Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine

Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomat...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 112; p. 110023
Main Authors Wang, Haiming, Zhou, Chaochao, Yu, Yan, Wang, Cong, Tsai, Tsung-Yuan, Han, Chaofan, Li, Guoan, Cha, Thomas
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 09.11.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2020.110023

Cover

Loading…
Abstract Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion–extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left–right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.
AbstractList Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.
Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.
Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion–extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left–right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.
ArticleNumber 110023
Author Wang, Cong
Li, Guoan
Zhou, Chaochao
Tsai, Tsung-Yuan
Cha, Thomas
Yu, Yan
Wang, Haiming
Han, Chaofan
Author_xml – sequence: 1
  givenname: Haiming
  surname: Wang
  fullname: Wang, Haiming
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
– sequence: 2
  givenname: Chaochao
  surname: Zhou
  fullname: Zhou, Chaochao
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
– sequence: 3
  givenname: Yan
  surname: Yu
  fullname: Yu, Yan
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
– sequence: 4
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Tsung-Yuan
  surname: Tsai
  fullname: Tsai, Tsung-Yuan
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Chaofan
  surname: Han
  fullname: Han, Chaofan
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
– sequence: 7
  givenname: Guoan
  surname: Li
  fullname: Li, Guoan
  email: gli1@partners.org
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
– sequence: 8
  givenname: Thomas
  surname: Cha
  fullname: Cha, Thomas
  organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32927126$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rHCEUxaWkNJu0XyEIfenLbNX54wilNIQmDQRKIH0Wde4kTmd0q87Cfvs62ezLviRPyuV3jtdzztCJ8w4QuqBkTQltvg7rQVs_gXlaM8LykBLCyndoRVteFqxsyQla5REtBBPkFJ3FOBBCeMXFB3RaMsE4Zc0KpftZuWT7nXWPOD0BDso9QsS-xwFGlewW8OST9e55thDWJQhbCAl0UCPubDQRK9fhXhlIePAZiJl6hp0PU4ZMVliTL3FjHXxE73s1Rvj0cp6jP9c_H65-FXe_b26vLu8KU9U0FUxoroBq0JqTqiO8rHvOoWpEa4BA13Sc6ZrRjgBoZkwluDHN8rVKC2poeY6-7H03wf-bISY55WVhHJUDP0fJqoq1Vc2IyOjnI3Twc3B5u0zVpeBtTjlTFy_UrCfo5CbYSYWdPOSZgW97wAQfY4BeGpvUEl8Kyo6SErnUJwd5qE8u9cl9fVneHMkPL7wq_LEXQo5zayHIaCw4A50NYJLsvH3d4vuRhRmtW0r7C7u3GPwHsCrNwg
CitedBy_id crossref_primary_10_4028_p_3td39z
crossref_primary_10_1007_s10439_022_03088_8
crossref_primary_10_1038_s41598_025_92658_6
crossref_primary_10_1002_cnm_3651
crossref_primary_10_1111_joa_13517
crossref_primary_10_1016_j_heliyon_2024_e30904
crossref_primary_10_1038_s41598_021_01319_x
crossref_primary_10_3389_fbioe_2021_688041
crossref_primary_10_1007_s40430_023_04096_y
crossref_primary_10_3389_fbioe_2022_960063
crossref_primary_10_1016_j_medengphy_2020_11_010
crossref_primary_10_1016_j_clinbiomech_2022_105756
crossref_primary_10_1016_j_jbiomech_2021_110513
Cites_doi 10.1016/j.jbiomech.2016.06.027
10.1016/j.spinee.2012.08.013
10.1088/0952-4746/28/2/R02
10.1097/BRS.0000000000001145
10.1097/01.brs.0000239125.54761.23
10.1097/01.brs.0000257577.70576.07
10.1097/00003086-197506000-00011
10.1016/j.jbiomech.2018.02.036
10.1097/BRS.0000000000000235
10.1097/00007632-199601010-00015
10.3171/SPI-07/07/033
10.1093/neuros/nyx579
10.1097/BRS.0b013e3181715295
10.1186/s12998-018-0223-x
10.1097/00007632-200112150-00012
10.1007/s00586-011-2090-1
10.1016/j.clinbiomech.2017.03.007
10.1007/BF00301048
10.1097/BRS.0b013e3181e218cb
10.1115/1.4045048
10.1016/j.jbiomech.2014.08.014
10.1097/BRS.0000000000000913
10.1016/j.jbiomech.2017.10.027
10.1115/1.4036311
10.1097/BSD.0b013e3182027297
10.3171/2013.11.SPINE13392
10.1097/01.brs.0000147740.69525.58
10.3171/2012.6.SPINE111104
10.1016/j.jbiomech.2019.109418
10.1097/BRS.0000000000001826
10.1097/BRS.0b013e31815cd482
10.1007/s12178-017-9398-3
10.2106/JBJS.K.01733
10.1097/00007632-198710000-00003
10.1007/s00586-007-0372-4
10.1097/01.brs.0000147806.31675.6b
10.3171/2010.3.FOCUS1046
10.1016/0021-9290(88)90285-0
10.1097/01.BRS.0000090836.50508.F7
10.1016/j.nec.2017.09.015
10.1097/01.BRS.0000099392.90849.AA
10.21037/jss.2018.06.16
10.1007/s00402-014-2125-2
10.1016/j.jbiomech.2015.02.049
10.1097/BRS.0b013e31828ca5c7
10.3109/s10165-006-0499-x
10.1097/BRS.0000000000002474
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2020.110023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 32927126
10_1016_j_jbiomech_2020_110023
S0021929020304462
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R03 AG056897
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-29b7ae1bebb704d0735f77e4698ce0ed6d72b521d0eeb2cc497cc629274b91c13
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 03:19:04 EDT 2025
Wed Aug 13 03:21:36 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Tue Jul 01 00:44:17 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Fri Feb 23 02:46:24 EST 2024
Tue Aug 26 17:10:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Range of motion
Facet joint
Intervertebral disc
In vivo neck motion
Cervical spine
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-29b7ae1bebb704d0735f77e4698ce0ed6d72b521d0eeb2cc497cc629274b91c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32927126
PQID 2453978020
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2442845209
proquest_journals_2453978020
pubmed_primary_32927126
crossref_citationtrail_10_1016_j_jbiomech_2020_110023
crossref_primary_10_1016_j_jbiomech_2020_110023
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_110023
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_110023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-09
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Penning, Wilmink (b0160) 1987; 12
Zhao, Zhang, Sun, Pan, Zhou, Liu (b0260) 2016; 41
Goffin, Van Calenbergh, Van Loon, Casey, Kehr, Liebig, Lind, Logroscino, Sgrambiglia, Pointillart (b0055) 2003; 28
Moroney, Schultz, Miller, Andersson (b0110) 1988; 21
Lin, Lu, Wang, Hsu, Hsu, Shih (b0090) 2014; 47
Wachowski, Weiland, Wagner, Gezzi, Kubein-Meesenburg, Nagerl (b0210) 2017; 1–9
Akter, Kotter (b0005) 2018; 29
Anderst, Lee, Donaldson, Kang (b0025) 2013; 95
Laratta, Reddy, Bratcher, McGraw, Carreon, Owens (b0080) 2018; 4
Uhrenholt, Charles, Gregersen, Hartvigsen, Hauge (b0200) 2018; 43
Wrixon (b0240) 2008; 28
Zhou, Willing (b0270) 2020; 142
Nagamoto, Ishii, Sakaura, Iwasaki, Moritomo, Kashii, Hattori, Yoshikawa, Sugamoto (b0120) 2011; 36
Henmi, Yonenobu, Masatomi, Oda (b0060) 2006; 16
Watanabe, Inoue, Yamaguchi, Hirano, Espinoza Orías, Nishida, Hirose, Mizuno (b0225) 2012; 21
Kang, Park, La Marca, Hollister, Lin (b0075) 2010; 28
Anderst, Donaldson, Lee, Kang (b0020) 2014; 39
Milne (b0105) 1991; 178
Niewiadomski, Bianco, Afquir, Evin, Arnoux (b0125) 2019; 27
Wang, Z., Zhao, H., Liu, J. ming, Tan, L. wen, Liu, P., Zhao, J. hua, 2016. Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model. J. Biomech. 49, 2854–2862. https://doi.org/10.1016/j.jbiomech.2016.06.027
Leven, Meaike, Radcliff, Qureshi (b0085) 2017; 10
Panjabi, Duranceau, Goel, Oxland, Takata (b0145) 1991
Dmitriev, Kuklo, Lehman, Rosner (b0050) 2007; 32
Luo, Gong, Huang, Yu, Zou (b0095) 2015; 135
Nunley, Coric, Frank, Stone (b0135) 2018; 83
Quarrington, Costi, Freeman, Jones (b0165) 2018; 72
Yu, Li, Guo, Lang, Kang, Cheng, Li, Cha (b0250) 2019; 18
Nouri, Tetreault, Singh, Karadimas, Fehlings (b0130) 2015
Wachowski, Ackenhausen, Dumont, Fanghanel, Kubein-Meesenburg, Nagerl (b0205) 2007
McDonald, Chang, McDonald, Ramo, Bey, Bartol (b0100) 2014; 20
Nagamoto, Ishii, Iwasaki, Sakaura, Moritomo, Fujimori, Kashii, Murase, Yoshikawa, Sugamoto (b0115) 2012; 17
Bauman, Jaumard, Guarino, Weisshaar, Lipschutz, Welch, Winkelstein (b0030) 2012; 12
Anderst, Baillargeon, Donaldson, Lee (b0010) 2013
Yu, Mao, Li, Tsai, Cheng, Wood, Li, Cha (b0255) 2017; 139
Senteler, Aiyangar, Weisse, Farshad, Snedeker (b0185) 2018; 70
Stieber, Quirno, Kang, Valdevit, Errico (b0195) 2011; 24
Dai (b0045) 1999; 37
Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima, Tamura, Iwasaki, Yoshikawa (b0065) 1976; 31
White, Johnson, Panjabi, Southwick (b0235) 1975; 109
Zhou, Wang, Wang, Tsai, Yu, Ostergaard, Li, Cha (b0265) 2020; 98
Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima, Tamura, Sugamoto, Yoshikawa (b0070) 2004; 29
Wu, Kuo, Lan, Tsai, Chen, Su (b0245) 2007; 16
Panjabi, Crisco, Vasavada, Oda, Cholewicki, Nibu, Shin (b0140) 2001; 26
Rong, Liu, Wang, Chen, Liu (b0175) 2017; 42
Reitman, C.A., Mauro, K.M., Nguyen, L., Ziegler, J.M., Hipp, J.A., Intervertebral motion between flexion and extension in asymptomatic individuals, Spine (Phila. Pa. 1976), 29, 2004, p. 2832–2843. https://doi.org/10.1097/01.brs.0000147740.69525.58
Schwab, DiAngelo, Foley (b0180) 2006; 31
Wen, Lavaste, Santin, Lassau (b0230) 1993; 2
Patel, Wuthrich, McGilvray, Lafleur, Lindley, Sun, Puttlitz (b0150) 2017; 44
Snyder, Tzermiadianos, Ghanayem, Voronov, Rinella, Dooris, Carandang, Renner, Havey, Patwardhan (b0190) 2007; 32
Chang, Kim, Lee, Willenberg, Kim, Lim (b0040) 2007; 7
Anderst, Donaldson, Lee, Kang (b0015) 2015; 48
Black, McClure, Polansky (b0035) 1996; 21
Pearson, Ivancic, Ito, Panjabi (b0155) 2004; 29
Wang, Passias, Li, Li, Wood (b0215) 2008; 33
Nouri (10.1016/j.jbiomech.2020.110023_b0130) 2015
Akter (10.1016/j.jbiomech.2020.110023_b0005) 2018; 29
Snyder (10.1016/j.jbiomech.2020.110023_b0190) 2007; 32
Milne (10.1016/j.jbiomech.2020.110023_b0105) 1991; 178
Zhao (10.1016/j.jbiomech.2020.110023_b0260) 2016; 41
Yu (10.1016/j.jbiomech.2020.110023_b0255) 2017; 139
10.1016/j.jbiomech.2020.110023_b0220
Wang (10.1016/j.jbiomech.2020.110023_b0215) 2008; 33
Kang (10.1016/j.jbiomech.2020.110023_b0075) 2010; 28
Anderst (10.1016/j.jbiomech.2020.110023_b0015) 2015; 48
Anderst (10.1016/j.jbiomech.2020.110023_b0025) 2013; 95
Nagamoto (10.1016/j.jbiomech.2020.110023_b0115) 2012; 17
White (10.1016/j.jbiomech.2020.110023_b0235) 1975; 109
Ishii (10.1016/j.jbiomech.2020.110023_b0065) 1976; 31
Schwab (10.1016/j.jbiomech.2020.110023_b0180) 2006; 31
Zhou (10.1016/j.jbiomech.2020.110023_b0270) 2020; 142
Wrixon (10.1016/j.jbiomech.2020.110023_b0240) 2008; 28
Wachowski (10.1016/j.jbiomech.2020.110023_b0205) 2007
Laratta (10.1016/j.jbiomech.2020.110023_b0080) 2018; 4
Dmitriev (10.1016/j.jbiomech.2020.110023_b0050) 2007; 32
McDonald (10.1016/j.jbiomech.2020.110023_b0100) 2014; 20
Patel (10.1016/j.jbiomech.2020.110023_b0150) 2017; 44
Wen (10.1016/j.jbiomech.2020.110023_b0230) 1993; 2
Panjabi (10.1016/j.jbiomech.2020.110023_b0145) 1991
Quarrington (10.1016/j.jbiomech.2020.110023_b0165) 2018; 72
Goffin (10.1016/j.jbiomech.2020.110023_b0055) 2003; 28
Pearson (10.1016/j.jbiomech.2020.110023_b0155) 2004; 29
Yu (10.1016/j.jbiomech.2020.110023_b0250) 2019; 18
Black (10.1016/j.jbiomech.2020.110023_b0035) 1996; 21
Leven (10.1016/j.jbiomech.2020.110023_b0085) 2017; 10
Lin (10.1016/j.jbiomech.2020.110023_b0090) 2014; 47
Nunley (10.1016/j.jbiomech.2020.110023_b0135) 2018; 83
Wu (10.1016/j.jbiomech.2020.110023_b0245) 2007; 16
Uhrenholt (10.1016/j.jbiomech.2020.110023_b0200) 2018; 43
Ishii (10.1016/j.jbiomech.2020.110023_b0070) 2004; 29
Moroney (10.1016/j.jbiomech.2020.110023_b0110) 1988; 21
Niewiadomski (10.1016/j.jbiomech.2020.110023_b0125) 2019; 27
10.1016/j.jbiomech.2020.110023_b0170
Bauman (10.1016/j.jbiomech.2020.110023_b0030) 2012; 12
Wachowski (10.1016/j.jbiomech.2020.110023_b0210) 2017; 1–9
Senteler (10.1016/j.jbiomech.2020.110023_b0185) 2018; 70
Henmi (10.1016/j.jbiomech.2020.110023_b0060) 2006; 16
Stieber (10.1016/j.jbiomech.2020.110023_b0195) 2011; 24
Dai (10.1016/j.jbiomech.2020.110023_b0045) 1999; 37
Luo (10.1016/j.jbiomech.2020.110023_b0095) 2015; 135
Nagamoto (10.1016/j.jbiomech.2020.110023_b0120) 2011; 36
Watanabe (10.1016/j.jbiomech.2020.110023_b0225) 2012; 21
Panjabi (10.1016/j.jbiomech.2020.110023_b0140) 2001; 26
Anderst (10.1016/j.jbiomech.2020.110023_b0020) 2014; 39
Zhou (10.1016/j.jbiomech.2020.110023_b0265) 2020; 98
Chang (10.1016/j.jbiomech.2020.110023_b0040) 2007; 7
Penning (10.1016/j.jbiomech.2020.110023_b0160) 1987; 12
Rong (10.1016/j.jbiomech.2020.110023_b0175) 2017; 42
Anderst (10.1016/j.jbiomech.2020.110023_b0010) 2013
References_xml – volume: 36
  start-page: 778
  year: 2011
  end-page: 783
  ident: b0120
  article-title: In Vivo Three-Dimensional Kinematics of the Cervical Spine During Head Rotation in Patients With Cervical Spondylosis
  publication-title: Spine (Phila Pa. 1976)
– volume: 1–9
  year: 2017
  ident: b0210
  article-title: Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty
  publication-title: Eur. Spine J.
– volume: 27
  start-page: 9
  year: 2019
  ident: b0125
  article-title: Experimental assessment of cervical ranges of motion and compensatory strategies
  publication-title: Chiropr. Man. Therap.
– volume: 18
  start-page: 32
  year: 2019
  end-page: 39
  ident: b0250
  article-title: Normal intervertebral segment rotation of the subaxial cervical spine: An in vivo study of dynamic neck motions
  publication-title: J. Orthop. Transl.
– volume: 21
  start-page: 769
  year: 1988
  end-page: 779
  ident: b0110
  article-title: Load-displacement properties of lower cervical spine motion segments
  publication-title: J. Biomech.
– volume: 98
  year: 2020
  ident: b0265
  article-title: Intervertebral range of motion characteristics of normal cervical spinal segments (C0–T1) during in vivo neck motions
  publication-title: J. Biomech.
– volume: 33
  start-page: E355
  year: 2008
  end-page: E361
  ident: b0215
  article-title: Measurement of vertebral kinematics using noninvasive image matching method-validation and application
  publication-title: Spine (Phila. Pa. 1976)
– volume: 29
  start-page: 13
  year: 2018
  end-page: 19
  ident: b0005
  article-title: Pathobiology of Degenerative Cervical Myelopathy
  publication-title: Neurosurg. Clin. N. Am.
– volume: 21
  start-page: 65
  year: 1996
  end-page: 70
  ident: b0035
  article-title: The influence of different sitting positions on cervical and lumbar posture
  publication-title: Spine (Phila. Pa. 1976)
– volume: 29
  start-page: 2826
  year: 2004
  end-page: 2831
  ident: b0070
  article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis
  publication-title: Spine (Phila. Pa. 1976)
– volume: 17
  start-page: 327
  year: 2012
  end-page: 333
  ident: b0115
  article-title: Three-dimensional motion of the uncovertebral joint during head rotation: Clinical article
  publication-title: J. Neurosurg. Spine
– volume: 29
  start-page: 390
  year: 2004
  end-page: 397
  ident: b0155
  article-title: Facet Joint Kinematics and Injury Mechanisms during Simulated Whiplash
  publication-title: Spine (Phila. Pa. 1976)
– volume: 109
  start-page: 85
  year: 1975
  end-page: 96
  ident: b0235
  article-title: Biomechanical analysis of clinical stability in the cervical spine
  publication-title: Clin. Orthop.
– volume: 26
  start-page: 2692
  year: 2001
  end-page: 2700
  ident: b0140
  article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves
  publication-title: Spine (Phila. Pa. 1976)
– volume: 16
  start-page: 1435
  year: 2007
  end-page: 1444
  ident: b0245
  article-title: The quantitative measurements of the intervertebral angulation and translation during cervical flexion and extension
  publication-title: Eur. Spine J.
– volume: 37
  start-page: 180
  year: 1999
  end-page: 182
  ident: b0045
  article-title: Disc degeneration and cervical instability
  publication-title: Zhonghua Wai Ke Za Zhi
– volume: 7
  start-page: 33
  year: 2007
  end-page: 39
  ident: b0040
  article-title: Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion
  publication-title: J. Neurosurg. Spine
– volume: 139
  year: 2017
  ident: b0255
  article-title: Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck
  publication-title: J. Biomech. Eng.
– volume: 95
  start-page: 497
  year: 2013
  end-page: 506
  ident: b0025
  article-title: Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis
  publication-title: J. Bone Jt. Surg.
– volume: 31
  start-page: 2439
  year: 2006
  end-page: 2448
  ident: b0180
  article-title: Motion compensation associated with single-level cervical fusion: Where does the lost motion go?
  publication-title: Spine (Phila Pa. 1976)
– volume: 48
  start-page: 1286
  year: 2015
  end-page: 1293
  ident: b0015
  article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading
  publication-title: J. Biomech.
– volume: 135
  start-page: 155
  year: 2015
  end-page: 160
  ident: b0095
  article-title: Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies
  publication-title: Arch. Orthop. Trauma Surg.
– volume: 28
  start-page: 2673
  year: 2003
  end-page: 2678
  ident: b0055
  article-title: Intermediate Follow-up after Treatment of Degenerative Disc Disease with the Bryan Cervical Disc Prosthesis: Single-Level and Bi-Level
  publication-title: Spine (Phila Pa. 1976)
– volume: 21
  start-page: 946
  year: 2012
  end-page: 955
  ident: b0225
  article-title: Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: a preliminary report
  publication-title: Eur. Spine J.
– start-page: E594
  year: 2013
  end-page: E601
  ident: b0010
  article-title: Kang Motion Path of the Instant Center of Rotation in the Cervical Spine During In Vivo Dynamic Flexion-Extension
  publication-title: Spine (Phila Pa. 1976)
– volume: 12
  start-page: 732
  year: 1987
  end-page: 738
  ident: b0160
  article-title: Rotation of the cervical spine: A CT study in normal subjects
  publication-title: Spine (Phila Pa.1976)
– volume: 72
  start-page: 116
  year: 2018
  end-page: 124
  ident: b0165
  article-title: Quantitative evaluation of facet deflection, stiffness, strain and failure load during simulated cervical spine trauma
  publication-title: J. Biomech.
– volume: 39
  start-page: E514
  year: 2014
  end-page: E520
  ident: b0020
  article-title: In vivo cervical facet joint capsule deformation during flexion-extension
  publication-title: Spine (Phila. Pa. 1976)
– volume: 16
  start-page: 289
  year: 2006
  end-page: 293
  ident: b0060
  article-title: A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system
  publication-title: Mod. Rheumatol.
– volume: 42
  start-page: E320
  year: 2017
  end-page: E325
  ident: b0175
  article-title: The Facet Orientation of the Subaxial Cervical Spine and the Implications for Cervical Movements and Clinical Conditions
  publication-title: Spine (Phila Pa. 1976)
– volume: 12
  start-page: 949
  year: 2012
  end-page: 959
  ident: b0030
  article-title: Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: A single-level cadaveric study
  publication-title: Spine J.
– volume: 47
  start-page: 3310
  year: 2014
  end-page: 3317
  ident: b0090
  article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach
  publication-title: J. Biomech.
– volume: 32
  start-page: E188
  year: 2007
  end-page: E196
  ident: b0050
  article-title: Stabilizing Potential of Anterior, Posterior, and Circumferential Fixation for Multilevel Cervical Arthrodesis
  publication-title: Spine (Phila Pa.1976)
– volume: 24
  start-page: 432
  year: 2011
  end-page: 436
  ident: b0195
  article-title: The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation
  publication-title: J. Spinal Disord. Tech.
– volume: 10
  start-page: 160
  year: 2017
  end-page: 169
  ident: b0085
  article-title: Cervical disc replacement surgery: indications, technique, and technical pearls
  publication-title: Curr. Rev. Musculoskelet. Med.
– year: 2015
  ident: b0130
  article-title: Degenerative cervical myelopathy: Epidemiology, genetics, and pathogenesis
  publication-title: Spine (Phila Pa.1976)
– volume: 2
  start-page: 2
  year: 1993
  end-page: 11
  ident: b0230
  article-title: Three-dimensional biomechanical properties of the human cervical spine in vitro - I. Analysis of normal motion
  publication-title: Eur. Spine J.
– volume: 31
  start-page: 155
  year: 1976
  end-page: 160
  ident: b0065
  article-title: Sugamoto Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis
  publication-title: Spine (Phila Pa. 1976)
– volume: 83
  start-page: 1087
  year: 2018
  end-page: 1106
  ident: b0135
  article-title: Cervical Disc Arthroplasty: Current Evidence and Real-World Application
  publication-title: Clin. Neurosurg.
– volume: 32
  start-page: 2965
  year: 2007
  end-page: 2969
  ident: b0190
  article-title: Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement
  publication-title: Spine (Phila Pa. 1976)
– volume: 28
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0075
  article-title: Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: An in vivo image-based finite element study
  publication-title: Neurosurg. Focus
– volume: 20
  start-page: 245
  year: 2014
  end-page: 255
  ident: b0100
  article-title: Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article
  publication-title: J. Neurosurg. Spine
– volume: 178
  start-page: 189
  year: 1991
  end-page: 201
  ident: b0105
  article-title: The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine
  publication-title: J. Anat.
– volume: 28
  start-page: 161
  year: 2008
  end-page: 168
  ident: b0240
  article-title: New ICRP recommendations
  publication-title: J. Radiol. Prot.
– year: 1991
  ident: b0145
  article-title: Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions
  publication-title: Spine (Phila. Pa. 1976)
– reference: Reitman, C.A., Mauro, K.M., Nguyen, L., Ziegler, J.M., Hipp, J.A., Intervertebral motion between flexion and extension in asymptomatic individuals, Spine (Phila. Pa. 1976), 29, 2004, p. 2832–2843. https://doi.org/10.1097/01.brs.0000147740.69525.58
– volume: 43
  start-page: E689
  year: 2018
  end-page: E696
  ident: b0200
  article-title: Histological Osteoarthritic Changes in the Human Cervical Spine Facet Joints Related to Age and Sex
  publication-title: Spine (Phila Pa. 1976)
– reference: Wang, Z., Zhao, H., Liu, J. ming, Tan, L. wen, Liu, P., Zhao, J. hua, 2016. Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model. J. Biomech. 49, 2854–2862. https://doi.org/10.1016/j.jbiomech.2016.06.027
– start-page: 5
  year: 2007
  end-page: 15
  ident: b0205
  article-title: Mechanical properties of cervical motion segments
  publication-title: Arch. Mech. Eng.
– volume: 142
  year: 2020
  ident: b0270
  article-title: Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics
  publication-title: J. Biomech. Eng.
– volume: 4
  start-page: 496
  year: 2018
  end-page: 500
  ident: b0080
  article-title: Outcomes and revision rates following multilevel anterior cervical discectomy and fusion
  publication-title: J. Spine Surg.
– volume: 70
  start-page: 140
  year: 2018
  end-page: 148
  ident: b0185
  article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
  publication-title: J. Biomech.
– volume: 41
  start-page: 111
  year: 2016
  end-page: 115
  ident: b0260
  article-title: Application of cervical arthroplasty with bryan cervical disc 10-year follow-up results in China
  publication-title: Spine (Phila Pa. 1976)
– volume: 44
  start-page: 52
  year: 2017
  end-page: 58
  ident: b0150
  article-title: Cervical facet force analysis after disc replacement versus fusion
  publication-title: Clin. Biomech. (Bristol, Avon)
– ident: 10.1016/j.jbiomech.2020.110023_b0220
  doi: 10.1016/j.jbiomech.2016.06.027
– volume: 12
  start-page: 949
  year: 2012
  ident: 10.1016/j.jbiomech.2020.110023_b0030
  article-title: Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: A single-level cadaveric study
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2012.08.013
– volume: 28
  start-page: 161
  year: 2008
  ident: 10.1016/j.jbiomech.2020.110023_b0240
  article-title: New ICRP recommendations
  publication-title: J. Radiol. Prot.
  doi: 10.1088/0952-4746/28/2/R02
– volume: 41
  start-page: 111
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110023_b0260
  article-title: Application of cervical arthroplasty with bryan cervical disc 10-year follow-up results in China
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0000000000001145
– volume: 31
  start-page: 2439
  year: 2006
  ident: 10.1016/j.jbiomech.2020.110023_b0180
  article-title: Motion compensation associated with single-level cervical fusion: Where does the lost motion go?
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/01.brs.0000239125.54761.23
– volume: 32
  start-page: E188
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110023_b0050
  article-title: Stabilizing Potential of Anterior, Posterior, and Circumferential Fixation for Multilevel Cervical Arthrodesis
  publication-title: Spine (Phila Pa.1976)
  doi: 10.1097/01.brs.0000257577.70576.07
– volume: 1–9
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110023_b0210
  article-title: Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty
  publication-title: Eur. Spine J.
– volume: 109
  start-page: 85
  year: 1975
  ident: 10.1016/j.jbiomech.2020.110023_b0235
  article-title: Biomechanical analysis of clinical stability in the cervical spine
  publication-title: Clin. Orthop.
  doi: 10.1097/00003086-197506000-00011
– volume: 37
  start-page: 180
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110023_b0045
  article-title: Disc degeneration and cervical instability
  publication-title: Zhonghua Wai Ke Za Zhi
– volume: 72
  start-page: 116
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0165
  article-title: Quantitative evaluation of facet deflection, stiffness, strain and failure load during simulated cervical spine trauma
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.02.036
– volume: 39
  start-page: E514
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110023_b0020
  article-title: In vivo cervical facet joint capsule deformation during flexion-extension
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/BRS.0000000000000235
– volume: 21
  start-page: 65
  year: 1996
  ident: 10.1016/j.jbiomech.2020.110023_b0035
  article-title: The influence of different sitting positions on cervical and lumbar posture
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/00007632-199601010-00015
– volume: 7
  start-page: 33
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110023_b0040
  article-title: Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion
  publication-title: J. Neurosurg. Spine
  doi: 10.3171/SPI-07/07/033
– volume: 83
  start-page: 1087
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0135
  article-title: Cervical Disc Arthroplasty: Current Evidence and Real-World Application
  publication-title: Clin. Neurosurg.
  doi: 10.1093/neuros/nyx579
– volume: 33
  start-page: E355
  year: 2008
  ident: 10.1016/j.jbiomech.2020.110023_b0215
  article-title: Measurement of vertebral kinematics using noninvasive image matching method-validation and application
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/BRS.0b013e3181715295
– volume: 27
  start-page: 9
  year: 2019
  ident: 10.1016/j.jbiomech.2020.110023_b0125
  article-title: Experimental assessment of cervical ranges of motion and compensatory strategies
  publication-title: Chiropr. Man. Therap.
  doi: 10.1186/s12998-018-0223-x
– volume: 26
  start-page: 2692
  year: 2001
  ident: 10.1016/j.jbiomech.2020.110023_b0140
  article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/00007632-200112150-00012
– volume: 21
  start-page: 946
  year: 2012
  ident: 10.1016/j.jbiomech.2020.110023_b0225
  article-title: Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: a preliminary report
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-011-2090-1
– volume: 44
  start-page: 52
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110023_b0150
  article-title: Cervical facet force analysis after disc replacement versus fusion
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2017.03.007
– volume: 2
  start-page: 2
  year: 1993
  ident: 10.1016/j.jbiomech.2020.110023_b0230
  article-title: Three-dimensional biomechanical properties of the human cervical spine in vitro - I. Analysis of normal motion
  publication-title: Eur. Spine J.
  doi: 10.1007/BF00301048
– volume: 36
  start-page: 778
  year: 2011
  ident: 10.1016/j.jbiomech.2020.110023_b0120
  article-title: In Vivo Three-Dimensional Kinematics of the Cervical Spine During Head Rotation in Patients With Cervical Spondylosis
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0b013e3181e218cb
– volume: 142
  year: 2020
  ident: 10.1016/j.jbiomech.2020.110023_b0270
  article-title: Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4045048
– volume: 47
  start-page: 3310
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110023_b0090
  article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.08.014
– year: 2015
  ident: 10.1016/j.jbiomech.2020.110023_b0130
  article-title: Degenerative cervical myelopathy: Epidemiology, genetics, and pathogenesis
  publication-title: Spine (Phila Pa.1976)
  doi: 10.1097/BRS.0000000000000913
– volume: 18
  start-page: 32
  year: 2019
  ident: 10.1016/j.jbiomech.2020.110023_b0250
  article-title: Normal intervertebral segment rotation of the subaxial cervical spine: An in vivo study of dynamic neck motions
  publication-title: J. Orthop. Transl.
– volume: 70
  start-page: 140
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0185
  article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.027
– volume: 139
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110023_b0255
  article-title: Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4036311
– volume: 24
  start-page: 432
  year: 2011
  ident: 10.1016/j.jbiomech.2020.110023_b0195
  article-title: The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation
  publication-title: J. Spinal Disord. Tech.
  doi: 10.1097/BSD.0b013e3182027297
– volume: 178
  start-page: 189
  year: 1991
  ident: 10.1016/j.jbiomech.2020.110023_b0105
  article-title: The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine
  publication-title: J. Anat.
– volume: 20
  start-page: 245
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110023_b0100
  article-title: Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article
  publication-title: J. Neurosurg. Spine
  doi: 10.3171/2013.11.SPINE13392
– ident: 10.1016/j.jbiomech.2020.110023_b0170
  doi: 10.1097/01.brs.0000147740.69525.58
– volume: 31
  start-page: 155
  issue: 2006
  year: 1976
  ident: 10.1016/j.jbiomech.2020.110023_b0065
  article-title: Sugamoto Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis
  publication-title: Spine (Phila Pa. 1976)
– volume: 17
  start-page: 327
  year: 2012
  ident: 10.1016/j.jbiomech.2020.110023_b0115
  article-title: Three-dimensional motion of the uncovertebral joint during head rotation: Clinical article
  publication-title: J. Neurosurg. Spine
  doi: 10.3171/2012.6.SPINE111104
– volume: 98
  year: 2020
  ident: 10.1016/j.jbiomech.2020.110023_b0265
  article-title: Intervertebral range of motion characteristics of normal cervical spinal segments (C0–T1) during in vivo neck motions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109418
– volume: 42
  start-page: E320
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110023_b0175
  article-title: The Facet Orientation of the Subaxial Cervical Spine and the Implications for Cervical Movements and Clinical Conditions
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0000000000001826
– volume: 32
  start-page: 2965
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110023_b0190
  article-title: Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0b013e31815cd482
– volume: 10
  start-page: 160
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110023_b0085
  article-title: Cervical disc replacement surgery: indications, technique, and technical pearls
  publication-title: Curr. Rev. Musculoskelet. Med.
  doi: 10.1007/s12178-017-9398-3
– volume: 95
  start-page: 497
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110023_b0025
  article-title: Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis
  publication-title: J. Bone Jt. Surg.
  doi: 10.2106/JBJS.K.01733
– volume: 12
  start-page: 732
  year: 1987
  ident: 10.1016/j.jbiomech.2020.110023_b0160
  article-title: Rotation of the cervical spine: A CT study in normal subjects
  publication-title: Spine (Phila Pa.1976)
  doi: 10.1097/00007632-198710000-00003
– volume: 16
  start-page: 1435
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110023_b0245
  article-title: The quantitative measurements of the intervertebral angulation and translation during cervical flexion and extension
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-007-0372-4
– volume: 29
  start-page: 2826
  year: 2004
  ident: 10.1016/j.jbiomech.2020.110023_b0070
  article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/01.brs.0000147806.31675.6b
– volume: 28
  start-page: 1
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110023_b0075
  article-title: Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: An in vivo image-based finite element study
  publication-title: Neurosurg. Focus
  doi: 10.3171/2010.3.FOCUS1046
– volume: 21
  start-page: 769
  year: 1988
  ident: 10.1016/j.jbiomech.2020.110023_b0110
  article-title: Load-displacement properties of lower cervical spine motion segments
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90285-0
– volume: 29
  start-page: 390
  year: 2004
  ident: 10.1016/j.jbiomech.2020.110023_b0155
  article-title: Facet Joint Kinematics and Injury Mechanisms during Simulated Whiplash
  publication-title: Spine (Phila. Pa. 1976)
  doi: 10.1097/01.BRS.0000090836.50508.F7
– volume: 29
  start-page: 13
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0005
  article-title: Pathobiology of Degenerative Cervical Myelopathy
  publication-title: Neurosurg. Clin. N. Am.
  doi: 10.1016/j.nec.2017.09.015
– volume: 28
  start-page: 2673
  year: 2003
  ident: 10.1016/j.jbiomech.2020.110023_b0055
  article-title: Intermediate Follow-up after Treatment of Degenerative Disc Disease with the Bryan Cervical Disc Prosthesis: Single-Level and Bi-Level
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/01.BRS.0000099392.90849.AA
– volume: 4
  start-page: 496
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0080
  article-title: Outcomes and revision rates following multilevel anterior cervical discectomy and fusion
  publication-title: J. Spine Surg.
  doi: 10.21037/jss.2018.06.16
– volume: 135
  start-page: 155
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110023_b0095
  article-title: Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies
  publication-title: Arch. Orthop. Trauma Surg.
  doi: 10.1007/s00402-014-2125-2
– volume: 48
  start-page: 1286
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110023_b0015
  article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.049
– start-page: E594
  issue: 38
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110023_b0010
  article-title: Kang Motion Path of the Instant Center of Rotation in the Cervical Spine During In Vivo Dynamic Flexion-Extension
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0b013e31828ca5c7
– volume: 16
  start-page: 289
  year: 2006
  ident: 10.1016/j.jbiomech.2020.110023_b0060
  article-title: A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system
  publication-title: Mod. Rheumatol.
  doi: 10.3109/s10165-006-0499-x
– year: 1991
  ident: 10.1016/j.jbiomech.2020.110023_b0145
  article-title: Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions
  publication-title: Spine (Phila. Pa. 1976)
– volume: 43
  start-page: E689
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110023_b0200
  article-title: Histological Osteoarthritic Changes in the Human Cervical Spine Facet Joints Related to Age and Sex
  publication-title: Spine (Phila Pa. 1976)
  doi: 10.1097/BRS.0000000000002474
– start-page: 5
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110023_b0205
  article-title: Mechanical properties of cervical motion segments
  publication-title: Arch. Mech. Eng.
SSID ssj0007479
Score 2.4141946
Snippet Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110023
SubjectTerms Asymptomatic
Biomechanical Phenomena
Biomechanics
Cervical spine
Cervical Vertebrae - diagnostic imaging
Degenerative disc disease
Facet joint
Fluoroscopic imaging
Humans
In vivo neck motion
Intervertebral Disc
Intervertebral discs
Investigations
Kinematics
Magnetic resonance imaging
Neck
Range of motion
Range of Motion, Articular
Segments
Spine (cervical)
Tomography
Translation
Translations
Twisting
Vertebrae
Zygapophyseal Joint - diagnostic imaging
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5KH0b3MLZ0P7K1Q4WxNzeWLEfVYykrZdBBoYW-CUmWISFzQuwU-tK_fXeynHUPpYW9xfYdcaTT6S73fSeAb7j8hUU3l0nnQybLWmcnVnMM5JzLqwqtpKZE8fLX9OJG_rwtb3fgbODCEKwy-f7ep0dvne5M0mhOVrMZcXxxtQlNpTSqSpIfllKRlR8__IV5YLicYB48I-lHLOH58Txy3GNRQkREfC6KpzaopwLQuBGdv4U3KYJkp_1LvoOd0Ixg_7TB7Pn3PfvOIqYz_lk-gteP2g2O4NVlKqTvQ3e1sQQTIpITwxiQrYlk0LJlzXp2y11g_QE_8R5JzHp05LqjUvOCEZ23ZbapWG196Nh8iQItSkXhhkLhBfPRE-GHdoVf-x5uzn9cn11k6QCGzMuSd5nQTtnAXXBO5bJCb1DWSgU6dNKHPFTTSgmH-3-VB0zQvZdaeT8VGjNdp7nnxQfYbZZN-ATMcalCWVjuMGajtnAnopBlEbTXIgRvx1AOo2586k5Oh2QszABDm5thtgzNlulnawyTrd6q78_xrIYaJtUM7FP0lwa3kGc19VbzHxt9ke7BYD8meYnWCBwB6gAl8jEcbR_j-qaijW3CckMymCBKAiuN4WNvd9sfWtBQczH9_B8v9gX26CrSK_UB7HbrTTjEOKtzX-NC-gOWlCXc
  priority: 102
  providerName: Elsevier
Title Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929020304462
https://dx.doi.org/10.1016/j.jbiomech.2020.110023
https://www.ncbi.nlm.nih.gov/pubmed/32927126
https://www.proquest.com/docview/2453978020
https://www.proquest.com/docview/2442845209
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xTULwgKDjozAqIyHessVO0sxPqKBNBbQKEJP6ZtmOI60qSWlSJF7427lznLCXMZ4aNXf5Ovv8O98XwGuc_kKjmotSY12UZqWMTrXkCOSMiYsCR0lJhuLFYjq_TD8us2XYcGtCWGWvE72iLmpLe-QnIs0SqpYj4rebHxF1jSLvamihsQcHVLqMQrry5WBwUW34EOLBI4QB8bUM4dXxyue3e4eE8NHwsUhuWpxuAp9-ETp_CA8CemSzTtyP4I6rRnA4q9By_v6LvWE-ntNvlI_g_rVSgyO4exGc6IfQftlpChGiBCeG-I9tKcGgYXXJusyWn451zX38f0Rx1UVGbltyM68ZpfI2TFcFK7V1LVvVSNAglSeuCAavmfVaCA-aDd72MVyen317P49C84XIphlvIyFNrh03zpg8TgvUBFmZ544aTloXu2Ja5MLg2l_EDo1za1OZWzsVEq1cI7nlyRPYr-rKPQNmeJq7LNHcIF6jknCnIkFpOmmlcM7qMWT9V1c2VCanBhlr1YegrVQvLUXSUp20xnAy8G262hy3cuS9UFWfeYq6UuHycSunHDgDNukwx3_xHvXjRwUN0ai_43kMr4bTOLfJYaMrV--IBo3DlAKVxvC0G3fDiyb0qbmYPv_3xV_APXoSnz0pj2C_3e7cS4RRrZnA3vFvPvEzZgIHsw-f5gv8fXe2-Pz1D941H88
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAJ6qCDlESiwSMDN1F6v4-6hQgVapbSJALVSb4t3vZaIgp3GDqh_qr-xM-sHvZRy6c2yZ-zEMzv7jecF8AaXP0_QzHlCG-uJKJPediIDBHJa-2mKWpKRozieDEcn4stpdLoCF20tDKVVtjbRGeq0MPSNfIuLKKRuOdz_MD_zaGoURVfbERq1Whza8z_ospU7B59Rvm853987_jTymqkCnhFRUHlc6jixgbZax75IUcWjLI4tTVI01rfpMI25xk0t9S16ncYIGRsz5BLdNy0DE4R43zuwKkJ0ZXqw-nFv8vV7Z_sRnDdJJYGHwMO_UpM8fT91FfUuBMJd_r3Pw-u2w-vgrtv29h_AeoNX2W6tYA9hxeZ92NjN0Vf_dc7eMZdB6j7N92HtSnPDPtwdN2H7Dai-LRNKSqKSKoaIky2opKFkRcbqWprfltXjhNw5ovhZ52IuKgpszxgVD5csyVOWJcZWbFogQYlUjjgn4D1jxtk9PCjn-NhHcHIrgnkMvbzI7VNgOhCxjcIk0IgQqQndNg9Rf6w0kltrkgFE7VtXpumFTiM5ZqpNepuqVlqKpKVqaQ1gq-Ob191AbuSIW6GqttYVrbPCDetGTtlxNmioRjn_xbvZ6o9qbFKp_q6gAbzuLqM1oRBRkttiSTTojgpKjRrAk1rvuj8a0qsO-PDZv2_-Cu6NjsdH6uhgcvgc7tOvcrWbchN61WJpXyCIq_TLZuUw-HHbi_USpUlabA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwqCCFEiiwSMDNxLu24-4BoaolaimtQKJSbsvuei0RBTvETlH_Gr-OmfWjvZRy6S1KZpzE89hvPC-A12j-QqObC2JjXRAnuQx2teQI5IwJswy1JKdA8eR0fHgWf5om0zX40_XCUFll5xO9o85KS8_IRyJOIpqWI8JR3pZFfDmYfFj8CmiDFGVau3UajYocu4vfGL5V748OUNZvhJh8_LZ_GLQbBgIbJ7wOhDSpdtw4Y9IwzlDdkzxNHW1VtC502ThLhcEDLgsdRqDWxjK1diwkhnJGcssjvO4duItsnGwsnfbBHs2lb8tLeIAQJLzSnTx7N_O99T4ZInwlfiii6w7G64CvPwAnD2CzRa5sr1G1h7DmigFs7RUYtf-8YG-ZryX1D-kHcP_KmMMBbJy0CfwtqL-uNJUnUXMVQ-zJltTcULEyZ01XzbljzWIh_x5R_GiqMpc1pbjnjNqIK6aLjOXauprNSiSokMoTFwTB58x6D4gvqgV-7SM4uxWxPIb1oizcE2CGx6lLIs0NYkUaR7crItQkJ60Uzlk9hKS768q2U9FpOcdcdeVvM9VJS5G0VCOtIYx6vkUzF-RGjrQTquq6XtFPKzy6buSUPWeLixq881-8O53-qNY7VerSlobwqv8Y_Qoli3ThyhXRYGAaU5HUELYbvev_aES3movx039f_CVsoImqz0enx8_gHv0o38Qpd2C9Xq7cc0RztXnhzYbB99u207_h3F08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+ranges+of+relative+motions+of+the+intervertebral+discs+and+facet+joints+in+the+normal+cervical+spine&rft.jtitle=Journal+of+biomechanics&rft.au=Wang%2C+Haiming&rft.au=Zhou%2C+Chaochao&rft.au=Yu%2C+Yan&rft.au=Wang%2C+Cong&rft.date=2020-11-09&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=112&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.110023&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon