequence: 2
  givenname: Ben-Chuan
  surname: Lin
  fullname: Lin, Ben-Chuan
  organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University
– sequence: 3
  givenname: An-Qi
  surname: Wang
  fullname: Wang, An-Qi
  organization: Academy for Advanced Interdisciplinary Studies, Peking University
– sequence: 4
  givenname: Da-Peng
  surname: Yu
  fullname: Yu, Da-Peng
  organization: Department of Physics, Institute for Quantum Science and Engineering, South University of Science and Technology of China
– sequence: 5
  givenname: Zhi-Min
  surname: Liao
  fullname: Liao, Zhi-Min
  email: liaozm@pku.edu.cn
  organization: Collaborative Innovation Center of Quantum Matter
BookMark eNqFkV1LHDEYhUNR0Or-BGGg17vmYzJJ2psWWz9AEMHSy_BOkilZZpJtklX235t1XRAv6lXCyXvOe3jyGR2EGBxCZwQvCJb4nDLRdqRVC4qJWBBGBaPqEzre6vPtw8Gb-xGa5bzEGJNOVDM7RvJ-DaGsp6YkCHkVU2l8aH76BKaBYJs_bjM22U1-cgXG_LWBJrlH755O0eFQBTd7PU_Q78tfDxfX89u7q5uLH7dz03JS5gyEEq43AK3DZLBS9oILRaXEtFe2U5xLKQyW1jGijOg7zAluFWktcVZZdoJudrk2wlKvkp8gbXQEr1-EmP5qSMWb0WnXQW8FV51Stu3rCibp4KwhhHEjpalZX3ZZqxT_rV0uehnXKdT6mhLFqaq9ujr1bTdlUsw5uUEbX6D4GCojP2qC9Za83pPXW_L6lXx183fufeePfN93Ph-GmCZ4imm0usBmjGmof2N81uz_Ec-Ucpl9
CitedBy_id crossref_primary_10_1088_1367_2630_ac14ce
crossref_primary_10_1103_PhysRevB_101_165402
crossref_primary_10_1103_PhysRevB_97_205119
crossref_primary_10_7498_aps_72_20230672
crossref_primary_10_1103_PhysRevB_109_045437
crossref_primary_10_1134_S0036023621140059
crossref_primary_10_1103_PhysRevE_99_052126
crossref_primary_10_1103_PhysRevB_101_081403
crossref_primary_10_1103_PhysRevB_101_134503
crossref_primary_10_1103_PhysRevB_105_L201101
crossref_primary_10_1360_TB_2023_0307
crossref_primary_10_1007_JHEP02_2024_071
crossref_primary_10_1088_1361_648X_abee3e
crossref_primary_10_1103_PhysRevB_104_195108
crossref_primary_10_1103_PhysRevX_9_031036
crossref_primary_10_1038_s41598_022_06431_0
crossref_primary_10_1103_PhysRevB_104_035113
crossref_primary_10_1063_10_0003743
crossref_primary_10_1063_5_0101372
crossref_primary_10_1080_23746149_2021_1884133
crossref_primary_10_1103_PhysRevA_105_023508
crossref_primary_10_3389_felec_2024_1372631
crossref_primary_10_1080_23746149_2022_2065216
crossref_primary_10_1088_0256_307X_40_9_097301
crossref_primary_10_31857_S2686740023050061
crossref_primary_10_1007_s12034_021_02548_6
crossref_primary_10_1088_1361_648X_abd0c2
crossref_primary_10_1103_PhysRevLett_127_187002
crossref_primary_10_1103_PhysRevApplied_8_064020
crossref_primary_10_1103_PhysRevB_102_205134
crossref_primary_10_1103_PhysRevB_99_245105
crossref_primary_10_1103_PhysRevB_102_195110
crossref_primary_10_1103_PhysRevX_9_011039
crossref_primary_10_1103_PhysRevB_99_094512
crossref_primary_10_1103_PhysRevB_109_075169
crossref_primary_10_21468_SciPostPhysProc_11_005
crossref_primary_10_1103_PhysRevB_107_205107
crossref_primary_10_1103_PhysRevResearch_3_013230
crossref_primary_10_1103_PhysRevB_99_155120
crossref_primary_10_1103_PhysRevB_107_235414
crossref_primary_10_1103_PhysRevB_106_085102
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_1021_acsnano_9b07990
crossref_primary_10_1103_PhysRevB_104_235143
crossref_primary_10_1103_PhysRevB_105_184105
crossref_primary_10_1103_PhysRevA_96_043627
crossref_primary_10_1103_PhysRevB_105_075426
crossref_primary_10_1103_PhysRevB_108_094427
crossref_primary_10_1088_1361_648X_ac37db
crossref_primary_10_1103_PhysRevB_103_165144
crossref_primary_10_1103_PhysRevB_99_174306
crossref_primary_10_7566_JPSJ_88_041010
crossref_primary_10_1103_PhysRevB_104_245420
crossref_primary_10_1063_1_5128125
crossref_primary_10_1103_PhysRevLett_130_156402
crossref_primary_10_1103_PhysRevLett_133_236602
crossref_primary_10_1146_annurev_matsci_070218_010023
crossref_primary_10_1103_PhysRevLett_124_257001
crossref_primary_10_1088_1361_6668_ac4c84
crossref_primary_10_1103_PhysRevB_103_235143
crossref_primary_10_1103_PhysRevB_104_155140
crossref_primary_10_1103_PhysRevB_109_085111
crossref_primary_10_1021_acs_chemmater_8b04383
crossref_primary_10_1080_23746149_2017_1414631
crossref_primary_10_1088_2053_1591_ab688b
crossref_primary_10_1103_PhysRevA_105_043519
crossref_primary_10_1103_PhysRevB_108_094513
crossref_primary_10_1103_PhysRevLett_122_036602
crossref_primary_10_1103_PhysRevB_100_085436
crossref_primary_10_1021_acs_jpcc_4c01716
crossref_primary_10_1186_s43593_022_00036_w
crossref_primary_10_1021_acs_jpclett_8b00640
crossref_primary_10_1103_PhysRevB_109_035120
crossref_primary_10_1063_5_0155940
crossref_primary_10_1103_PhysRevB_106_245410
crossref_primary_10_1088_1402_4896_ad6109
crossref_primary_10_1103_PhysRevB_100_115414
crossref_primary_10_1103_PhysRevMaterials_5_090301
crossref_primary_10_1103_PhysRevB_103_L081402
crossref_primary_10_1103_PhysRevB_102_104404
crossref_primary_10_1080_23746149_2022_2034529
crossref_primary_10_1103_PhysRevB_100_045420
crossref_primary_10_1088_1361_648X_ad7ac0
crossref_primary_10_1103_PhysRevB_108_165144
crossref_primary_10_1088_2053_1583_ab0902
crossref_primary_10_1103_PhysRevB_100_155430
crossref_primary_10_1103_PhysRevB_102_184407
crossref_primary_10_1103_PhysRevResearch_4_L022002
crossref_primary_10_1103_PhysRevB_104_144305
crossref_primary_10_1103_PhysRevLett_121_237701
crossref_primary_10_1088_1367_2630_ac1af6
crossref_primary_10_1103_PhysRevMaterials_4_084203
Cites_doi 10.1038/nmat4457
10.1038/nphys3871
10.1103/PhysRevLett.109.267002
10.1126/sciadv.1501092
10.1016/0370-2693(83)91529-0
10.1038/nnano.2011.19
10.1103/PhysRevB.88.165105
10.1088/1367-2630/9/9/356
10.1038/srep18674
10.1088/1367-2630/18/8/089502
10.1038/srep07328
10.1103/PhysRevB.94.121113
10.1103/PhysRevB.58.2788
10.1088/1367-2630/18/8/085006
10.1103/PhysRevLett.116.257003
10.1103/PhysRevB.93.115414
10.1038/nnano.2015.293
10.1103/PhysRevLett.94.107005
10.1103/PhysRevLett.105.156803
10.1126/science.1219147
10.1103/PhysRevB.93.035116
10.1126/science.1245085
10.1103/PhysRevLett.116.066802
10.1088/0022-3719/5/11/002
10.1103/PhysRevA.85.033640
10.1088/0256-307X/32/9/097102
10.1103/PhysRevB.94.041103
10.1038/nphys3425
10.1103/PhysRevLett.110.186806
10.1103/PhysRevLett.115.217601
10.1103/RevModPhys.59.755
10.1103/PhysRevB.90.165115
10.1070/1063-7869/44/10S/S29
10.1103/PhysRevB.80.081413
10.1021/nl101522j
10.1038/ncomms10303
10.1126/science.aaa9297
10.1038/nmat4787
10.1103/PhysRevB.86.054504
10.1103/PhysRevLett.59.2095
10.1038/nmat3990
10.1103/PhysRevLett.100.096407
10.1103/Physics.4.36
10.1103/PhysRevB.84.075129
10.1038/nphys3036
10.1038/nphys3426
10.1103/PhysRevB.93.161112
10.1007/s11433-016-5798-4
10.1103/PhysRevLett.108.140405
10.1103/PhysRevB.81.125318
10.1103/PhysRevLett.111.246603
10.1038/ncomms13974
10.1088/0022-3719/6/7/010
10.1038/ncomms8779
10.1103/PhysRevLett.114.017001
10.1038/ncomms4786
10.1038/nphys2429
10.1038/ncomms10137
10.1103/PhysRevB.85.035103
10.1007/978-3-662-02781-3
10.1103/PhysRevB.92.075101
10.1103/PhysRevLett.50.1395
10.1038/ncomms6161
10.1063/1.4947433
10.1038/nmat4684
10.1038/nnano.2015.86
10.1088/0953-8984/27/27/275701
10.1103/PhysRevLett.112.037001
10.1103/PhysRevB.84.220504
10.1103/PhysRevLett.104.040502
10.1063/1.4940924
10.1103/PhysRevB.92.081306
10.1103/PhysRevB.93.195119
10.1103/PhysRevB.39.11413
10.1103/PhysRevB.91.214517
10.1021/nl500822g
10.1038/nature13763
10.1038/ncomms11038
10.1007/s11467-016-0636-8
10.1103/PhysRevB.94.085127
10.1103/PhysRevLett.110.126406
10.1103/PhysRevB.90.155316
10.1038/nature18276
10.1103/PhysRevLett.112.096804
10.1038/srep18797
10.1038/srep06106
10.1126/science.1256742
10.1088/0256-307X/32/10/107101
10.1143/JPSJ.67.2857
10.1038/srep27294
10.1126/science.1216466
10.1038/ncomms13741
10.1038/nphys3648
10.1103/PhysRevB.87.100510
10.1063/1.3641424
10.1103/PhysRevLett.115.177001
10.1103/PhysRevB.94.121115
10.1103/PhysRevLett.114.117201
10.1038/ncomms8634
10.1073/pnas.1601262113
10.1038/npjquantmats.2016.14
10.1038/ncomms10769
10.1103/PhysRevB.88.104412
10.1103/PhysRevLett.108.266802
10.1103/PhysRevLett.117.056805
10.1103/PhysRevB.92.205311
10.1103/PhysRevB.93.041109
10.1103/PhysRevB.92.075107
10.1103/PhysRevLett.105.206601
10.1016/0375-9601(83)90631-X
10.1103/PhysRevB.89.235109
10.1103/PhysRevB.91.041203
10.1088/0034-4885/75/7/076501
10.1103/PhysRevLett.102.096807
10.1103/RevModPhys.82.1959
10.1103/PhysRevB.93.165127
10.1103/PhysRevLett.101.120403
10.1103/PhysRevLett.105.177002
10.1103/PhysRevLett.105.077001
10.1126/science.aad8766
10.1143/JPSJ.71.2102
10.1021/acsnano.6b01568
10.1038/nature02073
10.1103/PhysRevB.90.045130
10.1103/PhysRevLett.107.127205
10.1103/PhysRevLett.45.494
10.1021/acsnano.5b06807
10.1103/PhysRevB.79.161408
10.1146/annurev-conmatphys-030212-184337
10.1103/PhysRev.52.365
10.1038/ncomms10903
10.1126/science.aac6089
10.1038/nmat4143
10.1063/1.3680099
10.1038/ncomms11006
10.1103/PhysRevB.92.161107
10.1038/nmat2609
10.1103/PhysRevB.87.174511
10.1038/nphys3372
10.1103/PhysRevB.92.035153
10.1143/JPSJ.40.1027
10.1103/PhysRevLett.115.238102
10.1021/acs.nanolett.6b04194
10.1103/PhysRevLett.102.166808
10.1016/j.aop.2004.05.006
10.1038/ncomms10735
10.1103/PhysRevB.90.195430
10.1103/PhysRevB.93.121112
10.1103/RevModPhys.83.1057
10.1038/ncomms3696
10.1038/ncomms8373
10.1103/PhysRevB.88.125427
10.1103/PhysRevB.83.205101
10.1038/ncomms11615
10.1103/PhysRevB.69.134507
10.1103/RevModPhys.82.3045
10.1103/RevModPhys.80.1083
10.1038/ncomms13013
10.1103/PhysRevLett.113.246402
10.1103/PhysRevLett.113.046401
10.1038/nature04233
10.1103/PhysRevB.91.165133
10.1103/PhysRevLett.114.096804
10.1088/0268-1242/27/12/124003
10.1103/PhysRevLett.96.259701
10.1103/PhysRevLett.115.087001
10.1103/PhysRevLett.113.027603
10.1038/nmat4456
10.1103/PhysRevLett.107.186806
10.1038/nphys3437
10.1126/science.282.5386.85
10.1103/PhysRevLett.117.077201
10.1038/ncomms13142
10.1103/PhysRevLett.95.186603
10.1038/ncomms10639
10.1103/PhysRevLett.49.405
10.1103/PhysRevB.85.241101
10.1038/nature15768
10.1103/PhysRevLett.112.217001
10.1103/PhysRevB.85.155118
10.1038/ncomms8805
10.1021/acsnano.5b02243
10.1016/j.crhy.2013.10.010
10.1103/PhysRevB.23.5632
10.1103/PhysRevLett.96.259702
10.1038/ncomms8804
10.1103/PhysRevB.94.161402
10.1103/PhysRevLett.48.1559
10.1038/nmat4455
10.1103/PhysRevB.94.121112
10.1038/nnano.2016.159
10.1126/science.1242247
10.1103/PhysRevLett.50.1153
10.1038/nphys3947
10.1103/PhysRevB.93.161110
10.1038/ncomms13643
10.1126/science.1259327
10.1021/nl303758w
10.1103/PhysRevB.85.195320
10.1103/PhysRevB.86.115208
10.1103/PhysRevLett.114.166406
ContentType Journal Article
Copyright 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2017
2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
L7M
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/23746149.2017.1327329
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Advanced Technologies Database with Aerospace
Research Library (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2374-6149
EndPage 544
ExternalDocumentID oai_doaj_org_article_e6abd759699d4b288382fedc1135c88c
10_1080_23746149_2017_1327329
1327329
Genre Review
GrantInformation_xml – fundername: NSFC
  grantid: 11234001
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11274014
  funderid: 10.13039/501100001809
– fundername: Ministry of Science and Technology
  grantid: 2016YFA0300802; 2013CB934600
  funderid: 10.13039/501100003711
GroupedDBID 0YH
8G5
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M4Z
M~E
OK1
PIMPY
PQQKQ
PROAC
TDBHL
TFW
AAFWJ
AAYXX
ADMLS
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FD
8FK
H8D
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c451t-3a797ebcaa4e01fd88b757928802b9d6955887c08de319c7b605104914d1ed9d3
IEDL.DBID BENPR
ISSN 2374-6149
IngestDate Wed Aug 27 01:25:31 EDT 2025
Mon Jun 30 07:03:14 EDT 2025
Tue Jul 01 01:13:48 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Wed Dec 25 09:05:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-3a797ebcaa4e01fd88b757928802b9d6955887c08de319c7b605104914d1ed9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2195299286?pq-origsite=%requestingapplication%
PQID 2195299286
PQPubID 3933228
PageCount 27
ParticipantIDs informaworld_taylorfrancis_310_1080_23746149_2017_1327329
crossref_citationtrail_10_1080_23746149_2017_1327329
doaj_primary_oai_doaj_org_article_e6abd759699d4b288382fedc1135c88c
proquest_journals_2195299286
crossref_primary_10_1080_23746149_2017_1327329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-04
PublicationDateYYYYMMDD 2017-05-04
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Advances in physics: X
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References Fang C. (CIT0065) 2016
Weng H. (CIT0017) 2015; 5
CIT0113
Belopolski I. (CIT0064) 2016
CIT0112
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0001
CIT0122
CIT0121
CIT0003
CIT0124
CIT0002
CIT0123
CIT0005
CIT0126
CIT0004
CIT0125
CIT0007
CIT0128
CIT0006
CIT0127
CIT0009
CIT0008
CIT0129
CIT0010
CIT0131
CIT0012
CIT0133
CIT0011
CIT0132
Neupane M. (CIT0072) 2014; 5
CIT0014
CIT0135
CIT0013
CIT0134
CIT0016
CIT0015
CIT0136
CIT0018
Delplace P. (CIT0022) 2012; 97
CIT0139
CIT0138
CIT0019
CIT0140
Peng H. (CIT0147) 2009; 9
CIT0021
CIT0142
CIT0020
CIT0023
CIT0144
Yang X. J. (CIT0111) 2015
CIT0143
CIT0025
CIT0146
CIT0024
CIT0145
CIT0027
CIT0148
CIT0026
CIT0029
CIT0149
Lv B.Q. (CIT0040) 2015; 5
Zhao Y. (CIT0082) 2015; 5
Xing Y. (CIT0209) 2016
Liang T. (CIT0137) 2013; 4
Xu G. (CIT0195) 2014; 4
Li C. (CIT0115) 2016; 1
CIT0208
CIT0201
CIT0200
CIT0203
CIT0202
CIT0205
CIT0204
CIT0207
CIT0206
Parameswaran S.A. (CIT0141) 2014; 4
CIT0210
Huang X. (CIT0110) 2015; 5
CIT0219
CIT0212
Huang L. N. (CIT0056) 2016
CIT0211
CIT0214
CIT0213
CIT0216
CIT0215
CIT0218
CIT0217
Wang H. (CIT0198) 2016
Ando Y. (CIT0163) 2015
CIT0100
CIT0221
CIT0102
CIT0223
CIT0101
CIT0222
CIT0104
CIT0225
CIT0103
Li Y. P. (CIT0120) 2016
CIT0224
CIT0106
CIT0105
CIT0226
CIT0107
CIT0193
CIT0071
CIT0192
CIT0074
CIT0073
CIT0194
CIT0076
CIT0197
CIT0075
CIT0196
CIT0078
CIT0199
CIT0077
CIT0070
CIT0191
CIT0190
Liang A. (CIT0057) 2016
CIT0079
Borisenko Sergey (CIT0220)
CIT0083
CIT0085
CIT0084
CIT0087
CIT0086
CIT0089
CIT0088
CIT0081
CIT0080
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0097
CIT0099
CIT0090
CIT0092
Belopolski I. (CIT0061) 2015
Goswami P. (CIT0130) 2015; 92
Wu R. (CIT0108) 2016; 6
Ali M. N. (CIT0091) 2014; 514
CIT0030
CIT0151
CIT0150
CIT0032
CIT0153
CIT0031
CIT0152
CIT0034
CIT0155
CIT0033
CIT0154
Zhang Y. (CIT0109) 2016
CIT0036
CIT0157
CIT0035
CIT0156
CIT0038
CIT0159
CIT0037
CIT0158
CIT0039
CIT0160
CIT0041
CIT0162
CIT0161
CIT0043
CIT0164
CIT0042
CIT0045
CIT0166
CIT0044
CIT0165
CIT0047
CIT0168
CIT0046
CIT0167
CIT0049
CIT0048
CIT0169
CIT0050
CIT0171
CIT0170
CIT0052
CIT0173
CIT0051
CIT0172
CIT0054
CIT0175
CIT0053
CIT0174
CIT0177
CIT0055
CIT0176
Wen X.-G. (CIT0028) 2016
CIT0179
CIT0178
Jiang J. (CIT0058) 2016
CIT0059
CIT0182
CIT0060
CIT0181
CIT0063
CIT0184
CIT0062
CIT0183
CIT0186
CIT0185
CIT0067
CIT0188
CIT0066
CIT0187
CIT0180
CIT0069
CIT0068
CIT0189
References_xml – ident: CIT0049
  doi: 10.1038/nmat4457
– ident: CIT0055
  doi: 10.1038/nphys3871
– ident: CIT0215
  doi: 10.1103/PhysRevLett.109.267002
– ident: CIT0048
  doi: 10.1126/sciadv.1501092
– ident: CIT0095
  doi: 10.1016/0370-2693(83)91529-0
– ident: CIT0148
  doi: 10.1038/nnano.2011.19
– ident: CIT0105
  doi: 10.1103/PhysRevB.88.165105
– ident: CIT0018
  doi: 10.1088/1367-2630/9/9/356
– year: 2015
  ident: CIT0111
  publication-title: ArXiv Prepr
– ident: CIT0102
  doi: 10.1038/srep18674
– ident: CIT0131
  doi: 10.1088/1367-2630/18/8/089502
– ident: CIT0121
  doi: 10.1038/srep07328
– ident: CIT0060
  doi: 10.1103/PhysRevB.94.121113
– ident: CIT0090
  doi: 10.1103/PhysRevB.58.2788
– ident: CIT0126
  doi: 10.1088/1367-2630/18/8/085006
– ident: CIT0169
  doi: 10.1103/PhysRevLett.116.257003
– ident: CIT0099
  doi: 10.1103/PhysRevB.93.115414
– ident: CIT0152
  doi: 10.1038/nnano.2015.293
– ident: CIT0212
  doi: 10.1103/PhysRevLett.94.107005
– ident: CIT0146
  doi: 10.1103/PhysRevLett.105.156803
– ident: CIT0183
  doi: 10.1126/science.1219147
– ident: CIT0139
  doi: 10.1103/PhysRevB.93.035116
– ident: CIT0069
  doi: 10.1126/science.1245085
– ident: CIT0220
  publication-title: ArXiv Prepr
– ident: CIT0045
  doi: 10.1103/PhysRevLett.116.066802
– ident: CIT0001
  doi: 10.1088/0022-3719/5/11/002
– ident: CIT0021
  doi: 10.1103/PhysRevA.85.033640
– ident: CIT0219
  doi: 10.1088/0256-307X/32/9/097102
– year: 2016
  ident: CIT0109
  publication-title: ArXiv Prepr
– ident: CIT0123
  doi: 10.1103/PhysRevB.94.041103
– ident: CIT0042
  doi: 10.1038/nphys3425
– ident: CIT0149
  doi: 10.1103/PhysRevLett.110.186806
– ident: CIT0043
  doi: 10.1103/PhysRevLett.115.217601
– ident: CIT0155
  doi: 10.1103/RevModPhys.59.755
– ident: CIT0138
  doi: 10.1103/PhysRevB.90.165115
– ident: CIT0032
  doi: 10.1070/1063-7869/44/10S/S29
– ident: CIT0135
  doi: 10.1103/PhysRevB.80.081413
– ident: CIT0176
  doi: 10.1021/nl101522j
– year: 2015
  ident: CIT0163
  publication-title: ArXiv Prepr
– ident: CIT0170
  doi: 10.1038/ncomms10303
– ident: CIT0039
  doi: 10.1126/science.aaa9297
– ident: CIT0037
  doi: 10.1038/nmat4787
– ident: CIT0185
  doi: 10.1103/PhysRevB.86.054504
– ident: CIT0029
  doi: 10.1103/PhysRevLett.59.2095
– ident: CIT0067
  doi: 10.1038/nmat3990
– ident: CIT0156
  doi: 10.1103/PhysRevLett.100.096407
– ident: CIT0036
  doi: 10.1103/Physics.4.36
– ident: CIT0024
  doi: 10.1103/PhysRevB.84.075129
– ident: CIT0160
  doi: 10.1038/nphys3036
– ident: CIT0041
  doi: 10.1038/nphys3426
– ident: CIT0054
  doi: 10.1103/PhysRevB.93.161112
– ident: CIT0084
  doi: 10.1007/s11433-016-5798-4
– year: 2016
  ident: CIT0058
  publication-title: ArXiv Prepr
– ident: CIT0013
  doi: 10.1103/PhysRevLett.108.140405
– year: 2016
  ident: CIT0065
  publication-title: Nat. Phys
– ident: CIT0175
  doi: 10.1103/PhysRevB.81.125318
– ident: CIT0096
  doi: 10.1103/PhysRevLett.111.246603
– ident: CIT0199
  doi: 10.1038/ncomms13974
– ident: CIT0002
  doi: 10.1088/0022-3719/6/7/010
– ident: CIT0078
  doi: 10.1038/ncomms8779
– year: 2016
  ident: CIT0209
  publication-title: ArXiv Prepr
– ident: CIT0167
  doi: 10.1103/PhysRevLett.114.017001
– volume: 5
  start-page: 3786
  year: 2014
  ident: CIT0072
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4786
– ident: CIT0226
  doi: 10.1038/nphys2429
– ident: CIT0104
  doi: 10.1038/ncomms10137
– ident: CIT0044
  doi: 10.1103/PhysRevLett.116.066802
– ident: CIT0023
  doi: 10.1103/PhysRevB.85.035103
– ident: CIT0034
  doi: 10.1007/978-3-662-02781-3
– volume: 92
  start-page: 075101
  year: 2015
  ident: CIT0130
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075101
– ident: CIT0009
  doi: 10.1103/PhysRevLett.50.1395
– ident: CIT0143
  doi: 10.1038/ncomms6161
– ident: CIT0204
  doi: 10.1063/1.4947433
– volume: 5
  start-page: 031037
  year: 2015
  ident: CIT0082
  publication-title: Phys. Rev. X
– ident: CIT0114
  doi: 10.1038/nmat4684
– ident: CIT0166
  doi: 10.1038/nnano.2015.86
– ident: CIT0206
  doi: 10.1088/0953-8984/27/27/275701
– ident: CIT0161
  doi: 10.1103/PhysRevLett.112.037001
– ident: CIT0194
  doi: 10.1103/PhysRevB.84.220504
– ident: CIT0179
  doi: 10.1103/PhysRevLett.104.040502
– ident: CIT0122
  doi: 10.1063/1.4940924
– ident: CIT0088
  doi: 10.1103/PhysRevB.92.081306
– ident: CIT0117
  doi: 10.1103/PhysRevB.93.195119
– ident: CIT0030
  doi: 10.1103/PhysRevB.39.11413
– ident: CIT0208
  doi: 10.1103/PhysRevB.91.214517
– ident: CIT0150
  doi: 10.1021/nl500822g
– volume: 514
  start-page: 205
  year: 2014
  ident: CIT0091
  publication-title: Nature
  doi: 10.1038/nature13763
– volume: 97
  start-page: 67004
  year: 2012
  ident: CIT0022
  publication-title: Lett.
– year: 2016
  ident: CIT0056
  publication-title: ArXiv Prepr
– ident: CIT0203
  doi: 10.1038/ncomms11038
– ident: CIT0103
  doi: 10.1007/s11467-016-0636-8
– ident: CIT0062
  doi: 10.1103/PhysRevB.94.085127
– ident: CIT0216
  doi: 10.1103/PhysRevLett.110.126406
– ident: CIT0026
  doi: 10.1103/PhysRevB.90.155316
– ident: CIT0144
  doi: 10.1038/nature18276
– volume: 5
  start-page: 011029
  year: 2015
  ident: CIT0017
  publication-title: Phys. Rev. X
– ident: CIT0027
  doi: 10.1103/PhysRevLett.112.096804
– ident: CIT0205
  doi: 10.1038/srep18797
– ident: CIT0071
  doi: 10.1038/srep06106
– ident: CIT0070
  doi: 10.1126/science.1256742
– ident: CIT0052
  doi: 10.1088/0256-307X/32/10/107101
– ident: CIT0098
  doi: 10.1143/JPSJ.67.2857
– ident: CIT0118
  doi: 10.1038/srep27294
– ident: CIT0158
  doi: 10.1126/science.1216466
– ident: CIT0142
  doi: 10.1038/ncomms13741
– ident: CIT0106
  doi: 10.1038/nphys3648
– ident: CIT0159
  doi: 10.1103/PhysRevB.87.100510
– ident: CIT0136
  doi: 10.1063/1.3641424
– ident: CIT0165
  doi: 10.1103/PhysRevLett.115.177001
– ident: CIT0119
  doi: 10.1103/PhysRevB.94.121115
– ident: CIT0079
  doi: 10.1103/PhysRevLett.114.117201
– ident: CIT0151
  doi: 10.1038/ncomms8634
– ident: CIT0200
  doi: 10.1073/pnas.1601262113
– ident: CIT0207
  doi: 10.1038/npjquantmats.2016.14
– ident: CIT0153
  doi: 10.1038/ncomms10769
– ident: CIT0128
  doi: 10.1103/PhysRevB.88.104412
– volume: 6
  start-page: 021017
  year: 2016
  ident: CIT0108
  publication-title: Phys. Rev. X
– ident: CIT0066
  doi: 10.1103/PhysRevLett.108.266802
– year: 2016
  ident: CIT0064
  publication-title: ArXiv Prepr
– ident: CIT0224
  doi: 10.1103/PhysRevLett.117.056805
– year: 2015
  ident: CIT0061
  publication-title: ArXiv Prepr
– volume: 5
  start-page: 031013
  year: 2015
  ident: CIT0040
  publication-title: Phys. Rev. X
– year: 2016
  ident: CIT0028
  publication-title: ArXiv Prepr
– ident: CIT0086
  doi: 10.1103/PhysRevB.92.205311
– ident: CIT0223
  doi: 10.1103/PhysRevB.93.041109
– year: 2016
  ident: CIT0120
  publication-title: ArXiv Prepr
– ident: CIT0107
  doi: 10.1103/PhysRevB.92.075107
– ident: CIT0145
  doi: 10.1103/PhysRevLett.105.206601
– ident: CIT0004
  doi: 10.1016/0375-9601(83)90631-X
– year: 2016
  ident: CIT0057
  publication-title: ArXiv Prepr
– ident: CIT0188
  doi: 10.1103/PhysRevB.89.235109
– ident: CIT0083
  doi: 10.1103/PhysRevB.91.041203
– volume: 1
  year: 2016
  ident: CIT0115
  publication-title: ArXiv Prepr
– ident: CIT0180
  doi: 10.1088/0034-4885/75/7/076501
– ident: CIT0134
  doi: 10.1103/PhysRevLett.102.096807
– ident: CIT0073
  doi: 10.1103/RevModPhys.82.1959
– ident: CIT0100
  doi: 10.1103/PhysRevB.93.165127
– ident: CIT0171
  doi: 10.1103/PhysRevLett.101.120403
– ident: CIT0178
  doi: 10.1103/PhysRevLett.105.177002
– ident: CIT0177
  doi: 10.1103/PhysRevLett.105.077001
– ident: CIT0047
  doi: 10.1126/science.aad8766
– ident: CIT0214
  doi: 10.1143/JPSJ.71.2102
– ident: CIT0140
  doi: 10.1021/acsnano.6b01568
– ident: CIT0089
  doi: 10.1038/nature02073
– ident: CIT0187
  doi: 10.1103/PhysRevB.90.045130
– ident: CIT0020
  doi: 10.1103/PhysRevLett.107.127205
– ident: CIT0005
  doi: 10.1103/PhysRevLett.45.494
– ident: CIT0053
  doi: 10.1021/acsnano.5b06807
– ident: CIT0157
  doi: 10.1103/PhysRevB.79.161408
– volume: 4
  start-page: 031035
  year: 2014
  ident: CIT0141
  publication-title: Phys. Rev. X
– ident: CIT0184
  doi: 10.1146/annurev-conmatphys-030212-184337
– ident: CIT0035
  doi: 10.1103/PhysRev.52.365
– ident: CIT0116
  doi: 10.1038/ncomms10903
– ident: CIT0094
  doi: 10.1126/science.aac6089
– ident: CIT0077
  doi: 10.1038/nmat4143
– ident: CIT0154
  doi: 10.1063/1.3680099
– ident: CIT0050
  doi: 10.1038/ncomms11006
– ident: CIT0222
  doi: 10.1103/PhysRevB.92.161107
– volume: 9
  start-page: 225
  year: 2009
  ident: CIT0147
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2609
– ident: CIT0186
  doi: 10.1103/PhysRevB.87.174511
– ident: CIT0080
  doi: 10.1038/nphys3372
– ident: CIT0189
  doi: 10.1103/PhysRevB.92.035153
– ident: CIT0124
  doi: 10.1143/JPSJ.40.1027
– ident: CIT0190
  doi: 10.1103/PhysRevLett.115.238102
– volume: 5
  start-page: 031203
  year: 2015
  ident: CIT0110
  publication-title: Phys. Rev. X
– ident: CIT0113
  doi: 10.1021/acs.nanolett.6b04194
– ident: CIT0133
  doi: 10.1103/PhysRevLett.102.166808
– ident: CIT0031
  doi: 10.1016/j.aop.2004.05.006
– ident: CIT0101
  doi: 10.1038/ncomms10735
– ident: CIT0192
  doi: 10.1103/PhysRevB.90.195430
– ident: CIT0085
  doi: 10.1103/PhysRevB.93.121112
– ident: CIT0011
  doi: 10.1103/RevModPhys.83.1057
– volume: 4
  start-page: 2696
  year: 2013
  ident: CIT0137
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3696
– ident: CIT0016
  doi: 10.1038/ncomms8373
– ident: CIT0015
  doi: 10.1103/PhysRevB.88.125427
– ident: CIT0019
  doi: 10.1103/PhysRevB.83.205101
– ident: CIT0127
  doi: 10.1038/ncomms11615
– ident: CIT0213
  doi: 10.1103/PhysRevB.69.134507
– ident: CIT0010
  doi: 10.1103/RevModPhys.82.3045
– ident: CIT0033
  doi: 10.1103/RevModPhys.80.1083
– ident: CIT0132
  doi: 10.1038/ncomms13013
– ident: CIT0076
  doi: 10.1103/PhysRevLett.113.246402
– ident: CIT0193
  doi: 10.1103/PhysRevLett.113.046401
– ident: CIT0074
  doi: 10.1038/nature04233
– ident: CIT0218
  doi: 10.1103/PhysRevB.91.165133
– ident: CIT0191
  doi: 10.1103/PhysRevLett.114.096804
– ident: CIT0182
  doi: 10.1088/0268-1242/27/12/124003
– year: 2016
  ident: CIT0198
  publication-title: ArXiv Prepr
– ident: CIT0210
  doi: 10.1103/PhysRevLett.96.259701
– ident: CIT0173
  doi: 10.1103/PhysRevLett.115.087001
– ident: CIT0068
  doi: 10.1103/PhysRevLett.113.027603
– ident: CIT0196
  doi: 10.1038/nmat4456
– ident: CIT0025
  doi: 10.1103/PhysRevLett.107.186806
– ident: CIT0051
  doi: 10.1038/nphys3437
– ident: CIT0217
  doi: 10.1126/science.282.5386.85
– ident: CIT0087
  doi: 10.1103/PhysRevLett.117.077201
– ident: CIT0112
  doi: 10.1038/ncomms13142
– ident: CIT0125
  doi: 10.1103/PhysRevLett.95.186603
– ident: CIT0225
  doi: 10.1038/ncomms10639
– ident: CIT0007
  doi: 10.1103/PhysRevLett.49.405
– ident: CIT0129
  doi: 10.1103/PhysRevB.85.241101
– ident: CIT0221
  doi: 10.1038/nature15768
– ident: CIT0162
  doi: 10.1103/PhysRevLett.112.217001
– ident: CIT0014
  doi: 10.1103/PhysRevB.85.155118
– ident: CIT0202
  doi: 10.1038/ncomms8805
– ident: CIT0081
  doi: 10.1021/acsnano.5b02243
– ident: CIT0093
  doi: 10.1016/j.crhy.2013.10.010
– ident: CIT0006
  doi: 10.1103/PhysRevB.23.5632
– ident: CIT0211
  doi: 10.1103/PhysRevLett.96.259702
– ident: CIT0046
  doi: 10.1103/PhysRevLett.116.066802
– ident: CIT0201
  doi: 10.1038/ncomms8804
– ident: CIT0092
  doi: 10.1103/PhysRevB.94.161402
– ident: CIT0008
  doi: 10.1103/PhysRevLett.48.1559
– ident: CIT0197
  doi: 10.1038/nmat4455
– ident: CIT0059
  doi: 10.1103/PhysRevB.94.121112
– ident: CIT0168
  doi: 10.1038/nnano.2016.159
– volume: 4
  start-page: 57091
  year: 2014
  ident: CIT0195
  publication-title: Sci. Rep.
– ident: CIT0075
  doi: 10.1126/science.1242247
– ident: CIT0003
  doi: 10.1103/PhysRevLett.50.1153
– ident: CIT0174
  doi: 10.1038/nphys3947
– ident: CIT0097
  doi: 10.1103/PhysRevB.93.161110
– ident: CIT0063
  doi: 10.1038/ncomms13643
– ident: CIT0172
  doi: 10.1126/science.1259327
– ident: CIT0181
  doi: 10.1021/nl303758w
– ident: CIT0012
  doi: 10.1103/PhysRevB.85.195320
– ident: CIT0038
  doi: 10.1103/PhysRevB.86.115208
– ident: CIT0164
  doi: 10.1103/PhysRevLett.114.166406
SSID ssj0001670803
Score 2.484386
SecondaryResourceType review_article
Snippet Topological semimetals  are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi...
Topological semimetals are well known for the linear energy band dispersion in the bulk state and topologically protected surface state with arc-like Fermi...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 518
SubjectTerms 72.90.+y Other topics in electronic transport in condensed matter
73.20.-r Electron states at surfaces and interfaces
73.63.-b Electronic transport in nanoscale materials and structures
81.05.Bx Semimetals
Dirac semimetals
Energy bands
Fermi arc
Fermi surfaces
Fermions
Magnetoresistance
Magnetoresistivity
Metalloids
Photoelectric emission
Point contact
quantum computing
Quantum physics
Quantum transport
Superconductivity
Superconductors
Topological superconductors
Topology
Weyl semimetals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iFLyUaiu-aiWHXlc3m-_ebKmIoCBU6i0kkwQE37b07Tv433eS3bWP9vAuvS4bdvjNzleY-Q0hH0HlkG2Xm1aAbwQotLksc4OpN4DgHiNSmXe-uVVX9-L6QT5srPoqPWEjPfAI3HlSPkQtrbI2ilB245oupwiMcQnGQPG-GPM2iql6u6I0pkJ8Htkx7XnHtcBQVGZTmD7DGkzzmlb-CUaVs_8vxtJ_PHQNO5dvyOspX6QXo5z7ZCf1B-RV7duE1Vti7tYIzXpJh5mknD72FP2YB-r7SL-n5ye6SsvHZcIse_WJejoOq7wj95dfv325aqZlCA0IyYaGe2116VzyIrUsR2OCltoiIG0XbFRWSvQX0JqY0KpAB1XMTVgmIkvRRn5IdvsffToiNKXsIXKGBhKEBQiZR6wTy0CAEC2wBREzKg4mpvCysOLJsYlQdAbTFTDdBOaCnL0c-zlSZWw78LlA_vJyYbquD1D_btK_26b_BbGbCnNDvejI41YSx7cIcDJr102mu3LowiXG6M6o9_9DvmOyVz5ZeyTFCdkdfq3TB8xjhnBaf9nfUrTogA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEA9-IHgRWyu-qiWHXlc3m6-NNxXlUWihoGhPIZkkIvie4u479L93sh9qLcVDj7vsLLsz-c1MwsxvCPkKKvlkqlSUAlwhQCHmkkwFpt4AgjuMSLnf-fsPNb0U367lWE3YDGWVeQ-deqKIzldncDvfjBVxhxXXAqNKbjNh-gC3U5pXZpmsVnm14pIuf01fjlmURhE-9u78S_qPqNSR97-hLv3LVXfx53yTbAyJIz3uLf2BLMX5R7LWFXBCs0XqnwvU0WJG25GtnN7OKTo0BxR_lF7F33e0ibPbWcR0uzmijvZdK5_I5fnZxem0GKYiFCAkawvutNG5hMmJWLIU6tprqU2FQKy8CcpIiY4DyjpEhBdorzLuhGEisBhM4NtkZX4_jzuExpgcBM4QKV4YAJ94wA1j7gwQogQ2IWLUioWBMjxPrrizbGAWHZVpszLtoMwJOXgWe-g5M94TOMkqf344U153N-4fb-yAIBuV80FLo4wJwuchyXWVYgDGuIS6hgkxrw1m2-7EI_XjSSx_5wP2RuvaAcONRV8uMVhXtfr8H6_eJev5squRFHtkpX1cxH3MY1r_pVupT3Rm5RQ
  priority: 102
  providerName: Taylor & Francis
Title Quantum transport in Dirac and Weyl semimetals: a review
URI https://www.tandfonline.com/doi/abs/10.1080/23746149.2017.1327329
https://www.proquest.com/docview/2195299286
https://doaj.org/article/e6abd759699d4b288382fedc1135c88c
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZoKyQuiKdYKCsfuKaNYzu2uSCKWq2QqABRUU6WPbZRpW62bbIH_j3jrNNFINFrEkfR2N-8MvMNIW-gTT6ZJlW1AFcJaBFzSaYKXW8AwR1apNzv_Om0XZyJj-fyvCTc-lJWOenEUVGHFeQc-SEiS6LqbHT77uq6ylOj8t_VMkJjh-yhCtYYfO0dHZ9-_rrNsrQKXSI-te7o-rDhSqBJyj0qTB1gLKb46F5ujdLI3f8Xc-k_mno0PyePyMPiN9L3m41-TO7F7gm5P9ZvQv-U6C9rFNF6SYeJrJxedBT1mQPqukC_x1-XtI_Li2VEb7t_Sx3dNK08I2cnx98-LKoyFKECIdlQcaeMyhVMTsSapaC1V1KhXHTdeBNaIyXqDah1iIguUL7NsBOGicBiMIE_J7vdqosvCI0xOQicIVC8MAA-8YDxYm4MEKIGNiNikoqFwhieB1dcWlaIRSdh2ixMW4Q5Iwe3y642lBl3LTjKIr99ODNejxdWNz9tAZCNrfNBSdMaE4TPM5J1k2IAxrgErWFGzJ8bZocx4ZE200ksv-MD9qfdtQXCvd0euJf_v_2KPMgvG6sgxT7ZHW7W8TV6KoOfk536x2JeDuV8jPd_A9TE4xo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdYaMEHOKaNYye2kRBqodWWtitArejNxGMbVepmS5MV6p_iNzLOo4tAoqdek9iK5j32zHyEvIIi2KCzkKQCykRAgToX8pBg6A0geIkeKfY7H06LybH4eJKfrJBfQy9MLKscbGJrqN0c4hn5JmpWjqYzU8W78x9JRI2Kt6sDhEYnFvv-8iembPXbvQ_I39dZtrtz9H6S9KgCCYicNQkvpZaxBKgUPmXBKWVlLnFjlWZWu0LnOSoepMp5FE-QtohyKzQTjnmnHcd9b5FVwTGVGZHV7Z3ppy_LU51CYgjGh1YhlW5mXAp0gbEnhskNzP0kb8PZpRNssQL-mpT6j2do3d3ufXKvj1PpVidYD8iKrx6S2229KNSPiPq8QJYsZrQZhqPT04qi_SyBlpWjX_3lGa397HTmMbqv39CSdk0yj8nxjZDrCRlV88o_JdT7UILjDBXTCg1gA3eYn8ZGBCFSYGMiBqoY6CeUR6CMM8P6QaYDMU0kpumJOSYbV8vOuxEd1y3YjiS_-jhO2G4fzC--m15hjS9K62SuC62dsBGTWWXBO2CM56AUjIn-k2GmaQ9YQoeGYvg1P7A2cNf0JqM2SwF_9v_XL8mdydHhgTnYm-4_J3fjxm0Fplgjo-Zi4dcxSmrsi140Kfl209rwGzXMHPs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoqFUvqIVW3UJbH7iGxvGbW1-rpQ8EUhHtyYrHdoXELohkD_33jPOglApx6DXJRMmMv5mxNfMNITugkk-2SkUpoC4EKMRckqnA1BtA8BojUu53_nagZsfi8w85VhM2Q1ll3kOnniii89UZ3BchjRVxbyuuBUaV3GbC9C5upzSv7AOyJg3GelzS5c_Zn2MWpVGEj707d0n_FZU68v5b1KX_uOou_kyfkPUhcaTveks_JStxsUEedgWc0GwSc7REHS3ntB3ZyunpgqJDq4Hij9KT-PuMNnF-Oo-Ybjd7tKZ918ozcjz99P3DrBimIhQgJGsLXmurcwlTLWLJUjDGa6lthUCsvA3KSomOA0oTIsILtFcZd8IyEVgMNvDnZHVxvogvCI0x1RA4Q6R4YQF84gE3jLkzQIgS2ISIUSsOBsrwPLnizLGBWXRUpsvKdIMyJ2T3Wuyi58y4T-B9Vvn1w5nyurtwfvnLDQhyUdU-aGmVtUH4PCTZVCkGYIxLMAYmxN40mGu7E4_Ujydx_J4P2B6t6wYMNw59ucRgXRn18j9e_YY8Ovw4dV_3D75skcf5TlcuKbbJanu5jK8wpWn9627RXgGoEue6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+transport+in+Dirac+and+Weyl+semimetals%3A+a+review&rft.jtitle=Advances+in+physics%3A+X&rft.au=Wang%2C+Shuo&rft.au=Ben-Chuan%2C+Lin&rft.au=An-Qi%2C+Wang&rft.au=Da-Peng%2C+Yu&rft.date=2017-05-04&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=2374-6149&rft.volume=2&rft.issue=3&rft.epage=544&rft_id=info:doi/10.1080%2F23746149.2017.1327329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon