Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine
Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomat...
Saved in:
Published in | Journal of biomechanics Vol. 112; p. 110023 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
09.11.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2020.110023 |
Cover
Loading…
Abstract | Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion–extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left–right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs. |
---|---|
AbstractList | Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs.Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs. Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion-extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left-right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs. Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane fluoroscopic imaging, we investigated the ranges of motion (ROMs) of the three joints in the cervical spines (from C3 to C7) of eighteen asymptomatic subjects. Three functional neck motions were examined, including flexion–extension (FE), lateral bending (LB) and axial twisting (AT). Our measurements showed that the translations of both IVD and FJs primarily occurred in the sagittal plane during all neck motions, and the anteroposterior translations of IVDs were significantly smaller than those of the corresponding FJs (p < 0.05) at all segments. For example, the ranges of IVD and FJ anteroposterior translations at C3/4 were 2.7 ± 0.7 mm vs. 3.5 ± 1.1 mm in FE, 0.9 ± 0.5 mm vs. 4.6 ± 1.1 mm in LB, and 1.0 ± 0.5 mm vs. 3.1 ± 1.0 mm in AT. Furthermore, we introduced an IVD-FJ translation ratio, which represents the ratio of the IVD to FJ translational ROMs. In FE neck motion, the IVD-FJ anteroposterior translation ratios decreased from 0.81 ± 0.18 at C3 to 0.52 ± 0.19 at C3, indicating gradually increasing resistances of IVDs compared to FJs from the proximal to distal levels. In LB neck motion, the smallest IVD-FJ translation ratios (0.14 ± 0.09 and 0.43 ± 0.30) occurred at C4/5 for both anteroposterior and left–right translations. In AT neck motion, the largest IVD-FJ anteroposterior translation ratio (0.42 ± 0.21) occurred at C3/4, and was significantly different from those at C4/5 and C5/6 (p < 0.05). These data could be used as references for improving motion-preserving cervical treatment methods that aimed to achieve the normal ranges of translational motions of both IVD and FJs. |
ArticleNumber | 110023 |
Author | Wang, Cong Li, Guoan Zhou, Chaochao Tsai, Tsung-Yuan Cha, Thomas Yu, Yan Wang, Haiming Han, Chaofan |
Author_xml | – sequence: 1 givenname: Haiming surname: Wang fullname: Wang, Haiming organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA – sequence: 2 givenname: Chaochao surname: Zhou fullname: Zhou, Chaochao organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA – sequence: 3 givenname: Yan surname: Yu fullname: Yu, Yan organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA – sequence: 4 givenname: Cong surname: Wang fullname: Wang, Cong organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Tsung-Yuan surname: Tsai fullname: Tsai, Tsung-Yuan organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Chaofan surname: Han fullname: Han, Chaofan organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA – sequence: 7 givenname: Guoan surname: Li fullname: Li, Guoan email: gli1@partners.org organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA – sequence: 8 givenname: Thomas surname: Cha fullname: Cha, Thomas organization: Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital, Harvard Medical School, Newton, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32927126$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9rHCEUxaWkNJu0XyEIfenLbNX54wilNIQmDQRKIH0Wde4kTmd0q87Cfvs62ezLviRPyuV3jtdzztCJ8w4QuqBkTQltvg7rQVs_gXlaM8LykBLCyndoRVteFqxsyQla5REtBBPkFJ3FOBBCeMXFB3RaMsE4Zc0KpftZuWT7nXWPOD0BDso9QsS-xwFGlewW8OST9e55thDWJQhbCAl0UCPubDQRK9fhXhlIePAZiJl6hp0PU4ZMVliTL3FjHXxE73s1Rvj0cp6jP9c_H65-FXe_b26vLu8KU9U0FUxoroBq0JqTqiO8rHvOoWpEa4BA13Sc6ZrRjgBoZkwluDHN8rVKC2poeY6-7H03wf-bISY55WVhHJUDP0fJqoq1Vc2IyOjnI3Twc3B5u0zVpeBtTjlTFy_UrCfo5CbYSYWdPOSZgW97wAQfY4BeGpvUEl8Kyo6SErnUJwd5qE8u9cl9fVneHMkPL7wq_LEXQo5zayHIaCw4A50NYJLsvH3d4vuRhRmtW0r7C7u3GPwHsCrNwg |
CitedBy_id | crossref_primary_10_4028_p_3td39z crossref_primary_10_1007_s10439_022_03088_8 crossref_primary_10_1038_s41598_025_92658_6 crossref_primary_10_1002_cnm_3651 crossref_primary_10_1111_joa_13517 crossref_primary_10_1016_j_heliyon_2024_e30904 crossref_primary_10_1038_s41598_021_01319_x crossref_primary_10_3389_fbioe_2021_688041 crossref_primary_10_1007_s40430_023_04096_y crossref_primary_10_3389_fbioe_2022_960063 crossref_primary_10_1016_j_medengphy_2020_11_010 crossref_primary_10_1016_j_clinbiomech_2022_105756 crossref_primary_10_1016_j_jbiomech_2021_110513 |
Cites_doi | 10.1016/j.jbiomech.2016.06.027 10.1016/j.spinee.2012.08.013 10.1088/0952-4746/28/2/R02 10.1097/BRS.0000000000001145 10.1097/01.brs.0000239125.54761.23 10.1097/01.brs.0000257577.70576.07 10.1097/00003086-197506000-00011 10.1016/j.jbiomech.2018.02.036 10.1097/BRS.0000000000000235 10.1097/00007632-199601010-00015 10.3171/SPI-07/07/033 10.1093/neuros/nyx579 10.1097/BRS.0b013e3181715295 10.1186/s12998-018-0223-x 10.1097/00007632-200112150-00012 10.1007/s00586-011-2090-1 10.1016/j.clinbiomech.2017.03.007 10.1007/BF00301048 10.1097/BRS.0b013e3181e218cb 10.1115/1.4045048 10.1016/j.jbiomech.2014.08.014 10.1097/BRS.0000000000000913 10.1016/j.jbiomech.2017.10.027 10.1115/1.4036311 10.1097/BSD.0b013e3182027297 10.3171/2013.11.SPINE13392 10.1097/01.brs.0000147740.69525.58 10.3171/2012.6.SPINE111104 10.1016/j.jbiomech.2019.109418 10.1097/BRS.0000000000001826 10.1097/BRS.0b013e31815cd482 10.1007/s12178-017-9398-3 10.2106/JBJS.K.01733 10.1097/00007632-198710000-00003 10.1007/s00586-007-0372-4 10.1097/01.brs.0000147806.31675.6b 10.3171/2010.3.FOCUS1046 10.1016/0021-9290(88)90285-0 10.1097/01.BRS.0000090836.50508.F7 10.1016/j.nec.2017.09.015 10.1097/01.BRS.0000099392.90849.AA 10.21037/jss.2018.06.16 10.1007/s00402-014-2125-2 10.1016/j.jbiomech.2015.02.049 10.1097/BRS.0b013e31828ca5c7 10.3109/s10165-006-0499-x 10.1097/BRS.0000000000002474 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2020.110023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 32927126 10_1016_j_jbiomech_2020_110023 S0021929020304462 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R03 AG056897 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-29b7ae1bebb704d0735f77e4698ce0ed6d72b521d0eeb2cc497cc629274b91c13 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 03:19:04 EDT 2025 Wed Aug 13 03:21:36 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Tue Jul 01 00:44:17 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Fri Feb 23 02:46:24 EST 2024 Tue Aug 26 17:10:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Range of motion Facet joint Intervertebral disc In vivo neck motion Cervical spine |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-29b7ae1bebb704d0735f77e4698ce0ed6d72b521d0eeb2cc497cc629274b91c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 32927126 |
PQID | 2453978020 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2442845209 proquest_journals_2453978020 pubmed_primary_32927126 crossref_citationtrail_10_1016_j_jbiomech_2020_110023 crossref_primary_10_1016_j_jbiomech_2020_110023 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_110023 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_110023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-09 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Penning, Wilmink (b0160) 1987; 12 Zhao, Zhang, Sun, Pan, Zhou, Liu (b0260) 2016; 41 Goffin, Van Calenbergh, Van Loon, Casey, Kehr, Liebig, Lind, Logroscino, Sgrambiglia, Pointillart (b0055) 2003; 28 Moroney, Schultz, Miller, Andersson (b0110) 1988; 21 Lin, Lu, Wang, Hsu, Hsu, Shih (b0090) 2014; 47 Wachowski, Weiland, Wagner, Gezzi, Kubein-Meesenburg, Nagerl (b0210) 2017; 1–9 Akter, Kotter (b0005) 2018; 29 Anderst, Lee, Donaldson, Kang (b0025) 2013; 95 Laratta, Reddy, Bratcher, McGraw, Carreon, Owens (b0080) 2018; 4 Uhrenholt, Charles, Gregersen, Hartvigsen, Hauge (b0200) 2018; 43 Wrixon (b0240) 2008; 28 Zhou, Willing (b0270) 2020; 142 Nagamoto, Ishii, Sakaura, Iwasaki, Moritomo, Kashii, Hattori, Yoshikawa, Sugamoto (b0120) 2011; 36 Henmi, Yonenobu, Masatomi, Oda (b0060) 2006; 16 Watanabe, Inoue, Yamaguchi, Hirano, Espinoza Orías, Nishida, Hirose, Mizuno (b0225) 2012; 21 Kang, Park, La Marca, Hollister, Lin (b0075) 2010; 28 Anderst, Donaldson, Lee, Kang (b0020) 2014; 39 Milne (b0105) 1991; 178 Niewiadomski, Bianco, Afquir, Evin, Arnoux (b0125) 2019; 27 Wang, Z., Zhao, H., Liu, J. ming, Tan, L. wen, Liu, P., Zhao, J. hua, 2016. Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model. J. Biomech. 49, 2854–2862. https://doi.org/10.1016/j.jbiomech.2016.06.027 Leven, Meaike, Radcliff, Qureshi (b0085) 2017; 10 Panjabi, Duranceau, Goel, Oxland, Takata (b0145) 1991 Dmitriev, Kuklo, Lehman, Rosner (b0050) 2007; 32 Luo, Gong, Huang, Yu, Zou (b0095) 2015; 135 Nunley, Coric, Frank, Stone (b0135) 2018; 83 Quarrington, Costi, Freeman, Jones (b0165) 2018; 72 Yu, Li, Guo, Lang, Kang, Cheng, Li, Cha (b0250) 2019; 18 Nouri, Tetreault, Singh, Karadimas, Fehlings (b0130) 2015 Wachowski, Ackenhausen, Dumont, Fanghanel, Kubein-Meesenburg, Nagerl (b0205) 2007 McDonald, Chang, McDonald, Ramo, Bey, Bartol (b0100) 2014; 20 Nagamoto, Ishii, Iwasaki, Sakaura, Moritomo, Fujimori, Kashii, Murase, Yoshikawa, Sugamoto (b0115) 2012; 17 Bauman, Jaumard, Guarino, Weisshaar, Lipschutz, Welch, Winkelstein (b0030) 2012; 12 Anderst, Baillargeon, Donaldson, Lee (b0010) 2013 Yu, Mao, Li, Tsai, Cheng, Wood, Li, Cha (b0255) 2017; 139 Senteler, Aiyangar, Weisse, Farshad, Snedeker (b0185) 2018; 70 Stieber, Quirno, Kang, Valdevit, Errico (b0195) 2011; 24 Dai (b0045) 1999; 37 Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima, Tamura, Iwasaki, Yoshikawa (b0065) 1976; 31 White, Johnson, Panjabi, Southwick (b0235) 1975; 109 Zhou, Wang, Wang, Tsai, Yu, Ostergaard, Li, Cha (b0265) 2020; 98 Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima, Tamura, Sugamoto, Yoshikawa (b0070) 2004; 29 Wu, Kuo, Lan, Tsai, Chen, Su (b0245) 2007; 16 Panjabi, Crisco, Vasavada, Oda, Cholewicki, Nibu, Shin (b0140) 2001; 26 Rong, Liu, Wang, Chen, Liu (b0175) 2017; 42 Reitman, C.A., Mauro, K.M., Nguyen, L., Ziegler, J.M., Hipp, J.A., Intervertebral motion between flexion and extension in asymptomatic individuals, Spine (Phila. Pa. 1976), 29, 2004, p. 2832–2843. https://doi.org/10.1097/01.brs.0000147740.69525.58 Schwab, DiAngelo, Foley (b0180) 2006; 31 Wen, Lavaste, Santin, Lassau (b0230) 1993; 2 Patel, Wuthrich, McGilvray, Lafleur, Lindley, Sun, Puttlitz (b0150) 2017; 44 Snyder, Tzermiadianos, Ghanayem, Voronov, Rinella, Dooris, Carandang, Renner, Havey, Patwardhan (b0190) 2007; 32 Chang, Kim, Lee, Willenberg, Kim, Lim (b0040) 2007; 7 Anderst, Donaldson, Lee, Kang (b0015) 2015; 48 Black, McClure, Polansky (b0035) 1996; 21 Pearson, Ivancic, Ito, Panjabi (b0155) 2004; 29 Wang, Passias, Li, Li, Wood (b0215) 2008; 33 Nouri (10.1016/j.jbiomech.2020.110023_b0130) 2015 Akter (10.1016/j.jbiomech.2020.110023_b0005) 2018; 29 Snyder (10.1016/j.jbiomech.2020.110023_b0190) 2007; 32 Milne (10.1016/j.jbiomech.2020.110023_b0105) 1991; 178 Zhao (10.1016/j.jbiomech.2020.110023_b0260) 2016; 41 Yu (10.1016/j.jbiomech.2020.110023_b0255) 2017; 139 10.1016/j.jbiomech.2020.110023_b0220 Wang (10.1016/j.jbiomech.2020.110023_b0215) 2008; 33 Kang (10.1016/j.jbiomech.2020.110023_b0075) 2010; 28 Anderst (10.1016/j.jbiomech.2020.110023_b0015) 2015; 48 Anderst (10.1016/j.jbiomech.2020.110023_b0025) 2013; 95 Nagamoto (10.1016/j.jbiomech.2020.110023_b0115) 2012; 17 White (10.1016/j.jbiomech.2020.110023_b0235) 1975; 109 Ishii (10.1016/j.jbiomech.2020.110023_b0065) 1976; 31 Schwab (10.1016/j.jbiomech.2020.110023_b0180) 2006; 31 Zhou (10.1016/j.jbiomech.2020.110023_b0270) 2020; 142 Wrixon (10.1016/j.jbiomech.2020.110023_b0240) 2008; 28 Wachowski (10.1016/j.jbiomech.2020.110023_b0205) 2007 Laratta (10.1016/j.jbiomech.2020.110023_b0080) 2018; 4 Dmitriev (10.1016/j.jbiomech.2020.110023_b0050) 2007; 32 McDonald (10.1016/j.jbiomech.2020.110023_b0100) 2014; 20 Patel (10.1016/j.jbiomech.2020.110023_b0150) 2017; 44 Wen (10.1016/j.jbiomech.2020.110023_b0230) 1993; 2 Panjabi (10.1016/j.jbiomech.2020.110023_b0145) 1991 Quarrington (10.1016/j.jbiomech.2020.110023_b0165) 2018; 72 Goffin (10.1016/j.jbiomech.2020.110023_b0055) 2003; 28 Pearson (10.1016/j.jbiomech.2020.110023_b0155) 2004; 29 Yu (10.1016/j.jbiomech.2020.110023_b0250) 2019; 18 Black (10.1016/j.jbiomech.2020.110023_b0035) 1996; 21 Leven (10.1016/j.jbiomech.2020.110023_b0085) 2017; 10 Lin (10.1016/j.jbiomech.2020.110023_b0090) 2014; 47 Nunley (10.1016/j.jbiomech.2020.110023_b0135) 2018; 83 Wu (10.1016/j.jbiomech.2020.110023_b0245) 2007; 16 Uhrenholt (10.1016/j.jbiomech.2020.110023_b0200) 2018; 43 Ishii (10.1016/j.jbiomech.2020.110023_b0070) 2004; 29 Moroney (10.1016/j.jbiomech.2020.110023_b0110) 1988; 21 Niewiadomski (10.1016/j.jbiomech.2020.110023_b0125) 2019; 27 10.1016/j.jbiomech.2020.110023_b0170 Bauman (10.1016/j.jbiomech.2020.110023_b0030) 2012; 12 Wachowski (10.1016/j.jbiomech.2020.110023_b0210) 2017; 1–9 Senteler (10.1016/j.jbiomech.2020.110023_b0185) 2018; 70 Henmi (10.1016/j.jbiomech.2020.110023_b0060) 2006; 16 Stieber (10.1016/j.jbiomech.2020.110023_b0195) 2011; 24 Dai (10.1016/j.jbiomech.2020.110023_b0045) 1999; 37 Luo (10.1016/j.jbiomech.2020.110023_b0095) 2015; 135 Nagamoto (10.1016/j.jbiomech.2020.110023_b0120) 2011; 36 Watanabe (10.1016/j.jbiomech.2020.110023_b0225) 2012; 21 Panjabi (10.1016/j.jbiomech.2020.110023_b0140) 2001; 26 Anderst (10.1016/j.jbiomech.2020.110023_b0020) 2014; 39 Zhou (10.1016/j.jbiomech.2020.110023_b0265) 2020; 98 Chang (10.1016/j.jbiomech.2020.110023_b0040) 2007; 7 Penning (10.1016/j.jbiomech.2020.110023_b0160) 1987; 12 Rong (10.1016/j.jbiomech.2020.110023_b0175) 2017; 42 Anderst (10.1016/j.jbiomech.2020.110023_b0010) 2013 |
References_xml | – volume: 36 start-page: 778 year: 2011 end-page: 783 ident: b0120 article-title: In Vivo Three-Dimensional Kinematics of the Cervical Spine During Head Rotation in Patients With Cervical Spondylosis publication-title: Spine (Phila Pa. 1976) – volume: 1–9 year: 2017 ident: b0210 article-title: Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty publication-title: Eur. Spine J. – volume: 27 start-page: 9 year: 2019 ident: b0125 article-title: Experimental assessment of cervical ranges of motion and compensatory strategies publication-title: Chiropr. Man. Therap. – volume: 18 start-page: 32 year: 2019 end-page: 39 ident: b0250 article-title: Normal intervertebral segment rotation of the subaxial cervical spine: An in vivo study of dynamic neck motions publication-title: J. Orthop. Transl. – volume: 21 start-page: 769 year: 1988 end-page: 779 ident: b0110 article-title: Load-displacement properties of lower cervical spine motion segments publication-title: J. Biomech. – volume: 98 year: 2020 ident: b0265 article-title: Intervertebral range of motion characteristics of normal cervical spinal segments (C0–T1) during in vivo neck motions publication-title: J. Biomech. – volume: 33 start-page: E355 year: 2008 end-page: E361 ident: b0215 article-title: Measurement of vertebral kinematics using noninvasive image matching method-validation and application publication-title: Spine (Phila. Pa. 1976) – volume: 29 start-page: 13 year: 2018 end-page: 19 ident: b0005 article-title: Pathobiology of Degenerative Cervical Myelopathy publication-title: Neurosurg. Clin. N. Am. – volume: 21 start-page: 65 year: 1996 end-page: 70 ident: b0035 article-title: The influence of different sitting positions on cervical and lumbar posture publication-title: Spine (Phila. Pa. 1976) – volume: 29 start-page: 2826 year: 2004 end-page: 2831 ident: b0070 article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis publication-title: Spine (Phila. Pa. 1976) – volume: 17 start-page: 327 year: 2012 end-page: 333 ident: b0115 article-title: Three-dimensional motion of the uncovertebral joint during head rotation: Clinical article publication-title: J. Neurosurg. Spine – volume: 29 start-page: 390 year: 2004 end-page: 397 ident: b0155 article-title: Facet Joint Kinematics and Injury Mechanisms during Simulated Whiplash publication-title: Spine (Phila. Pa. 1976) – volume: 109 start-page: 85 year: 1975 end-page: 96 ident: b0235 article-title: Biomechanical analysis of clinical stability in the cervical spine publication-title: Clin. Orthop. – volume: 26 start-page: 2692 year: 2001 end-page: 2700 ident: b0140 article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves publication-title: Spine (Phila. Pa. 1976) – volume: 16 start-page: 1435 year: 2007 end-page: 1444 ident: b0245 article-title: The quantitative measurements of the intervertebral angulation and translation during cervical flexion and extension publication-title: Eur. Spine J. – volume: 37 start-page: 180 year: 1999 end-page: 182 ident: b0045 article-title: Disc degeneration and cervical instability publication-title: Zhonghua Wai Ke Za Zhi – volume: 7 start-page: 33 year: 2007 end-page: 39 ident: b0040 article-title: Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion publication-title: J. Neurosurg. Spine – volume: 139 year: 2017 ident: b0255 article-title: Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck publication-title: J. Biomech. Eng. – volume: 95 start-page: 497 year: 2013 end-page: 506 ident: b0025 article-title: Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis publication-title: J. Bone Jt. Surg. – volume: 31 start-page: 2439 year: 2006 end-page: 2448 ident: b0180 article-title: Motion compensation associated with single-level cervical fusion: Where does the lost motion go? publication-title: Spine (Phila Pa. 1976) – volume: 48 start-page: 1286 year: 2015 end-page: 1293 ident: b0015 article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading publication-title: J. Biomech. – volume: 135 start-page: 155 year: 2015 end-page: 160 ident: b0095 article-title: Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies publication-title: Arch. Orthop. Trauma Surg. – volume: 28 start-page: 2673 year: 2003 end-page: 2678 ident: b0055 article-title: Intermediate Follow-up after Treatment of Degenerative Disc Disease with the Bryan Cervical Disc Prosthesis: Single-Level and Bi-Level publication-title: Spine (Phila Pa. 1976) – volume: 21 start-page: 946 year: 2012 end-page: 955 ident: b0225 article-title: Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: a preliminary report publication-title: Eur. Spine J. – start-page: E594 year: 2013 end-page: E601 ident: b0010 article-title: Kang Motion Path of the Instant Center of Rotation in the Cervical Spine During In Vivo Dynamic Flexion-Extension publication-title: Spine (Phila Pa. 1976) – volume: 12 start-page: 732 year: 1987 end-page: 738 ident: b0160 article-title: Rotation of the cervical spine: A CT study in normal subjects publication-title: Spine (Phila Pa.1976) – volume: 72 start-page: 116 year: 2018 end-page: 124 ident: b0165 article-title: Quantitative evaluation of facet deflection, stiffness, strain and failure load during simulated cervical spine trauma publication-title: J. Biomech. – volume: 39 start-page: E514 year: 2014 end-page: E520 ident: b0020 article-title: In vivo cervical facet joint capsule deformation during flexion-extension publication-title: Spine (Phila. Pa. 1976) – volume: 16 start-page: 289 year: 2006 end-page: 293 ident: b0060 article-title: A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system publication-title: Mod. Rheumatol. – volume: 42 start-page: E320 year: 2017 end-page: E325 ident: b0175 article-title: The Facet Orientation of the Subaxial Cervical Spine and the Implications for Cervical Movements and Clinical Conditions publication-title: Spine (Phila Pa. 1976) – volume: 12 start-page: 949 year: 2012 end-page: 959 ident: b0030 article-title: Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: A single-level cadaveric study publication-title: Spine J. – volume: 47 start-page: 3310 year: 2014 end-page: 3317 ident: b0090 article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach publication-title: J. Biomech. – volume: 32 start-page: E188 year: 2007 end-page: E196 ident: b0050 article-title: Stabilizing Potential of Anterior, Posterior, and Circumferential Fixation for Multilevel Cervical Arthrodesis publication-title: Spine (Phila Pa.1976) – volume: 24 start-page: 432 year: 2011 end-page: 436 ident: b0195 article-title: The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation publication-title: J. Spinal Disord. Tech. – volume: 10 start-page: 160 year: 2017 end-page: 169 ident: b0085 article-title: Cervical disc replacement surgery: indications, technique, and technical pearls publication-title: Curr. Rev. Musculoskelet. Med. – year: 2015 ident: b0130 article-title: Degenerative cervical myelopathy: Epidemiology, genetics, and pathogenesis publication-title: Spine (Phila Pa.1976) – volume: 2 start-page: 2 year: 1993 end-page: 11 ident: b0230 article-title: Three-dimensional biomechanical properties of the human cervical spine in vitro - I. Analysis of normal motion publication-title: Eur. Spine J. – volume: 31 start-page: 155 year: 1976 end-page: 160 ident: b0065 article-title: Sugamoto Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis publication-title: Spine (Phila Pa. 1976) – volume: 83 start-page: 1087 year: 2018 end-page: 1106 ident: b0135 article-title: Cervical Disc Arthroplasty: Current Evidence and Real-World Application publication-title: Clin. Neurosurg. – volume: 32 start-page: 2965 year: 2007 end-page: 2969 ident: b0190 article-title: Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement publication-title: Spine (Phila Pa. 1976) – volume: 28 start-page: 1 year: 2010 end-page: 8 ident: b0075 article-title: Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: An in vivo image-based finite element study publication-title: Neurosurg. Focus – volume: 20 start-page: 245 year: 2014 end-page: 255 ident: b0100 article-title: Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article publication-title: J. Neurosurg. Spine – volume: 178 start-page: 189 year: 1991 end-page: 201 ident: b0105 article-title: The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine publication-title: J. Anat. – volume: 28 start-page: 161 year: 2008 end-page: 168 ident: b0240 article-title: New ICRP recommendations publication-title: J. Radiol. Prot. – year: 1991 ident: b0145 article-title: Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions publication-title: Spine (Phila. Pa. 1976) – reference: Reitman, C.A., Mauro, K.M., Nguyen, L., Ziegler, J.M., Hipp, J.A., Intervertebral motion between flexion and extension in asymptomatic individuals, Spine (Phila. Pa. 1976), 29, 2004, p. 2832–2843. https://doi.org/10.1097/01.brs.0000147740.69525.58 – volume: 43 start-page: E689 year: 2018 end-page: E696 ident: b0200 article-title: Histological Osteoarthritic Changes in the Human Cervical Spine Facet Joints Related to Age and Sex publication-title: Spine (Phila Pa. 1976) – reference: Wang, Z., Zhao, H., Liu, J. ming, Tan, L. wen, Liu, P., Zhao, J. hua, 2016. Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model. J. Biomech. 49, 2854–2862. https://doi.org/10.1016/j.jbiomech.2016.06.027 – start-page: 5 year: 2007 end-page: 15 ident: b0205 article-title: Mechanical properties of cervical motion segments publication-title: Arch. Mech. Eng. – volume: 142 year: 2020 ident: b0270 article-title: Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics publication-title: J. Biomech. Eng. – volume: 4 start-page: 496 year: 2018 end-page: 500 ident: b0080 article-title: Outcomes and revision rates following multilevel anterior cervical discectomy and fusion publication-title: J. Spine Surg. – volume: 70 start-page: 140 year: 2018 end-page: 148 ident: b0185 article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path publication-title: J. Biomech. – volume: 41 start-page: 111 year: 2016 end-page: 115 ident: b0260 article-title: Application of cervical arthroplasty with bryan cervical disc 10-year follow-up results in China publication-title: Spine (Phila Pa. 1976) – volume: 44 start-page: 52 year: 2017 end-page: 58 ident: b0150 article-title: Cervical facet force analysis after disc replacement versus fusion publication-title: Clin. Biomech. (Bristol, Avon) – ident: 10.1016/j.jbiomech.2020.110023_b0220 doi: 10.1016/j.jbiomech.2016.06.027 – volume: 12 start-page: 949 year: 2012 ident: 10.1016/j.jbiomech.2020.110023_b0030 article-title: Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: A single-level cadaveric study publication-title: Spine J. doi: 10.1016/j.spinee.2012.08.013 – volume: 28 start-page: 161 year: 2008 ident: 10.1016/j.jbiomech.2020.110023_b0240 article-title: New ICRP recommendations publication-title: J. Radiol. Prot. doi: 10.1088/0952-4746/28/2/R02 – volume: 41 start-page: 111 year: 2016 ident: 10.1016/j.jbiomech.2020.110023_b0260 article-title: Application of cervical arthroplasty with bryan cervical disc 10-year follow-up results in China publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0000000000001145 – volume: 31 start-page: 2439 year: 2006 ident: 10.1016/j.jbiomech.2020.110023_b0180 article-title: Motion compensation associated with single-level cervical fusion: Where does the lost motion go? publication-title: Spine (Phila Pa. 1976) doi: 10.1097/01.brs.0000239125.54761.23 – volume: 32 start-page: E188 year: 2007 ident: 10.1016/j.jbiomech.2020.110023_b0050 article-title: Stabilizing Potential of Anterior, Posterior, and Circumferential Fixation for Multilevel Cervical Arthrodesis publication-title: Spine (Phila Pa.1976) doi: 10.1097/01.brs.0000257577.70576.07 – volume: 1–9 year: 2017 ident: 10.1016/j.jbiomech.2020.110023_b0210 article-title: Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty publication-title: Eur. Spine J. – volume: 109 start-page: 85 year: 1975 ident: 10.1016/j.jbiomech.2020.110023_b0235 article-title: Biomechanical analysis of clinical stability in the cervical spine publication-title: Clin. Orthop. doi: 10.1097/00003086-197506000-00011 – volume: 37 start-page: 180 year: 1999 ident: 10.1016/j.jbiomech.2020.110023_b0045 article-title: Disc degeneration and cervical instability publication-title: Zhonghua Wai Ke Za Zhi – volume: 72 start-page: 116 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0165 article-title: Quantitative evaluation of facet deflection, stiffness, strain and failure load during simulated cervical spine trauma publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.02.036 – volume: 39 start-page: E514 year: 2014 ident: 10.1016/j.jbiomech.2020.110023_b0020 article-title: In vivo cervical facet joint capsule deformation during flexion-extension publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/BRS.0000000000000235 – volume: 21 start-page: 65 year: 1996 ident: 10.1016/j.jbiomech.2020.110023_b0035 article-title: The influence of different sitting positions on cervical and lumbar posture publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/00007632-199601010-00015 – volume: 7 start-page: 33 year: 2007 ident: 10.1016/j.jbiomech.2020.110023_b0040 article-title: Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion publication-title: J. Neurosurg. Spine doi: 10.3171/SPI-07/07/033 – volume: 83 start-page: 1087 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0135 article-title: Cervical Disc Arthroplasty: Current Evidence and Real-World Application publication-title: Clin. Neurosurg. doi: 10.1093/neuros/nyx579 – volume: 33 start-page: E355 year: 2008 ident: 10.1016/j.jbiomech.2020.110023_b0215 article-title: Measurement of vertebral kinematics using noninvasive image matching method-validation and application publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/BRS.0b013e3181715295 – volume: 27 start-page: 9 year: 2019 ident: 10.1016/j.jbiomech.2020.110023_b0125 article-title: Experimental assessment of cervical ranges of motion and compensatory strategies publication-title: Chiropr. Man. Therap. doi: 10.1186/s12998-018-0223-x – volume: 26 start-page: 2692 year: 2001 ident: 10.1016/j.jbiomech.2020.110023_b0140 article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/00007632-200112150-00012 – volume: 21 start-page: 946 year: 2012 ident: 10.1016/j.jbiomech.2020.110023_b0225 article-title: Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: a preliminary report publication-title: Eur. Spine J. doi: 10.1007/s00586-011-2090-1 – volume: 44 start-page: 52 year: 2017 ident: 10.1016/j.jbiomech.2020.110023_b0150 article-title: Cervical facet force analysis after disc replacement versus fusion publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2017.03.007 – volume: 2 start-page: 2 year: 1993 ident: 10.1016/j.jbiomech.2020.110023_b0230 article-title: Three-dimensional biomechanical properties of the human cervical spine in vitro - I. Analysis of normal motion publication-title: Eur. Spine J. doi: 10.1007/BF00301048 – volume: 36 start-page: 778 year: 2011 ident: 10.1016/j.jbiomech.2020.110023_b0120 article-title: In Vivo Three-Dimensional Kinematics of the Cervical Spine During Head Rotation in Patients With Cervical Spondylosis publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0b013e3181e218cb – volume: 142 year: 2020 ident: 10.1016/j.jbiomech.2020.110023_b0270 article-title: Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.4045048 – volume: 47 start-page: 3310 year: 2014 ident: 10.1016/j.jbiomech.2020.110023_b0090 article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.08.014 – year: 2015 ident: 10.1016/j.jbiomech.2020.110023_b0130 article-title: Degenerative cervical myelopathy: Epidemiology, genetics, and pathogenesis publication-title: Spine (Phila Pa.1976) doi: 10.1097/BRS.0000000000000913 – volume: 18 start-page: 32 year: 2019 ident: 10.1016/j.jbiomech.2020.110023_b0250 article-title: Normal intervertebral segment rotation of the subaxial cervical spine: An in vivo study of dynamic neck motions publication-title: J. Orthop. Transl. – volume: 70 start-page: 140 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0185 article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.10.027 – volume: 139 year: 2017 ident: 10.1016/j.jbiomech.2020.110023_b0255 article-title: Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck publication-title: J. Biomech. Eng. doi: 10.1115/1.4036311 – volume: 24 start-page: 432 year: 2011 ident: 10.1016/j.jbiomech.2020.110023_b0195 article-title: The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation publication-title: J. Spinal Disord. Tech. doi: 10.1097/BSD.0b013e3182027297 – volume: 178 start-page: 189 year: 1991 ident: 10.1016/j.jbiomech.2020.110023_b0105 article-title: The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine publication-title: J. Anat. – volume: 20 start-page: 245 year: 2014 ident: 10.1016/j.jbiomech.2020.110023_b0100 article-title: Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article publication-title: J. Neurosurg. Spine doi: 10.3171/2013.11.SPINE13392 – ident: 10.1016/j.jbiomech.2020.110023_b0170 doi: 10.1097/01.brs.0000147740.69525.58 – volume: 31 start-page: 155 issue: 2006 year: 1976 ident: 10.1016/j.jbiomech.2020.110023_b0065 article-title: Sugamoto Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis publication-title: Spine (Phila Pa. 1976) – volume: 17 start-page: 327 year: 2012 ident: 10.1016/j.jbiomech.2020.110023_b0115 article-title: Three-dimensional motion of the uncovertebral joint during head rotation: Clinical article publication-title: J. Neurosurg. Spine doi: 10.3171/2012.6.SPINE111104 – volume: 98 year: 2020 ident: 10.1016/j.jbiomech.2020.110023_b0265 article-title: Intervertebral range of motion characteristics of normal cervical spinal segments (C0–T1) during in vivo neck motions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109418 – volume: 42 start-page: E320 year: 2017 ident: 10.1016/j.jbiomech.2020.110023_b0175 article-title: The Facet Orientation of the Subaxial Cervical Spine and the Implications for Cervical Movements and Clinical Conditions publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0000000000001826 – volume: 32 start-page: 2965 year: 2007 ident: 10.1016/j.jbiomech.2020.110023_b0190 article-title: Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0b013e31815cd482 – volume: 10 start-page: 160 year: 2017 ident: 10.1016/j.jbiomech.2020.110023_b0085 article-title: Cervical disc replacement surgery: indications, technique, and technical pearls publication-title: Curr. Rev. Musculoskelet. Med. doi: 10.1007/s12178-017-9398-3 – volume: 95 start-page: 497 year: 2013 ident: 10.1016/j.jbiomech.2020.110023_b0025 article-title: Six-Degrees-of-Freedom Cervical Spine Range of Motion During Dynamic Flexion-Extension After Single-Level Anterior Arthrodesis publication-title: J. Bone Jt. Surg. doi: 10.2106/JBJS.K.01733 – volume: 12 start-page: 732 year: 1987 ident: 10.1016/j.jbiomech.2020.110023_b0160 article-title: Rotation of the cervical spine: A CT study in normal subjects publication-title: Spine (Phila Pa.1976) doi: 10.1097/00007632-198710000-00003 – volume: 16 start-page: 1435 year: 2007 ident: 10.1016/j.jbiomech.2020.110023_b0245 article-title: The quantitative measurements of the intervertebral angulation and translation during cervical flexion and extension publication-title: Eur. Spine J. doi: 10.1007/s00586-007-0372-4 – volume: 29 start-page: 2826 year: 2004 ident: 10.1016/j.jbiomech.2020.110023_b0070 article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/01.brs.0000147806.31675.6b – volume: 28 start-page: 1 year: 2010 ident: 10.1016/j.jbiomech.2020.110023_b0075 article-title: Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: An in vivo image-based finite element study publication-title: Neurosurg. Focus doi: 10.3171/2010.3.FOCUS1046 – volume: 21 start-page: 769 year: 1988 ident: 10.1016/j.jbiomech.2020.110023_b0110 article-title: Load-displacement properties of lower cervical spine motion segments publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90285-0 – volume: 29 start-page: 390 year: 2004 ident: 10.1016/j.jbiomech.2020.110023_b0155 article-title: Facet Joint Kinematics and Injury Mechanisms during Simulated Whiplash publication-title: Spine (Phila. Pa. 1976) doi: 10.1097/01.BRS.0000090836.50508.F7 – volume: 29 start-page: 13 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0005 article-title: Pathobiology of Degenerative Cervical Myelopathy publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2017.09.015 – volume: 28 start-page: 2673 year: 2003 ident: 10.1016/j.jbiomech.2020.110023_b0055 article-title: Intermediate Follow-up after Treatment of Degenerative Disc Disease with the Bryan Cervical Disc Prosthesis: Single-Level and Bi-Level publication-title: Spine (Phila Pa. 1976) doi: 10.1097/01.BRS.0000099392.90849.AA – volume: 4 start-page: 496 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0080 article-title: Outcomes and revision rates following multilevel anterior cervical discectomy and fusion publication-title: J. Spine Surg. doi: 10.21037/jss.2018.06.16 – volume: 135 start-page: 155 year: 2015 ident: 10.1016/j.jbiomech.2020.110023_b0095 article-title: Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-014-2125-2 – volume: 48 start-page: 1286 year: 2015 ident: 10.1016/j.jbiomech.2020.110023_b0015 article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.049 – start-page: E594 issue: 38 year: 2013 ident: 10.1016/j.jbiomech.2020.110023_b0010 article-title: Kang Motion Path of the Instant Center of Rotation in the Cervical Spine During In Vivo Dynamic Flexion-Extension publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0b013e31828ca5c7 – volume: 16 start-page: 289 year: 2006 ident: 10.1016/j.jbiomech.2020.110023_b0060 article-title: A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system publication-title: Mod. Rheumatol. doi: 10.3109/s10165-006-0499-x – year: 1991 ident: 10.1016/j.jbiomech.2020.110023_b0145 article-title: Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions publication-title: Spine (Phila. Pa. 1976) – volume: 43 start-page: E689 year: 2018 ident: 10.1016/j.jbiomech.2020.110023_b0200 article-title: Histological Osteoarthritic Changes in the Human Cervical Spine Facet Joints Related to Age and Sex publication-title: Spine (Phila Pa. 1976) doi: 10.1097/BRS.0000000000002474 – start-page: 5 year: 2007 ident: 10.1016/j.jbiomech.2020.110023_b0205 article-title: Mechanical properties of cervical motion segments publication-title: Arch. Mech. Eng. |
SSID | ssj0007479 |
Score | 2.4141946 |
Snippet | Functional neck motion is achieved by the cervical segments with each composed of an intervertebral disc (IVD) and two facet joints (FJs). Using biplane... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110023 |
SubjectTerms | Asymptomatic Biomechanical Phenomena Biomechanics Cervical spine Cervical Vertebrae - diagnostic imaging Degenerative disc disease Facet joint Fluoroscopic imaging Humans In vivo neck motion Intervertebral Disc Intervertebral discs Investigations Kinematics Magnetic resonance imaging Neck Range of motion Range of Motion, Articular Segments Spine (cervical) Tomography Translation Translations Twisting Vertebrae Zygapophyseal Joint - diagnostic imaging |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5KH0b3MLZ0P7K1Q4WxNzeWLEfVYykrZdBBoYW-CUmWISFzQuwU-tK_fXeynHUPpYW9xfYdcaTT6S73fSeAb7j8hUU3l0nnQybLWmcnVnMM5JzLqwqtpKZE8fLX9OJG_rwtb3fgbODCEKwy-f7ep0dvne5M0mhOVrMZcXxxtQlNpTSqSpIfllKRlR8__IV5YLicYB48I-lHLOH58Txy3GNRQkREfC6KpzaopwLQuBGdv4U3KYJkp_1LvoOd0Ixg_7TB7Pn3PfvOIqYz_lk-gteP2g2O4NVlKqTvQ3e1sQQTIpITwxiQrYlk0LJlzXp2y11g_QE_8R5JzHp05LqjUvOCEZ23ZbapWG196Nh8iQItSkXhhkLhBfPRE-GHdoVf-x5uzn9cn11k6QCGzMuSd5nQTtnAXXBO5bJCb1DWSgU6dNKHPFTTSgmH-3-VB0zQvZdaeT8VGjNdp7nnxQfYbZZN-ATMcalCWVjuMGajtnAnopBlEbTXIgRvx1AOo2586k5Oh2QszABDm5thtgzNlulnawyTrd6q78_xrIYaJtUM7FP0lwa3kGc19VbzHxt9ke7BYD8meYnWCBwB6gAl8jEcbR_j-qaijW3CckMymCBKAiuN4WNvd9sfWtBQczH9_B8v9gX26CrSK_UB7HbrTTjEOKtzX-NC-gOWlCXc priority: 102 providerName: Elsevier |
Title | Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929020304462 https://dx.doi.org/10.1016/j.jbiomech.2020.110023 https://www.ncbi.nlm.nih.gov/pubmed/32927126 https://www.proquest.com/docview/2453978020 https://www.proquest.com/docview/2442845209 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xTULwgKDjozAqIyHessVO0sxPqKBNBbQKEJP6ZtmOI60qSWlSJF7427lznLCXMZ4aNXf5Ovv8O98XwGuc_kKjmotSY12UZqWMTrXkCOSMiYsCR0lJhuLFYjq_TD8us2XYcGtCWGWvE72iLmpLe-QnIs0SqpYj4rebHxF1jSLvamihsQcHVLqMQrry5WBwUW34EOLBI4QB8bUM4dXxyue3e4eE8NHwsUhuWpxuAp9-ETp_CA8CemSzTtyP4I6rRnA4q9By_v6LvWE-ntNvlI_g_rVSgyO4exGc6IfQftlpChGiBCeG-I9tKcGgYXXJusyWn451zX38f0Rx1UVGbltyM68ZpfI2TFcFK7V1LVvVSNAglSeuCAavmfVaCA-aDd72MVyen317P49C84XIphlvIyFNrh03zpg8TgvUBFmZ544aTloXu2Ja5MLg2l_EDo1za1OZWzsVEq1cI7nlyRPYr-rKPQNmeJq7LNHcIF6jknCnIkFpOmmlcM7qMWT9V1c2VCanBhlr1YegrVQvLUXSUp20xnAy8G262hy3cuS9UFWfeYq6UuHycSunHDgDNukwx3_xHvXjRwUN0ai_43kMr4bTOLfJYaMrV--IBo3DlAKVxvC0G3fDiyb0qbmYPv_3xV_APXoSnz0pj2C_3e7cS4RRrZnA3vFvPvEzZgIHsw-f5gv8fXe2-Pz1D941H88 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAJ6qCDlESiwSMDN1F6v4-6hQgVapbSJALVSb4t3vZaIgp3GDqh_qr-xM-sHvZRy6c2yZ-zEMzv7jecF8AaXP0_QzHlCG-uJKJPediIDBHJa-2mKWpKRozieDEcn4stpdLoCF20tDKVVtjbRGeq0MPSNfIuLKKRuOdz_MD_zaGoURVfbERq1Whza8z_ospU7B59Rvm853987_jTymqkCnhFRUHlc6jixgbZax75IUcWjLI4tTVI01rfpMI25xk0t9S16ncYIGRsz5BLdNy0DE4R43zuwKkJ0ZXqw-nFv8vV7Z_sRnDdJJYGHwMO_UpM8fT91FfUuBMJd_r3Pw-u2w-vgrtv29h_AeoNX2W6tYA9hxeZ92NjN0Vf_dc7eMZdB6j7N92HtSnPDPtwdN2H7Dai-LRNKSqKSKoaIky2opKFkRcbqWprfltXjhNw5ovhZ52IuKgpszxgVD5csyVOWJcZWbFogQYlUjjgn4D1jxtk9PCjn-NhHcHIrgnkMvbzI7VNgOhCxjcIk0IgQqQndNg9Rf6w0kltrkgFE7VtXpumFTiM5ZqpNepuqVlqKpKVqaQ1gq-Ob191AbuSIW6GqttYVrbPCDetGTtlxNmioRjn_xbvZ6o9qbFKp_q6gAbzuLqM1oRBRkttiSTTojgpKjRrAk1rvuj8a0qsO-PDZv2_-Cu6NjsdH6uhgcvgc7tOvcrWbchN61WJpXyCIq_TLZuUw-HHbi_USpUlabA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwqCCFEiiwSMDNxLu24-4BoaolaimtQKJSbsvuei0RBTvETlH_Gr-OmfWjvZRy6S1KZpzE89hvPC-A12j-QqObC2JjXRAnuQx2teQI5IwJswy1JKdA8eR0fHgWf5om0zX40_XCUFll5xO9o85KS8_IRyJOIpqWI8JR3pZFfDmYfFj8CmiDFGVau3UajYocu4vfGL5V748OUNZvhJh8_LZ_GLQbBgIbJ7wOhDSpdtw4Y9IwzlDdkzxNHW1VtC502ThLhcEDLgsdRqDWxjK1diwkhnJGcssjvO4duItsnGwsnfbBHs2lb8tLeIAQJLzSnTx7N_O99T4ZInwlfiii6w7G64CvPwAnD2CzRa5sr1G1h7DmigFs7RUYtf-8YG-ZryX1D-kHcP_KmMMBbJy0CfwtqL-uNJUnUXMVQ-zJltTcULEyZ01XzbljzWIh_x5R_GiqMpc1pbjnjNqIK6aLjOXauprNSiSokMoTFwTB58x6D4gvqgV-7SM4uxWxPIb1oizcE2CGx6lLIs0NYkUaR7crItQkJ60Uzlk9hKS768q2U9FpOcdcdeVvM9VJS5G0VCOtIYx6vkUzF-RGjrQTquq6XtFPKzy6buSUPWeLixq881-8O53-qNY7VerSlobwqv8Y_Qoli3ThyhXRYGAaU5HUELYbvev_aES3movx039f_CVsoImqz0enx8_gHv0o38Qpd2C9Xq7cc0RztXnhzYbB99u207_h3F08 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+ranges+of+relative+motions+of+the+intervertebral+discs+and+facet+joints+in+the+normal+cervical+spine&rft.jtitle=Journal+of+biomechanics&rft.au=Wang%2C+Haiming&rft.au=Zhou%2C+Chaochao&rft.au=Yu%2C+Yan&rft.au=Wang%2C+Cong&rft.date=2020-11-09&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=112&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.110023&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |