The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching

The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 14; p. 100435
Main Authors Manvi, Bharatkumar, Tawade, Jagadish, Biradar, Mahadev, Noeiaghdam, Samad, Fernandez-Gamiz, Unai, Govindan, Vediyappan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable. •In the presence of thermal radiation and a heat source/sink, a steady boundary layer flow of Powell-Eyring nanofluid via a stretched sheet with changing thickness is numerically explored.•The effect of a magnetic field and mixed convection on the Eyring-Powell fluid has been investigated and compared to previous findings.•We attempted to determine the impacts of uniform and non-uniform heat sources/sinks on the fluid using spatial and temperature-dependent factors in this work.•As the magnetic parameter rises, so does the retarding force, and as a result, the velocity falls as the temperature and concentration profiles rise.•The presence of a heat source contributes more energy to the thermal boundary layer, causing the temperature of the fluid to rise, while the presence of a heat sink absorbs the heat energy from the boundary layer, causing the temperature of the fluid to fall.
AbstractList The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable.
The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable. •In the presence of thermal radiation and a heat source/sink, a steady boundary layer flow of Powell-Eyring nanofluid via a stretched sheet with changing thickness is numerically explored.•The effect of a magnetic field and mixed convection on the Eyring-Powell fluid has been investigated and compared to previous findings.•We attempted to determine the impacts of uniform and non-uniform heat sources/sinks on the fluid using spatial and temperature-dependent factors in this work.•As the magnetic parameter rises, so does the retarding force, and as a result, the velocity falls as the temperature and concentration profiles rise.•The presence of a heat source contributes more energy to the thermal boundary layer, causing the temperature of the fluid to rise, while the presence of a heat sink absorbs the heat energy from the boundary layer, causing the temperature of the fluid to fall.
ArticleNumber 100435
Author Manvi, Bharatkumar
Tawade, Jagadish
Govindan, Vediyappan
Fernandez-Gamiz, Unai
Biradar, Mahadev
Noeiaghdam, Samad
Author_xml – sequence: 1
  givenname: Bharatkumar
  surname: Manvi
  fullname: Manvi, Bharatkumar
  email: bharat.k.manvi009@gmail.com
  organization: Department of Mechanical Engineering, Basaveshvara Engineering College, Bagalkot, 587102, Karnataka, India
– sequence: 2
  givenname: Jagadish
  surname: Tawade
  fullname: Tawade, Jagadish
  email: jagadish.tawade@vupune.ac.in
  organization: Department of Mathematics, Vishwakarma University, Pune, 411048, Maharashtra, India
– sequence: 3
  givenname: Mahadev
  surname: Biradar
  fullname: Biradar, Mahadev
  email: mmbbec@gmail.com
  organization: Department of Mathematics, Basaveshvara Engineering College, Bagalkot, 587102, Karnataka, India
– sequence: 4
  givenname: Samad
  orcidid: 0000-0002-2307-0891
  surname: Noeiaghdam
  fullname: Noeiaghdam, Samad
  email: snoei@istu.edu, noiagdams@susu.ru
  organization: Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk, 664074, Russia
– sequence: 5
  givenname: Unai
  surname: Fernandez-Gamiz
  fullname: Fernandez-Gamiz, Unai
  email: unai.fernandez@ehu.eus
  organization: Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Spain
– sequence: 6
  givenname: Vediyappan
  surname: Govindan
  fullname: Govindan, Vediyappan
  email: govindoviya@gmail.com
  organization: Department of Mathematics, Dmi St John The Baptist University, 800, Central Africa, Malawi
BookMark eNqFkcluFDEQhlsoSISQN-DgI5eeeO2FAxIK2aSg5JCcLbddnvHQbQfbnSgPwvvimQ4S4kBOtqrq-2v531cHPnioqo8Erwgmzcl2FZ0Hv15RTGkJYc7Em-qQih7XhDJ88Nf_XXWc0hZjTLvCsvaw-nW3AQTWgs4JBYu-X35DURmnsvNrpLxBpV09e2dDnNAGVEYpzFHDSXL-B3pyebOP7qqDR7moTWECn-dpT--JHJVPFuKuwdlzGXdd34YnGEdkx9kZFB5LTqGUI2S9KekP1VurxgTHL-9RdX9-dnd6WV_fXFydfr2uNRck19RoCkJr3vaUa9z0QoteDUa1raEN41a3gjGie9sZpgw0reibFvPBctpTC-youlp0TVBb-RDdpOKzDMrJfSDEtVQxOz2CJJ2gCjqquRKcEDwQCnjo8cCAs140RevTovUQw88ZUpaTS7osqTyEOUnako6WsQUtpZ-XUh1DShGs1C6XGwZfLuVGSbDcWSu3crFW7qyVi7UF5v_Af-Z-BfuyYFDu-eggyqQdeA3GxWJ-Wdj9X-A3u4PCOw
CitedBy_id crossref_primary_10_1002_zamm_202400072
crossref_primary_10_1016_j_csite_2022_102491
crossref_primary_10_1063_5_0201939
crossref_primary_10_1016_j_triboint_2024_110389
crossref_primary_10_1016_j_cjph_2023_09_013
crossref_primary_10_1080_10407790_2024_2327474
crossref_primary_10_1016_j_heliyon_2024_e25088
crossref_primary_10_1080_23311916_2024_2386096
crossref_primary_10_1016_j_csite_2023_103829
crossref_primary_10_3390_math11092199
crossref_primary_10_1007_s41939_025_00809_z
crossref_primary_10_1016_j_csite_2023_103702
crossref_primary_10_3934_mbe_2022658
crossref_primary_10_1016_j_rineng_2024_102150
crossref_primary_10_1016_j_heliyon_2025_e41800
crossref_primary_10_3390_math11224579
crossref_primary_10_1080_10407782_2023_2255934
crossref_primary_10_1016_j_csite_2023_103075
crossref_primary_10_1177_16878132241282017
crossref_primary_10_1016_j_aej_2022_11_009
crossref_primary_10_1016_j_rineng_2022_100839
crossref_primary_10_1155_2023_5104085
crossref_primary_10_1080_10407782_2024_2319349
crossref_primary_10_1016_j_aej_2025_01_013
crossref_primary_10_1016_j_rineng_2024_103070
crossref_primary_10_3390_math11204331
crossref_primary_10_1142_S0217984924504608
crossref_primary_10_1080_10407782_2024_2357588
crossref_primary_10_1007_s13201_024_02235_x
crossref_primary_10_21285_1814_3520_2024_3_435_452
crossref_primary_10_1016_j_rineng_2023_101194
crossref_primary_10_1142_S0217984925500034
crossref_primary_10_3934_era_2022201
crossref_primary_10_1016_j_aej_2024_07_033
crossref_primary_10_1108_MMMS_07_2024_0184
crossref_primary_10_1007_s10973_024_13768_3
crossref_primary_10_1007_s11771_023_5388_3
crossref_primary_10_1016_j_rineng_2023_101634
crossref_primary_10_26565_2312_4334_2023_3_53
crossref_primary_10_1016_j_rineng_2022_100745
crossref_primary_10_1016_j_asej_2024_102648
crossref_primary_10_1016_j_jestch_2025_101970
crossref_primary_10_1080_10407782_2023_2208733
crossref_primary_10_1142_S0217984923410051
crossref_primary_10_1002_zamm_202400248
crossref_primary_10_1016_j_csite_2023_103046
crossref_primary_10_1088_1402_4896_ad562e
crossref_primary_10_1166_jon_2024_2205
crossref_primary_10_3390_sym15010016
crossref_primary_10_1016_j_rineng_2023_101644
crossref_primary_10_1134_S1061933X2260035X
crossref_primary_10_1016_j_heliyon_2023_e14781
crossref_primary_10_3390_sym15030584
crossref_primary_10_1016_j_rineng_2024_102477
crossref_primary_10_1007_s12668_024_01442_9
crossref_primary_10_1142_S0217984924503494
crossref_primary_10_1016_j_rineng_2023_101208
crossref_primary_10_1016_j_tsep_2023_102283
crossref_primary_10_3390_sym16121628
crossref_primary_10_3934_math_2024227
crossref_primary_10_1016_j_ijft_2024_100616
crossref_primary_10_1142_S021798492450489X
crossref_primary_10_1080_10407782_2024_2341431
crossref_primary_10_3390_polym16121723
crossref_primary_10_1142_S0217984924504505
crossref_primary_10_1142_S1793292024501017
Cites_doi 10.1080/01430750.2020.1785938
10.1016/j.ijthermalsci.2022.107505
10.1016/j.renene.2022.02.086
10.3390/en15072473
10.1016/j.jclepro.2019.01.122
10.1016/j.apt.2022.103510
10.3390/math9040364
10.1016/j.aej.2021.02.010
10.1088/1757-899X/263/6/062013
10.1016/j.ijheatmasstransfer.2013.03.049
10.1016/j.aej.2021.03.053
10.3390/math8091471
10.1016/j.cjph.2021.06.004
10.1007/s11012-011-9502-5
10.32604/cmc.2020.012334
10.1016/j.ast.2021.106846
10.3390/nano12050876
10.1016/j.jmrt.2020.04.039
10.3390/math8071175
10.1016/j.cma.2018.09.044
10.1016/j.ijheatmasstransfer.2016.10.126
10.1088/0031-8949/86/04/045003
10.1016/j.ast.2020.106410
10.1016/j.rinp.2017.12.074
10.3390/math10060956
10.15415/mjis.2017.52012
10.3390/math8010130
10.3390/nano12020180
10.1016/j.aej.2020.07.036
10.1080/01430750.2020.1861094
10.1140/epjp/i2017-11600-0
10.1140/epjp/s13360-020-00532-3
10.1007/s10483-021-2753-7
10.1016/j.aej.2016.02.011
10.1007/s13369-020-04379-9
10.1016/j.camwa.2020.10.003
10.1007/s10891-017-1602-1
10.1016/j.rineng.2022.100394
10.1016/j.eti.2022.102383
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.rineng.2022.100435
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_1852ae82c4a54110b12e0b90b3e43956
10_1016_j_rineng_2022_100435
S2590123022001050
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c451t-2dc2e5cc47924c0695c59abda77d2634fc75331c9f8d3ade67596704bf4292fe3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Jul 10 22:30:53 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Tue Jul 01 01:37:13 EDT 2025
Tue Jul 25 20:57:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Eyring-Powell fluid
Non-uniform heat source/sink
Thermal radiation
Thermal stratification
Magnetic field
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-2dc2e5cc47924c0695c59abda77d2634fc75331c9f8d3ade67596704bf4292fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2307-0891
OpenAccessLink https://doaj.org/article/1852ae82c4a54110b12e0b90b3e43956
PQID 2718245152
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_1852ae82c4a54110b12e0b90b3e43956
proquest_miscellaneous_2718245152
crossref_citationtrail_10_1016_j_rineng_2022_100435
crossref_primary_10_1016_j_rineng_2022_100435
elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ahmed, Khan1, Sarfraz, Ahmed, Iqbal (bib2) 2021
Ibrahim, Anbessa (bib14) 2020
Sheikholeslami, Jafaryar, Barzegar Gerdroodbary, Alavi (bib41) 2022; 26
Siddiqa, Begum, Anwar Hossain, Abrar, Reddy Gorla, Al-Mdallal (bib27) 2020
Makinde (bib35) 2012; 47
López, Ibáñez, Pantoja, Moreira, Lastres (bib18) 2017; 107
Motsumi, Makinde (bib34) 2012; 86
Makinde, Das, Jana (bib38) 2017; 90
Singh, Makinde (bib37) 2015; 19
Sivanandam, Chamkha, Mallawi, Alghamdi, Alqahtani (bib28) 2020; 8
Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Shah, Khan (bib55) 2022; 12
PekmenGeridonmez, Oztop (bib8) 2020; 80
Khan, Alzahrani (bib47) 2020; 135
Li, Khan, Gowda, Ali, Farooq, Chu, Khan (bib45) 2021; 73
AzeanyMohd Nasir, Ishak, Pop (bib5) 2020; 8
Muhammad, Waqas, Khan, Ellahi, Sait (bib20) 2020
Farooqa, Ijazb, Khanc, Mohamed, Lua (bib46) 2020; 119
Hayat, Khan, Waqas, Alsaedi (bib13) 2017
B. J. Gireesha,B. M. Shankaralingappa, B. C. Prasannakumar&B. Nagaraja, MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model
.
Bilal, Inam, Kanwal, Nazeer (bib6) 2021; 69
Nayak, Shaw, Khan, Makinde, Chu, Khan (bib48) 2021; 60
A. Aljabali, A. Rahman Kasim, N. S. Arifin, S. Mohamad Isa and N. A. NisaAriffin, Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: a numerical approach, Comput. Mater. Continua (CMC) DOI:10.32604/cmc.2020.012334.
Sheikholeslami, Said, Jafaryar (bib40) 2022; 188
B. Kumar , S. Srinivas, Unsteady Hydromagnetic Flow of EyringPowell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation, 10.22055/JACM.2019.29520.1608.
Shukla, Patel, Surati, Patel, Timol (bib29) 2017; 5
Hayat, Gull, Farooq, Ahmad (bib12) 2016; 29
Tawade, Biradar, Benal (bib31) 2021
Abdul Gaffar, Ramachandra Prasad, KeshavaReddy (bib1) 2016; 55
Reddy, Bala Anki Reddy, Rashad (bib23) 2020; 45
Harish Babu, Sudheer Babu, Satya Narayana (bib11) 2017; 263
Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan (bib54) 2022; 12
Alam, Bibi, Khan, Fernandez-Gamiz, Noeiaghdam (bib52) 2022; 15
Jiang, Abu-Hamdeh, Bantan, Moradi (bib56) September 2021; 116
Makinde, Khan, Khan (bib36) 2013; 62
Sheikholeslami, Ali Farshad (bib42) 2022; 33
Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan, Shah (bib53) 2022; 10
Parand, Mahdi Moayeri, Latifi, Delkhosh (bib22) 2017; 132
Sheikholeslami, Ebrahimpour (bib39) 2022; 176
Aldabesh, Khan, Habib, Waqas, Tlili, Khan, Khan (bib49) 2020; 59
B. Nagaraja,B. J. Gireesha,G. Sowmya & M. R. Krishnamurthy, Slip and radiative flow of shape-dependent dusty nanofluid over a melting stretching sheet
Song, Khan, Imran, Waqas, Khan, Khan, Qayyum, Chu (bib43) 2021; 60
Madhukesh, Ramesh, Prasannakumara, Shehzad, Abbasi (bib19) 2021; 42
Chinyoka, Daniel (bib7) 2020; 68
Shankar, Raju, Jagadeeshkumar, Makinde (bib24) 2020; 68
Sheikholeslami (bib26) 2019; 215
Guled, Tawade, Nandeppanavar, Saraf (bib32) 2022
Jiang, Moradi, Abusorrah, Hajizadeh, Li (bib57) February 2021; 109
Sheikholeslam (bib25) 2019; 344
Khan, Fatima, Malik, Salahuddin (bib16) 2018; 8
Satya Narayana, NainaruTarakaramu, MoliyaAkshit, Ghori (bib50) 2017
Chua, Rehmanc, Khan, Nadeeme, Kadryg, Abdelmalekh, Abbas (bib44) 2020; 118
Agadi, Abel, Tawade, Maharudrappa (bib33) 2013; 4
Imrana, Tassaddiqb, Javeda, Alreshidic, Sohaila, Khand (bib15) 2020; 9
Arulmozhi, Sukkiramathi, Santra, Edwan, Fernandez-Gamiz, Noeiaghdam (bib51) 2022; 14
Anwar, Khan, Kumam, Watthayu (bib4) 2020; 8
Waqasa, Jabeenb, Hayatb, Shehzadc, Alsaedic (bib30) 2020; 112
Halim, Noor (bib10) 2021; 9
López (10.1016/j.rineng.2022.100435_bib18) 2017; 107
Nayak (10.1016/j.rineng.2022.100435_bib48) 2021; 60
Khan (10.1016/j.rineng.2022.100435_bib54) 2022; 12
Shankar (10.1016/j.rineng.2022.100435_bib24) 2020; 68
Guled (10.1016/j.rineng.2022.100435_bib32) 2022
Singh (10.1016/j.rineng.2022.100435_bib37) 2015; 19
Li (10.1016/j.rineng.2022.100435_bib45) 2021; 73
Muhammad (10.1016/j.rineng.2022.100435_bib20) 2020
10.1016/j.rineng.2022.100435_bib9
Siddiqa (10.1016/j.rineng.2022.100435_bib27) 2020
Anwar (10.1016/j.rineng.2022.100435_bib4) 2020; 8
Abdul Gaffar (10.1016/j.rineng.2022.100435_bib1) 2016; 55
10.1016/j.rineng.2022.100435_bib3
Motsumi (10.1016/j.rineng.2022.100435_bib34) 2012; 86
Makinde (10.1016/j.rineng.2022.100435_bib36) 2013; 62
Arulmozhi (10.1016/j.rineng.2022.100435_bib51) 2022; 14
Ibrahim (10.1016/j.rineng.2022.100435_bib14) 2020
Imrana (10.1016/j.rineng.2022.100435_bib15) 2020; 9
Jiang (10.1016/j.rineng.2022.100435_bib57) 2021; 109
Shukla (10.1016/j.rineng.2022.100435_bib29) 2017; 5
Harish Babu (10.1016/j.rineng.2022.100435_bib11) 2017; 263
Farooqa (10.1016/j.rineng.2022.100435_bib46) 2020; 119
Aldabesh (10.1016/j.rineng.2022.100435_bib49) 2020; 59
10.1016/j.rineng.2022.100435_bib21
Makinde (10.1016/j.rineng.2022.100435_bib35) 2012; 47
Halim (10.1016/j.rineng.2022.100435_bib10) 2021; 9
Chua (10.1016/j.rineng.2022.100435_bib44) 2020; 118
Chinyoka (10.1016/j.rineng.2022.100435_bib7) 2020; 68
Madhukesh (10.1016/j.rineng.2022.100435_bib19) 2021; 42
Hayat (10.1016/j.rineng.2022.100435_bib13) 2017
Bilal (10.1016/j.rineng.2022.100435_bib6) 2021; 69
Reddy (10.1016/j.rineng.2022.100435_bib23) 2020; 45
Sheikholeslam (10.1016/j.rineng.2022.100435_bib25) 2019; 344
AzeanyMohd Nasir (10.1016/j.rineng.2022.100435_bib5) 2020; 8
Makinde (10.1016/j.rineng.2022.100435_bib38) 2017; 90
Satya Narayana (10.1016/j.rineng.2022.100435_bib50) 2017
Alam (10.1016/j.rineng.2022.100435_bib52) 2022; 15
10.1016/j.rineng.2022.100435_bib17
Jiang (10.1016/j.rineng.2022.100435_bib56) 2021; 116
Sheikholeslami (10.1016/j.rineng.2022.100435_bib42) 2022; 33
Parand (10.1016/j.rineng.2022.100435_bib22) 2017; 132
Khan (10.1016/j.rineng.2022.100435_bib55) 2022; 12
Sheikholeslami (10.1016/j.rineng.2022.100435_bib41) 2022; 26
Khan (10.1016/j.rineng.2022.100435_bib47) 2020; 135
Agadi (10.1016/j.rineng.2022.100435_bib33) 2013; 4
Sheikholeslami (10.1016/j.rineng.2022.100435_bib39) 2022; 176
Hayat (10.1016/j.rineng.2022.100435_bib12) 2016; 29
PekmenGeridonmez (10.1016/j.rineng.2022.100435_bib8) 2020; 80
Sheikholeslami (10.1016/j.rineng.2022.100435_bib40) 2022; 188
Song (10.1016/j.rineng.2022.100435_bib43) 2021; 60
Khan (10.1016/j.rineng.2022.100435_bib53) 2022; 10
Sheikholeslami (10.1016/j.rineng.2022.100435_bib26) 2019; 215
Waqasa (10.1016/j.rineng.2022.100435_bib30) 2020; 112
Ahmed (10.1016/j.rineng.2022.100435_bib2) 2021
Sivanandam (10.1016/j.rineng.2022.100435_bib28) 2020; 8
Khan (10.1016/j.rineng.2022.100435_bib16) 2018; 8
Tawade (10.1016/j.rineng.2022.100435_bib31) 2021
References_xml – volume: 62
  start-page: 526
  year: 2013
  end-page: 533
  ident: bib36
  article-title: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet
  publication-title: Int. J. Heat Mass Trans.
– volume: 42
  start-page: 1191
  year: 2021
  end-page: 1204
  ident: bib19
  article-title: Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy
  publication-title: Appl. Math. Mech.
– reference: B. Kumar , S. Srinivas, Unsteady Hydromagnetic Flow of EyringPowell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation, 10.22055/JACM.2019.29520.1608.
– volume: 68
  start-page: 223
  year: 2020
  end-page: 238
  ident: bib24
  article-title: Cattaneo-christov heat flux on an MHD 3D free convection Casson fluid flow over a stretching sheet
  publication-title: Eng. Trans.
– volume: 119
  year: 2020
  ident: bib46
  article-title: Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media
  publication-title: Int. Commun. Heat Mass Tran.
– year: 2021
  ident: bib2
  article-title: Forced convection in 3D Maxwell nanofluid flow via Cattaneo–Christov theory with Joule heating
  publication-title: Proc IMechE Part E:J Process Mechanical Engineering0(0) 1–11IMechE
– volume: 26
  start-page: 102383
  year: 2022
  ident: bib41
  article-title: Influence of novel turbulator on efficiency of solar collector system
  publication-title: Environ. Technol. Innovat.
– volume: 60
  start-page: 4607
  year: 2021
  end-page: 4618
  ident: bib43
  article-title: Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk
  publication-title: Alex. Eng. J.
– volume: 33
  start-page: 103510
  year: 2022
  ident: bib42
  article-title: Nanoparticles transportation with turbulent regime through a solar collector with helical tapes
  publication-title: Adv. Powder Technol.
– volume: 344
  start-page: 319
  year: 2019
  end-page: 333
  ident: bib25
  article-title: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput
  publication-title: Methods Appl. Mech. Eng.
– start-page: 1
  year: 2020
  end-page: 16
  ident: bib20
  article-title: Significance of Nonlinear Thermal Radiation in 3D Eyring–Powell Nanofluid Flow with Arrhenius Activation Energy
– year: 2020
  ident: bib14
  article-title: Hall and Ion Slip Effects on Mixed Convection Flow of EyringPowell Nanofluid over a Stretching Surface
– volume: 19
  start-page: 119
  year: 2015
  end-page: 128
  ident: bib37
  article-title: Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, THERMAL SCIENCE
  publication-title: Year
– start-page: 9
  year: 2017
  ident: bib50
  article-title: MHD Flow and Heat Transfer of an Eyring - Powell Fluid over a Linear Stretching Sheet with Viscous Dissipation - a Numerical Study
– volume: 69
  start-page: 271
  year: 2021
  end-page: 292
  ident: bib6
  article-title: Aspects of the aligned magnetic field past a stratified inclined sheet with nonlinear convection and variable thermal conductivity
  publication-title: Eng. Trans.
– year: 2020
  ident: bib27
  article-title: Effect of Thermal Radiation on Conjugate Natural Convectionflow of a Micropolar Fluid along a Vertical Surface
– volume: 8
  start-page: 1471
  year: 2020
  ident: bib28
  article-title: E_ects of entropy generation, thermal radiation andMoving-wall direction on mixed convective flow ofNanofluid in an enclosure
  publication-title: Mathematics
– volume: 80
  start-page: 2796
  year: 2020
  end-page: 2810
  ident: bib8
  article-title: MHDnatural convection in a cavity in the presence of crosspartial magnetic-fields and Al2O3-water nanofluid
  publication-title: Comput. Math. Appl.
– volume: 90
  start-page: 568
  year: 2017
  end-page: 574
  ident: bib38
  article-title: Slip flow and radiative heat transfer on a convectively heated vertical cylinder
  publication-title: J. Eng. Phys. Thermophys.
– volume: 15
  start-page: 2473
  year: 2022
  ident: bib52
  article-title: The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: a computational investigation
  publication-title: Energies
– volume: 112
  year: 2020
  ident: bib30
  article-title: Numerical simulation for nonlinear radiated Eyring-Powell nanofluidconsidering magnetic dipole and activation energy
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 14
  year: 2022
  ident: bib51
  article-title: Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate
  publication-title: Result. Eng.
– reference: B. Nagaraja,B. J. Gireesha,G. Sowmya & M. R. Krishnamurthy, Slip and radiative flow of shape-dependent dusty nanofluid over a melting stretching sheet,
– volume: 116
  start-page: 106846
  year: September 2021
  ident: bib56
  article-title: Mixing efficiency of hydrogen and air co-flow jets via wedge shock generator in dual-combustor ramjet
  publication-title: Aero. Sci. Technol.
– start-page: 23
  year: 2021
  end-page: 36
  ident: bib31
  article-title: Influence of radiant heat and non-uniform heat source on MHD Casson fluid flow of thin liquid film beyond a stretching sheet
  publication-title: Recent Trends in Mathematical Modeling and High Performance Computing
– volume: 47
  start-page: 1173
  year: 2012
  end-page: 1184
  ident: bib35
  article-title: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation
  publication-title: Meccanica
– volume: 107
  start-page: 982
  year: 2017
  end-page: 994
  ident: bib18
  article-title: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions
  publication-title: Int. J. Heat Mass Tran.
– volume: 68
  start-page: 335
  year: 2020
  end-page: 351
  ident: bib7
  article-title: Numerical analysis of the transient and non-isothermal channel flow of a third-grade fluid with convective cooling
  publication-title: Eng. Trans.
– volume: 188
  start-page: 922
  year: 2022
  end-page: 932
  ident: bib40
  article-title: Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid
  publication-title: Renew. Energy
– volume: 73
  start-page: 275
  year: 2021
  end-page: 287
  ident: bib45
  article-title: Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with Entropy Generation: applications to Renewable Energy
  publication-title: Chin. J. Phys.
– year: 2017
  ident: bib13
  article-title: OnCattaneo-Christov Heat Flux in the Flow of Variable Thermalconductivity EyringPowell Fluid
– volume: 12
  start-page: 876
  year: 2022
  ident: bib54
  article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-Forchheimer effect between squeezing plates
  publication-title: Nanomaterials
– volume: 55
  start-page: 875
  year: 2016
  end-page: 905
  ident: bib1
  article-title: MHD free convection flow of Eyring–Powell fluidfrom vertical surface in porous media with Hall/ionslip currentsand ohmic dissipation
  publication-title: Alex. Eng. J.
– volume: 45
  start-page: 5227
  year: 2020
  end-page: 5242
  ident: bib23
  article-title: Activationenergy impact on chemically reacting Eyring–PowellNanofluid flow over a stretching cylinder
  publication-title: Arabian J. Sci. Eng.
– volume: 109
  year: February 2021
  ident: bib57
  article-title: Effect of downstream sinusoidal wall on mixing performance of hydrogen multi-jets at supersonic flow: numerical study
  publication-title: Aero. Sci. Technol.
– volume: 118
  year: 2020
  ident: bib44
  article-title: Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: dual simulations through Runge-Kutta Fehlberg technique
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 10
  start-page: 956
  year: 2022
  ident: bib53
  article-title: Electroviscous effect of water-base nanofluid flow between two parallel disks with suction/injection effect
  publication-title: Mathematics
– volume: 215
  start-page: 963
  year: 2019
  end-page: 977
  ident: bib26
  article-title: Omid Mahian, Enhancement of PCM solidification using in-organic nanoparticles and an external magnetic-field with application in energy storage systems
  publication-title: J. Clean. Prod.
– volume: 29
  year: 2016
  ident: bib12
  article-title: Thermalradiation e_ect in MHD flow of Powell-Eyring nanofluid inducedby a stretching cylinder
  publication-title: J. Aero. Eng.
– volume: 176
  start-page: 107505
  year: 2022
  ident: bib39
  article-title: Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape
  publication-title: Int. J. Therm. Sci.
– volume: 9
  start-page: 6533
  year: 2020
  end-page: 6543
  ident: bib15
  article-title: Influence of chemical reactions and mechanism of peristalsis for the thermal distribution obeying slip constraints Applications to conductive transportation
  publication-title: J. Mater. Res. Technol.
– volume: 59
  start-page: 4315
  year: 2020
  end-page: 4328
  ident: bib49
  article-title: Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy
  publication-title: Alex. Eng. J.
– volume: 12
  start-page: 180
  year: 2022
  ident: bib55
  article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field
  publication-title: Nanomaterials
– volume: 60
  start-page: 4067
  year: 2021
  end-page: 4083
  ident: bib48
  article-title: Interfacial layer and shape effects of modified Hamilton's Crosser model in entropy optimized Darcy-Forchheimer flow
  publication-title: Alex. Eng. J.
– volume: 135
  start-page: 516
  year: 2020
  ident: bib47
  article-title: Entropy-optimized dissipative flow of Carreau–Yasuda fluid with radiative heat flux and chemical reaction
  publication-title: Eur. Phys. J. Plus
– volume: 86
  year: 2012
  ident: bib34
  article-title: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, the Royal Swedish Academy of Sciences
  publication-title: Phys. Scripta
– reference: .
– year: 2022
  ident: bib32
  article-title: MHD Slip Flow and Heat Transfer of UCM Fluid with the Effect of Suction/injection Due to Stretching Sheet: OHAM Solution
– reference: A. Aljabali, A. Rahman Kasim, N. S. Arifin, S. Mohamad Isa and N. A. NisaAriffin, Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: a numerical approach, Comput. Mater. Continua (CMC) DOI:10.32604/cmc.2020.012334.
– volume: 8
  start-page: 1175
  year: 2020
  ident: bib5
  article-title: Magnetohydrodynamic flow and heat TransferInduced by a shrinking sheet
  publication-title: Mathematics
– volume: 263
  year: 2017
  ident: bib11
  article-title: MHD mass transfer flow of an EyringPowell fluid over a stretching sheet
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 5
  start-page: 151
  year: 2017
  end-page: 165
  ident: bib29
  article-title: Similarity solution of forced convection flow of Powell-Eyring & Prandtl-Eyring fluids by group-Theoretic method
  publication-title: Math. J. Interdicipl. Sci.
– reference: B. J. Gireesha,B. M. Shankaralingappa, B. C. Prasannakumar&B. Nagaraja, MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model,
– volume: 4
  start-page: 40
  year: 2013
  end-page: 49
  ident: bib33
  article-title: Effect of non-uniform heat source for the UCM fluid over a stretching sheet with magnetic field
  publication-title: Int. J. Adv. Res. Eng. Technol.
– volume: 132
  start-page: 325
  year: 2017
  ident: bib22
  article-title: A numerical investigation of the boundary layer flow of anEyringPowell fluid over a stretching sheet via rational Chebyshevfunctions
  publication-title: Eur. Phys. J. Plus
– volume: 9
  start-page: 364
  year: 2021
  ident: bib10
  article-title: Mixed convection flow of Powell–Eyring nanofluid near aStagnation point along a vertical stretching sheet
  publication-title: Mathematics
– volume: 8
  start-page: 1194
  year: 2018
  end-page: 1203
  ident: bib16
  article-title: Exponentially varying viscosity of magnetohydrodynamicmixed convection EyringPowell nanofluid flow over aninclined surface
  publication-title: Results Phys.
– volume: 8
  start-page: 130
  year: 2020
  ident: bib4
  article-title: Impacts of thermal radiation and heat consumption/generation on unsteady MHDConvection flow of an oldroyd-B fluid with ramped velocity and temperature in a GeneralizedDarcy medium
  publication-title: Mathematics
– ident: 10.1016/j.rineng.2022.100435_bib9
  doi: 10.1080/01430750.2020.1785938
– volume: 68
  start-page: 223
  issue: 3
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib24
  article-title: Cattaneo-christov heat flux on an MHD 3D free convection Casson fluid flow over a stretching sheet
  publication-title: Eng. Trans.
– volume: 176
  start-page: 107505
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib39
  article-title: Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107505
– year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib13
– volume: 4
  start-page: 40
  issue: 6
  year: 2013
  ident: 10.1016/j.rineng.2022.100435_bib33
  article-title: Effect of non-uniform heat source for the UCM fluid over a stretching sheet with magnetic field
  publication-title: Int. J. Adv. Res. Eng. Technol.
– volume: 69
  start-page: 271
  issue: 3
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib6
  article-title: Aspects of the aligned magnetic field past a stratified inclined sheet with nonlinear convection and variable thermal conductivity
  publication-title: Eng. Trans.
– volume: 188
  start-page: 922
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib40
  article-title: Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.02.086
– volume: 15
  start-page: 2473
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib52
  article-title: The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: a computational investigation
  publication-title: Energies
  doi: 10.3390/en15072473
– volume: 215
  start-page: 963
  year: 2019
  ident: 10.1016/j.rineng.2022.100435_bib26
  article-title: Omid Mahian, Enhancement of PCM solidification using in-organic nanoparticles and an external magnetic-field with application in energy storage systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.122
– ident: 10.1016/j.rineng.2022.100435_bib17
– volume: 33
  start-page: 103510
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib42
  article-title: Nanoparticles transportation with turbulent regime through a solar collector with helical tapes
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2022.103510
– volume: 9
  start-page: 364
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib10
  article-title: Mixed convection flow of Powell–Eyring nanofluid near aStagnation point along a vertical stretching sheet
  publication-title: Mathematics
  doi: 10.3390/math9040364
– volume: 112
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib30
  article-title: Numerical simulation for nonlinear radiated Eyring-Powell nanofluidconsidering magnetic dipole and activation energy
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 60
  start-page: 4067
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib48
  article-title: Interfacial layer and shape effects of modified Hamilton's Crosser model in entropy optimized Darcy-Forchheimer flow
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.02.010
– volume: 263
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib11
  article-title: MHD mass transfer flow of an EyringPowell fluid over a stretching sheet
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/263/6/062013
– volume: 62
  start-page: 526
  year: 2013
  ident: 10.1016/j.rineng.2022.100435_bib36
  article-title: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet
  publication-title: Int. J. Heat Mass Trans.
  doi: 10.1016/j.ijheatmasstransfer.2013.03.049
– volume: 60
  start-page: 4607
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib43
  article-title: Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.03.053
– volume: 8
  start-page: 1471
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib28
  article-title: E_ects of entropy generation, thermal radiation andMoving-wall direction on mixed convective flow ofNanofluid in an enclosure
  publication-title: Mathematics
  doi: 10.3390/math8091471
– volume: 73
  start-page: 275
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib45
  article-title: Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with Entropy Generation: applications to Renewable Energy
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.06.004
– volume: 118
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib44
  article-title: Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: dual simulations through Runge-Kutta Fehlberg technique
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 47
  start-page: 1173
  year: 2012
  ident: 10.1016/j.rineng.2022.100435_bib35
  article-title: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation
  publication-title: Meccanica
  doi: 10.1007/s11012-011-9502-5
– ident: 10.1016/j.rineng.2022.100435_bib3
  doi: 10.32604/cmc.2020.012334
– volume: 116
  start-page: 106846
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib56
  article-title: Mixing efficiency of hydrogen and air co-flow jets via wedge shock generator in dual-combustor ramjet
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2021.106846
– volume: 12
  start-page: 876
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib54
  article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-Forchheimer effect between squeezing plates
  publication-title: Nanomaterials
  doi: 10.3390/nano12050876
– volume: 9
  start-page: 6533
  issue: 3
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib15
  article-title: Influence of chemical reactions and mechanism of peristalsis for the thermal distribution obeying slip constraints Applications to conductive transportation
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.04.039
– volume: 8
  start-page: 1175
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib5
  article-title: Magnetohydrodynamic flow and heat TransferInduced by a shrinking sheet
  publication-title: Mathematics
  doi: 10.3390/math8071175
– start-page: 23
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib31
  article-title: Influence of radiant heat and non-uniform heat source on MHD Casson fluid flow of thin liquid film beyond a stretching sheet
– start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib20
– volume: 344
  start-page: 319
  year: 2019
  ident: 10.1016/j.rineng.2022.100435_bib25
  article-title: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput
  publication-title: Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.044
– year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib14
– volume: 107
  start-page: 982
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib18
  article-title: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.126
– volume: 86
  year: 2012
  ident: 10.1016/j.rineng.2022.100435_bib34
  article-title: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, the Royal Swedish Academy of Sciences
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/86/04/045003
– volume: 109
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib57
  article-title: Effect of downstream sinusoidal wall on mixing performance of hydrogen multi-jets at supersonic flow: numerical study
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2020.106410
– volume: 8
  start-page: 1194
  year: 2018
  ident: 10.1016/j.rineng.2022.100435_bib16
  article-title: Exponentially varying viscosity of magnetohydrodynamicmixed convection EyringPowell nanofluid flow over aninclined surface
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.12.074
– year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib27
– volume: 119
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib46
  article-title: Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media
  publication-title: Int. Commun. Heat Mass Tran.
– year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib32
– volume: 10
  start-page: 956
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib53
  article-title: Electroviscous effect of water-base nanofluid flow between two parallel disks with suction/injection effect
  publication-title: Mathematics
  doi: 10.3390/math10060956
– volume: 5
  start-page: 151
  issue: 2
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib29
  article-title: Similarity solution of forced convection flow of Powell-Eyring & Prandtl-Eyring fluids by group-Theoretic method
  publication-title: Math. J. Interdicipl. Sci.
  doi: 10.15415/mjis.2017.52012
– volume: 68
  start-page: 335
  issue: 4
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib7
  article-title: Numerical analysis of the transient and non-isothermal channel flow of a third-grade fluid with convective cooling
  publication-title: Eng. Trans.
– year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib2
  article-title: Forced convection in 3D Maxwell nanofluid flow via Cattaneo–Christov theory with Joule heating
– volume: 8
  start-page: 130
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib4
  article-title: Impacts of thermal radiation and heat consumption/generation on unsteady MHDConvection flow of an oldroyd-B fluid with ramped velocity and temperature in a GeneralizedDarcy medium
  publication-title: Mathematics
  doi: 10.3390/math8010130
– volume: 12
  start-page: 180
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib55
  article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field
  publication-title: Nanomaterials
  doi: 10.3390/nano12020180
– volume: 59
  start-page: 4315
  issue: 6
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib49
  article-title: Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.07.036
– ident: 10.1016/j.rineng.2022.100435_bib21
  doi: 10.1080/01430750.2020.1861094
– volume: 132
  start-page: 325
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib22
  article-title: A numerical investigation of the boundary layer flow of anEyringPowell fluid over a stretching sheet via rational Chebyshevfunctions
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11600-0
– volume: 135
  start-page: 516
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib47
  article-title: Entropy-optimized dissipative flow of Carreau–Yasuda fluid with radiative heat flux and chemical reaction
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00532-3
– volume: 42
  start-page: 1191
  year: 2021
  ident: 10.1016/j.rineng.2022.100435_bib19
  article-title: Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-021-2753-7
– volume: 55
  start-page: 875
  issue: 2
  year: 2016
  ident: 10.1016/j.rineng.2022.100435_bib1
  article-title: MHD free convection flow of Eyring–Powell fluidfrom vertical surface in porous media with Hall/ionslip currentsand ohmic dissipation
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.02.011
– volume: 45
  start-page: 5227
  issue: 7
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib23
  article-title: Activationenergy impact on chemically reacting Eyring–PowellNanofluid flow over a stretching cylinder
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-020-04379-9
– volume: 19
  start-page: 119
  issue: 1
  year: 2015
  ident: 10.1016/j.rineng.2022.100435_bib37
  article-title: Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, THERMAL SCIENCE
  publication-title: Year
– volume: 80
  start-page: 2796
  year: 2020
  ident: 10.1016/j.rineng.2022.100435_bib8
  article-title: MHDnatural convection in a cavity in the presence of crosspartial magnetic-fields and Al2O3-water nanofluid
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.10.003
– volume: 90
  start-page: 568
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib38
  article-title: Slip flow and radiative heat transfer on a convectively heated vertical cylinder
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-017-1602-1
– volume: 29
  year: 2016
  ident: 10.1016/j.rineng.2022.100435_bib12
  article-title: Thermalradiation e_ect in MHD flow of Powell-Eyring nanofluid inducedby a stretching cylinder
  publication-title: J. Aero. Eng.
– start-page: 9
  year: 2017
  ident: 10.1016/j.rineng.2022.100435_bib50
– volume: 14
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib51
  article-title: Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate
  publication-title: Result. Eng.
  doi: 10.1016/j.rineng.2022.100394
– volume: 26
  start-page: 102383
  year: 2022
  ident: 10.1016/j.rineng.2022.100435_bib41
  article-title: Influence of novel turbulator on efficiency of solar collector system
  publication-title: Environ. Technol. Innovat.
  doi: 10.1016/j.eti.2022.102383
SSID ssj0002810137
Score 2.4542553
Snippet The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100435
SubjectTerms Eyring-Powell fluid
heat production
heat transfer
Magnetic field
momentum
Non-uniform heat source/sink
temperature profiles
Thermal radiation
Thermal stratification
Title The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching
URI https://dx.doi.org/10.1016/j.rineng.2022.100435
https://www.proquest.com/docview/2718245152
https://doaj.org/article/1852ae82c4a54110b12e0b90b3e43956
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaClioSBX4mo18SNOjrRstaq0iEMr9WY5fqBW3SzaJgcu_Rf9v8zYSVm47IVLDpYfiWeSmXG--YaQz95GpW3pmLBSM6ljyepQWFZLiJ4rpaKyGCguv1WLa3l5o262Sn0hJizTA-eNO8XkXhtq7qRVEmxVW_JQtE3RigC2VCWybbB5W8HUXToyKkfCTHDvEX4giilvLoG7MLOu-wHhIeeIE5Cp2tsfu5To-_8yT_98qJP1uXhNXo1uI_2Sb_eAvAjdIXm5RSb4hjyBxOkIz6DrSJeLr3SDzAMIbKa28xQifTZ0mIq1ovgNpvnk_vQB4lGKB7KpFXuvOwqOIV0hPUM_rNLoNKJPfm7Y4ALzX7gw-77G8z8a74dbTxEQSi3FDJQ-oTSPyPXF_Op8wcaiC8xJVfaMe8eDck5qiMxcUTXKqca23mrteSVkdBDgiNI1sfbC-gABR1PpQrYRC1_FIN6SPXic8I7QQsYiIN-eDxrmdm1V8QRbrRtlG9HOiJi23LiRkRwLY9ybCXp2Z7KgDArKZEHNCHse9TMzcuzof4bSfO6LfNqpAbTMjFpmdmnZjOhJF8zommSXA6a63bH8yaQ6Bt5c_B1ju7AeHgwHt4DDvij-_n_c4geyj8tmGNsx2es3Q_gIDlPffkrvBlyXj_PfkiERaw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+MHD+radiating+and+non-uniform+heat+source%2Fsink+with+heating+on+the+momentum+and+heat+transfer+of+Eyring-Powell+fluid+over+a+stretching&rft.jtitle=Results+in+engineering&rft.au=Manvi%2C+Bharatkumar&rft.au=Tawade%2C+Jagadish&rft.au=Biradar%2C+Mahadev&rft.au=Noeiaghdam%2C+Samad&rft.date=2022-06-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=14+p.100435-&rft_id=info:doi/10.1016%2Fj.rineng.2022.100435&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon