An aptamer-enabled DNA nanobox for protein sensing
DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers a...
Saved in:
Published in | Nanomedicine Vol. 14; no. 4; pp. 1161 - 1168 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.
A DNA origami box can sense the malaria diagnostic protein Plasmodium falciparum lactate dehydrogenase (PfLDH), using a targeted aptamer that leads to box opening and a change in fluorescence signal upon protein binding. [Display omitted] |
---|---|
AbstractList | DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices. DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices. A DNA origami box can sense the malaria diagnostic protein Plasmodium falciparum lactate dehydrogenase (PfLDH), using a targeted aptamer that leads to box opening and a change in fluorescence signal upon protein binding. [Display omitted] DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices. |
Author | Fraser, Lewis A. Cheung, Yee-Wai Godonoga, Maia Tanner, Julian A. Kinghorn, Andrew B. Tang, Marco S.L. Shiu, Simon Chi-Chin Liang, Shaolin Dirkzwager, Roderick M. Heddle, Jonathan G. |
Author_xml | – sequence: 1 givenname: Marco S.L. surname: Tang fullname: Tang, Marco S.L. organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 2 givenname: Simon Chi-Chin surname: Shiu fullname: Shiu, Simon Chi-Chin organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 3 givenname: Maia surname: Godonoga fullname: Godonoga, Maia organization: Heddle Initiative Research Unit, RIKEN, Saitama, Japan – sequence: 4 givenname: Yee-Wai surname: Cheung fullname: Cheung, Yee-Wai organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 5 givenname: Shaolin surname: Liang fullname: Liang, Shaolin organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 6 givenname: Roderick M. surname: Dirkzwager fullname: Dirkzwager, Roderick M. organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 7 givenname: Andrew B. surname: Kinghorn fullname: Kinghorn, Andrew B. organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 8 givenname: Lewis A. surname: Fraser fullname: Fraser, Lewis A. organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China – sequence: 9 givenname: Jonathan G. surname: Heddle fullname: Heddle, Jonathan G. email: jonathan.heddle@uj.edu.pl organization: Heddle Initiative Research Unit, RIKEN, Saitama, Japan – sequence: 10 givenname: Julian A. surname: Tanner fullname: Tanner, Julian A. email: jatanner@hku.hk organization: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29410111$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEURYNUtFb_gAuZpZupecl8RdyU-glFN-5DJvMiqdOkJlOx_94Zqi5cKDxIIOfc8O4RGTnvkJBToFOgUFwsp045P2UUqimFfqo9MoY8E6koMjb6ufPskBzFuKSUl5SKA3LIRNYnAIwJm7lErTu1wpCiU3WLTXL9OEuG5Np_JMaHZB18h9YlEV207uWY7BvVRjz5Oifk-fbmeX6fLp7uHuazRaqzHLqUs8aYvK5MwQpAU1BhilJTUZZKQP-UGS4ygzlXFWhe8lwXTYOqrBllVUX5hJzvYvvv3zYYO7myUWPbKod-EyUIIUBwAQN69oVu6hU2ch3sSoWt_F6zB9gO0MHHGND8IEDl0KVcymFjOXQpKfRT9VL1S9K2U531rgvKtn-rVzsV-37eLQYZtUWnsbEBdScbb__WL3_purXOatW-4vY_-RN7r6EK |
CitedBy_id | crossref_primary_10_1002_advs_202000557 crossref_primary_10_3390_genes9120584 crossref_primary_10_3390_nano14231968 crossref_primary_10_1021_acscombsci_0c00108 crossref_primary_10_1016_j_compbiomed_2019_04_026 crossref_primary_10_1021_acs_analchem_9b04868 crossref_primary_10_3390_cells11010159 crossref_primary_10_1016_j_bios_2019_111418 crossref_primary_10_1016_j_ijbiomac_2024_132246 crossref_primary_10_3390_s24237432 crossref_primary_10_1016_j_apmt_2020_100861 crossref_primary_10_1016_j_cocis_2020_101411 crossref_primary_10_1016_j_trac_2022_116723 crossref_primary_10_1016_S1872_2040_19_61153_9 crossref_primary_10_2174_1573413718666220127123038 crossref_primary_10_1021_acsnanoscienceau_1c00027 crossref_primary_10_1002_cbic_201800308 crossref_primary_10_1039_D0TB01291B crossref_primary_10_3390_molecules23071695 crossref_primary_10_3390_molecules27010063 crossref_primary_10_1038_s41427_023_00470_3 crossref_primary_10_2217_nnm_2018_0440 crossref_primary_10_3390_molecules24050941 crossref_primary_10_3390_nano13172449 crossref_primary_10_1002_cmdc_202100635 crossref_primary_10_3390_genes9120571 crossref_primary_10_3390_s23020562 crossref_primary_10_1073_pnas_2311279121 crossref_primary_10_1080_07388551_2023_2229950 crossref_primary_10_1002_jccs_202200201 crossref_primary_10_1016_j_ijheh_2020_113485 crossref_primary_10_1002_adma_202003704 crossref_primary_10_1007_s11274_021_03097_0 crossref_primary_10_1007_s41061_020_0283_y crossref_primary_10_1021_acs_chemrev_0c01332 crossref_primary_10_1002_adbi_201900012 crossref_primary_10_1016_j_biosx_2023_100436 crossref_primary_10_1016_j_matt_2020_11_002 crossref_primary_10_1016_j_ijbiomac_2024_129495 crossref_primary_10_3390_ma13092185 crossref_primary_10_3390_mi13030436 crossref_primary_10_1016_j_saa_2022_121827 crossref_primary_10_1039_D1NR02757C |
Cites_doi | 10.1021/ja300897h 10.1038/ncomms6615 10.1039/C4CC08472A 10.1021/nn303767b 10.1038/nature07971 10.1039/C6CC08831G 10.1021/acs.nanolett.5b05139 10.1126/science.2200121 10.1021/acs.nanolett.7b00159 10.1021/ar500081k 10.1007/s12274-015-0724-z 10.1126/science.1150082 10.1021/acs.analchem.6b01635 10.1021/nn403772j 10.1021/ja209861x 10.1038/nature04586 10.1038/nature08016 10.1073/pnas.1309538110 10.1002/anie.201000330 10.1002/adfm.201600069 10.1002/adfm.201870053 10.1021/ja028962o 10.1039/C6NR00119J 10.1126/science.1165831 10.1038/ncomms3948 10.1039/C5NR08685J 10.1038/nnano.2017.159 10.1038/346818a0 10.1002/anie.201002621 10.1039/C5BM00274E 10.1021/jacs.5b11566 10.1038/srep21266 10.1126/science.1202998 10.1002/anie.201500175 10.1021/acsami.6b10266 10.1039/C5CC00438A 10.1016/j.bios.2017.10.001 10.1016/j.biochi.2017.10.017 10.1021/acsnano.5b03413 10.1002/anie.201302759 10.1038/ncomms10619 10.1039/C4NR01598C 10.1002/adbi.201600006 10.1002/smll.201400245 10.1021/ja1105464 10.4161/adna.19843 10.1021/acssensors.5b00175 10.1021/ja3081023 10.1126/science.1214081 10.1039/C5CC04678E 10.1021/ja1058907 10.1002/anie.200500989 10.1038/nnano.2009.50 10.1002/cphc.201000781 10.1002/smll.201402755 10.1039/C6NR08209B 10.1021/acs.nanolett.6b03418 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018. Published by Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.nano.2018.01.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-9642 |
EndPage | 1168 |
ExternalDocumentID | 29410111 10_1016_j_nano_2018_01_018 S1549963418300297 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Hong Kong University Grants Council GRF grantid: HKU 17119814 – fundername: European Regional Development Fund grantid: TEAM/2016-3/23 funderid: https://doi.org/10.13039/501100008530 – fundername: HKU Seed Fund for Incubating Group-based Collaborative Research Projects grantid: 102009390 – fundername: HKU Seed Fund for Translational and Applied Research grantid: 201409160039 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ABXRA ABZDS ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGEKW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BJAXD BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LUGTX M41 MAGPM MO0 N9A O-L O9- OAUVE OD~ OGGZJ OO0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPC SSH SSI SSM SSP SST SSU SSZ T5K Z5R ~G- AACTN AAIAV AATCM ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c451t-32dff5b8f6261ef609f67c0977a91dff4f394fe53a81c3735c6ddea7b2028803 |
IEDL.DBID | .~1 |
ISSN | 1549-9634 1549-9642 |
IngestDate | Mon Jul 21 11:21:08 EDT 2025 Thu Apr 03 07:05:37 EDT 2025 Tue Jul 01 01:49:51 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:12:38 EST 2024 Tue Aug 26 16:33:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | DNA nanotechnology Malaria diagnosis Aptamer DNA origami |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-32dff5b8f6261ef609f67c0977a91dff4f394fe53a81c3735c6ddea7b2028803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ruj.uj.edu.pl/xmlui/handle/item/70241 |
PMID | 29410111 |
PQID | 1999193910 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1999193910 pubmed_primary_29410111 crossref_primary_10_1016_j_nano_2018_01_018 crossref_citationtrail_10_1016_j_nano_2018_01_018 elsevier_sciencedirect_doi_10_1016_j_nano_2018_01_018 elsevier_clinicalkey_doi_10_1016_j_nano_2018_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nanomedicine |
PublicationTitleAlternate | Nanomedicine |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Pal, Deng, Ding, Yan, Liu (bb0025) 2010; 49 Chandrasekaran (bb0170) 2016; 8 Takeuchi, Endo, Suzuki, Hidaka, Durand, Dausse (bb0185) 2016; 4 Fu, Liu, Liu, Woodbury, Yan (bb0080) 2012; 134 Liao, Sohn, Riutin, Cecconello, Parak, Nechushtai (bb0275) 2016; 26 Olejko, Cywinski, Bald (bb0070) 2016; 8 Douglas, Bachelet, Church (bb0155) 2012; 335 Shiu, Cheung, Dirkzwager, Liang, Kinghorn, Fraser (bb0200) 2017; 1 Lu, Wang, Xu, Pang (bb0190) 2017; 53 Dirkzwager, Liang, Tanner (bb0230) 2016; 1 Sharma, Chhabra, Cheng, Brownell, Liu, Yan (bb0020) 2009; 323 Sannohe, Endo, Katsuda, Hidaka, Sugiyama (bb0115) 2010; 132 Kinghorn, Dirkzwager, Liang, Cheung, Fraser, Shiu (bb0215) 2016; 88 Dirkzwager, Kinghorn, Richards, Tanner (bb0220) 2015; 51 Yamazaki, Heddle, Kuzuya, Komiyama (bb0100) 2014; 6 Banerjee, Bhatia, Saminathan, Chakraborty, Kar, Krishnan (bb0130) 2013; 52 Wu, Willner (bb0180) 2017; 9 Hemmig, Creatore, Wünsch, Hecker, Mair, Parker (bb0065) 2016; 16 Han, Pal, Nangreave, Deng, Liu, Yan (bb0015) 2011; 332 Tan, Xing, Lu (bb0165) 2014; 47 Deng, Samanta, Nangreave, Yan, Liu (bb0035) 2012; 134 Stein, Steinhauer, Tinnefeld (bb0055) 2011; 133 Ke, Lindsay, Chang, Liu, Yan (bb0150) 2008; 319 Tuerk, Gold (bb0140) 1990; 249 Zadegan, Jepsen, Hildebrandt, Birkedal, Kjems (bb0250) 2015; 11 Veetil, Chakraborty, Xiao, Minter, Sisodia, Krishnan (bb0135) 2017; 12 Campos, Zhang, Majikes, Ferraz, LaBean, Dong (bb0110) 2015; 51 Jiang, Zhang, Yang, Kjems, Huang, Besenbacher (bb0285) 2015; 8 Endo, Xing, Zhou, Emura, Hidaka, Tuesuwan (bb0120) 2015; 9 Fraser, Kinghorn, Dirkzwager, Liang, Cheung, Lim (bb0235) 2018; 100 Zhang, Balogh, Wang, Sung, Nechushtai, Willner (bb0270) 2013; 7 Zhao, Fu, Dhakal, Johnson-Buck, Liu, Zhang (bb0095) 2016; 7 Yang, Jiang, Liu, Pan, Zhang (bb0175) 2016; 8 Shen, Song, Wang, Shi, Wang, Liu (bb0030) 2012; 134 Shen, Lan, Lu, Meyer, Ni, Ke (bb0045) 2016; 138 Andersen, Dong, Nielsen, Jahn, Subramani, Mamdouh (bb0240) 2009; 459 Douglas, Dietz, Liedl, Hogberg, Graf, Shih (bb0010) 2009; 459 Linko, Eerikainen, Kostiainen (bb0085) 2015; 51 Rothemund (bb0005) 2006; 440 Cheung, Kwok, Law, Watt, Kotaka, Tanner (bb0210) 2013; 110 Stein, Schüller, Böhm, Tinnefeld, Liedl (bb0050) 2011; 12 Wilner, Weizmann, Gill, Lioubashevski, Freeman, Willner (bb0075) 2009; 4 Nutiu, Li (bb0255) 2003; 125 Chen, Liao, Sohn, Fadeev, Cecconello, Nechushtai (bb0280) 2018; 28 Zadegan, Jepsen, Thomsen, Okholm, Schaffert, Andersen (bb0245) 2012; 6 Godonoga, Lin, Oshima, Sumitomo, Tang, Cheung (bb0160) 2016; 6 Bentin (bb0205) 2012; 3 Lau, Coombes, Li (bb0265) 2010; 49 Buckhout-White, Spillmann, Algar, Khachatrian, Melinger, Goldman (bb0060) 2014; 5 Ellington, Szostak (bb0145) 1990; 346 Timm, Niemeyer (bb0090) 2015; 54 Torelli, Marini, Palmano, Piantanida, Polano, Scarpellini (bb0105) 2014; 10 Cheung, Dirkzwager, Wong, Cardoso, D'Arc Neves Costa, Tanner (bb0225) 2018; 145 Wu, Willner (bb0125) 2016; 16 Walter, Bauer, Steinmeyer, Kuzuya, Niemeyer, Wagenknecht (bb0195) 2017; 17 Schreiber, Luong, Fan, Kuzyk, Nickels, Zhang (bb0040) 2013; 4 Xiao, Lubin, Heeger, Plaxco (bb0260) 2005; 44 Tuerk (10.1016/j.nano.2018.01.018_bb0140) 1990; 249 Campos (10.1016/j.nano.2018.01.018_bb0110) 2015; 51 Shiu (10.1016/j.nano.2018.01.018_bb0200) 2017; 1 Fraser (10.1016/j.nano.2018.01.018_bb0235) 2018; 100 Lau (10.1016/j.nano.2018.01.018_bb0265) 2010; 49 Deng (10.1016/j.nano.2018.01.018_bb0035) 2012; 134 Fu (10.1016/j.nano.2018.01.018_bb0080) 2012; 134 Yamazaki (10.1016/j.nano.2018.01.018_bb0100) 2014; 6 Cheung (10.1016/j.nano.2018.01.018_bb0210) 2013; 110 Shen (10.1016/j.nano.2018.01.018_bb0030) 2012; 134 Schreiber (10.1016/j.nano.2018.01.018_bb0040) 2013; 4 Buckhout-White (10.1016/j.nano.2018.01.018_bb0060) 2014; 5 Olejko (10.1016/j.nano.2018.01.018_bb0070) 2016; 8 Torelli (10.1016/j.nano.2018.01.018_bb0105) 2014; 10 Lu (10.1016/j.nano.2018.01.018_bb0190) 2017; 53 Tan (10.1016/j.nano.2018.01.018_bb0165) 2014; 47 Godonoga (10.1016/j.nano.2018.01.018_bb0160) 2016; 6 Rothemund (10.1016/j.nano.2018.01.018_bb0005) 2006; 440 Andersen (10.1016/j.nano.2018.01.018_bb0240) 2009; 459 Dirkzwager (10.1016/j.nano.2018.01.018_bb0230) 2016; 1 Douglas (10.1016/j.nano.2018.01.018_bb0010) 2009; 459 Shen (10.1016/j.nano.2018.01.018_bb0045) 2016; 138 Linko (10.1016/j.nano.2018.01.018_bb0085) 2015; 51 Wu (10.1016/j.nano.2018.01.018_bb0180) 2017; 9 Stein (10.1016/j.nano.2018.01.018_bb0055) 2011; 133 Zadegan (10.1016/j.nano.2018.01.018_bb0250) 2015; 11 Jiang (10.1016/j.nano.2018.01.018_bb0285) 2015; 8 Sannohe (10.1016/j.nano.2018.01.018_bb0115) 2010; 132 Banerjee (10.1016/j.nano.2018.01.018_bb0130) 2013; 52 Walter (10.1016/j.nano.2018.01.018_bb0195) 2017; 17 Chen (10.1016/j.nano.2018.01.018_bb0280) 2018; 28 Yang (10.1016/j.nano.2018.01.018_bb0175) 2016; 8 Takeuchi (10.1016/j.nano.2018.01.018_bb0185) 2016; 4 Sharma (10.1016/j.nano.2018.01.018_bb0020) 2009; 323 Veetil (10.1016/j.nano.2018.01.018_bb0135) 2017; 12 Cheung (10.1016/j.nano.2018.01.018_bb0225) 2018; 145 Pal (10.1016/j.nano.2018.01.018_bb0025) 2010; 49 Zhao (10.1016/j.nano.2018.01.018_bb0095) 2016; 7 Han (10.1016/j.nano.2018.01.018_bb0015) 2011; 332 Zhang (10.1016/j.nano.2018.01.018_bb0270) 2013; 7 Nutiu (10.1016/j.nano.2018.01.018_bb0255) 2003; 125 Zadegan (10.1016/j.nano.2018.01.018_bb0245) 2012; 6 Stein (10.1016/j.nano.2018.01.018_bb0050) 2011; 12 Endo (10.1016/j.nano.2018.01.018_bb0120) 2015; 9 Wilner (10.1016/j.nano.2018.01.018_bb0075) 2009; 4 Douglas (10.1016/j.nano.2018.01.018_bb0155) 2012; 335 Dirkzwager (10.1016/j.nano.2018.01.018_bb0220) 2015; 51 Ellington (10.1016/j.nano.2018.01.018_bb0145) 1990; 346 Ke (10.1016/j.nano.2018.01.018_bb0150) 2008; 319 Timm (10.1016/j.nano.2018.01.018_bb0090) 2015; 54 Kinghorn (10.1016/j.nano.2018.01.018_bb0215) 2016; 88 Hemmig (10.1016/j.nano.2018.01.018_bb0065) 2016; 16 Liao (10.1016/j.nano.2018.01.018_bb0275) 2016; 26 Chandrasekaran (10.1016/j.nano.2018.01.018_bb0170) 2016; 8 Bentin (10.1016/j.nano.2018.01.018_bb0205) 2012; 3 Xiao (10.1016/j.nano.2018.01.018_bb0260) 2005; 44 Wu (10.1016/j.nano.2018.01.018_bb0125) 2016; 16 |
References_xml | – volume: 47 start-page: 1881 year: 2014 end-page: 1890 ident: bb0165 article-title: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles publication-title: Acc Chem Res – volume: 145 start-page: 131 year: 2018 end-page: 136 ident: bb0225 article-title: Aptamer-mediated Plasmodium-specific diagnosis of malaria publication-title: Biochimie – volume: 5 start-page: 5615 year: 2014 ident: bb0060 article-title: Assembling programmable FRET-based photonic networks using designer DNA scaffolds publication-title: Nat Commun – volume: 4 start-page: 2948 year: 2013 ident: bb0040 article-title: Chiral plasmonic DNA nanostructures with switchable circular dichroism publication-title: Nat Commun – volume: 88 start-page: 6981 year: 2016 end-page: 6985 ident: bb0215 article-title: Aptamer affinity maturation by resampling and microarray selection publication-title: Anal Chem – volume: 6 start-page: 21266 year: 2016 ident: bb0160 article-title: A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly publication-title: Sci Rep – volume: 7 start-page: 8455 year: 2013 end-page: 8468 ident: bb0270 article-title: Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 Using DNA or molecular biomarkers as triggering stimuli publication-title: ACS Nano – volume: 100 start-page: 591 year: 2018 end-page: 596 ident: bb0235 article-title: A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis publication-title: Biosens Bioelectron – volume: 133 start-page: 4193 year: 2011 end-page: 4195 ident: bb0055 article-title: Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami publication-title: J Am Chem Soc – volume: 49 start-page: 2700 year: 2010 end-page: 2704 ident: bb0025 article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures publication-title: Angew Chem Int Ed – volume: 346 start-page: 818 year: 1990 end-page: 822 ident: bb0145 article-title: In vitro selection of RNA molecules that bind specific ligands publication-title: Nature – volume: 138 start-page: 1764 year: 2016 end-page: 1767 ident: bb0045 article-title: Site-specific surface functionalization of gold nanorods using DNA origami clamps publication-title: J Am Chem Soc – volume: 8 start-page: 34054 year: 2016 end-page: 34060 ident: bb0175 article-title: Aptamer-binding directed DNA origami pattern for logic gates publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 1811 year: 2015 end-page: 1817 ident: bb0250 article-title: Construction of a fuzzy and Boolean logic gates based on DNA publication-title: Small – volume: 125 start-page: 4771 year: 2003 end-page: 4778 ident: bb0255 article-title: Structure-switching signaling aptamers publication-title: J Am Chem Soc – volume: 332 start-page: 342 year: 2011 end-page: 346 ident: bb0015 article-title: DNA origami with complex curvatures in three-dimensional space publication-title: Science – volume: 10 start-page: 2918 year: 2014 end-page: 2926 ident: bb0105 article-title: A DNA origami nanorobot controlled by nucleic acid hybridization publication-title: Small – volume: 51 start-page: 14111 year: 2015 end-page: 14114 ident: bb0110 article-title: Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG publication-title: Chem Commun – volume: 3 start-page: 3 year: 2012 end-page: 4 ident: bb0205 article-title: A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery publication-title: Artif DNA PNA XNA – volume: 52 start-page: 6854 year: 2013 end-page: 6857 ident: bb0130 article-title: Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger publication-title: Angew Chem Int Ed – volume: 8 start-page: 2170 year: 2015 end-page: 2178 ident: bb0285 article-title: Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy publication-title: Nano Res – volume: 26 start-page: 4262 year: 2016 end-page: 4273 ident: bb0275 article-title: The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells publication-title: Adv Funct Mater – volume: 12 start-page: 689 year: 2011 end-page: 695 ident: bb0050 article-title: Single-molecule FRET ruler based on rigid DNA origami blocks publication-title: ChemPhysChem – volume: 16 start-page: 2369 year: 2016 end-page: 2374 ident: bb0065 article-title: Programming light-harvesting efficiency using DNA origami publication-title: Nano Lett – volume: 7 start-page: 10619 year: 2016 ident: bb0095 article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion publication-title: Nat Commun – volume: 1 year: 2017 ident: bb0200 article-title: Aptamer-mediated protein molecular recognition driving a DNA tweezer nanomachine publication-title: Adv Biosyst – volume: 51 start-page: 4697 year: 2015 end-page: 4700 ident: bb0220 article-title: APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria publication-title: Chem Commun – volume: 28 year: 2018 ident: bb0280 article-title: Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal–organic framework nanoparticles for controlled drug release publication-title: Adv Funct Mater – volume: 51 start-page: 5351 year: 2015 end-page: 5354 ident: bb0085 article-title: A modular DNA origami-based enzyme cascade nanoreactor publication-title: Chem Commun – volume: 440 start-page: 297 year: 2006 end-page: 302 ident: bb0005 article-title: Folding DNA to create nanoscale shapes and patterns publication-title: Nature – volume: 12 start-page: 1183 year: 2017 end-page: 1189 ident: bb0135 article-title: Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules publication-title: Nat Nanotechnol – volume: 134 start-page: 17424 year: 2012 end-page: 17427 ident: bb0035 article-title: Robust DNA-Functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly publication-title: J Am Chem Soc – volume: 110 start-page: 15967 year: 2013 end-page: 15972 ident: bb0210 article-title: Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer publication-title: Proc Natl Acad Sci – volume: 335 start-page: 831 year: 2012 end-page: 834 ident: bb0155 article-title: A logic-gated nanorobot for targeted transport of molecular payloads publication-title: Science – volume: 459 start-page: 73 year: 2009 end-page: 76 ident: bb0240 article-title: Self-assembly of a nanoscale DNA box with a controllable lid publication-title: Nature – volume: 8 start-page: 10339 year: 2016 end-page: 10347 ident: bb0070 article-title: An ion-controlled four-color fluorescent telomeric switch on DNA origami structures publication-title: Nanoscale – volume: 16 start-page: 6650 year: 2016 end-page: 6655 ident: bb0125 article-title: pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems publication-title: Nano Lett – volume: 9 start-page: 9922 year: 2015 end-page: 9929 ident: bb0120 article-title: Single-Molecule manipulation of the duplex formation and dissociation at the G-Quadruplex/i-Motif site in the DNA nanostructure publication-title: ACS Nano – volume: 49 start-page: 7938 year: 2010 end-page: 7942 ident: bb0265 article-title: A general approach to the construction of structure-switching reporters from RNA aptamers publication-title: Angew Chem Int Ed – volume: 459 start-page: 414 year: 2009 end-page: 418 ident: bb0010 article-title: Self-assembly of DNA into nanoscale three-dimensional shapes publication-title: Nature – volume: 54 start-page: 6745 year: 2015 end-page: 6750 ident: bb0090 article-title: Assembly and purification of enzyme-functionalized DNA origami structures publication-title: Angew Chem Int Ed – volume: 44 start-page: 5456 year: 2005 end-page: 5459 ident: bb0260 article-title: Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor publication-title: Angew Chem Int Ed – volume: 17 start-page: 2467 year: 2017 end-page: 2472 ident: bb0195 article-title: "DNA origami traffic lights" with a split aptamer sensor for a bicolor fluorescence readout publication-title: Nano Lett – volume: 323 start-page: 112 year: 2009 end-page: 116 ident: bb0020 article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles publication-title: Science – volume: 4 start-page: 130 year: 2016 end-page: 135 ident: bb0185 article-title: Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure publication-title: Biomater Sci – volume: 9 start-page: 1416 year: 2017 end-page: 1422 ident: bb0180 article-title: Programmed dissociation of dimer and trimer origami structures by aptamer-ligand complexes publication-title: Nanoscale – volume: 6 start-page: 10050 year: 2012 end-page: 10053 ident: bb0245 article-title: Construction of a 4 zeptoliters switchable 3D DNA box origami publication-title: ACS Nano – volume: 134 start-page: 146 year: 2012 end-page: 149 ident: bb0030 article-title: Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures publication-title: J Am Chem Soc – volume: 1 start-page: 420 year: 2016 end-page: 426 ident: bb0230 article-title: Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping publication-title: ACS Sensors – volume: 53 start-page: 941 year: 2017 end-page: 944 ident: bb0190 article-title: Aptamer-tagged DNA origami for spatially addressable detection of aflatoxin B1 publication-title: Chem Commun (Camb) – volume: 8 start-page: 4436 year: 2016 end-page: 4446 ident: bb0170 article-title: Programmable DNA scaffolds for spatially-ordered protein assembly publication-title: Nanoscale – volume: 134 start-page: 5516 year: 2012 end-page: 5519 ident: bb0080 article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures publication-title: J Am Chem Soc – volume: 6 start-page: 9122 year: 2014 end-page: 9126 ident: bb0100 article-title: Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells publication-title: Nanoscale – volume: 249 start-page: 505 year: 1990 end-page: 510 ident: bb0140 article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase publication-title: Science – volume: 4 start-page: 249 year: 2009 end-page: 254 ident: bb0075 article-title: Enzyme cascades activated on topologically programmed DNA scaffolds publication-title: Nat Nanotechnol – volume: 132 start-page: 16311 year: 2010 end-page: 16313 ident: bb0115 article-title: Visualization of Dynamic conformational switching of the G-quadruplex in a DNA nanostructure publication-title: J Am Chem Soc – volume: 319 start-page: 180 year: 2008 end-page: 183 ident: bb0150 article-title: Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays publication-title: Science – volume: 134 start-page: 5516 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0080 article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures publication-title: J Am Chem Soc doi: 10.1021/ja300897h – volume: 5 start-page: 5615 year: 2014 ident: 10.1016/j.nano.2018.01.018_bb0060 article-title: Assembling programmable FRET-based photonic networks using designer DNA scaffolds publication-title: Nat Commun doi: 10.1038/ncomms6615 – volume: 51 start-page: 5351 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0085 article-title: A modular DNA origami-based enzyme cascade nanoreactor publication-title: Chem Commun doi: 10.1039/C4CC08472A – volume: 6 start-page: 10050 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0245 article-title: Construction of a 4 zeptoliters switchable 3D DNA box origami publication-title: ACS Nano doi: 10.1021/nn303767b – volume: 459 start-page: 73 year: 2009 ident: 10.1016/j.nano.2018.01.018_bb0240 article-title: Self-assembly of a nanoscale DNA box with a controllable lid publication-title: Nature doi: 10.1038/nature07971 – volume: 53 start-page: 941 year: 2017 ident: 10.1016/j.nano.2018.01.018_bb0190 article-title: Aptamer-tagged DNA origami for spatially addressable detection of aflatoxin B1 publication-title: Chem Commun (Camb) doi: 10.1039/C6CC08831G – volume: 16 start-page: 2369 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0065 article-title: Programming light-harvesting efficiency using DNA origami publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b05139 – volume: 249 start-page: 505 year: 1990 ident: 10.1016/j.nano.2018.01.018_bb0140 article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase publication-title: Science doi: 10.1126/science.2200121 – volume: 17 start-page: 2467 year: 2017 ident: 10.1016/j.nano.2018.01.018_bb0195 article-title: "DNA origami traffic lights" with a split aptamer sensor for a bicolor fluorescence readout publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b00159 – volume: 47 start-page: 1881 year: 2014 ident: 10.1016/j.nano.2018.01.018_bb0165 article-title: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles publication-title: Acc Chem Res doi: 10.1021/ar500081k – volume: 8 start-page: 2170 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0285 article-title: Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy publication-title: Nano Res doi: 10.1007/s12274-015-0724-z – volume: 319 start-page: 180 year: 2008 ident: 10.1016/j.nano.2018.01.018_bb0150 article-title: Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays publication-title: Science doi: 10.1126/science.1150082 – volume: 88 start-page: 6981 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0215 article-title: Aptamer affinity maturation by resampling and microarray selection publication-title: Anal Chem doi: 10.1021/acs.analchem.6b01635 – volume: 7 start-page: 8455 issue: 10 year: 2013 ident: 10.1016/j.nano.2018.01.018_bb0270 article-title: Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 Using DNA or molecular biomarkers as triggering stimuli publication-title: ACS Nano doi: 10.1021/nn403772j – volume: 134 start-page: 146 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0030 article-title: Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures publication-title: J Am Chem Soc doi: 10.1021/ja209861x – volume: 440 start-page: 297 year: 2006 ident: 10.1016/j.nano.2018.01.018_bb0005 article-title: Folding DNA to create nanoscale shapes and patterns publication-title: Nature doi: 10.1038/nature04586 – volume: 459 start-page: 414 year: 2009 ident: 10.1016/j.nano.2018.01.018_bb0010 article-title: Self-assembly of DNA into nanoscale three-dimensional shapes publication-title: Nature doi: 10.1038/nature08016 – volume: 110 start-page: 15967 year: 2013 ident: 10.1016/j.nano.2018.01.018_bb0210 article-title: Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1309538110 – volume: 49 start-page: 2700 year: 2010 ident: 10.1016/j.nano.2018.01.018_bb0025 article-title: DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures publication-title: Angew Chem Int Ed doi: 10.1002/anie.201000330 – volume: 26 start-page: 4262 issue: 24 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0275 article-title: The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells publication-title: Adv Funct Mater doi: 10.1002/adfm.201600069 – volume: 28 year: 2018 ident: 10.1016/j.nano.2018.01.018_bb0280 article-title: Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal–organic framework nanoparticles for controlled drug release publication-title: Adv Funct Mater doi: 10.1002/adfm.201870053 – volume: 125 start-page: 4771 year: 2003 ident: 10.1016/j.nano.2018.01.018_bb0255 article-title: Structure-switching signaling aptamers publication-title: J Am Chem Soc doi: 10.1021/ja028962o – volume: 8 start-page: 10339 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0070 article-title: An ion-controlled four-color fluorescent telomeric switch on DNA origami structures publication-title: Nanoscale doi: 10.1039/C6NR00119J – volume: 323 start-page: 112 year: 2009 ident: 10.1016/j.nano.2018.01.018_bb0020 article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles publication-title: Science doi: 10.1126/science.1165831 – volume: 4 start-page: 2948 year: 2013 ident: 10.1016/j.nano.2018.01.018_bb0040 article-title: Chiral plasmonic DNA nanostructures with switchable circular dichroism publication-title: Nat Commun doi: 10.1038/ncomms3948 – volume: 8 start-page: 4436 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0170 article-title: Programmable DNA scaffolds for spatially-ordered protein assembly publication-title: Nanoscale doi: 10.1039/C5NR08685J – volume: 12 start-page: 1183 year: 2017 ident: 10.1016/j.nano.2018.01.018_bb0135 article-title: Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.159 – volume: 346 start-page: 818 year: 1990 ident: 10.1016/j.nano.2018.01.018_bb0145 article-title: In vitro selection of RNA molecules that bind specific ligands publication-title: Nature doi: 10.1038/346818a0 – volume: 49 start-page: 7938 year: 2010 ident: 10.1016/j.nano.2018.01.018_bb0265 article-title: A general approach to the construction of structure-switching reporters from RNA aptamers publication-title: Angew Chem Int Ed doi: 10.1002/anie.201002621 – volume: 4 start-page: 130 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0185 article-title: Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure publication-title: Biomater Sci doi: 10.1039/C5BM00274E – volume: 138 start-page: 1764 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0045 article-title: Site-specific surface functionalization of gold nanorods using DNA origami clamps publication-title: J Am Chem Soc doi: 10.1021/jacs.5b11566 – volume: 6 start-page: 21266 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0160 article-title: A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly publication-title: Sci Rep doi: 10.1038/srep21266 – volume: 332 start-page: 342 year: 2011 ident: 10.1016/j.nano.2018.01.018_bb0015 article-title: DNA origami with complex curvatures in three-dimensional space publication-title: Science doi: 10.1126/science.1202998 – volume: 54 start-page: 6745 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0090 article-title: Assembly and purification of enzyme-functionalized DNA origami structures publication-title: Angew Chem Int Ed doi: 10.1002/anie.201500175 – volume: 8 start-page: 34054 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0175 article-title: Aptamer-binding directed DNA origami pattern for logic gates publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b10266 – volume: 51 start-page: 4697 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0220 article-title: APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria publication-title: Chem Commun doi: 10.1039/C5CC00438A – volume: 100 start-page: 591 year: 2018 ident: 10.1016/j.nano.2018.01.018_bb0235 article-title: A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.10.001 – volume: 145 start-page: 131 year: 2018 ident: 10.1016/j.nano.2018.01.018_bb0225 article-title: Aptamer-mediated Plasmodium-specific diagnosis of malaria publication-title: Biochimie doi: 10.1016/j.biochi.2017.10.017 – volume: 9 start-page: 9922 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0120 article-title: Single-Molecule manipulation of the duplex formation and dissociation at the G-Quadruplex/i-Motif site in the DNA nanostructure publication-title: ACS Nano doi: 10.1021/acsnano.5b03413 – volume: 52 start-page: 6854 year: 2013 ident: 10.1016/j.nano.2018.01.018_bb0130 article-title: Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger publication-title: Angew Chem Int Ed doi: 10.1002/anie.201302759 – volume: 7 start-page: 10619 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0095 article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion publication-title: Nat Commun doi: 10.1038/ncomms10619 – volume: 6 start-page: 9122 year: 2014 ident: 10.1016/j.nano.2018.01.018_bb0100 article-title: Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells publication-title: Nanoscale doi: 10.1039/C4NR01598C – volume: 1 year: 2017 ident: 10.1016/j.nano.2018.01.018_bb0200 article-title: Aptamer-mediated protein molecular recognition driving a DNA tweezer nanomachine publication-title: Adv Biosyst doi: 10.1002/adbi.201600006 – volume: 10 start-page: 2918 year: 2014 ident: 10.1016/j.nano.2018.01.018_bb0105 article-title: A DNA origami nanorobot controlled by nucleic acid hybridization publication-title: Small doi: 10.1002/smll.201400245 – volume: 133 start-page: 4193 year: 2011 ident: 10.1016/j.nano.2018.01.018_bb0055 article-title: Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami publication-title: J Am Chem Soc doi: 10.1021/ja1105464 – volume: 3 start-page: 3 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0205 article-title: A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery publication-title: Artif DNA PNA XNA doi: 10.4161/adna.19843 – volume: 1 start-page: 420 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0230 article-title: Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping publication-title: ACS Sensors doi: 10.1021/acssensors.5b00175 – volume: 134 start-page: 17424 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0035 article-title: Robust DNA-Functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly publication-title: J Am Chem Soc doi: 10.1021/ja3081023 – volume: 335 start-page: 831 year: 2012 ident: 10.1016/j.nano.2018.01.018_bb0155 article-title: A logic-gated nanorobot for targeted transport of molecular payloads publication-title: Science doi: 10.1126/science.1214081 – volume: 51 start-page: 14111 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0110 article-title: Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG publication-title: Chem Commun doi: 10.1039/C5CC04678E – volume: 132 start-page: 16311 year: 2010 ident: 10.1016/j.nano.2018.01.018_bb0115 article-title: Visualization of Dynamic conformational switching of the G-quadruplex in a DNA nanostructure publication-title: J Am Chem Soc doi: 10.1021/ja1058907 – volume: 44 start-page: 5456 year: 2005 ident: 10.1016/j.nano.2018.01.018_bb0260 article-title: Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor publication-title: Angew Chem Int Ed doi: 10.1002/anie.200500989 – volume: 4 start-page: 249 year: 2009 ident: 10.1016/j.nano.2018.01.018_bb0075 article-title: Enzyme cascades activated on topologically programmed DNA scaffolds publication-title: Nat Nanotechnol doi: 10.1038/nnano.2009.50 – volume: 12 start-page: 689 year: 2011 ident: 10.1016/j.nano.2018.01.018_bb0050 article-title: Single-molecule FRET ruler based on rigid DNA origami blocks publication-title: ChemPhysChem doi: 10.1002/cphc.201000781 – volume: 11 start-page: 1811 year: 2015 ident: 10.1016/j.nano.2018.01.018_bb0250 article-title: Construction of a fuzzy and Boolean logic gates based on DNA publication-title: Small doi: 10.1002/smll.201402755 – volume: 9 start-page: 1416 year: 2017 ident: 10.1016/j.nano.2018.01.018_bb0180 article-title: Programmed dissociation of dimer and trimer origami structures by aptamer-ligand complexes publication-title: Nanoscale doi: 10.1039/C6NR08209B – volume: 16 start-page: 6650 year: 2016 ident: 10.1016/j.nano.2018.01.018_bb0125 article-title: pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b03418 |
SSID | ssj0037009 |
Score | 2.4167156 |
Snippet | DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1161 |
SubjectTerms | Aptamer DNA nanotechnology DNA origami Malaria diagnosis |
Title | An aptamer-enabled DNA nanobox for protein sensing |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1549963418300297 https://dx.doi.org/10.1016/j.nano.2018.01.018 https://www.ncbi.nlm.nih.gov/pubmed/29410111 https://www.proquest.com/docview/1999193910 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF9KD8QX8fTU6lki-HbsNZvdJJvH0rPUjxbRHvRt2d3sHj10W9oUfPJvdyYfBUErCIGQZCcZZiczv2Tng5C3hunYeBnTMreeCllaWkhfUg_uKWOu1JnD_x3zRTa7FR9W6apHJl0uDIZVtra_sem1tW7PjFppjrbr9egrFhcD9RGglHULJsxgFzlq-fXPY5gHz-M6zAMHUxzdJs40MV5BB0wAZLIu3YmNP_7snP4GPmsnNH1MHrXoMRo3DJ6TngtPyIN5uz7-lCTjEOltpb-7HXV1VlQZ3SzGEXJgNj8iQKhRXZlhHaI9hq6HuwuynL5bTma07YpArUhZRXlSep8a6eFThDmfxYXPchsDjtMFg0vC80J4l3ItmeU5T20GJkznJgEoIWP-jPTDJrgXJNKFTX0hs1iXFlCTNUyY0thEcJNnubEDwjppKNtWDMfGFd9UFxp2r5B_hRJUMYNNDsjVkWbb1Ms4OZp3QlZdJijYLgXm_CRVeqT6TVf-Sfemm0cFLxGujOjgNoe9wloMgGQBOg3I82aCj9wnhYD7MfbyP5_6ijzEoya87JL0q93BvQYgU5lhralDcjaefPn0GffvP84WvwARCPIc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVJ5dKGAkOCGzcewkzqGHVUu1pd29sEi9WbZjo0XUu-puBVz4UfxCxomzEhIUCalSTnHGGY3HM1_ieQC8MkxnxsuMNpX1VMjG0lr6hnp0TyVzjS5d_N8xmZbjj-L9WXG2BT_7XJgYVplsf2fTW2ud7gyTNIfL-Xz4IRYXQ_URqJRtC6YUWXnivn_F77bV_vEhLvLrPD96NzsY09RagFpRsDXleeN9YaRHPM-cL7Pal5XNEAzpmuGQ8LwW3hVcS2Z5xQtboh3QlcnRH8uM47Q34KZAaxG7Jrz9sQkr4VXWhpVE5mjkLiXqdDFlQYeYcMhkWyo0Nhr5szP8G9htnd7RDtxNaJWMOoHcgy0X7sOtSTqPfwD5KBC9XOtzd0Fdm4XVkMPpiEQOzOIbQURM2koQ80BWMVQ-fHoIs-sQ1SPYDovgdoHo2ha-lmWmG4sozRomTGNsLripysrYAbBeGsqmCuWxUcYX1YeifVaRfxUlqDKGlxzAmw3NsqvPceXTvBey6jNP0VYqdB9XUhUbqt908590L_t1VLhp40mMDm5xuVKx9gMiZ4RqA3jcLfCG-7wWOB9jT_7zrS_g9ng2OVWnx9OTp3AnjnShbXuwvb64dM8QRK3N81ZrCahr3iW_AFZTK8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+aptamer-enabled+DNA+nanobox+for+protein+sensing&rft.jtitle=Nanomedicine&rft.au=Tang%2C+Marco+S+L&rft.au=Shiu%2C+Simon+Chi-Chin&rft.au=Godonoga%2C+Maia&rft.au=Cheung%2C+Yee-Wai&rft.date=2018-06-01&rft.issn=1549-9642&rft.eissn=1549-9642&rft.volume=14&rft.issue=4&rft.spage=1161&rft_id=info:doi/10.1016%2Fj.nano.2018.01.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon |