PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties

Nanocomposite films based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends and synthesized cellulose nanocrystals (CNC) or surfactant modified cellulose nanocrystals (CNCs), as bio-based reinforcement, were prepared by melt extrusion followed by film forming. The obtained nanocomposites a...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 107; pp. 139 - 149
Main Authors Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocomposite films based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends and synthesized cellulose nanocrystals (CNC) or surfactant modified cellulose nanocrystals (CNCs), as bio-based reinforcement, were prepared by melt extrusion followed by film forming. The obtained nanocomposites are intended for short-term food packaging. Thus, the mechanical, optical, barrier and wettability properties were studied. Functionalized CNCs contribute to enhance the interfacial adhesion between PLA and PHB, leading to improved mechanical stiffness and increased film stretchability. The synergic effects of the PHB and CNCs on the PLA barrier properties were confirmed by increases in oxygen barrier properties and reductions in surface wettability of the nanocomposites. In addition, the measurements of the viscosity molecular weight for ternary systems showed practically no degradation of PLA and smaller degradation of PHB during processing due to nanocrystal presence. The disintegration process in composting conditions of PLA was delayed by the addition of PHB, while CNC speeded it up. PLA-PHB-CNCs formulations showed enhanced mechanical performance, improved water resistance, reduced oxygen and UV-light transmission, as well as appropriate disintegration in compost suggesting possible applications as packaging materials.
AbstractList Nanocomposite films based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends and synthesized cellulose nanocrystals (CNC) or surfactant modified cellulose nanocrystals (CNCs), as bio-based reinforcement, were prepared by melt extrusion followed by film forming. The obtained nanocomposites are intended for short-term food packaging. Thus, the mechanical, optical, barrier and wettability properties were studied. Functionalized CNCs contribute to enhance the interfacial adhesion between PLA and PHB, leading to improved mechanical stiffness and increased film stretchability. The synergic effects of the PHB and CNCs on the PLA barrier properties were confirmed by increases in oxygen barrier properties and reductions in surface wettability of the nanocomposites. In addition, the measurements of the viscosity molecular weight for ternary systems showed practically no degradation of PLA and smaller degradation of PHB during processing due to nanocrystal presence. The disintegration process in composting conditions of PLA was delayed by the addition of PHB, while CNC speeded it up. PLA-PHB-CNCs formulations showed enhanced mechanical performance, improved water resistance, reduced oxygen and UV-light transmission, as well as appropriate disintegration in compost suggesting possible applications as packaging materials.
Author Rayón, E.
Arrieta, M.P.
Fortunati, E.
López, J.
Kenny, J.M.
Dominici, F.
Author_xml – sequence: 1
  givenname: M.P.
  orcidid: 0000-0003-1816-011X
  surname: Arrieta
  fullname: Arrieta, M.P.
  organization: Instituto de Tecnología de Materiales, Universitat Politècnica de Valencia, 03801 Alcoy, Alicante, Spain
– sequence: 2
  givenname: E.
  surname: Fortunati
  fullname: Fortunati, E.
  email: elena.fortunati@unipg.it
  organization: Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, 05100 Terni, Italy
– sequence: 3
  givenname: F.
  surname: Dominici
  fullname: Dominici, F.
  organization: Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, 05100 Terni, Italy
– sequence: 4
  givenname: E.
  surname: Rayón
  fullname: Rayón, E.
  organization: Instituto de Tecnología de Materiales, Universitat Politècnica de Valencia, E-46022 Valencia, Spain
– sequence: 5
  givenname: J.
  orcidid: 0000-0001-6904-2282
  surname: López
  fullname: López, J.
  organization: Instituto de Tecnología de Materiales, Universitat Politècnica de Valencia, 03801 Alcoy, Alicante, Spain
– sequence: 6
  givenname: J.M.
  surname: Kenny
  fullname: Kenny, J.M.
  organization: Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, 05100 Terni, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28763934$$DView record in Pascal Francis
BookMark eNqNkLtOwzAUhj2ARLm8QxYkBpLazh2JASpuUhEdYLYc-wRcJU7wcZH69jgUMTDVi2X5O_-v8x2TAztYIOSc0YRRVszXyTh0217Du5MavWwSTlmW0DyhjB6QWXiwOK0ZPSLHiGsaTpazGVmtljfx6vF2rqDrNt2AEDUSQUet6Xq8ip5BfUhrlOwuw4dzBlwkrY60QWP91ObNYKPRDSM4bwBPyWErO4Sz3_uEvN3fvS4e4-XLw9PiZhmr0Otj3pZFUzVZxbnWrG5YxVVeZKqQNKt1XeZFoWXbspRnraSsYXlTqUxWZapKXjZVekIudrmh-nMD6EVvcFpCWhg2KHjQkrKClTSg57-oxLBI66RVBsXoTC_dVvCqLNI6zQJ3veOUGxAdtH8Io2KyLNbin2UxWRY0F8FymF_8m1fG__jxTppu75SHXQoEe1_Bt0BlwCrQxoHyQg9mz6RvroaqDw
CODEN PDSTDW
CitedBy_id crossref_primary_10_1080_10408398_2016_1270254
crossref_primary_10_1016_j_ijbiomac_2024_132488
crossref_primary_10_1016_j_indcrop_2017_10_042
crossref_primary_10_3390_ma13153432
crossref_primary_10_1016_j_polymdegradstab_2024_111026
crossref_primary_10_3390_su17020720
crossref_primary_10_1007_s10570_021_04086_0
crossref_primary_10_1016_j_apcatb_2016_02_031
crossref_primary_10_1007_s42247_021_00319_x
crossref_primary_10_1007_s00289_022_04618_z
crossref_primary_10_3390_polym10050501
crossref_primary_10_1016_j_ijbiomac_2020_11_140
crossref_primary_10_1590_s1517_707620180002_0545
crossref_primary_10_1016_j_ab_2017_01_004
crossref_primary_10_1016_j_foodhyd_2018_04_045
crossref_primary_10_3390_polym12030647
crossref_primary_10_1016_j_ijbiomac_2023_126781
crossref_primary_10_1016_j_biortech_2024_131238
crossref_primary_10_1016_j_porgcoat_2018_02_003
crossref_primary_10_1007_s43153_020_00083_1
crossref_primary_10_1016_j_polymdegradstab_2015_09_002
crossref_primary_10_1016_j_ijbiomac_2024_130601
crossref_primary_10_1208_s12249_018_1027_y
crossref_primary_10_1021_acsapm_0c00315
crossref_primary_10_3389_fmats_2023_1225200
crossref_primary_10_1002_pol_20241028
crossref_primary_10_1098_rsta_2017_0040
crossref_primary_10_1002_mabi_202000248
crossref_primary_10_1016_j_polymdegradstab_2019_109018
crossref_primary_10_1007_s10570_019_02641_4
crossref_primary_10_1016_j_ijbiomac_2022_10_006
crossref_primary_10_1002_admi_202400645
crossref_primary_10_1016_j_compositesa_2019_105472
crossref_primary_10_1021_acs_biomac_3c01337
crossref_primary_10_1111_1750_3841_13427
crossref_primary_10_1016_j_aaspro_2015_08_099
crossref_primary_10_3390_polym16060798
crossref_primary_10_21307_PM_2020_59_1_008
crossref_primary_10_1007_s10965_024_03930_8
crossref_primary_10_1016_j_indcrop_2024_120336
crossref_primary_10_1016_j_jfoodeng_2023_111524
crossref_primary_10_1016_j_polymdegradstab_2020_109288
crossref_primary_10_1016_j_polymdegradstab_2017_01_002
crossref_primary_10_1007_s10853_020_05447_z
crossref_primary_10_3390_polym12081690
crossref_primary_10_1016_j_jaap_2023_105937
crossref_primary_10_3390_ma10010039
crossref_primary_10_1007_s10965_020_02287_y
crossref_primary_10_1016_j_ijbiomac_2024_137905
crossref_primary_10_1016_j_compositesb_2021_108845
crossref_primary_10_1016_j_polymdegradstab_2016_04_014
crossref_primary_10_1016_j_carbpol_2019_115131
crossref_primary_10_1021_acsapm_2c01725
crossref_primary_10_1002_pc_25835
crossref_primary_10_30919_es_1803302
crossref_primary_10_4995_jarte_2021_14772
crossref_primary_10_1111_ppl_14447
crossref_primary_10_1016_j_aaspro_2014_11_017
crossref_primary_10_54751_revistafoco_v17n11_243
crossref_primary_10_1007_s10973_018_7744_3
crossref_primary_10_3390_polym13111855
crossref_primary_10_3390_polym6092386
crossref_primary_10_1007_s10570_016_1143_3
crossref_primary_10_1186_s40508_014_0023_0
crossref_primary_10_1016_j_ijbiomac_2018_12_002
crossref_primary_10_1016_j_ijbiomac_2017_08_143
crossref_primary_10_1007_s00170_024_14820_0
crossref_primary_10_3390_nano7050106
crossref_primary_10_1134_S0965545X20040136
crossref_primary_10_3390_polym14235104
crossref_primary_10_1016_j_reactfunctpolym_2016_11_003
crossref_primary_10_1016_j_eurpolymj_2022_111505
crossref_primary_10_1039_C6RA02768G
crossref_primary_10_4028_www_scientific_net_JNanoR_59_77
crossref_primary_10_1016_j_indcrop_2023_116516
crossref_primary_10_3390_molecules26164811
crossref_primary_10_1016_j_indcrop_2015_02_011
crossref_primary_10_1016_j_eurpolymj_2016_04_003
crossref_primary_10_1016_j_ijbiomac_2023_127793
crossref_primary_10_1016_j_egyr_2019_08_048
crossref_primary_10_1016_j_ijbiomac_2019_06_205
crossref_primary_10_1007_s10570_019_02280_9
crossref_primary_10_1007_s10924_020_02017_x
crossref_primary_10_1002_pat_4820
crossref_primary_10_1016_j_polymdegradstab_2018_04_024
crossref_primary_10_1016_j_eurpolymj_2018_04_012
crossref_primary_10_1016_j_wasman_2015_10_030
crossref_primary_10_1016_j_polymdegradstab_2018_08_008
crossref_primary_10_3390_polym14204394
crossref_primary_10_3390_ma13040983
crossref_primary_10_1016_j_ijbiomac_2021_12_022
crossref_primary_10_1021_acs_jafc_5b04249
crossref_primary_10_3390_app12042111
crossref_primary_10_1016_j_polymdegradstab_2015_08_016
crossref_primary_10_1016_j_eurpolymj_2017_03_047
crossref_primary_10_3390_nano10010051
crossref_primary_10_3390_polym13091392
crossref_primary_10_1016_j_polymdegradstab_2018_04_012
crossref_primary_10_1016_j_polymdegradstab_2018_04_010
crossref_primary_10_1016_j_eurpolymj_2015_10_036
crossref_primary_10_1038_s41598_024_71619_5
crossref_primary_10_1016_j_indcrop_2015_12_058
crossref_primary_10_1515_revce_2024_0061
crossref_primary_10_1002_pc_24704
crossref_primary_10_1016_j_matpr_2021_10_420
crossref_primary_10_1016_j_ijbiomac_2022_02_185
crossref_primary_10_4028_www_scientific_net_SSP_317_341
crossref_primary_10_1021_acsami_3c11979
crossref_primary_10_1016_j_carbpol_2014_12_056
crossref_primary_10_1016_j_jclepro_2021_128555
crossref_primary_10_1016_j_compositesb_2016_05_023
crossref_primary_10_1016_j_eurpolymj_2017_06_047
crossref_primary_10_3390_ma9040303
crossref_primary_10_1111_1541_4337_13202
crossref_primary_10_1016_j_jafr_2021_100257
crossref_primary_10_1016_j_eurpolymj_2018_04_036
crossref_primary_10_1016_j_polymdegradstab_2016_09_017
crossref_primary_10_1016_j_polymertesting_2018_08_026
crossref_primary_10_1016_j_ijbiomac_2019_03_083
crossref_primary_10_1021_acssuschemeng_7b03523
crossref_primary_10_3389_fbioe_2022_912052
crossref_primary_10_3390_foods13060950
crossref_primary_10_1016_j_addr_2016_03_010
crossref_primary_10_3390_polym16111474
crossref_primary_10_1016_j_ijbiomac_2020_02_051
crossref_primary_10_1016_j_polymdegradstab_2017_11_005
crossref_primary_10_1016_j_lwt_2018_11_069
crossref_primary_10_1016_j_ijbiomac_2019_05_037
crossref_primary_10_1002_jsfa_9497
crossref_primary_10_1016_j_ijbiomac_2020_07_100
crossref_primary_10_1016_j_progpolymsci_2021_101395
crossref_primary_10_1007_s13399_023_04030_1
crossref_primary_10_1002_pen_25519
crossref_primary_10_3390_polym13142376
crossref_primary_10_1016_j_polymer_2024_127235
crossref_primary_10_3390_cleantechnol5040066
crossref_primary_10_1016_j_progpolymsci_2018_07_001
crossref_primary_10_3390_polym11060933
crossref_primary_10_1002_adfm_202001565
crossref_primary_10_1002_adfm_202202221
crossref_primary_10_3390_app122412821
crossref_primary_10_1039_C6RA06282B
crossref_primary_10_1016_j_polymdegradstab_2020_109204
crossref_primary_10_1007_s10924_017_1167_2
crossref_primary_10_1080_03602559_2015_1132465
crossref_primary_10_1016_j_ijbiomac_2024_134119
crossref_primary_10_1007_s12221_020_9610_8
crossref_primary_10_1016_j_jcomc_2020_100021
crossref_primary_10_3390_app10093201
crossref_primary_10_1002_pen_25623
crossref_primary_10_1016_j_ijbiomac_2025_140656
crossref_primary_10_1016_j_carbpol_2020_116867
crossref_primary_10_1016_j_cemconcomp_2018_07_005
crossref_primary_10_1371_journal_pone_0266019
crossref_primary_10_1039_D0GC01647K
crossref_primary_10_1007_s10570_018_1976_z
crossref_primary_10_1016_j_indcrop_2023_116971
crossref_primary_10_1016_j_polymdegradstab_2016_02_027
crossref_primary_10_1016_j_polymdegradstab_2016_02_026
crossref_primary_10_1016_j_ijbiomac_2024_134907
crossref_primary_10_1007_s10924_019_01484_1
crossref_primary_10_1080_25740881_2024_2375366
crossref_primary_10_1016_j_foodres_2020_109327
crossref_primary_10_1016_j_tifs_2021_06_036
crossref_primary_10_1016_j_carbpol_2016_06_025
crossref_primary_10_13005_ojc_340404
crossref_primary_10_1016_j_ijbiomac_2022_08_203
crossref_primary_10_3390_polym13223968
crossref_primary_10_3390_nano11040857
crossref_primary_10_1016_j_indcrop_2023_116926
crossref_primary_10_3390_polym9110561
crossref_primary_10_1016_j_jece_2017_11_013
crossref_primary_10_1016_j_carbpol_2015_08_023
crossref_primary_10_1021_jf5029812
crossref_primary_10_1590_0104_1428_2031
crossref_primary_10_3390_polym13020282
crossref_primary_10_3390_polym14153177
crossref_primary_10_1016_j_ijbiomac_2020_05_114
crossref_primary_10_1016_j_foodhyd_2016_08_021
crossref_primary_10_1016_j_carpta_2021_100050
crossref_primary_10_1155_2020_7947019
crossref_primary_10_3390_polym14225016
crossref_primary_10_1016_j_ijbiomac_2020_10_089
crossref_primary_10_1016_j_cocis_2017_02_004
crossref_primary_10_1590_1980_5373_mr_2016_0960
crossref_primary_10_1016_j_compositesb_2019_107336
crossref_primary_10_1016_j_carbpol_2017_07_006
crossref_primary_10_1177_0967391118816393
crossref_primary_10_1007_s10973_019_08218_4
crossref_primary_10_3390_polym13121913
crossref_primary_10_1002_pat_5996
crossref_primary_10_3390_polym12112434
crossref_primary_10_1016_j_polymdegradstab_2018_02_019
crossref_primary_10_3390_catal12030319
crossref_primary_10_1016_j_compositesa_2018_08_025
crossref_primary_10_3390_polym16213015
crossref_primary_10_1016_j_carbpol_2017_09_065
crossref_primary_10_3390_polym14091792
crossref_primary_10_1007_s10570_022_04620_8
crossref_primary_10_1590_1980_5373_mr_2022_0433
crossref_primary_10_1021_acs_macromol_7b00516
crossref_primary_10_1007_s13726_023_01240_2
crossref_primary_10_1016_j_progpolymsci_2020_101221
crossref_primary_10_3390_ma10080929
crossref_primary_10_3390_nano11061542
crossref_primary_10_1016_j_ijbiomac_2018_11_064
crossref_primary_10_3390_polym13121925
crossref_primary_10_1021_acssuschemeng_8b04700
crossref_primary_10_3390_ma10091008
crossref_primary_10_1002_marc_202100130
crossref_primary_10_1016_j_bios_2018_08_018
crossref_primary_10_1016_j_ijbiomac_2018_03_002
crossref_primary_10_1016_j_indcrop_2024_118614
Cites_doi 10.1016/j.polymdegradstab.2012.03.027
10.1016/j.matdes.2012.11.031
10.1016/j.polymdegradstab.2014.01.034
10.1007/s10924-012-0503-9
10.1016/j.eurpolymj.2013.11.009
10.1016/j.polymdegradstab.2012.04.004
10.1016/j.carbpol.2013.07.020
10.1016/j.carbpol.2014.02.044
10.1002/app.36839
10.1002/mabi.200400043
10.1016/j.jfoodeng.2013.08.015
10.1016/j.carbon.2013.06.080
10.1002/pi.3211
10.1016/j.polymertesting.2013.03.016
10.1016/j.cej.2011.10.036
10.1016/j.polymdegradstab.2010.02.034
10.1016/S0141-3910(01)00089-1
10.1016/j.chemosphere.2008.06.064
10.1016/j.carbpol.2013.05.015
10.1016/j.compositesa.2010.07.011
10.1016/j.progpolymsci.2013.05.010
10.1016/j.polymdegradstab.2005.04.048
10.1016/j.polymdegradstab.2013.11.013
10.1007/s10924-014-0654-y
10.1016/j.progpolymsci.2011.02.003
10.1007/s10973-005-7452-7
10.1177/8756087911427756
10.1002/app.35039
10.1016/j.carbpol.2012.06.025
10.1016/j.polymertesting.2012.09.014
10.1016/j.polymdegradstab.2005.06.019
10.1021/jf402670a
10.1016/j.polymertesting.2007.06.013
10.1002/pts.742
10.1016/j.carbpol.2013.10.055
10.1016/j.nbt.2013.06.003
10.1021/ma100307m
10.1002/adv.20235
10.1016/j.carbpol.2011.09.066
10.1016/j.tifs.2011.01.007
10.1016/j.foodhyd.2013.07.002
10.1016/j.jfoodeng.2013.03.025
10.1016/j.polymertesting.2012.08.014
10.1016/j.jaap.2013.01.017
10.1002/app.37811
10.1002/1097-4628(20001220)78:13<2369::AID-APP140>3.0.CO;2-N
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.polymdegradstab.2014.05.010
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
EndPage 149
ExternalDocumentID 28763934
10_1016_j_polymdegradstab_2014_05_010
S0141391014001955
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSH
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c451t-2f76b8b4822dd19b182c564c6a049d97566daff1324fa01b15b8c4a873c727b83
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Mon Jul 21 09:48:55 EDT 2025
Wed Apr 02 07:08:16 EDT 2025
Tue Jul 01 02:29:41 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Sun Apr 06 06:53:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
Barrier properties
Poly(lactic acid)
Nanocomposites
Poly(hydroxybutyrate)
Modified cellulose nanocrystals
Biological properties
Viscosity
Transport properties
Biodegradability
Cellulose
Dispersion reinforced material
Surfactant
Composite material
Wettability
Plastic bag packaging
Aliphatic polymer
Optical properties
Surface properties
Nanocomposite
Technological properties
Chemical properties
Optical absorption
Nanocrystal
Stretchability
Polymer blends
Ester polymer
Mechanical properties
Butyrate(hydroxy)polymer
Foodstuff
Experimental study
Surface treatment
Gas permeability
Composting
Lactic acid polymer
Waterproofness
Extrusion
Rheological properties
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-2f76b8b4822dd19b182c564c6a049d97566daff1324fa01b15b8c4a873c727b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1816-011X
0000-0001-6904-2282
OpenAccessLink http://hdl.handle.net/10251/58705
PQID 2101316170
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2101316170
pascalfrancis_primary_28763934
crossref_primary_10_1016_j_polymdegradstab_2014_05_010
crossref_citationtrail_10_1016_j_polymdegradstab_2014_05_010
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2014_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer degradation and stability
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Arrieta, Peltzer, López, Garrigós, Valente, Jiménez (bib37) 2014; 121
Khabbaz, Karlsson, Albertsson (bib48) 2000; 78
UNE EN ISO 1628–1 (bib26) 2009
Fortunati, Rinaldi, Peltzer, Bloise, Visai, Armentano (bib40) 2014; 101
Van Den Oever, Beck, Müssig (bib27) 2010; 41
Arrieta, Fortunati, Dominici, Rayón, López, Kenny (bib25) 2014; 107
Špitalský, Lacík, Lathová, Janigová, Chodák (bib28) 2006; 91
Fortunati, Puglia, Santulli, Sarasini, Kenny (bib39) 2012; 125
Arrieta, López, Rayón, Jiménez (bib36) 2014
Lucas, Bienaime, Belloy, Queneudec, Silvestre, Nava-Saucedo (bib44) 2008; 73
Auras, Harte, Selke (bib13) 2004; 4
Silvestre, Duraccio, Cimmino (bib15) 2011; 36
Mattioli, Peltzer, Fortunati, Armentano, Jiménez, Kenny (bib5) 2013; 63
Bucci, Tavares, Sell (bib11) 2007; 26
Lagaron, Núñez (bib14) 2012; 28
Erceg, Kovačić, Klarić (bib33) 2005; 90
Jonoobi, Mathew, Abdi, Makinejad, Oksman (bib23) 2012; 20
UNE EN ISO 20200 (bib31) 2006
Arrieta, López, Ferrándiz, Peltzer (bib2) 2013; 32
Mousavioun, George, Doherty (bib46) 2012; 97
Lagaron, Lopez-Rubio (bib7) 2011; 22
Fortunati, Peltzer, Armentano, Torre, Jiménez, Kenny (bib24) 2012; 90
Zhang, Thomas (bib10) 2011; 30
Arrieta, López, Hernández, Rayón (bib12) 2014; 50
Armentano, Bitinis, Fortunati, Mattioli, Rescignano, Verdejo (bib35) 2013; 38
Fortunati, Luzi, Puglia, Terenzi, Vercellino, Visai (bib16) 2013; 97
Fortunati, Armentano, Zhou, Iannoni, Saino, Visai (bib17) 2012; 87
Fortunati, Peltzer, Armentano, Jiménez, Kenny (bib21) 2013; 118
Fortunati, Armentano, Zhou, Puglia, Terenzi, Berglund (bib3) 2012; 97
Arrieta, Samper, Lópe, Jiménez (bib8) 2014
Kale, Auras, Singh (bib41) 2007; 20
Puglia, Fortunati, D'Amico, Manfredi, Cyras, Kenny (bib38) 2014; 99
Martínez-Sanz, Lopez-Rubio, Lagaron (bib18) 2013; 98
Jiménez, Ruseckaite (bib47) 2007; 88
Fombuena, Balart, Boronat, Sánchez-Nácher, Garcia-Sanoguera (bib30) 2013; 47
Martínez-Sanz, Villano, Oliveira, Albuquerque, Majone, Reis (bib20) 2013; 31
Aranguren, Marcovich, Salgueiro, Somoza (bib22) 2013; 32
Calvão, Chenal, Gauthier, Demarquette, Bogner, Cavaille (bib42) 2012; 61
Weng, Wang, Zhang, Wang, Wang (bib43) 2013; 32
Fortunati, Armentano, Iannoni, Barbale, Zaccheo, Scavone (bib4) 2012; 124
Fortunati, Armentano, Iannoni, Kenny (bib1) 2010; 95
Guo, Sato, Hashimoto, Ozaki (bib45) 2010; 43
Westphal, Perrot, Karlsson (bib49) 2001; 73
Castro López, López de Dicastillo, López Vilariño, González Rodríguez (bib9) 2013; 61
Patrício, Pereira, Dos Santos, De Souza, Roa, Orefice (bib19) 2013; 127
Bonilla, Fortunati, Atarés, Chiralt, Kenny (bib34) 2013; 35
Arrieta, Parres, López, Jiménez (bib32) 2013; 101
UNE-EN ISO 527–3 (bib29) 1995
Carrasco, Gámez-Pérez, Santana, Maspoch (bib6) 2011; 178
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib16) 2013; 97
Armentano (10.1016/j.polymdegradstab.2014.05.010_bib35) 2013; 38
Lagaron (10.1016/j.polymdegradstab.2014.05.010_bib7) 2011; 22
Westphal (10.1016/j.polymdegradstab.2014.05.010_bib49) 2001; 73
Patrício (10.1016/j.polymdegradstab.2014.05.010_bib19) 2013; 127
Guo (10.1016/j.polymdegradstab.2014.05.010_bib45) 2010; 43
Erceg (10.1016/j.polymdegradstab.2014.05.010_bib33) 2005; 90
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib8) 2014
Martínez-Sanz (10.1016/j.polymdegradstab.2014.05.010_bib18) 2013; 98
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib24) 2012; 90
Van Den Oever (10.1016/j.polymdegradstab.2014.05.010_bib27) 2010; 41
UNE EN ISO 1628–1 (10.1016/j.polymdegradstab.2014.05.010_bib26) 2009
Auras (10.1016/j.polymdegradstab.2014.05.010_bib13) 2004; 4
Špitalský (10.1016/j.polymdegradstab.2014.05.010_bib28) 2006; 91
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib36) 2014
Lucas (10.1016/j.polymdegradstab.2014.05.010_bib44) 2008; 73
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib3) 2012; 97
Zhang (10.1016/j.polymdegradstab.2014.05.010_bib10) 2011; 30
Puglia (10.1016/j.polymdegradstab.2014.05.010_bib38) 2014; 99
Mattioli (10.1016/j.polymdegradstab.2014.05.010_bib5) 2013; 63
Lagaron (10.1016/j.polymdegradstab.2014.05.010_bib14) 2012; 28
Bonilla (10.1016/j.polymdegradstab.2014.05.010_bib34) 2013; 35
Carrasco (10.1016/j.polymdegradstab.2014.05.010_bib6) 2011; 178
Khabbaz (10.1016/j.polymdegradstab.2014.05.010_bib48) 2000; 78
Fombuena (10.1016/j.polymdegradstab.2014.05.010_bib30) 2013; 47
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib12) 2014; 50
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib21) 2013; 118
Calvão (10.1016/j.polymdegradstab.2014.05.010_bib42) 2012; 61
Mousavioun (10.1016/j.polymdegradstab.2014.05.010_bib46) 2012; 97
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib17) 2012; 87
UNE-EN ISO 527–3 (10.1016/j.polymdegradstab.2014.05.010_bib29) 1995
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib1) 2010; 95
Silvestre (10.1016/j.polymdegradstab.2014.05.010_bib15) 2011; 36
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib25) 2014; 107
Weng (10.1016/j.polymdegradstab.2014.05.010_bib43) 2013; 32
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib39) 2012; 125
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib37) 2014; 121
UNE EN ISO 20200 (10.1016/j.polymdegradstab.2014.05.010_bib31) 2006
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib40) 2014; 101
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib32) 2013; 101
Fortunati (10.1016/j.polymdegradstab.2014.05.010_bib4) 2012; 124
Aranguren (10.1016/j.polymdegradstab.2014.05.010_bib22) 2013; 32
Kale (10.1016/j.polymdegradstab.2014.05.010_bib41) 2007; 20
Castro López (10.1016/j.polymdegradstab.2014.05.010_bib9) 2013; 61
Arrieta (10.1016/j.polymdegradstab.2014.05.010_bib2) 2013; 32
Jiménez (10.1016/j.polymdegradstab.2014.05.010_bib47) 2007; 88
Bucci (10.1016/j.polymdegradstab.2014.05.010_bib11) 2007; 26
Martínez-Sanz (10.1016/j.polymdegradstab.2014.05.010_bib20) 2013; 31
Jonoobi (10.1016/j.polymdegradstab.2014.05.010_bib23) 2012; 20
References_xml – volume: 32
  start-page: 760
  year: 2013
  end-page: 768
  ident: bib2
  article-title: Characterization of PLA-limonene blends for food packaging applications
  publication-title: Polym Test
– year: 2009
  ident: bib26
  article-title: Determination of the viscosity of polymers in dilute solution using capillary viscometers. Part 1: general principles
– volume: 30
  start-page: 67
  year: 2011
  end-page: 79
  ident: bib10
  article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties
  publication-title: Adv Polym Technol
– volume: 118
  start-page: 117
  year: 2013
  end-page: 124
  ident: bib21
  article-title: Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites
  publication-title: J Food Eng
– volume: 101
  start-page: 150
  year: 2013
  end-page: 155
  ident: bib32
  article-title: Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products
  publication-title: J Anal Appl Pyrol
– volume: 20
  start-page: 49
  year: 2007
  end-page: 70
  ident: bib41
  article-title: Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions
  publication-title: Packag Technol Sci
– volume: 26
  start-page: 908
  year: 2007
  end-page: 915
  ident: bib11
  article-title: Biodegradation and physical evaluation of PHB packaging
  publication-title: Polym Test
– year: 2014
  ident: bib36
  article-title: Disintegrability under composting conditions of plasticized PLA-PHB blends
  publication-title: Polym Degrad Stab
– volume: 61
  start-page: 434
  year: 2012
  end-page: 441
  ident: bib42
  article-title: Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology
  publication-title: Polym Int
– volume: 178
  start-page: 451
  year: 2011
  end-page: 460
  ident: bib6
  article-title: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition
  publication-title: Chem Eng J
– volume: 87
  start-page: 1596
  year: 2012
  end-page: 1605
  ident: bib17
  article-title: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles
  publication-title: Carbohydr Polym
– volume: 107
  start-page: 16
  year: 2014
  end-page: 24
  ident: bib25
  article-title: Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties
  publication-title: Carbohydr Polym
– volume: 32
  start-page: 115
  year: 2013
  end-page: 122
  ident: bib22
  article-title: Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy
  publication-title: Polym Test
– volume: 101
  start-page: 1122
  year: 2014
  end-page: 1133
  ident: bib40
  article-title: Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles
  publication-title: Carbohydr Polym
– volume: 32
  start-page: 60
  year: 2013
  end-page: 70
  ident: bib43
  article-title: Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments
  publication-title: Polym Test
– volume: 38
  start-page: 1720
  year: 2013
  end-page: 1747
  ident: bib35
  article-title: Multifunctional nanostructured PLA materials for packaging and tissue engineering
  publication-title: Prog Polym Sci
– volume: 97
  start-page: 2027
  year: 2012
  end-page: 2036
  ident: bib3
  article-title: Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose
  publication-title: Polym Degrad Stab
– volume: 43
  start-page: 3897
  year: 2010
  end-page: 3902
  ident: bib45
  article-title: FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol)
  publication-title: Macromolecules
– volume: 99
  start-page: 127
  year: 2014
  end-page: 135
  ident: bib38
  article-title: Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films
  publication-title: Polym Degrad Stab
– volume: 98
  start-page: 1072
  year: 2013
  end-page: 1082
  ident: bib18
  article-title: High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity
  publication-title: Carbohydr Polym
– volume: 90
  start-page: 948
  year: 2012
  end-page: 956
  ident: bib24
  article-title: Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites
  publication-title: Carbohydr Polym
– volume: 36
  start-page: 1766
  year: 2011
  end-page: 1782
  ident: bib15
  article-title: Food packaging based on polymer nanomaterials
  publication-title: Prog Polym Sci
– volume: 125
  start-page: E562
  year: 2012
  end-page: E572
  ident: bib39
  article-title: Biodegradation of Phormium tenax/poly(lactic acid) composites
  publication-title: J Appl Polym Sci
– year: 1995
  ident: bib29
  article-title: Plastics: determination of tensile properties. Part 3: test conditions for films and sheets
– year: 2014
  ident: bib8
  article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging
  publication-title: J Polym Environ
– volume: 124
  start-page: 87
  year: 2012
  end-page: 98
  ident: bib4
  article-title: New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties
  publication-title: J Appl Polym Sci
– volume: 90
  start-page: 313
  year: 2005
  end-page: 318
  ident: bib33
  article-title: Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate
  publication-title: Polym Degrad Stab
– volume: 127
  start-page: 3613
  year: 2013
  end-page: 3621
  ident: bib19
  article-title: Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties
  publication-title: J Appl Polym Sci
– volume: 95
  start-page: 2200
  year: 2010
  end-page: 2206
  ident: bib1
  article-title: Development and thermal behaviour of ternary PLA matrix composites
  publication-title: Polym Degrad Stab
– volume: 61
  start-page: 8462
  year: 2013
  end-page: 8470
  ident: bib9
  article-title: Improving the capacity of polypropylene to be used in antioxidant active films: incorporation of plasticizer and natural antioxidants
  publication-title: J Agric Food Chem
– volume: 22
  start-page: 611
  year: 2011
  end-page: 617
  ident: bib7
  article-title: Nanotechnology for bioplastics: opportunities, challenges and strategies
  publication-title: Trends Food Sci Technol
– volume: 78
  start-page: 2369
  year: 2000
  end-page: 2378
  ident: bib48
  article-title: Py-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment
  publication-title: J Appl Polym Sci
– volume: 50
  start-page: 255
  year: 2014
  end-page: 270
  ident: bib12
  article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications
  publication-title: Eur Polym J
– volume: 31
  start-page: 364
  year: 2013
  end-page: 376
  ident: bib20
  article-title: Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers
  publication-title: New Biotechnol
– volume: 28
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib14
  article-title: Nanocomposites of moisture-sensitive polymers and biopolymers with enhanced performance for flexible packaging applications
  publication-title: J Plastic Film Sheeting
– volume: 4
  start-page: 835
  year: 2004
  end-page: 864
  ident: bib13
  article-title: An overview of polylactides as packaging materials
  publication-title: Macromol Biosci
– volume: 97
  start-page: 1114
  year: 2012
  end-page: 1122
  ident: bib46
  article-title: Environmental degradation of lignin/poly(hydroxybutyrate) blends
  publication-title: Polym Degrad Stab
– volume: 121
  start-page: 94
  year: 2014
  end-page: 101
  ident: bib37
  article-title: Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol
  publication-title: J Food Eng
– volume: 73
  start-page: 281
  year: 2001
  end-page: 287
  ident: bib49
  article-title: Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA
  publication-title: Polym Degrad Stab
– volume: 41
  start-page: 1628
  year: 2010
  end-page: 1635
  ident: bib27
  article-title: Agrofibre reinforced poly(lactic acid) composites: effect of moisture on degradation and mechanical properties
  publication-title: Compos Part Appl Sci Manuf
– volume: 88
  start-page: 851
  year: 2007
  end-page: 856
  ident: bib47
  article-title: Binary mixtures based on polycaprolactone and cellulose derivatives: thermal degradation and pyrolysis
  publication-title: J Therm Anal Calorim
– volume: 97
  start-page: 837
  year: 2013
  end-page: 848
  ident: bib16
  article-title: Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II
  publication-title: Carbohydr Polym
– volume: 63
  start-page: 274
  year: 2013
  end-page: 282
  ident: bib5
  article-title: Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers
  publication-title: Carbon
– volume: 91
  start-page: 856
  year: 2006
  end-page: 861
  ident: bib28
  article-title: Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol
  publication-title: Polym Degrad Stab
– volume: 35
  start-page: 463
  year: 2013
  end-page: 470
  ident: bib34
  article-title: Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films
  publication-title: Food Hydrocoll
– year: 2006
  ident: bib31
  article-title: Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test
– volume: 47
  start-page: 49
  year: 2013
  end-page: 56
  ident: bib30
  article-title: Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma
  publication-title: Mater Des
– volume: 20
  start-page: 991
  year: 2012
  end-page: 997
  ident: bib23
  article-title: A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion
  publication-title: J Polym Environ
– volume: 73
  start-page: 429
  year: 2008
  end-page: 442
  ident: bib44
  article-title: Polymer biodegradation: mechanisms and estimation techniques – a review
  publication-title: Chemosphere
– volume: 97
  start-page: 2027
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib3
  article-title: Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2012.03.027
– volume: 47
  start-page: 49
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib30
  article-title: Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.11.031
– year: 2009
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib26
– year: 1995
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib29
– year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib36
  article-title: Disintegrability under composting conditions of plasticized PLA-PHB blends
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2014.01.034
– volume: 20
  start-page: 991
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib23
  article-title: A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion
  publication-title: J Polym Environ
  doi: 10.1007/s10924-012-0503-9
– volume: 50
  start-page: 255
  year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib12
  article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2013.11.009
– volume: 97
  start-page: 1114
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib46
  article-title: Environmental degradation of lignin/poly(hydroxybutyrate) blends
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2012.04.004
– volume: 98
  start-page: 1072
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib18
  article-title: High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2013.07.020
– volume: 107
  start-page: 16
  year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib25
  article-title: Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2014.02.044
– volume: 125
  start-page: E562
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib39
  article-title: Biodegradation of Phormium tenax/poly(lactic acid) composites
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.36839
– volume: 4
  start-page: 835
  year: 2004
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib13
  article-title: An overview of polylactides as packaging materials
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200400043
– volume: 121
  start-page: 94
  year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib37
  article-title: Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2013.08.015
– volume: 63
  start-page: 274
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib5
  article-title: Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.06.080
– volume: 61
  start-page: 434
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib42
  article-title: Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology
  publication-title: Polym Int
  doi: 10.1002/pi.3211
– volume: 32
  start-page: 760
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib2
  article-title: Characterization of PLA-limonene blends for food packaging applications
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2013.03.016
– volume: 178
  start-page: 451
  year: 2011
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib6
  article-title: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.10.036
– volume: 95
  start-page: 2200
  year: 2010
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib1
  article-title: Development and thermal behaviour of ternary PLA matrix composites
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2010.02.034
– volume: 73
  start-page: 281
  year: 2001
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib49
  article-title: Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA
  publication-title: Polym Degrad Stab
  doi: 10.1016/S0141-3910(01)00089-1
– volume: 73
  start-page: 429
  year: 2008
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib44
  article-title: Polymer biodegradation: mechanisms and estimation techniques – a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.06.064
– volume: 97
  start-page: 837
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib16
  article-title: Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2013.05.015
– volume: 41
  start-page: 1628
  year: 2010
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib27
  article-title: Agrofibre reinforced poly(lactic acid) composites: effect of moisture on degradation and mechanical properties
  publication-title: Compos Part Appl Sci Manuf
  doi: 10.1016/j.compositesa.2010.07.011
– volume: 38
  start-page: 1720
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib35
  article-title: Multifunctional nanostructured PLA materials for packaging and tissue engineering
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2013.05.010
– volume: 90
  start-page: 313
  year: 2005
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib33
  article-title: Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2005.04.048
– volume: 99
  start-page: 127
  year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib38
  article-title: Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2013.11.013
– year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib8
  article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging
  publication-title: J Polym Environ
  doi: 10.1007/s10924-014-0654-y
– volume: 36
  start-page: 1766
  year: 2011
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib15
  article-title: Food packaging based on polymer nanomaterials
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2011.02.003
– year: 2006
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib31
– volume: 88
  start-page: 851
  year: 2007
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib47
  article-title: Binary mixtures based on polycaprolactone and cellulose derivatives: thermal degradation and pyrolysis
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-005-7452-7
– volume: 28
  start-page: 79
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib14
  article-title: Nanocomposites of moisture-sensitive polymers and biopolymers with enhanced performance for flexible packaging applications
  publication-title: J Plastic Film Sheeting
  doi: 10.1177/8756087911427756
– volume: 124
  start-page: 87
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib4
  article-title: New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.35039
– volume: 90
  start-page: 948
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib24
  article-title: Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2012.06.025
– volume: 32
  start-page: 60
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib43
  article-title: Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2012.09.014
– volume: 91
  start-page: 856
  year: 2006
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib28
  article-title: Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2005.06.019
– volume: 61
  start-page: 8462
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib9
  article-title: Improving the capacity of polypropylene to be used in antioxidant active films: incorporation of plasticizer and natural antioxidants
  publication-title: J Agric Food Chem
  doi: 10.1021/jf402670a
– volume: 26
  start-page: 908
  year: 2007
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib11
  article-title: Biodegradation and physical evaluation of PHB packaging
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2007.06.013
– volume: 20
  start-page: 49
  year: 2007
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib41
  article-title: Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions
  publication-title: Packag Technol Sci
  doi: 10.1002/pts.742
– volume: 101
  start-page: 1122
  year: 2014
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib40
  article-title: Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2013.10.055
– volume: 31
  start-page: 364
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib20
  article-title: Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers
  publication-title: New Biotechnol
  doi: 10.1016/j.nbt.2013.06.003
– volume: 43
  start-page: 3897
  year: 2010
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib45
  article-title: FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol)
  publication-title: Macromolecules
  doi: 10.1021/ma100307m
– volume: 30
  start-page: 67
  year: 2011
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib10
  article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties
  publication-title: Adv Polym Technol
  doi: 10.1002/adv.20235
– volume: 87
  start-page: 1596
  year: 2012
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib17
  article-title: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2011.09.066
– volume: 22
  start-page: 611
  year: 2011
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib7
  article-title: Nanotechnology for bioplastics: opportunities, challenges and strategies
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2011.01.007
– volume: 35
  start-page: 463
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib34
  article-title: Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films
  publication-title: Food Hydrocoll
  doi: 10.1016/j.foodhyd.2013.07.002
– volume: 118
  start-page: 117
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib21
  article-title: Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2013.03.025
– volume: 32
  start-page: 115
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib22
  article-title: Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2012.08.014
– volume: 101
  start-page: 150
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib32
  article-title: Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2013.01.017
– volume: 127
  start-page: 3613
  year: 2013
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib19
  article-title: Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.37811
– volume: 78
  start-page: 2369
  year: 2000
  ident: 10.1016/j.polymdegradstab.2014.05.010_bib48
  article-title: Py-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment
  publication-title: J Appl Polym Sci
  doi: 10.1002/1097-4628(20001220)78:13<2369::AID-APP140>3.0.CO;2-N
SSID ssj0000451
Score 2.5423765
Snippet Nanocomposite films based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends and synthesized cellulose nanocrystals (CNC) or surfactant modified...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms adhesion
Application fields
Applied sciences
Barrier properties
Biodegradation
Biological and medical sciences
cellulose
Composites
composting
Exact sciences and technology
extrusion
Food industries
food packaging
Forms of application and semi-finished materials
Fundamental and applied biological sciences. Psychology
General aspects
Handling, storage, packaging, transport
melting
Modified cellulose nanocrystals
molecular weight
Nanocomposites
nanocrystals
oxygen
packaging materials
Poly(hydroxybutyrate)
Poly(lactic acid)
polylactic acid
Polymer industry, paints, wood
surfactants
synergism
Technology of polymers
ultraviolet radiation
viscosity
wettability
Title PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties
URI https://dx.doi.org/10.1016/j.polymdegradstab.2014.05.010
https://www.proquest.com/docview/2101316170
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFH6EBLpQQpM21E1iVEhvVa1lRtKEHOKaBjdpgg8N5DbMogEXRxaWfeglvz3vacnSUAj0qGXE8L7hLeJ73wM4MMzwPAmcH3KEgdUkAO6En0eKMxtFWitqFD6_SMaX7PSKX63BqOuFIVpl6_sbn1576_bOoLXmoJxOB0RLwvSFZs3WXW_UaM5YSqf86809zYP0UxoaY-jT2y_g8z3Hq5zP_lxbUmWwFXUoYDRkjZBn8K849aZUFVrPNWMvnnjwOiydvIXNNp_0hs2Wt2AtL7bh5agb47YNrx8oDr6DyeTn0J-Mvw3oh_1qNq9yj-KY9dx0dl0deuc5dQITcF_wwYLG2XmqsJ6dVp2wBALplfQLf0FarO_h8uT7r9HYb4cq-AYtsfQjlyY60wwTA2tDobG-MDxhJlFYK1iRYnpnlXNYpDKnglCHXGeGqSyNDaY6Oot3YL2YF_kH8AITBjp2KbfcMJEJdJUiEE6lXInQmLQHR50JpWkVx2nwxUx21LLf8i8EJCEgAy4RgR4kd8vLRnrjuQuPO7zko7MkMUw89xP9RzjfbSAiBT8Rsx586oCXCCiBpop8vqok1tBhTFVj8PH_97ELr-iqIbXtwfpyscr3MQta6n59zPuwMfxxNr64BaIVCkY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxNBFD7UFKwiorVibK0r6JtL9jKzu1N8aAyWrU1CHlro2zCXHYikmyWbPPjvPSe721pFKPi6wyzD-YZzGc75PoCPhhleJIHzQ44wsG0TAHfCLyLFmY0irRUNCk-mSX7Fvl_z6x0YdbMw1FbZ-v7Gp2-9dftl0FpzUM3nA2pLwvSFtGa3U2_8EewSOxXvwe7w_CKf3jlkxhtZQhb6tOExfLpr86qWi583logZbE1DChgQWcPlGfwrVD2rVI0GdI3yxV9OfBuZzl7A8zal9IbNqV_CTlHuw96oU3Lbh6e_kQ6-gtlsPPRn-dcBvdlvFsu68CiUWc_NFzf1iTcpaBiYsPuMCytStPNUaT07rztuCcTSq-gVf0V0rAdwdfbtcpT7ra6Cb9ASaz9yaaIzzTA3sDYUGksMwxNmEoXlghUpZnhWOYd1KnMqCHXIdWaYytLYYLajs_g19MplWbwBLzBhoGOXcssNE5lAbykC4VTKlQiNSfvwpTOhNC3pOGlfLGTXXfZD_oGAJARkwCUi0IfkdnvVsG88dONph5e8d50kRoqH_uL4Hs63B4iIxE_ErA8fOuAlAkqgqbJYbmqJZXQYU-EYvP3_c7yHvfxyMpbj8-nFITyhlabH7Qh669WmeIdJ0Voft5f-F69rDPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLA-PHB%2Fcellulose+based+films%3A+Mechanical%2C+barrier+and+disintegration+properties&rft.jtitle=Polymer+degradation+and+stability&rft.au=Arrieta%2C+M.P.&rft.au=Fortunati%2C+E.&rft.au=Dominici%2C+F.&rft.au=Ray%C3%B3n%2C+E.&rft.date=2014-09-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.volume=107&rft.spage=139&rft.epage=149&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2014.05.010&rft.externalDocID=S0141391014001955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon