The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching
The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid...
Saved in:
Published in | Results in engineering Vol. 14; p. 100435 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable.
•In the presence of thermal radiation and a heat source/sink, a steady boundary layer flow of Powell-Eyring nanofluid via a stretched sheet with changing thickness is numerically explored.•The effect of a magnetic field and mixed convection on the Eyring-Powell fluid has been investigated and compared to previous findings.•We attempted to determine the impacts of uniform and non-uniform heat sources/sinks on the fluid using spatial and temperature-dependent factors in this work.•As the magnetic parameter rises, so does the retarding force, and as a result, the velocity falls as the temperature and concentration profiles rise.•The presence of a heat source contributes more energy to the thermal boundary layer, causing the temperature of the fluid to rise, while the presence of a heat sink absorbs the heat energy from the boundary layer, causing the temperature of the fluid to fall. |
---|---|
AbstractList | The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable. The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is described in this study. The effect of heat emission and immersion is investigated. A viscous, incompressible, two-dimensional, and laminar fluid is assumed. The governing equations of momentum and temperature pictures are translated into a collection of non-linear differential equations using conformable similarity transformations. To obtain the mathematical solution of the governing equations, the shooting approach is modified. Fourth-order Runge-Kutta formulation is applied for the integration and Newton's formulation suffices to simplify initial guess values. MATLAB is used for all the programming. The effect of respective distinct flow parameters on the temperature, velocity, represented through graphical forms, and the interpretation of some helpful engineering aggregates such as the skin-friction coefficient and Nusselt number are explained graphically for different variables. It has been shown that increasing the thermal stratification parameter reduces fluid velocity and also temperature, and vice versa is noticed for the heat production variable. •In the presence of thermal radiation and a heat source/sink, a steady boundary layer flow of Powell-Eyring nanofluid via a stretched sheet with changing thickness is numerically explored.•The effect of a magnetic field and mixed convection on the Eyring-Powell fluid has been investigated and compared to previous findings.•We attempted to determine the impacts of uniform and non-uniform heat sources/sinks on the fluid using spatial and temperature-dependent factors in this work.•As the magnetic parameter rises, so does the retarding force, and as a result, the velocity falls as the temperature and concentration profiles rise.•The presence of a heat source contributes more energy to the thermal boundary layer, causing the temperature of the fluid to rise, while the presence of a heat sink absorbs the heat energy from the boundary layer, causing the temperature of the fluid to fall. |
ArticleNumber | 100435 |
Author | Manvi, Bharatkumar Tawade, Jagadish Govindan, Vediyappan Fernandez-Gamiz, Unai Biradar, Mahadev Noeiaghdam, Samad |
Author_xml | – sequence: 1 givenname: Bharatkumar surname: Manvi fullname: Manvi, Bharatkumar email: bharat.k.manvi009@gmail.com organization: Department of Mechanical Engineering, Basaveshvara Engineering College, Bagalkot, 587102, Karnataka, India – sequence: 2 givenname: Jagadish surname: Tawade fullname: Tawade, Jagadish email: jagadish.tawade@vupune.ac.in organization: Department of Mathematics, Vishwakarma University, Pune, 411048, Maharashtra, India – sequence: 3 givenname: Mahadev surname: Biradar fullname: Biradar, Mahadev email: mmbbec@gmail.com organization: Department of Mathematics, Basaveshvara Engineering College, Bagalkot, 587102, Karnataka, India – sequence: 4 givenname: Samad orcidid: 0000-0002-2307-0891 surname: Noeiaghdam fullname: Noeiaghdam, Samad email: snoei@istu.edu, noiagdams@susu.ru organization: Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk, 664074, Russia – sequence: 5 givenname: Unai surname: Fernandez-Gamiz fullname: Fernandez-Gamiz, Unai email: unai.fernandez@ehu.eus organization: Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Spain – sequence: 6 givenname: Vediyappan surname: Govindan fullname: Govindan, Vediyappan email: govindoviya@gmail.com organization: Department of Mathematics, Dmi St John The Baptist University, 800, Central Africa, Malawi |
BookMark | eNqFkcluFDEQhlsoSISQN-DgI5eeeO2FAxIK2aSg5JCcLbddnvHQbQfbnSgPwvvimQ4S4kBOtqrq-2v531cHPnioqo8Erwgmzcl2FZ0Hv15RTGkJYc7Em-qQih7XhDJ88Nf_XXWc0hZjTLvCsvaw-nW3AQTWgs4JBYu-X35DURmnsvNrpLxBpV09e2dDnNAGVEYpzFHDSXL-B3pyebOP7qqDR7moTWECn-dpT--JHJVPFuKuwdlzGXdd34YnGEdkx9kZFB5LTqGUI2S9KekP1VurxgTHL-9RdX9-dnd6WV_fXFydfr2uNRck19RoCkJr3vaUa9z0QoteDUa1raEN41a3gjGie9sZpgw0reibFvPBctpTC-youlp0TVBb-RDdpOKzDMrJfSDEtVQxOz2CJJ2gCjqquRKcEDwQCnjo8cCAs140RevTovUQw88ZUpaTS7osqTyEOUnako6WsQUtpZ-XUh1DShGs1C6XGwZfLuVGSbDcWSu3crFW7qyVi7UF5v_Af-Z-BfuyYFDu-eggyqQdeA3GxWJ-Wdj9X-A3u4PCOw |
CitedBy_id | crossref_primary_10_1002_zamm_202400072 crossref_primary_10_1016_j_csite_2022_102491 crossref_primary_10_1063_5_0201939 crossref_primary_10_1016_j_triboint_2024_110389 crossref_primary_10_1016_j_cjph_2023_09_013 crossref_primary_10_1080_10407790_2024_2327474 crossref_primary_10_1016_j_heliyon_2024_e25088 crossref_primary_10_1080_23311916_2024_2386096 crossref_primary_10_1016_j_csite_2023_103829 crossref_primary_10_3390_math11092199 crossref_primary_10_1007_s41939_025_00809_z crossref_primary_10_1016_j_csite_2023_103702 crossref_primary_10_3934_mbe_2022658 crossref_primary_10_1016_j_rineng_2024_102150 crossref_primary_10_1016_j_heliyon_2025_e41800 crossref_primary_10_3390_math11224579 crossref_primary_10_1080_10407782_2023_2255934 crossref_primary_10_1016_j_csite_2023_103075 crossref_primary_10_1177_16878132241282017 crossref_primary_10_1016_j_aej_2022_11_009 crossref_primary_10_1016_j_rineng_2022_100839 crossref_primary_10_1155_2023_5104085 crossref_primary_10_1080_10407782_2024_2319349 crossref_primary_10_1016_j_aej_2025_01_013 crossref_primary_10_1016_j_rineng_2024_103070 crossref_primary_10_3390_math11204331 crossref_primary_10_1142_S0217984924504608 crossref_primary_10_1080_10407782_2024_2357588 crossref_primary_10_1007_s13201_024_02235_x crossref_primary_10_21285_1814_3520_2024_3_435_452 crossref_primary_10_1016_j_rineng_2023_101194 crossref_primary_10_1142_S0217984925500034 crossref_primary_10_3934_era_2022201 crossref_primary_10_1016_j_aej_2024_07_033 crossref_primary_10_1108_MMMS_07_2024_0184 crossref_primary_10_1007_s10973_024_13768_3 crossref_primary_10_1007_s11771_023_5388_3 crossref_primary_10_1016_j_rineng_2023_101634 crossref_primary_10_26565_2312_4334_2023_3_53 crossref_primary_10_1016_j_rineng_2022_100745 crossref_primary_10_1016_j_asej_2024_102648 crossref_primary_10_1016_j_jestch_2025_101970 crossref_primary_10_1080_10407782_2023_2208733 crossref_primary_10_1142_S0217984923410051 crossref_primary_10_1002_zamm_202400248 crossref_primary_10_1016_j_csite_2023_103046 crossref_primary_10_1088_1402_4896_ad562e crossref_primary_10_1166_jon_2024_2205 crossref_primary_10_3390_sym15010016 crossref_primary_10_1016_j_rineng_2023_101644 crossref_primary_10_1134_S1061933X2260035X crossref_primary_10_1016_j_heliyon_2023_e14781 crossref_primary_10_3390_sym15030584 crossref_primary_10_1016_j_rineng_2024_102477 crossref_primary_10_1007_s12668_024_01442_9 crossref_primary_10_1142_S0217984924503494 crossref_primary_10_1016_j_rineng_2023_101208 crossref_primary_10_1016_j_tsep_2023_102283 crossref_primary_10_3390_sym16121628 crossref_primary_10_3934_math_2024227 crossref_primary_10_1016_j_ijft_2024_100616 crossref_primary_10_1142_S021798492450489X crossref_primary_10_1080_10407782_2024_2341431 crossref_primary_10_3390_polym16121723 crossref_primary_10_1142_S0217984924504505 crossref_primary_10_1142_S1793292024501017 |
Cites_doi | 10.1080/01430750.2020.1785938 10.1016/j.ijthermalsci.2022.107505 10.1016/j.renene.2022.02.086 10.3390/en15072473 10.1016/j.jclepro.2019.01.122 10.1016/j.apt.2022.103510 10.3390/math9040364 10.1016/j.aej.2021.02.010 10.1088/1757-899X/263/6/062013 10.1016/j.ijheatmasstransfer.2013.03.049 10.1016/j.aej.2021.03.053 10.3390/math8091471 10.1016/j.cjph.2021.06.004 10.1007/s11012-011-9502-5 10.32604/cmc.2020.012334 10.1016/j.ast.2021.106846 10.3390/nano12050876 10.1016/j.jmrt.2020.04.039 10.3390/math8071175 10.1016/j.cma.2018.09.044 10.1016/j.ijheatmasstransfer.2016.10.126 10.1088/0031-8949/86/04/045003 10.1016/j.ast.2020.106410 10.1016/j.rinp.2017.12.074 10.3390/math10060956 10.15415/mjis.2017.52012 10.3390/math8010130 10.3390/nano12020180 10.1016/j.aej.2020.07.036 10.1080/01430750.2020.1861094 10.1140/epjp/i2017-11600-0 10.1140/epjp/s13360-020-00532-3 10.1007/s10483-021-2753-7 10.1016/j.aej.2016.02.011 10.1007/s13369-020-04379-9 10.1016/j.camwa.2020.10.003 10.1007/s10891-017-1602-1 10.1016/j.rineng.2022.100394 10.1016/j.eti.2022.102383 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.rineng.2022.100435 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_1852ae82c4a54110b12e0b90b3e43956 10_1016_j_rineng_2022_100435 S2590123022001050 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c451t-2dc2e5cc47924c0695c59abda77d2634fc75331c9f8d3ade67596704bf4292fe3 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Jul 10 22:30:53 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 01:37:13 EDT 2025 Tue Jul 25 20:57:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Eyring-Powell fluid Non-uniform heat source/sink Thermal radiation Thermal stratification Magnetic field |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-2dc2e5cc47924c0695c59abda77d2634fc75331c9f8d3ade67596704bf4292fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2307-0891 |
OpenAccessLink | https://doaj.org/article/1852ae82c4a54110b12e0b90b3e43956 |
PQID | 2718245152 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1852ae82c4a54110b12e0b90b3e43956 proquest_miscellaneous_2718245152 crossref_citationtrail_10_1016_j_rineng_2022_100435 crossref_primary_10_1016_j_rineng_2022_100435 elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ahmed, Khan1, Sarfraz, Ahmed, Iqbal (bib2) 2021 Ibrahim, Anbessa (bib14) 2020 Sheikholeslami, Jafaryar, Barzegar Gerdroodbary, Alavi (bib41) 2022; 26 Siddiqa, Begum, Anwar Hossain, Abrar, Reddy Gorla, Al-Mdallal (bib27) 2020 Makinde (bib35) 2012; 47 López, Ibáñez, Pantoja, Moreira, Lastres (bib18) 2017; 107 Motsumi, Makinde (bib34) 2012; 86 Makinde, Das, Jana (bib38) 2017; 90 Singh, Makinde (bib37) 2015; 19 Sivanandam, Chamkha, Mallawi, Alghamdi, Alqahtani (bib28) 2020; 8 Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Shah, Khan (bib55) 2022; 12 PekmenGeridonmez, Oztop (bib8) 2020; 80 Khan, Alzahrani (bib47) 2020; 135 Li, Khan, Gowda, Ali, Farooq, Chu, Khan (bib45) 2021; 73 AzeanyMohd Nasir, Ishak, Pop (bib5) 2020; 8 Muhammad, Waqas, Khan, Ellahi, Sait (bib20) 2020 Farooqa, Ijazb, Khanc, Mohamed, Lua (bib46) 2020; 119 Hayat, Khan, Waqas, Alsaedi (bib13) 2017 B. J. Gireesha,B. M. Shankaralingappa, B. C. Prasannakumar&B. Nagaraja, MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model . Bilal, Inam, Kanwal, Nazeer (bib6) 2021; 69 Nayak, Shaw, Khan, Makinde, Chu, Khan (bib48) 2021; 60 A. Aljabali, A. Rahman Kasim, N. S. Arifin, S. Mohamad Isa and N. A. NisaAriffin, Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: a numerical approach, Comput. Mater. Continua (CMC) DOI:10.32604/cmc.2020.012334. Sheikholeslami, Said, Jafaryar (bib40) 2022; 188 B. Kumar , S. Srinivas, Unsteady Hydromagnetic Flow of EyringPowell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation, 10.22055/JACM.2019.29520.1608. Shukla, Patel, Surati, Patel, Timol (bib29) 2017; 5 Hayat, Gull, Farooq, Ahmad (bib12) 2016; 29 Tawade, Biradar, Benal (bib31) 2021 Abdul Gaffar, Ramachandra Prasad, KeshavaReddy (bib1) 2016; 55 Reddy, Bala Anki Reddy, Rashad (bib23) 2020; 45 Harish Babu, Sudheer Babu, Satya Narayana (bib11) 2017; 263 Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan (bib54) 2022; 12 Alam, Bibi, Khan, Fernandez-Gamiz, Noeiaghdam (bib52) 2022; 15 Jiang, Abu-Hamdeh, Bantan, Moradi (bib56) September 2021; 116 Makinde, Khan, Khan (bib36) 2013; 62 Sheikholeslami, Ali Farshad (bib42) 2022; 33 Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan, Shah (bib53) 2022; 10 Parand, Mahdi Moayeri, Latifi, Delkhosh (bib22) 2017; 132 Sheikholeslami, Ebrahimpour (bib39) 2022; 176 Aldabesh, Khan, Habib, Waqas, Tlili, Khan, Khan (bib49) 2020; 59 B. Nagaraja,B. J. Gireesha,G. Sowmya & M. R. Krishnamurthy, Slip and radiative flow of shape-dependent dusty nanofluid over a melting stretching sheet Song, Khan, Imran, Waqas, Khan, Khan, Qayyum, Chu (bib43) 2021; 60 Madhukesh, Ramesh, Prasannakumara, Shehzad, Abbasi (bib19) 2021; 42 Chinyoka, Daniel (bib7) 2020; 68 Shankar, Raju, Jagadeeshkumar, Makinde (bib24) 2020; 68 Sheikholeslami (bib26) 2019; 215 Guled, Tawade, Nandeppanavar, Saraf (bib32) 2022 Jiang, Moradi, Abusorrah, Hajizadeh, Li (bib57) February 2021; 109 Sheikholeslam (bib25) 2019; 344 Khan, Fatima, Malik, Salahuddin (bib16) 2018; 8 Satya Narayana, NainaruTarakaramu, MoliyaAkshit, Ghori (bib50) 2017 Chua, Rehmanc, Khan, Nadeeme, Kadryg, Abdelmalekh, Abbas (bib44) 2020; 118 Agadi, Abel, Tawade, Maharudrappa (bib33) 2013; 4 Imrana, Tassaddiqb, Javeda, Alreshidic, Sohaila, Khand (bib15) 2020; 9 Arulmozhi, Sukkiramathi, Santra, Edwan, Fernandez-Gamiz, Noeiaghdam (bib51) 2022; 14 Anwar, Khan, Kumam, Watthayu (bib4) 2020; 8 Waqasa, Jabeenb, Hayatb, Shehzadc, Alsaedic (bib30) 2020; 112 Halim, Noor (bib10) 2021; 9 López (10.1016/j.rineng.2022.100435_bib18) 2017; 107 Nayak (10.1016/j.rineng.2022.100435_bib48) 2021; 60 Khan (10.1016/j.rineng.2022.100435_bib54) 2022; 12 Shankar (10.1016/j.rineng.2022.100435_bib24) 2020; 68 Guled (10.1016/j.rineng.2022.100435_bib32) 2022 Singh (10.1016/j.rineng.2022.100435_bib37) 2015; 19 Li (10.1016/j.rineng.2022.100435_bib45) 2021; 73 Muhammad (10.1016/j.rineng.2022.100435_bib20) 2020 10.1016/j.rineng.2022.100435_bib9 Siddiqa (10.1016/j.rineng.2022.100435_bib27) 2020 Anwar (10.1016/j.rineng.2022.100435_bib4) 2020; 8 Abdul Gaffar (10.1016/j.rineng.2022.100435_bib1) 2016; 55 10.1016/j.rineng.2022.100435_bib3 Motsumi (10.1016/j.rineng.2022.100435_bib34) 2012; 86 Makinde (10.1016/j.rineng.2022.100435_bib36) 2013; 62 Arulmozhi (10.1016/j.rineng.2022.100435_bib51) 2022; 14 Ibrahim (10.1016/j.rineng.2022.100435_bib14) 2020 Imrana (10.1016/j.rineng.2022.100435_bib15) 2020; 9 Jiang (10.1016/j.rineng.2022.100435_bib57) 2021; 109 Shukla (10.1016/j.rineng.2022.100435_bib29) 2017; 5 Harish Babu (10.1016/j.rineng.2022.100435_bib11) 2017; 263 Farooqa (10.1016/j.rineng.2022.100435_bib46) 2020; 119 Aldabesh (10.1016/j.rineng.2022.100435_bib49) 2020; 59 10.1016/j.rineng.2022.100435_bib21 Makinde (10.1016/j.rineng.2022.100435_bib35) 2012; 47 Halim (10.1016/j.rineng.2022.100435_bib10) 2021; 9 Chua (10.1016/j.rineng.2022.100435_bib44) 2020; 118 Chinyoka (10.1016/j.rineng.2022.100435_bib7) 2020; 68 Madhukesh (10.1016/j.rineng.2022.100435_bib19) 2021; 42 Hayat (10.1016/j.rineng.2022.100435_bib13) 2017 Bilal (10.1016/j.rineng.2022.100435_bib6) 2021; 69 Reddy (10.1016/j.rineng.2022.100435_bib23) 2020; 45 Sheikholeslam (10.1016/j.rineng.2022.100435_bib25) 2019; 344 AzeanyMohd Nasir (10.1016/j.rineng.2022.100435_bib5) 2020; 8 Makinde (10.1016/j.rineng.2022.100435_bib38) 2017; 90 Satya Narayana (10.1016/j.rineng.2022.100435_bib50) 2017 Alam (10.1016/j.rineng.2022.100435_bib52) 2022; 15 10.1016/j.rineng.2022.100435_bib17 Jiang (10.1016/j.rineng.2022.100435_bib56) 2021; 116 Sheikholeslami (10.1016/j.rineng.2022.100435_bib42) 2022; 33 Parand (10.1016/j.rineng.2022.100435_bib22) 2017; 132 Khan (10.1016/j.rineng.2022.100435_bib55) 2022; 12 Sheikholeslami (10.1016/j.rineng.2022.100435_bib41) 2022; 26 Khan (10.1016/j.rineng.2022.100435_bib47) 2020; 135 Agadi (10.1016/j.rineng.2022.100435_bib33) 2013; 4 Sheikholeslami (10.1016/j.rineng.2022.100435_bib39) 2022; 176 Hayat (10.1016/j.rineng.2022.100435_bib12) 2016; 29 PekmenGeridonmez (10.1016/j.rineng.2022.100435_bib8) 2020; 80 Sheikholeslami (10.1016/j.rineng.2022.100435_bib40) 2022; 188 Song (10.1016/j.rineng.2022.100435_bib43) 2021; 60 Khan (10.1016/j.rineng.2022.100435_bib53) 2022; 10 Sheikholeslami (10.1016/j.rineng.2022.100435_bib26) 2019; 215 Waqasa (10.1016/j.rineng.2022.100435_bib30) 2020; 112 Ahmed (10.1016/j.rineng.2022.100435_bib2) 2021 Sivanandam (10.1016/j.rineng.2022.100435_bib28) 2020; 8 Khan (10.1016/j.rineng.2022.100435_bib16) 2018; 8 Tawade (10.1016/j.rineng.2022.100435_bib31) 2021 |
References_xml | – volume: 62 start-page: 526 year: 2013 end-page: 533 ident: bib36 article-title: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet publication-title: Int. J. Heat Mass Trans. – volume: 42 start-page: 1191 year: 2021 end-page: 1204 ident: bib19 article-title: Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy publication-title: Appl. Math. Mech. – reference: B. Kumar , S. Srinivas, Unsteady Hydromagnetic Flow of EyringPowell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation, 10.22055/JACM.2019.29520.1608. – volume: 68 start-page: 223 year: 2020 end-page: 238 ident: bib24 article-title: Cattaneo-christov heat flux on an MHD 3D free convection Casson fluid flow over a stretching sheet publication-title: Eng. Trans. – volume: 119 year: 2020 ident: bib46 article-title: Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media publication-title: Int. Commun. Heat Mass Tran. – year: 2021 ident: bib2 article-title: Forced convection in 3D Maxwell nanofluid flow via Cattaneo–Christov theory with Joule heating publication-title: Proc IMechE Part E:J Process Mechanical Engineering0(0) 1–11IMechE – volume: 26 start-page: 102383 year: 2022 ident: bib41 article-title: Influence of novel turbulator on efficiency of solar collector system publication-title: Environ. Technol. Innovat. – volume: 60 start-page: 4607 year: 2021 end-page: 4618 ident: bib43 article-title: Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk publication-title: Alex. Eng. J. – volume: 33 start-page: 103510 year: 2022 ident: bib42 article-title: Nanoparticles transportation with turbulent regime through a solar collector with helical tapes publication-title: Adv. Powder Technol. – volume: 344 start-page: 319 year: 2019 end-page: 333 ident: bib25 article-title: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput publication-title: Methods Appl. Mech. Eng. – start-page: 1 year: 2020 end-page: 16 ident: bib20 article-title: Significance of Nonlinear Thermal Radiation in 3D Eyring–Powell Nanofluid Flow with Arrhenius Activation Energy – year: 2020 ident: bib14 article-title: Hall and Ion Slip Effects on Mixed Convection Flow of EyringPowell Nanofluid over a Stretching Surface – volume: 19 start-page: 119 year: 2015 end-page: 128 ident: bib37 article-title: Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, THERMAL SCIENCE publication-title: Year – start-page: 9 year: 2017 ident: bib50 article-title: MHD Flow and Heat Transfer of an Eyring - Powell Fluid over a Linear Stretching Sheet with Viscous Dissipation - a Numerical Study – volume: 69 start-page: 271 year: 2021 end-page: 292 ident: bib6 article-title: Aspects of the aligned magnetic field past a stratified inclined sheet with nonlinear convection and variable thermal conductivity publication-title: Eng. Trans. – year: 2020 ident: bib27 article-title: Effect of Thermal Radiation on Conjugate Natural Convectionflow of a Micropolar Fluid along a Vertical Surface – volume: 8 start-page: 1471 year: 2020 ident: bib28 article-title: E_ects of entropy generation, thermal radiation andMoving-wall direction on mixed convective flow ofNanofluid in an enclosure publication-title: Mathematics – volume: 80 start-page: 2796 year: 2020 end-page: 2810 ident: bib8 article-title: MHDnatural convection in a cavity in the presence of crosspartial magnetic-fields and Al2O3-water nanofluid publication-title: Comput. Math. Appl. – volume: 90 start-page: 568 year: 2017 end-page: 574 ident: bib38 article-title: Slip flow and radiative heat transfer on a convectively heated vertical cylinder publication-title: J. Eng. Phys. Thermophys. – volume: 15 start-page: 2473 year: 2022 ident: bib52 article-title: The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: a computational investigation publication-title: Energies – volume: 112 year: 2020 ident: bib30 article-title: Numerical simulation for nonlinear radiated Eyring-Powell nanofluidconsidering magnetic dipole and activation energy publication-title: Int. Commun. Heat Mass Tran. – volume: 14 year: 2022 ident: bib51 article-title: Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate publication-title: Result. Eng. – reference: B. Nagaraja,B. J. Gireesha,G. Sowmya & M. R. Krishnamurthy, Slip and radiative flow of shape-dependent dusty nanofluid over a melting stretching sheet, – volume: 116 start-page: 106846 year: September 2021 ident: bib56 article-title: Mixing efficiency of hydrogen and air co-flow jets via wedge shock generator in dual-combustor ramjet publication-title: Aero. Sci. Technol. – start-page: 23 year: 2021 end-page: 36 ident: bib31 article-title: Influence of radiant heat and non-uniform heat source on MHD Casson fluid flow of thin liquid film beyond a stretching sheet publication-title: Recent Trends in Mathematical Modeling and High Performance Computing – volume: 47 start-page: 1173 year: 2012 end-page: 1184 ident: bib35 article-title: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation publication-title: Meccanica – volume: 107 start-page: 982 year: 2017 end-page: 994 ident: bib18 article-title: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions publication-title: Int. J. Heat Mass Tran. – volume: 68 start-page: 335 year: 2020 end-page: 351 ident: bib7 article-title: Numerical analysis of the transient and non-isothermal channel flow of a third-grade fluid with convective cooling publication-title: Eng. Trans. – volume: 188 start-page: 922 year: 2022 end-page: 932 ident: bib40 article-title: Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid publication-title: Renew. Energy – volume: 73 start-page: 275 year: 2021 end-page: 287 ident: bib45 article-title: Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with Entropy Generation: applications to Renewable Energy publication-title: Chin. J. Phys. – year: 2017 ident: bib13 article-title: OnCattaneo-Christov Heat Flux in the Flow of Variable Thermalconductivity EyringPowell Fluid – volume: 12 start-page: 876 year: 2022 ident: bib54 article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-Forchheimer effect between squeezing plates publication-title: Nanomaterials – volume: 55 start-page: 875 year: 2016 end-page: 905 ident: bib1 article-title: MHD free convection flow of Eyring–Powell fluidfrom vertical surface in porous media with Hall/ionslip currentsand ohmic dissipation publication-title: Alex. Eng. J. – volume: 45 start-page: 5227 year: 2020 end-page: 5242 ident: bib23 article-title: Activationenergy impact on chemically reacting Eyring–PowellNanofluid flow over a stretching cylinder publication-title: Arabian J. Sci. Eng. – volume: 109 year: February 2021 ident: bib57 article-title: Effect of downstream sinusoidal wall on mixing performance of hydrogen multi-jets at supersonic flow: numerical study publication-title: Aero. Sci. Technol. – volume: 118 year: 2020 ident: bib44 article-title: Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: dual simulations through Runge-Kutta Fehlberg technique publication-title: Int. Commun. Heat Mass Tran. – volume: 10 start-page: 956 year: 2022 ident: bib53 article-title: Electroviscous effect of water-base nanofluid flow between two parallel disks with suction/injection effect publication-title: Mathematics – volume: 215 start-page: 963 year: 2019 end-page: 977 ident: bib26 article-title: Omid Mahian, Enhancement of PCM solidification using in-organic nanoparticles and an external magnetic-field with application in energy storage systems publication-title: J. Clean. Prod. – volume: 29 year: 2016 ident: bib12 article-title: Thermalradiation e_ect in MHD flow of Powell-Eyring nanofluid inducedby a stretching cylinder publication-title: J. Aero. Eng. – volume: 176 start-page: 107505 year: 2022 ident: bib39 article-title: Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape publication-title: Int. J. Therm. Sci. – volume: 9 start-page: 6533 year: 2020 end-page: 6543 ident: bib15 article-title: Influence of chemical reactions and mechanism of peristalsis for the thermal distribution obeying slip constraints Applications to conductive transportation publication-title: J. Mater. Res. Technol. – volume: 59 start-page: 4315 year: 2020 end-page: 4328 ident: bib49 article-title: Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy publication-title: Alex. Eng. J. – volume: 12 start-page: 180 year: 2022 ident: bib55 article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field publication-title: Nanomaterials – volume: 60 start-page: 4067 year: 2021 end-page: 4083 ident: bib48 article-title: Interfacial layer and shape effects of modified Hamilton's Crosser model in entropy optimized Darcy-Forchheimer flow publication-title: Alex. Eng. J. – volume: 135 start-page: 516 year: 2020 ident: bib47 article-title: Entropy-optimized dissipative flow of Carreau–Yasuda fluid with radiative heat flux and chemical reaction publication-title: Eur. Phys. J. Plus – volume: 86 year: 2012 ident: bib34 article-title: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, the Royal Swedish Academy of Sciences publication-title: Phys. Scripta – reference: . – year: 2022 ident: bib32 article-title: MHD Slip Flow and Heat Transfer of UCM Fluid with the Effect of Suction/injection Due to Stretching Sheet: OHAM Solution – reference: A. Aljabali, A. Rahman Kasim, N. S. Arifin, S. Mohamad Isa and N. A. NisaAriffin, Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: a numerical approach, Comput. Mater. Continua (CMC) DOI:10.32604/cmc.2020.012334. – volume: 8 start-page: 1175 year: 2020 ident: bib5 article-title: Magnetohydrodynamic flow and heat TransferInduced by a shrinking sheet publication-title: Mathematics – volume: 263 year: 2017 ident: bib11 article-title: MHD mass transfer flow of an EyringPowell fluid over a stretching sheet publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 5 start-page: 151 year: 2017 end-page: 165 ident: bib29 article-title: Similarity solution of forced convection flow of Powell-Eyring & Prandtl-Eyring fluids by group-Theoretic method publication-title: Math. J. Interdicipl. Sci. – reference: B. J. Gireesha,B. M. Shankaralingappa, B. C. Prasannakumar&B. Nagaraja, MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model, – volume: 4 start-page: 40 year: 2013 end-page: 49 ident: bib33 article-title: Effect of non-uniform heat source for the UCM fluid over a stretching sheet with magnetic field publication-title: Int. J. Adv. Res. Eng. Technol. – volume: 132 start-page: 325 year: 2017 ident: bib22 article-title: A numerical investigation of the boundary layer flow of anEyringPowell fluid over a stretching sheet via rational Chebyshevfunctions publication-title: Eur. Phys. J. Plus – volume: 9 start-page: 364 year: 2021 ident: bib10 article-title: Mixed convection flow of Powell–Eyring nanofluid near aStagnation point along a vertical stretching sheet publication-title: Mathematics – volume: 8 start-page: 1194 year: 2018 end-page: 1203 ident: bib16 article-title: Exponentially varying viscosity of magnetohydrodynamicmixed convection EyringPowell nanofluid flow over aninclined surface publication-title: Results Phys. – volume: 8 start-page: 130 year: 2020 ident: bib4 article-title: Impacts of thermal radiation and heat consumption/generation on unsteady MHDConvection flow of an oldroyd-B fluid with ramped velocity and temperature in a GeneralizedDarcy medium publication-title: Mathematics – ident: 10.1016/j.rineng.2022.100435_bib9 doi: 10.1080/01430750.2020.1785938 – volume: 68 start-page: 223 issue: 3 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib24 article-title: Cattaneo-christov heat flux on an MHD 3D free convection Casson fluid flow over a stretching sheet publication-title: Eng. Trans. – volume: 176 start-page: 107505 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib39 article-title: Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107505 – year: 2017 ident: 10.1016/j.rineng.2022.100435_bib13 – volume: 4 start-page: 40 issue: 6 year: 2013 ident: 10.1016/j.rineng.2022.100435_bib33 article-title: Effect of non-uniform heat source for the UCM fluid over a stretching sheet with magnetic field publication-title: Int. J. Adv. Res. Eng. Technol. – volume: 69 start-page: 271 issue: 3 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib6 article-title: Aspects of the aligned magnetic field past a stratified inclined sheet with nonlinear convection and variable thermal conductivity publication-title: Eng. Trans. – volume: 188 start-page: 922 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib40 article-title: Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid publication-title: Renew. Energy doi: 10.1016/j.renene.2022.02.086 – volume: 15 start-page: 2473 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib52 article-title: The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: a computational investigation publication-title: Energies doi: 10.3390/en15072473 – volume: 215 start-page: 963 year: 2019 ident: 10.1016/j.rineng.2022.100435_bib26 article-title: Omid Mahian, Enhancement of PCM solidification using in-organic nanoparticles and an external magnetic-field with application in energy storage systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.122 – ident: 10.1016/j.rineng.2022.100435_bib17 – volume: 33 start-page: 103510 issue: 3 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib42 article-title: Nanoparticles transportation with turbulent regime through a solar collector with helical tapes publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103510 – volume: 9 start-page: 364 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib10 article-title: Mixed convection flow of Powell–Eyring nanofluid near aStagnation point along a vertical stretching sheet publication-title: Mathematics doi: 10.3390/math9040364 – volume: 112 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib30 article-title: Numerical simulation for nonlinear radiated Eyring-Powell nanofluidconsidering magnetic dipole and activation energy publication-title: Int. Commun. Heat Mass Tran. – volume: 60 start-page: 4067 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib48 article-title: Interfacial layer and shape effects of modified Hamilton's Crosser model in entropy optimized Darcy-Forchheimer flow publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.02.010 – volume: 263 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib11 article-title: MHD mass transfer flow of an EyringPowell fluid over a stretching sheet publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/263/6/062013 – volume: 62 start-page: 526 year: 2013 ident: 10.1016/j.rineng.2022.100435_bib36 article-title: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet publication-title: Int. J. Heat Mass Trans. doi: 10.1016/j.ijheatmasstransfer.2013.03.049 – volume: 60 start-page: 4607 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib43 article-title: Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.03.053 – volume: 8 start-page: 1471 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib28 article-title: E_ects of entropy generation, thermal radiation andMoving-wall direction on mixed convective flow ofNanofluid in an enclosure publication-title: Mathematics doi: 10.3390/math8091471 – volume: 73 start-page: 275 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib45 article-title: Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with Entropy Generation: applications to Renewable Energy publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.06.004 – volume: 118 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib44 article-title: Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: dual simulations through Runge-Kutta Fehlberg technique publication-title: Int. Commun. Heat Mass Tran. – volume: 47 start-page: 1173 year: 2012 ident: 10.1016/j.rineng.2022.100435_bib35 article-title: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation publication-title: Meccanica doi: 10.1007/s11012-011-9502-5 – ident: 10.1016/j.rineng.2022.100435_bib3 doi: 10.32604/cmc.2020.012334 – volume: 116 start-page: 106846 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib56 article-title: Mixing efficiency of hydrogen and air co-flow jets via wedge shock generator in dual-combustor ramjet publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2021.106846 – volume: 12 start-page: 876 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib54 article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-Forchheimer effect between squeezing plates publication-title: Nanomaterials doi: 10.3390/nano12050876 – volume: 9 start-page: 6533 issue: 3 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib15 article-title: Influence of chemical reactions and mechanism of peristalsis for the thermal distribution obeying slip constraints Applications to conductive transportation publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.04.039 – volume: 8 start-page: 1175 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib5 article-title: Magnetohydrodynamic flow and heat TransferInduced by a shrinking sheet publication-title: Mathematics doi: 10.3390/math8071175 – start-page: 23 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib31 article-title: Influence of radiant heat and non-uniform heat source on MHD Casson fluid flow of thin liquid film beyond a stretching sheet – start-page: 1 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib20 – volume: 344 start-page: 319 year: 2019 ident: 10.1016/j.rineng.2022.100435_bib25 article-title: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput publication-title: Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.044 – year: 2020 ident: 10.1016/j.rineng.2022.100435_bib14 – volume: 107 start-page: 982 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib18 article-title: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2016.10.126 – volume: 86 year: 2012 ident: 10.1016/j.rineng.2022.100435_bib34 article-title: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, the Royal Swedish Academy of Sciences publication-title: Phys. Scripta doi: 10.1088/0031-8949/86/04/045003 – volume: 109 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib57 article-title: Effect of downstream sinusoidal wall on mixing performance of hydrogen multi-jets at supersonic flow: numerical study publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2020.106410 – volume: 8 start-page: 1194 year: 2018 ident: 10.1016/j.rineng.2022.100435_bib16 article-title: Exponentially varying viscosity of magnetohydrodynamicmixed convection EyringPowell nanofluid flow over aninclined surface publication-title: Results Phys. doi: 10.1016/j.rinp.2017.12.074 – year: 2020 ident: 10.1016/j.rineng.2022.100435_bib27 – volume: 119 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib46 article-title: Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media publication-title: Int. Commun. Heat Mass Tran. – year: 2022 ident: 10.1016/j.rineng.2022.100435_bib32 – volume: 10 start-page: 956 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib53 article-title: Electroviscous effect of water-base nanofluid flow between two parallel disks with suction/injection effect publication-title: Mathematics doi: 10.3390/math10060956 – volume: 5 start-page: 151 issue: 2 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib29 article-title: Similarity solution of forced convection flow of Powell-Eyring & Prandtl-Eyring fluids by group-Theoretic method publication-title: Math. J. Interdicipl. Sci. doi: 10.15415/mjis.2017.52012 – volume: 68 start-page: 335 issue: 4 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib7 article-title: Numerical analysis of the transient and non-isothermal channel flow of a third-grade fluid with convective cooling publication-title: Eng. Trans. – year: 2021 ident: 10.1016/j.rineng.2022.100435_bib2 article-title: Forced convection in 3D Maxwell nanofluid flow via Cattaneo–Christov theory with Joule heating – volume: 8 start-page: 130 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib4 article-title: Impacts of thermal radiation and heat consumption/generation on unsteady MHDConvection flow of an oldroyd-B fluid with ramped velocity and temperature in a GeneralizedDarcy medium publication-title: Mathematics doi: 10.3390/math8010130 – volume: 12 start-page: 180 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib55 article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field publication-title: Nanomaterials doi: 10.3390/nano12020180 – volume: 59 start-page: 4315 issue: 6 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib49 article-title: Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.07.036 – ident: 10.1016/j.rineng.2022.100435_bib21 doi: 10.1080/01430750.2020.1861094 – volume: 132 start-page: 325 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib22 article-title: A numerical investigation of the boundary layer flow of anEyringPowell fluid over a stretching sheet via rational Chebyshevfunctions publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11600-0 – volume: 135 start-page: 516 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib47 article-title: Entropy-optimized dissipative flow of Carreau–Yasuda fluid with radiative heat flux and chemical reaction publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00532-3 – volume: 42 start-page: 1191 year: 2021 ident: 10.1016/j.rineng.2022.100435_bib19 article-title: Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy publication-title: Appl. Math. Mech. doi: 10.1007/s10483-021-2753-7 – volume: 55 start-page: 875 issue: 2 year: 2016 ident: 10.1016/j.rineng.2022.100435_bib1 article-title: MHD free convection flow of Eyring–Powell fluidfrom vertical surface in porous media with Hall/ionslip currentsand ohmic dissipation publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.02.011 – volume: 45 start-page: 5227 issue: 7 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib23 article-title: Activationenergy impact on chemically reacting Eyring–PowellNanofluid flow over a stretching cylinder publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-020-04379-9 – volume: 19 start-page: 119 issue: 1 year: 2015 ident: 10.1016/j.rineng.2022.100435_bib37 article-title: Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, THERMAL SCIENCE publication-title: Year – volume: 80 start-page: 2796 year: 2020 ident: 10.1016/j.rineng.2022.100435_bib8 article-title: MHDnatural convection in a cavity in the presence of crosspartial magnetic-fields and Al2O3-water nanofluid publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.10.003 – volume: 90 start-page: 568 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib38 article-title: Slip flow and radiative heat transfer on a convectively heated vertical cylinder publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-017-1602-1 – volume: 29 year: 2016 ident: 10.1016/j.rineng.2022.100435_bib12 article-title: Thermalradiation e_ect in MHD flow of Powell-Eyring nanofluid inducedby a stretching cylinder publication-title: J. Aero. Eng. – start-page: 9 year: 2017 ident: 10.1016/j.rineng.2022.100435_bib50 – volume: 14 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib51 article-title: Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate publication-title: Result. Eng. doi: 10.1016/j.rineng.2022.100394 – volume: 26 start-page: 102383 year: 2022 ident: 10.1016/j.rineng.2022.100435_bib41 article-title: Influence of novel turbulator on efficiency of solar collector system publication-title: Environ. Technol. Innovat. doi: 10.1016/j.eti.2022.102383 |
SSID | ssj0002810137 |
Score | 2.4542553 |
Snippet | The analysis of heat dissipation over a layered stretching sheet under the control of magneto-hydrodynamic mixed convective flow of Eyring-Powell fluid is... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100435 |
SubjectTerms | Eyring-Powell fluid heat production heat transfer Magnetic field momentum Non-uniform heat source/sink temperature profiles Thermal radiation Thermal stratification |
Title | The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching |
URI | https://dx.doi.org/10.1016/j.rineng.2022.100435 https://www.proquest.com/docview/2718245152 https://doaj.org/article/1852ae82c4a54110b12e0b90b3e43956 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaClioSBX4mo18SNOjrRstaq0iEMr9WY5fqBW3SzaJgcu_Rf9v8zYSVm47IVLDpYfiWeSmXG--YaQz95GpW3pmLBSM6ljyepQWFZLiJ4rpaKyGCguv1WLa3l5o262Sn0hJizTA-eNO8XkXhtq7qRVEmxVW_JQtE3RigC2VCWybbB5W8HUXToyKkfCTHDvEX4giilvLoG7MLOu-wHhIeeIE5Cp2tsfu5To-_8yT_98qJP1uXhNXo1uI_2Sb_eAvAjdIXm5RSb4hjyBxOkIz6DrSJeLr3SDzAMIbKa28xQifTZ0mIq1ovgNpvnk_vQB4lGKB7KpFXuvOwqOIV0hPUM_rNLoNKJPfm7Y4ALzX7gw-77G8z8a74dbTxEQSi3FDJQ-oTSPyPXF_Op8wcaiC8xJVfaMe8eDck5qiMxcUTXKqca23mrteSVkdBDgiNI1sfbC-gABR1PpQrYRC1_FIN6SPXic8I7QQsYiIN-eDxrmdm1V8QRbrRtlG9HOiJi23LiRkRwLY9ybCXp2Z7KgDArKZEHNCHse9TMzcuzof4bSfO6LfNqpAbTMjFpmdmnZjOhJF8zommSXA6a63bH8yaQ6Bt5c_B1ju7AeHgwHt4DDvij-_n_c4geyj8tmGNsx2es3Q_gIDlPffkrvBlyXj_PfkiERaw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+MHD+radiating+and+non-uniform+heat+source%2Fsink+with+heating+on+the+momentum+and+heat+transfer+of+Eyring-Powell+fluid+over+a+stretching&rft.jtitle=Results+in+engineering&rft.au=Manvi%2C+Bharatkumar&rft.au=Tawade%2C+Jagadish&rft.au=Biradar%2C+Mahadev&rft.au=Noeiaghdam%2C+Samad&rft.date=2022-06-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=14+p.100435-&rft_id=info:doi/10.1016%2Fj.rineng.2022.100435&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |