An aptamer-enabled DNA nanobox for protein sensing

DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers a...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 14; no. 4; pp. 1161 - 1168
Main Authors Tang, Marco S.L., Shiu, Simon Chi-Chin, Godonoga, Maia, Cheung, Yee-Wai, Liang, Shaolin, Dirkzwager, Roderick M., Kinghorn, Andrew B., Fraser, Lewis A., Heddle, Jonathan G., Tanner, Julian A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices. A DNA origami box can sense the malaria diagnostic protein Plasmodium falciparum lactate dehydrogenase (PfLDH), using a targeted aptamer that leads to box opening and a change in fluorescence signal upon protein binding. [Display omitted]
AbstractList DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.
DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices. A DNA origami box can sense the malaria diagnostic protein Plasmodium falciparum lactate dehydrogenase (PfLDH), using a targeted aptamer that leads to box opening and a change in fluorescence signal upon protein binding. [Display omitted]
DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.
Author Fraser, Lewis A.
Cheung, Yee-Wai
Godonoga, Maia
Tanner, Julian A.
Kinghorn, Andrew B.
Tang, Marco S.L.
Shiu, Simon Chi-Chin
Liang, Shaolin
Dirkzwager, Roderick M.
Heddle, Jonathan G.
Author_xml – sequence: 1
  givenname: Marco S.L.
  surname: Tang
  fullname: Tang, Marco S.L.
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 2
  givenname: Simon Chi-Chin
  surname: Shiu
  fullname: Shiu, Simon Chi-Chin
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 3
  givenname: Maia
  surname: Godonoga
  fullname: Godonoga, Maia
  organization: Heddle Initiative Research Unit, RIKEN, Saitama, Japan
– sequence: 4
  givenname: Yee-Wai
  surname: Cheung
  fullname: Cheung, Yee-Wai
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 5
  givenname: Shaolin
  surname: Liang
  fullname: Liang, Shaolin
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 6
  givenname: Roderick M.
  surname: Dirkzwager
  fullname: Dirkzwager, Roderick M.
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 7
  givenname: Andrew B.
  surname: Kinghorn
  fullname: Kinghorn, Andrew B.
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 8
  givenname: Lewis A.
  surname: Fraser
  fullname: Fraser, Lewis A.
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
– sequence: 9
  givenname: Jonathan G.
  surname: Heddle
  fullname: Heddle, Jonathan G.
  email: jonathan.heddle@uj.edu.pl
  organization: Heddle Initiative Research Unit, RIKEN, Saitama, Japan
– sequence: 10
  givenname: Julian A.
  surname: Tanner
  fullname: Tanner, Julian A.
  email: jatanner@hku.hk
  organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29410111$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEURYNUtFb_gAuZpZupecl8RdyU-glFN-5DJvMiqdOkJlOx_94Zqi5cKDxIIOfc8O4RGTnvkJBToFOgUFwsp045P2UUqimFfqo9MoY8E6koMjb6ufPskBzFuKSUl5SKA3LIRNYnAIwJm7lErTu1wpCiU3WLTXL9OEuG5Np_JMaHZB18h9YlEV207uWY7BvVRjz5Oifk-fbmeX6fLp7uHuazRaqzHLqUs8aYvK5MwQpAU1BhilJTUZZKQP-UGS4ygzlXFWhe8lwXTYOqrBllVUX5hJzvYvvv3zYYO7myUWPbKod-EyUIIUBwAQN69oVu6hU2ch3sSoWt_F6zB9gO0MHHGND8IEDl0KVcymFjOXQpKfRT9VL1S9K2U531rgvKtn-rVzsV-37eLQYZtUWnsbEBdScbb__WL3_purXOatW-4vY_-RN7r6EK
CitedBy_id crossref_primary_10_1002_advs_202000557
crossref_primary_10_3390_genes9120584
crossref_primary_10_3390_nano14231968
crossref_primary_10_1021_acscombsci_0c00108
crossref_primary_10_1016_j_compbiomed_2019_04_026
crossref_primary_10_1021_acs_analchem_9b04868
crossref_primary_10_3390_cells11010159
crossref_primary_10_1016_j_bios_2019_111418
crossref_primary_10_1016_j_ijbiomac_2024_132246
crossref_primary_10_3390_s24237432
crossref_primary_10_1016_j_apmt_2020_100861
crossref_primary_10_1016_j_cocis_2020_101411
crossref_primary_10_1016_j_trac_2022_116723
crossref_primary_10_1016_S1872_2040_19_61153_9
crossref_primary_10_2174_1573413718666220127123038
crossref_primary_10_1021_acsnanoscienceau_1c00027
crossref_primary_10_1002_cbic_201800308
crossref_primary_10_1039_D0TB01291B
crossref_primary_10_3390_molecules23071695
crossref_primary_10_3390_molecules27010063
crossref_primary_10_1038_s41427_023_00470_3
crossref_primary_10_2217_nnm_2018_0440
crossref_primary_10_3390_molecules24050941
crossref_primary_10_3390_nano13172449
crossref_primary_10_1002_cmdc_202100635
crossref_primary_10_3390_genes9120571
crossref_primary_10_3390_s23020562
crossref_primary_10_1073_pnas_2311279121
crossref_primary_10_1080_07388551_2023_2229950
crossref_primary_10_1002_jccs_202200201
crossref_primary_10_1016_j_ijheh_2020_113485
crossref_primary_10_1002_adma_202003704
crossref_primary_10_1007_s11274_021_03097_0
crossref_primary_10_1007_s41061_020_0283_y
crossref_primary_10_1021_acs_chemrev_0c01332
crossref_primary_10_1002_adbi_201900012
crossref_primary_10_1016_j_biosx_2023_100436
crossref_primary_10_1016_j_matt_2020_11_002
crossref_primary_10_1016_j_ijbiomac_2024_129495
crossref_primary_10_3390_ma13092185
crossref_primary_10_3390_mi13030436
crossref_primary_10_1016_j_saa_2022_121827
crossref_primary_10_1039_D1NR02757C
Cites_doi 10.1021/ja300897h
10.1038/ncomms6615
10.1039/C4CC08472A
10.1021/nn303767b
10.1038/nature07971
10.1039/C6CC08831G
10.1021/acs.nanolett.5b05139
10.1126/science.2200121
10.1021/acs.nanolett.7b00159
10.1021/ar500081k
10.1007/s12274-015-0724-z
10.1126/science.1150082
10.1021/acs.analchem.6b01635
10.1021/nn403772j
10.1021/ja209861x
10.1038/nature04586
10.1038/nature08016
10.1073/pnas.1309538110
10.1002/anie.201000330
10.1002/adfm.201600069
10.1002/adfm.201870053
10.1021/ja028962o
10.1039/C6NR00119J
10.1126/science.1165831
10.1038/ncomms3948
10.1039/C5NR08685J
10.1038/nnano.2017.159
10.1038/346818a0
10.1002/anie.201002621
10.1039/C5BM00274E
10.1021/jacs.5b11566
10.1038/srep21266
10.1126/science.1202998
10.1002/anie.201500175
10.1021/acsami.6b10266
10.1039/C5CC00438A
10.1016/j.bios.2017.10.001
10.1016/j.biochi.2017.10.017
10.1021/acsnano.5b03413
10.1002/anie.201302759
10.1038/ncomms10619
10.1039/C4NR01598C
10.1002/adbi.201600006
10.1002/smll.201400245
10.1021/ja1105464
10.4161/adna.19843
10.1021/acssensors.5b00175
10.1021/ja3081023
10.1126/science.1214081
10.1039/C5CC04678E
10.1021/ja1058907
10.1002/anie.200500989
10.1038/nnano.2009.50
10.1002/cphc.201000781
10.1002/smll.201402755
10.1039/C6NR08209B
10.1021/acs.nanolett.6b03418
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018. Published by Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.nano.2018.01.018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-9642
EndPage 1168
ExternalDocumentID 29410111
10_1016_j_nano_2018_01_018
S1549963418300297
Genre Journal Article
GrantInformation_xml – fundername: Hong Kong University Grants Council GRF
  grantid: HKU 17119814
– fundername: European Regional Development Fund
  grantid: TEAM/2016-3/23
  funderid: https://doi.org/10.13039/501100008530
– fundername: HKU Seed Fund for Incubating Group-based Collaborative Research Projects
  grantid: 102009390
– fundername: HKU Seed Fund for Translational and Applied Research
  grantid: 201409160039
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABXRA
ABZDS
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LUGTX
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OO0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPC
SSH
SSI
SSM
SSP
SST
SSU
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c451t-32dff5b8f6261ef609f67c0977a91dff4f394fe53a81c3735c6ddea7b2028803
IEDL.DBID .~1
ISSN 1549-9634
1549-9642
IngestDate Mon Jul 21 11:21:08 EDT 2025
Thu Apr 03 07:05:37 EDT 2025
Tue Jul 01 01:49:51 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:12:38 EST 2024
Tue Aug 26 16:33:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords DNA nanotechnology
Malaria diagnosis
Aptamer
DNA origami
Language English
License Copyright © 2018. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-32dff5b8f6261ef609f67c0977a91dff4f394fe53a81c3735c6ddea7b2028803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ruj.uj.edu.pl/xmlui/handle/item/70241
PMID 29410111
PQID 1999193910
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1999193910
pubmed_primary_29410111
crossref_primary_10_1016_j_nano_2018_01_018
crossref_citationtrail_10_1016_j_nano_2018_01_018
elsevier_sciencedirect_doi_10_1016_j_nano_2018_01_018
elsevier_clinicalkey_doi_10_1016_j_nano_2018_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nanomedicine
PublicationTitleAlternate Nanomedicine
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pal, Deng, Ding, Yan, Liu (bb0025) 2010; 49
Chandrasekaran (bb0170) 2016; 8
Takeuchi, Endo, Suzuki, Hidaka, Durand, Dausse (bb0185) 2016; 4
Fu, Liu, Liu, Woodbury, Yan (bb0080) 2012; 134
Liao, Sohn, Riutin, Cecconello, Parak, Nechushtai (bb0275) 2016; 26
Olejko, Cywinski, Bald (bb0070) 2016; 8
Douglas, Bachelet, Church (bb0155) 2012; 335
Shiu, Cheung, Dirkzwager, Liang, Kinghorn, Fraser (bb0200) 2017; 1
Lu, Wang, Xu, Pang (bb0190) 2017; 53
Dirkzwager, Liang, Tanner (bb0230) 2016; 1
Sharma, Chhabra, Cheng, Brownell, Liu, Yan (bb0020) 2009; 323
Sannohe, Endo, Katsuda, Hidaka, Sugiyama (bb0115) 2010; 132
Kinghorn, Dirkzwager, Liang, Cheung, Fraser, Shiu (bb0215) 2016; 88
Dirkzwager, Kinghorn, Richards, Tanner (bb0220) 2015; 51
Yamazaki, Heddle, Kuzuya, Komiyama (bb0100) 2014; 6
Banerjee, Bhatia, Saminathan, Chakraborty, Kar, Krishnan (bb0130) 2013; 52
Wu, Willner (bb0180) 2017; 9
Hemmig, Creatore, Wünsch, Hecker, Mair, Parker (bb0065) 2016; 16
Han, Pal, Nangreave, Deng, Liu, Yan (bb0015) 2011; 332
Tan, Xing, Lu (bb0165) 2014; 47
Deng, Samanta, Nangreave, Yan, Liu (bb0035) 2012; 134
Stein, Steinhauer, Tinnefeld (bb0055) 2011; 133
Ke, Lindsay, Chang, Liu, Yan (bb0150) 2008; 319
Tuerk, Gold (bb0140) 1990; 249
Zadegan, Jepsen, Hildebrandt, Birkedal, Kjems (bb0250) 2015; 11
Veetil, Chakraborty, Xiao, Minter, Sisodia, Krishnan (bb0135) 2017; 12
Campos, Zhang, Majikes, Ferraz, LaBean, Dong (bb0110) 2015; 51
Jiang, Zhang, Yang, Kjems, Huang, Besenbacher (bb0285) 2015; 8
Endo, Xing, Zhou, Emura, Hidaka, Tuesuwan (bb0120) 2015; 9
Fraser, Kinghorn, Dirkzwager, Liang, Cheung, Lim (bb0235) 2018; 100
Zhang, Balogh, Wang, Sung, Nechushtai, Willner (bb0270) 2013; 7
Zhao, Fu, Dhakal, Johnson-Buck, Liu, Zhang (bb0095) 2016; 7
Yang, Jiang, Liu, Pan, Zhang (bb0175) 2016; 8
Shen, Song, Wang, Shi, Wang, Liu (bb0030) 2012; 134
Shen, Lan, Lu, Meyer, Ni, Ke (bb0045) 2016; 138
Andersen, Dong, Nielsen, Jahn, Subramani, Mamdouh (bb0240) 2009; 459
Douglas, Dietz, Liedl, Hogberg, Graf, Shih (bb0010) 2009; 459
Linko, Eerikainen, Kostiainen (bb0085) 2015; 51
Rothemund (bb0005) 2006; 440
Cheung, Kwok, Law, Watt, Kotaka, Tanner (bb0210) 2013; 110
Stein, Schüller, Böhm, Tinnefeld, Liedl (bb0050) 2011; 12
Wilner, Weizmann, Gill, Lioubashevski, Freeman, Willner (bb0075) 2009; 4
Nutiu, Li (bb0255) 2003; 125
Chen, Liao, Sohn, Fadeev, Cecconello, Nechushtai (bb0280) 2018; 28
Zadegan, Jepsen, Thomsen, Okholm, Schaffert, Andersen (bb0245) 2012; 6
Godonoga, Lin, Oshima, Sumitomo, Tang, Cheung (bb0160) 2016; 6
Bentin (bb0205) 2012; 3
Lau, Coombes, Li (bb0265) 2010; 49
Buckhout-White, Spillmann, Algar, Khachatrian, Melinger, Goldman (bb0060) 2014; 5
Ellington, Szostak (bb0145) 1990; 346
Timm, Niemeyer (bb0090) 2015; 54
Torelli, Marini, Palmano, Piantanida, Polano, Scarpellini (bb0105) 2014; 10
Cheung, Dirkzwager, Wong, Cardoso, D'Arc Neves Costa, Tanner (bb0225) 2018; 145
Wu, Willner (bb0125) 2016; 16
Walter, Bauer, Steinmeyer, Kuzuya, Niemeyer, Wagenknecht (bb0195) 2017; 17
Schreiber, Luong, Fan, Kuzyk, Nickels, Zhang (bb0040) 2013; 4
Xiao, Lubin, Heeger, Plaxco (bb0260) 2005; 44
Tuerk (10.1016/j.nano.2018.01.018_bb0140) 1990; 249
Campos (10.1016/j.nano.2018.01.018_bb0110) 2015; 51
Shiu (10.1016/j.nano.2018.01.018_bb0200) 2017; 1
Fraser (10.1016/j.nano.2018.01.018_bb0235) 2018; 100
Lau (10.1016/j.nano.2018.01.018_bb0265) 2010; 49
Deng (10.1016/j.nano.2018.01.018_bb0035) 2012; 134
Fu (10.1016/j.nano.2018.01.018_bb0080) 2012; 134
Yamazaki (10.1016/j.nano.2018.01.018_bb0100) 2014; 6
Cheung (10.1016/j.nano.2018.01.018_bb0210) 2013; 110
Shen (10.1016/j.nano.2018.01.018_bb0030) 2012; 134
Schreiber (10.1016/j.nano.2018.01.018_bb0040) 2013; 4
Buckhout-White (10.1016/j.nano.2018.01.018_bb0060) 2014; 5
Olejko (10.1016/j.nano.2018.01.018_bb0070) 2016; 8
Torelli (10.1016/j.nano.2018.01.018_bb0105) 2014; 10
Lu (10.1016/j.nano.2018.01.018_bb0190) 2017; 53
Tan (10.1016/j.nano.2018.01.018_bb0165) 2014; 47
Godonoga (10.1016/j.nano.2018.01.018_bb0160) 2016; 6
Rothemund (10.1016/j.nano.2018.01.018_bb0005) 2006; 440
Andersen (10.1016/j.nano.2018.01.018_bb0240) 2009; 459
Dirkzwager (10.1016/j.nano.2018.01.018_bb0230) 2016; 1
Douglas (10.1016/j.nano.2018.01.018_bb0010) 2009; 459
Shen (10.1016/j.nano.2018.01.018_bb0045) 2016; 138
Linko (10.1016/j.nano.2018.01.018_bb0085) 2015; 51
Wu (10.1016/j.nano.2018.01.018_bb0180) 2017; 9
Stein (10.1016/j.nano.2018.01.018_bb0055) 2011; 133
Zadegan (10.1016/j.nano.2018.01.018_bb0250) 2015; 11
Jiang (10.1016/j.nano.2018.01.018_bb0285) 2015; 8
Sannohe (10.1016/j.nano.2018.01.018_bb0115) 2010; 132
Banerjee (10.1016/j.nano.2018.01.018_bb0130) 2013; 52
Walter (10.1016/j.nano.2018.01.018_bb0195) 2017; 17
Chen (10.1016/j.nano.2018.01.018_bb0280) 2018; 28
Yang (10.1016/j.nano.2018.01.018_bb0175) 2016; 8
Takeuchi (10.1016/j.nano.2018.01.018_bb0185) 2016; 4
Sharma (10.1016/j.nano.2018.01.018_bb0020) 2009; 323
Veetil (10.1016/j.nano.2018.01.018_bb0135) 2017; 12
Cheung (10.1016/j.nano.2018.01.018_bb0225) 2018; 145
Pal (10.1016/j.nano.2018.01.018_bb0025) 2010; 49
Zhao (10.1016/j.nano.2018.01.018_bb0095) 2016; 7
Han (10.1016/j.nano.2018.01.018_bb0015) 2011; 332
Zhang (10.1016/j.nano.2018.01.018_bb0270) 2013; 7
Nutiu (10.1016/j.nano.2018.01.018_bb0255) 2003; 125
Zadegan (10.1016/j.nano.2018.01.018_bb0245) 2012; 6
Stein (10.1016/j.nano.2018.01.018_bb0050) 2011; 12
Endo (10.1016/j.nano.2018.01.018_bb0120) 2015; 9
Wilner (10.1016/j.nano.2018.01.018_bb0075) 2009; 4
Douglas (10.1016/j.nano.2018.01.018_bb0155) 2012; 335
Dirkzwager (10.1016/j.nano.2018.01.018_bb0220) 2015; 51
Ellington (10.1016/j.nano.2018.01.018_bb0145) 1990; 346
Ke (10.1016/j.nano.2018.01.018_bb0150) 2008; 319
Timm (10.1016/j.nano.2018.01.018_bb0090) 2015; 54
Kinghorn (10.1016/j.nano.2018.01.018_bb0215) 2016; 88
Hemmig (10.1016/j.nano.2018.01.018_bb0065) 2016; 16
Liao (10.1016/j.nano.2018.01.018_bb0275) 2016; 26
Chandrasekaran (10.1016/j.nano.2018.01.018_bb0170) 2016; 8
Bentin (10.1016/j.nano.2018.01.018_bb0205) 2012; 3
Xiao (10.1016/j.nano.2018.01.018_bb0260) 2005; 44
Wu (10.1016/j.nano.2018.01.018_bb0125) 2016; 16
References_xml – volume: 47
  start-page: 1881
  year: 2014
  end-page: 1890
  ident: bb0165
  article-title: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles
  publication-title: Acc Chem Res
– volume: 145
  start-page: 131
  year: 2018
  end-page: 136
  ident: bb0225
  article-title: Aptamer-mediated Plasmodium-specific diagnosis of malaria
  publication-title: Biochimie
– volume: 5
  start-page: 5615
  year: 2014
  ident: bb0060
  article-title: Assembling programmable FRET-based photonic networks using designer DNA scaffolds
  publication-title: Nat Commun
– volume: 4
  start-page: 2948
  year: 2013
  ident: bb0040
  article-title: Chiral plasmonic DNA nanostructures with switchable circular dichroism
  publication-title: Nat Commun
– volume: 88
  start-page: 6981
  year: 2016
  end-page: 6985
  ident: bb0215
  article-title: Aptamer affinity maturation by resampling and microarray selection
  publication-title: Anal Chem
– volume: 6
  start-page: 21266
  year: 2016
  ident: bb0160
  article-title: A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly
  publication-title: Sci Rep
– volume: 7
  start-page: 8455
  year: 2013
  end-page: 8468
  ident: bb0270
  article-title: Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 Using DNA or molecular biomarkers as triggering stimuli
  publication-title: ACS Nano
– volume: 100
  start-page: 591
  year: 2018
  end-page: 596
  ident: bb0235
  article-title: A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis
  publication-title: Biosens Bioelectron
– volume: 133
  start-page: 4193
  year: 2011
  end-page: 4195
  ident: bb0055
  article-title: Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami
  publication-title: J Am Chem Soc
– volume: 49
  start-page: 2700
  year: 2010
  end-page: 2704
  ident: bb0025
  article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures
  publication-title: Angew Chem Int Ed
– volume: 346
  start-page: 818
  year: 1990
  end-page: 822
  ident: bb0145
  article-title: In vitro selection of RNA molecules that bind specific ligands
  publication-title: Nature
– volume: 138
  start-page: 1764
  year: 2016
  end-page: 1767
  ident: bb0045
  article-title: Site-specific surface functionalization of gold nanorods using DNA origami clamps
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 34054
  year: 2016
  end-page: 34060
  ident: bb0175
  article-title: Aptamer-binding directed DNA origami pattern for logic gates
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 1811
  year: 2015
  end-page: 1817
  ident: bb0250
  article-title: Construction of a fuzzy and Boolean logic gates based on DNA
  publication-title: Small
– volume: 125
  start-page: 4771
  year: 2003
  end-page: 4778
  ident: bb0255
  article-title: Structure-switching signaling aptamers
  publication-title: J Am Chem Soc
– volume: 332
  start-page: 342
  year: 2011
  end-page: 346
  ident: bb0015
  article-title: DNA origami with complex curvatures in three-dimensional space
  publication-title: Science
– volume: 10
  start-page: 2918
  year: 2014
  end-page: 2926
  ident: bb0105
  article-title: A DNA origami nanorobot controlled by nucleic acid hybridization
  publication-title: Small
– volume: 51
  start-page: 14111
  year: 2015
  end-page: 14114
  ident: bb0110
  article-title: Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG
  publication-title: Chem Commun
– volume: 3
  start-page: 3
  year: 2012
  end-page: 4
  ident: bb0205
  article-title: A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery
  publication-title: Artif DNA PNA XNA
– volume: 52
  start-page: 6854
  year: 2013
  end-page: 6857
  ident: bb0130
  article-title: Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger
  publication-title: Angew Chem Int Ed
– volume: 8
  start-page: 2170
  year: 2015
  end-page: 2178
  ident: bb0285
  article-title: Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy
  publication-title: Nano Res
– volume: 26
  start-page: 4262
  year: 2016
  end-page: 4273
  ident: bb0275
  article-title: The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells
  publication-title: Adv Funct Mater
– volume: 12
  start-page: 689
  year: 2011
  end-page: 695
  ident: bb0050
  article-title: Single-molecule FRET ruler based on rigid DNA origami blocks
  publication-title: ChemPhysChem
– volume: 16
  start-page: 2369
  year: 2016
  end-page: 2374
  ident: bb0065
  article-title: Programming light-harvesting efficiency using DNA origami
  publication-title: Nano Lett
– volume: 7
  start-page: 10619
  year: 2016
  ident: bb0095
  article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
  publication-title: Nat Commun
– volume: 1
  year: 2017
  ident: bb0200
  article-title: Aptamer-mediated protein molecular recognition driving a DNA tweezer nanomachine
  publication-title: Adv Biosyst
– volume: 51
  start-page: 4697
  year: 2015
  end-page: 4700
  ident: bb0220
  article-title: APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria
  publication-title: Chem Commun
– volume: 28
  year: 2018
  ident: bb0280
  article-title: Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal–organic framework nanoparticles for controlled drug release
  publication-title: Adv Funct Mater
– volume: 51
  start-page: 5351
  year: 2015
  end-page: 5354
  ident: bb0085
  article-title: A modular DNA origami-based enzyme cascade nanoreactor
  publication-title: Chem Commun
– volume: 440
  start-page: 297
  year: 2006
  end-page: 302
  ident: bb0005
  article-title: Folding DNA to create nanoscale shapes and patterns
  publication-title: Nature
– volume: 12
  start-page: 1183
  year: 2017
  end-page: 1189
  ident: bb0135
  article-title: Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules
  publication-title: Nat Nanotechnol
– volume: 134
  start-page: 17424
  year: 2012
  end-page: 17427
  ident: bb0035
  article-title: Robust DNA-Functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly
  publication-title: J Am Chem Soc
– volume: 110
  start-page: 15967
  year: 2013
  end-page: 15972
  ident: bb0210
  article-title: Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer
  publication-title: Proc Natl Acad Sci
– volume: 335
  start-page: 831
  year: 2012
  end-page: 834
  ident: bb0155
  article-title: A logic-gated nanorobot for targeted transport of molecular payloads
  publication-title: Science
– volume: 459
  start-page: 73
  year: 2009
  end-page: 76
  ident: bb0240
  article-title: Self-assembly of a nanoscale DNA box with a controllable lid
  publication-title: Nature
– volume: 8
  start-page: 10339
  year: 2016
  end-page: 10347
  ident: bb0070
  article-title: An ion-controlled four-color fluorescent telomeric switch on DNA origami structures
  publication-title: Nanoscale
– volume: 16
  start-page: 6650
  year: 2016
  end-page: 6655
  ident: bb0125
  article-title: pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems
  publication-title: Nano Lett
– volume: 9
  start-page: 9922
  year: 2015
  end-page: 9929
  ident: bb0120
  article-title: Single-Molecule manipulation of the duplex formation and dissociation at the G-Quadruplex/i-Motif site in the DNA nanostructure
  publication-title: ACS Nano
– volume: 49
  start-page: 7938
  year: 2010
  end-page: 7942
  ident: bb0265
  article-title: A general approach to the construction of structure-switching reporters from RNA aptamers
  publication-title: Angew Chem Int Ed
– volume: 459
  start-page: 414
  year: 2009
  end-page: 418
  ident: bb0010
  article-title: Self-assembly of DNA into nanoscale three-dimensional shapes
  publication-title: Nature
– volume: 54
  start-page: 6745
  year: 2015
  end-page: 6750
  ident: bb0090
  article-title: Assembly and purification of enzyme-functionalized DNA origami structures
  publication-title: Angew Chem Int Ed
– volume: 44
  start-page: 5456
  year: 2005
  end-page: 5459
  ident: bb0260
  article-title: Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor
  publication-title: Angew Chem Int Ed
– volume: 17
  start-page: 2467
  year: 2017
  end-page: 2472
  ident: bb0195
  article-title: "DNA origami traffic lights" with a split aptamer sensor for a bicolor fluorescence readout
  publication-title: Nano Lett
– volume: 323
  start-page: 112
  year: 2009
  end-page: 116
  ident: bb0020
  article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles
  publication-title: Science
– volume: 4
  start-page: 130
  year: 2016
  end-page: 135
  ident: bb0185
  article-title: Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure
  publication-title: Biomater Sci
– volume: 9
  start-page: 1416
  year: 2017
  end-page: 1422
  ident: bb0180
  article-title: Programmed dissociation of dimer and trimer origami structures by aptamer-ligand complexes
  publication-title: Nanoscale
– volume: 6
  start-page: 10050
  year: 2012
  end-page: 10053
  ident: bb0245
  article-title: Construction of a 4 zeptoliters switchable 3D DNA box origami
  publication-title: ACS Nano
– volume: 134
  start-page: 146
  year: 2012
  end-page: 149
  ident: bb0030
  article-title: Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures
  publication-title: J Am Chem Soc
– volume: 1
  start-page: 420
  year: 2016
  end-page: 426
  ident: bb0230
  article-title: Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping
  publication-title: ACS Sensors
– volume: 53
  start-page: 941
  year: 2017
  end-page: 944
  ident: bb0190
  article-title: Aptamer-tagged DNA origami for spatially addressable detection of aflatoxin B1
  publication-title: Chem Commun (Camb)
– volume: 8
  start-page: 4436
  year: 2016
  end-page: 4446
  ident: bb0170
  article-title: Programmable DNA scaffolds for spatially-ordered protein assembly
  publication-title: Nanoscale
– volume: 134
  start-page: 5516
  year: 2012
  end-page: 5519
  ident: bb0080
  article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 9122
  year: 2014
  end-page: 9126
  ident: bb0100
  article-title: Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells
  publication-title: Nanoscale
– volume: 249
  start-page: 505
  year: 1990
  end-page: 510
  ident: bb0140
  article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase
  publication-title: Science
– volume: 4
  start-page: 249
  year: 2009
  end-page: 254
  ident: bb0075
  article-title: Enzyme cascades activated on topologically programmed DNA scaffolds
  publication-title: Nat Nanotechnol
– volume: 132
  start-page: 16311
  year: 2010
  end-page: 16313
  ident: bb0115
  article-title: Visualization of Dynamic conformational switching of the G-quadruplex in a DNA nanostructure
  publication-title: J Am Chem Soc
– volume: 319
  start-page: 180
  year: 2008
  end-page: 183
  ident: bb0150
  article-title: Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays
  publication-title: Science
– volume: 134
  start-page: 5516
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0080
  article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures
  publication-title: J Am Chem Soc
  doi: 10.1021/ja300897h
– volume: 5
  start-page: 5615
  year: 2014
  ident: 10.1016/j.nano.2018.01.018_bb0060
  article-title: Assembling programmable FRET-based photonic networks using designer DNA scaffolds
  publication-title: Nat Commun
  doi: 10.1038/ncomms6615
– volume: 51
  start-page: 5351
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0085
  article-title: A modular DNA origami-based enzyme cascade nanoreactor
  publication-title: Chem Commun
  doi: 10.1039/C4CC08472A
– volume: 6
  start-page: 10050
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0245
  article-title: Construction of a 4 zeptoliters switchable 3D DNA box origami
  publication-title: ACS Nano
  doi: 10.1021/nn303767b
– volume: 459
  start-page: 73
  year: 2009
  ident: 10.1016/j.nano.2018.01.018_bb0240
  article-title: Self-assembly of a nanoscale DNA box with a controllable lid
  publication-title: Nature
  doi: 10.1038/nature07971
– volume: 53
  start-page: 941
  year: 2017
  ident: 10.1016/j.nano.2018.01.018_bb0190
  article-title: Aptamer-tagged DNA origami for spatially addressable detection of aflatoxin B1
  publication-title: Chem Commun (Camb)
  doi: 10.1039/C6CC08831G
– volume: 16
  start-page: 2369
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0065
  article-title: Programming light-harvesting efficiency using DNA origami
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b05139
– volume: 249
  start-page: 505
  year: 1990
  ident: 10.1016/j.nano.2018.01.018_bb0140
  article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase
  publication-title: Science
  doi: 10.1126/science.2200121
– volume: 17
  start-page: 2467
  year: 2017
  ident: 10.1016/j.nano.2018.01.018_bb0195
  article-title: "DNA origami traffic lights" with a split aptamer sensor for a bicolor fluorescence readout
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b00159
– volume: 47
  start-page: 1881
  year: 2014
  ident: 10.1016/j.nano.2018.01.018_bb0165
  article-title: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles
  publication-title: Acc Chem Res
  doi: 10.1021/ar500081k
– volume: 8
  start-page: 2170
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0285
  article-title: Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy
  publication-title: Nano Res
  doi: 10.1007/s12274-015-0724-z
– volume: 319
  start-page: 180
  year: 2008
  ident: 10.1016/j.nano.2018.01.018_bb0150
  article-title: Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays
  publication-title: Science
  doi: 10.1126/science.1150082
– volume: 88
  start-page: 6981
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0215
  article-title: Aptamer affinity maturation by resampling and microarray selection
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b01635
– volume: 7
  start-page: 8455
  issue: 10
  year: 2013
  ident: 10.1016/j.nano.2018.01.018_bb0270
  article-title: Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 Using DNA or molecular biomarkers as triggering stimuli
  publication-title: ACS Nano
  doi: 10.1021/nn403772j
– volume: 134
  start-page: 146
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0030
  article-title: Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures
  publication-title: J Am Chem Soc
  doi: 10.1021/ja209861x
– volume: 440
  start-page: 297
  year: 2006
  ident: 10.1016/j.nano.2018.01.018_bb0005
  article-title: Folding DNA to create nanoscale shapes and patterns
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 459
  start-page: 414
  year: 2009
  ident: 10.1016/j.nano.2018.01.018_bb0010
  article-title: Self-assembly of DNA into nanoscale three-dimensional shapes
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 110
  start-page: 15967
  year: 2013
  ident: 10.1016/j.nano.2018.01.018_bb0210
  article-title: Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1309538110
– volume: 49
  start-page: 2700
  year: 2010
  ident: 10.1016/j.nano.2018.01.018_bb0025
  article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201000330
– volume: 26
  start-page: 4262
  issue: 24
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0275
  article-title: The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201600069
– volume: 28
  year: 2018
  ident: 10.1016/j.nano.2018.01.018_bb0280
  article-title: Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal–organic framework nanoparticles for controlled drug release
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201870053
– volume: 125
  start-page: 4771
  year: 2003
  ident: 10.1016/j.nano.2018.01.018_bb0255
  article-title: Structure-switching signaling aptamers
  publication-title: J Am Chem Soc
  doi: 10.1021/ja028962o
– volume: 8
  start-page: 10339
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0070
  article-title: An ion-controlled four-color fluorescent telomeric switch on DNA origami structures
  publication-title: Nanoscale
  doi: 10.1039/C6NR00119J
– volume: 323
  start-page: 112
  year: 2009
  ident: 10.1016/j.nano.2018.01.018_bb0020
  article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles
  publication-title: Science
  doi: 10.1126/science.1165831
– volume: 4
  start-page: 2948
  year: 2013
  ident: 10.1016/j.nano.2018.01.018_bb0040
  article-title: Chiral plasmonic DNA nanostructures with switchable circular dichroism
  publication-title: Nat Commun
  doi: 10.1038/ncomms3948
– volume: 8
  start-page: 4436
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0170
  article-title: Programmable DNA scaffolds for spatially-ordered protein assembly
  publication-title: Nanoscale
  doi: 10.1039/C5NR08685J
– volume: 12
  start-page: 1183
  year: 2017
  ident: 10.1016/j.nano.2018.01.018_bb0135
  article-title: Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.159
– volume: 346
  start-page: 818
  year: 1990
  ident: 10.1016/j.nano.2018.01.018_bb0145
  article-title: In vitro selection of RNA molecules that bind specific ligands
  publication-title: Nature
  doi: 10.1038/346818a0
– volume: 49
  start-page: 7938
  year: 2010
  ident: 10.1016/j.nano.2018.01.018_bb0265
  article-title: A general approach to the construction of structure-switching reporters from RNA aptamers
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201002621
– volume: 4
  start-page: 130
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0185
  article-title: Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure
  publication-title: Biomater Sci
  doi: 10.1039/C5BM00274E
– volume: 138
  start-page: 1764
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0045
  article-title: Site-specific surface functionalization of gold nanorods using DNA origami clamps
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b11566
– volume: 6
  start-page: 21266
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0160
  article-title: A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly
  publication-title: Sci Rep
  doi: 10.1038/srep21266
– volume: 332
  start-page: 342
  year: 2011
  ident: 10.1016/j.nano.2018.01.018_bb0015
  article-title: DNA origami with complex curvatures in three-dimensional space
  publication-title: Science
  doi: 10.1126/science.1202998
– volume: 54
  start-page: 6745
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0090
  article-title: Assembly and purification of enzyme-functionalized DNA origami structures
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201500175
– volume: 8
  start-page: 34054
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0175
  article-title: Aptamer-binding directed DNA origami pattern for logic gates
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b10266
– volume: 51
  start-page: 4697
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0220
  article-title: APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria
  publication-title: Chem Commun
  doi: 10.1039/C5CC00438A
– volume: 100
  start-page: 591
  year: 2018
  ident: 10.1016/j.nano.2018.01.018_bb0235
  article-title: A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2017.10.001
– volume: 145
  start-page: 131
  year: 2018
  ident: 10.1016/j.nano.2018.01.018_bb0225
  article-title: Aptamer-mediated Plasmodium-specific diagnosis of malaria
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2017.10.017
– volume: 9
  start-page: 9922
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0120
  article-title: Single-Molecule manipulation of the duplex formation and dissociation at the G-Quadruplex/i-Motif site in the DNA nanostructure
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03413
– volume: 52
  start-page: 6854
  year: 2013
  ident: 10.1016/j.nano.2018.01.018_bb0130
  article-title: Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201302759
– volume: 7
  start-page: 10619
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0095
  article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
  publication-title: Nat Commun
  doi: 10.1038/ncomms10619
– volume: 6
  start-page: 9122
  year: 2014
  ident: 10.1016/j.nano.2018.01.018_bb0100
  article-title: Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells
  publication-title: Nanoscale
  doi: 10.1039/C4NR01598C
– volume: 1
  year: 2017
  ident: 10.1016/j.nano.2018.01.018_bb0200
  article-title: Aptamer-mediated protein molecular recognition driving a DNA tweezer nanomachine
  publication-title: Adv Biosyst
  doi: 10.1002/adbi.201600006
– volume: 10
  start-page: 2918
  year: 2014
  ident: 10.1016/j.nano.2018.01.018_bb0105
  article-title: A DNA origami nanorobot controlled by nucleic acid hybridization
  publication-title: Small
  doi: 10.1002/smll.201400245
– volume: 133
  start-page: 4193
  year: 2011
  ident: 10.1016/j.nano.2018.01.018_bb0055
  article-title: Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1105464
– volume: 3
  start-page: 3
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0205
  article-title: A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery
  publication-title: Artif DNA PNA XNA
  doi: 10.4161/adna.19843
– volume: 1
  start-page: 420
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0230
  article-title: Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.5b00175
– volume: 134
  start-page: 17424
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0035
  article-title: Robust DNA-Functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3081023
– volume: 335
  start-page: 831
  year: 2012
  ident: 10.1016/j.nano.2018.01.018_bb0155
  article-title: A logic-gated nanorobot for targeted transport of molecular payloads
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 51
  start-page: 14111
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0110
  article-title: Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG
  publication-title: Chem Commun
  doi: 10.1039/C5CC04678E
– volume: 132
  start-page: 16311
  year: 2010
  ident: 10.1016/j.nano.2018.01.018_bb0115
  article-title: Visualization of Dynamic conformational switching of the G-quadruplex in a DNA nanostructure
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1058907
– volume: 44
  start-page: 5456
  year: 2005
  ident: 10.1016/j.nano.2018.01.018_bb0260
  article-title: Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200500989
– volume: 4
  start-page: 249
  year: 2009
  ident: 10.1016/j.nano.2018.01.018_bb0075
  article-title: Enzyme cascades activated on topologically programmed DNA scaffolds
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2009.50
– volume: 12
  start-page: 689
  year: 2011
  ident: 10.1016/j.nano.2018.01.018_bb0050
  article-title: Single-molecule FRET ruler based on rigid DNA origami blocks
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000781
– volume: 11
  start-page: 1811
  year: 2015
  ident: 10.1016/j.nano.2018.01.018_bb0250
  article-title: Construction of a fuzzy and Boolean logic gates based on DNA
  publication-title: Small
  doi: 10.1002/smll.201402755
– volume: 9
  start-page: 1416
  year: 2017
  ident: 10.1016/j.nano.2018.01.018_bb0180
  article-title: Programmed dissociation of dimer and trimer origami structures by aptamer-ligand complexes
  publication-title: Nanoscale
  doi: 10.1039/C6NR08209B
– volume: 16
  start-page: 6650
  year: 2016
  ident: 10.1016/j.nano.2018.01.018_bb0125
  article-title: pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b03418
SSID ssj0037009
Score 2.4167156
Snippet DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1161
SubjectTerms Aptamer
DNA nanotechnology
DNA origami
Malaria diagnosis
Title An aptamer-enabled DNA nanobox for protein sensing
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1549963418300297
https://dx.doi.org/10.1016/j.nano.2018.01.018
https://www.ncbi.nlm.nih.gov/pubmed/29410111
https://www.proquest.com/docview/1999193910
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF9KD8QX8fTU6lki-HbsNZvdJJvH0rPUjxbRHvRt2d3sHj10W9oUfPJvdyYfBUErCIGQZCcZZiczv2Tng5C3hunYeBnTMreeCllaWkhfUg_uKWOu1JnD_x3zRTa7FR9W6apHJl0uDIZVtra_sem1tW7PjFppjrbr9egrFhcD9RGglHULJsxgFzlq-fXPY5gHz-M6zAMHUxzdJs40MV5BB0wAZLIu3YmNP_7snP4GPmsnNH1MHrXoMRo3DJ6TngtPyIN5uz7-lCTjEOltpb-7HXV1VlQZ3SzGEXJgNj8iQKhRXZlhHaI9hq6HuwuynL5bTma07YpArUhZRXlSep8a6eFThDmfxYXPchsDjtMFg0vC80J4l3ItmeU5T20GJkznJgEoIWP-jPTDJrgXJNKFTX0hs1iXFlCTNUyY0thEcJNnubEDwjppKNtWDMfGFd9UFxp2r5B_hRJUMYNNDsjVkWbb1Ms4OZp3QlZdJijYLgXm_CRVeqT6TVf-Sfemm0cFLxGujOjgNoe9wloMgGQBOg3I82aCj9wnhYD7MfbyP5_6ijzEoya87JL0q93BvQYgU5lhralDcjaefPn0GffvP84WvwARCPIc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVJ5dKGAkOCGzcewkzqGHVUu1pd29sEi9WbZjo0XUu-puBVz4UfxCxomzEhIUCalSTnHGGY3HM1_ieQC8MkxnxsuMNpX1VMjG0lr6hnp0TyVzjS5d_N8xmZbjj-L9WXG2BT_7XJgYVplsf2fTW2ud7gyTNIfL-Xz4IRYXQ_URqJRtC6YUWXnivn_F77bV_vEhLvLrPD96NzsY09RagFpRsDXleeN9YaRHPM-cL7Pal5XNEAzpmuGQ8LwW3hVcS2Z5xQtboh3QlcnRH8uM47Q34KZAaxG7Jrz9sQkr4VXWhpVE5mjkLiXqdDFlQYeYcMhkWyo0Nhr5szP8G9htnd7RDtxNaJWMOoHcgy0X7sOtSTqPfwD5KBC9XOtzd0Fdm4XVkMPpiEQOzOIbQURM2koQ80BWMVQ-fHoIs-sQ1SPYDovgdoHo2ha-lmWmG4sozRomTGNsLripysrYAbBeGsqmCuWxUcYX1YeifVaRfxUlqDKGlxzAmw3NsqvPceXTvBey6jNP0VYqdB9XUhUbqt908590L_t1VLhp40mMDm5xuVKx9gMiZ4RqA3jcLfCG-7wWOB9jT_7zrS_g9ng2OVWnx9OTp3AnjnShbXuwvb64dM8QRK3N81ZrCahr3iW_AFZTK8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+aptamer-enabled+DNA+nanobox+for+protein+sensing&rft.jtitle=Nanomedicine&rft.au=Tang%2C+Marco+S+L&rft.au=Shiu%2C+Simon+Chi-Chin&rft.au=Godonoga%2C+Maia&rft.au=Cheung%2C+Yee-Wai&rft.date=2018-06-01&rft.issn=1549-9642&rft.eissn=1549-9642&rft.volume=14&rft.issue=4&rft.spage=1161&rft_id=info:doi/10.1016%2Fj.nano.2018.01.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon