A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention
A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities...
Saved in:
Published in | Agronomy (Basel) Vol. 13; no. 7; p. 1824 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities. The proposed method has three key components. Firstly, the depthwise separable convolution (DSConv) technique replaces the ordinary convolution, which reduces the computational complexity by generating a large number of feature maps with a small amount of calculation. Secondly, the dual-path attention gate module (DPAG) is designed to improve the model’s detection precision in complex environments by enhancing the network’s ability to distinguish between tomatoes and the background. Thirdly, the feature enhancement module (FEM) is added to highlight the target details, prevent the loss of effective features, and improve detection precision. We built, trained, and tested the tomato dataset, which included 3098 images and 3 classes. The proposed algorithm’s performance was evaluated by comparison with the SSD, faster R-CNN, YOLOv4, YOLOv5, and YOLOv7 algorithms. Precision, recall rate, and mAP (mean average precision) were used for evaluation. The test results show that the improved YOLOv8s network has a lower loss and 93.4% mAP on this dataset. This improvement is a 1.5% increase compared to before the improvement. The precision increased by 2%, and the recall rate increased by 0.8%. Moreover, the proposed algorithm significantly reduced the model size from 22 M to 16 M, while achieving a detection speed of 138.8 FPS, which satisfies the real-time detection requirement. The proposed method strikes a balance between model size and detection precision, enabling it to meet agriculture’s tomato detection requirements. The research model in this paper will provide technical support for a tomato picking robot to ensure the fast and accurate operation of the picking robot. |
---|---|
AbstractList | A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities. The proposed method has three key components. Firstly, the depthwise separable convolution (DSConv) technique replaces the ordinary convolution, which reduces the computational complexity by generating a large number of feature maps with a small amount of calculation. Secondly, the dual-path attention gate module (DPAG) is designed to improve the model’s detection precision in complex environments by enhancing the network’s ability to distinguish between tomatoes and the background. Thirdly, the feature enhancement module (FEM) is added to highlight the target details, prevent the loss of effective features, and improve detection precision. We built, trained, and tested the tomato dataset, which included 3098 images and 3 classes. The proposed algorithm’s performance was evaluated by comparison with the SSD, faster R-CNN, YOLOv4, YOLOv5, and YOLOv7 algorithms. Precision, recall rate, and mAP (mean average precision) were used for evaluation. The test results show that the improved YOLOv8s network has a lower loss and 93.4% mAP on this dataset. This improvement is a 1.5% increase compared to before the improvement. The precision increased by 2%, and the recall rate increased by 0.8%. Moreover, the proposed algorithm significantly reduced the model size from 22 M to 16 M, while achieving a detection speed of 138.8 FPS, which satisfies the real-time detection requirement. The proposed method strikes a balance between model size and detection precision, enabling it to meet agriculture’s tomato detection requirements. The research model in this paper will provide technical support for a tomato picking robot to ensure the fast and accurate operation of the picking robot. |
Audience | Academic |
Author | Yang, Guoliang Yang, Hao Wang, Jixiang Nie, Ziling Yu, Shuaiying |
Author_xml | – sequence: 1 givenname: Guoliang orcidid: 0000-0003-0408-1453 surname: Yang fullname: Yang, Guoliang – sequence: 2 givenname: Jixiang surname: Wang fullname: Wang, Jixiang – sequence: 3 givenname: Ziling surname: Nie fullname: Nie, Ziling – sequence: 4 givenname: Hao surname: Yang fullname: Yang, Hao – sequence: 5 givenname: Shuaiying surname: Yu fullname: Yu, Shuaiying |
BookMark | eNp1UU1rGzEUXEIKTdPcexT00ouTp5W0ko6Lmy8w-JIeSg9C1sdaZldKtXJL_n3lOoFiqAR6j2FmxHvzoTmPKbqm-YThmhAJN3rIKabpBRPgWLT0rLlogZMFJZKd_9O_b67meQf1SEwE8IvmR49WYdiW3-7wou_r1fqXQE9p0iWhr644U0KKqB-HlEPZTmiZpk2IIQ7ozumyzw7dxq2Oxk0uFqSjRX0pta2qj807r8fZXb3Wy-bb3e3T8mGxWt8_LvvVwlCGy6LtgEiqBSGUEc82nfBYyo5ZQlqiKWw2zGuGuQXSCuYdtJaD86IDR03bcXLZPB59bdI79ZzDpPOLSjqov0DKg9K5BDM6hYFTKyw3FiwVQAS3DDTjxlAsKlK9vhy9nnP6uXdzUVOYjRtHHV3az6oVgncgOaOV-vmEukv7HOuklUVbCRywrKzrI2vQ9f8QfSpZm3qtm4KpMfpQ8Z4zIQCEPNh2R4HJaZ6z88qEog_7rMIw1hHUIXN1mnkVwonwbRX_lfwBe7GwQw |
CitedBy_id | crossref_primary_10_1016_j_compag_2024_108728 crossref_primary_10_3390_agronomy14081764 crossref_primary_10_1016_j_compbiomed_2024_109630 crossref_primary_10_3390_app14135524 crossref_primary_10_3390_en17184559 crossref_primary_10_48084_etasr_7064 crossref_primary_10_1016_j_engappai_2024_108700 crossref_primary_10_3233_JIFS_232718 crossref_primary_10_1016_j_atech_2024_100615 crossref_primary_10_1016_j_compag_2024_109531 crossref_primary_10_3390_su17010132 crossref_primary_10_3390_agriculture14050751 crossref_primary_10_1016_j_compag_2024_108961 crossref_primary_10_1016_j_compag_2024_109534 crossref_primary_10_1186_s40537_024_00941_6 crossref_primary_10_1016_j_eja_2023_127076 crossref_primary_10_1186_s10086_024_02139_z crossref_primary_10_3390_computers13120336 crossref_primary_10_3390_s24154786 crossref_primary_10_3389_fpls_2024_1423338 crossref_primary_10_1016_j_measurement_2024_114975 crossref_primary_10_1007_s00217_024_04516_w crossref_primary_10_3390_app14167124 crossref_primary_10_1088_1361_6501_ad3a05 crossref_primary_10_1016_j_oceaneng_2024_118233 crossref_primary_10_3390_s24175632 crossref_primary_10_1016_j_dajour_2024_100526 crossref_primary_10_3390_math12071072 crossref_primary_10_3390_app14062575 crossref_primary_10_1177_17483026241309070 crossref_primary_10_3390_f15091486 crossref_primary_10_3390_jmse12050697 crossref_primary_10_1371_journal_pone_0306436 crossref_primary_10_3390_electronics13061046 crossref_primary_10_3390_agriculture14060820 crossref_primary_10_3233_HIS_240023 crossref_primary_10_3390_s24092710 crossref_primary_10_53898_josse2024428 crossref_primary_10_3390_ai6020025 crossref_primary_10_3390_pr12122622 crossref_primary_10_1007_s11554_023_01403_7 crossref_primary_10_3390_agriengineering7010008 crossref_primary_10_1109_TAFE_2024_3445119 crossref_primary_10_3389_fenvs_2024_1412870 crossref_primary_10_1109_ACCESS_2025_3546313 crossref_primary_10_1117_1_JEI_33_1_013050 crossref_primary_10_3390_agronomy14122931 crossref_primary_10_3390_ai5010005 crossref_primary_10_1109_JSEN_2024_3413088 crossref_primary_10_3390_agriengineering6040214 crossref_primary_10_1080_0954898X_2024_2428713 crossref_primary_10_3390_buildings14071929 crossref_primary_10_3390_agronomy14071593 crossref_primary_10_3390_horticulturae11010015 crossref_primary_10_3233_JIFS_238629 crossref_primary_10_3389_fpls_2024_1447855 crossref_primary_10_3390_s24154858 crossref_primary_10_1016_j_aap_2024_107617 crossref_primary_10_1016_j_compag_2024_108852 crossref_primary_10_1109_JSTARS_2024_3469209 crossref_primary_10_1186_s13007_025_01353_0 crossref_primary_10_3389_fnbot_2024_1374385 crossref_primary_10_1016_j_compbiomed_2025_109713 crossref_primary_10_48084_etasr_7262 crossref_primary_10_1016_j_jhydrol_2024_132028 crossref_primary_10_1007_s11760_025_03967_2 crossref_primary_10_3389_fpls_2024_1508258 crossref_primary_10_1016_j_jnlssr_2024_06_003 crossref_primary_10_3390_agriculture14122256 crossref_primary_10_1016_j_fraope_2025_100243 crossref_primary_10_1038_s41598_024_68115_1 crossref_primary_10_1109_ACCESS_2024_3486603 crossref_primary_10_3390_agriculture14071011 crossref_primary_10_3390_jmse12060871 crossref_primary_10_3390_plants13223253 crossref_primary_10_1063_5_0230187 crossref_primary_10_1016_j_compag_2025_110282 crossref_primary_10_3390_agronomy15030582 crossref_primary_10_1016_j_procs_2024_09_392 crossref_primary_10_3390_agronomy13092365 crossref_primary_10_1016_j_compag_2024_109853 crossref_primary_10_3390_plants13172402 crossref_primary_10_1016_j_atech_2025_100806 crossref_primary_10_1016_j_jafr_2025_101840 crossref_primary_10_1016_j_jnca_2025_104134 crossref_primary_10_3390_su17072885 crossref_primary_10_3390_s24206689 crossref_primary_10_3390_s25010104 crossref_primary_10_1007_s13369_024_09419_2 crossref_primary_10_1016_j_scienta_2024_113580 crossref_primary_10_3390_agronomy14081618 crossref_primary_10_1109_JSTARS_2024_3478333 crossref_primary_10_3390_electronics14050876 crossref_primary_10_1109_ACCESS_2023_3336562 crossref_primary_10_1007_s10489_024_05588_7 crossref_primary_10_1109_TIM_2024_3522436 crossref_primary_10_3390_agronomy14081628 crossref_primary_10_3390_agronomy14112650 crossref_primary_10_3390_f15030409 crossref_primary_10_1016_j_aiia_2024_07_001 crossref_primary_10_12677_csa_2024_149186 crossref_primary_10_35633_inmateh_73_50 crossref_primary_10_1080_24751839_2024_2415033 crossref_primary_10_2139_ssrn_4770722 crossref_primary_10_3390_agronomy14123027 crossref_primary_10_3389_fpls_2025_1492110 crossref_primary_10_1038_s41598_025_92445_3 crossref_primary_10_1109_ACCESS_2025_3535624 crossref_primary_10_3390_app14198803 crossref_primary_10_3390_agronomy13082059 crossref_primary_10_1007_s42452_024_05914_1 crossref_primary_10_1007_s11227_025_06936_1 crossref_primary_10_1109_ACCESS_2024_3429283 crossref_primary_10_1007_s11554_024_01505_w crossref_primary_10_1080_17480272_2024_2428963 crossref_primary_10_3390_agronomy13092418 crossref_primary_10_1016_j_inpa_2024_12_001 crossref_primary_10_3390_jimaging11030069 crossref_primary_10_3390_insects15120974 crossref_primary_10_3390_pr12061211 crossref_primary_10_3390_agronomy14102211 crossref_primary_10_1088_1361_6501_ad71e5 |
Cites_doi | 10.1007/978-3-030-58595-2_27 10.3390/s20072145 10.3390/agronomy13041042 10.1109/CVPR.2018.00813 10.1016/j.procs.2022.01.135 10.3390/s20102984 10.3390/diagnostics11030501 10.3390/agronomy12020356 10.3390/agronomy13051271 10.1007/s00521-021-06029-z 10.1016/j.fusengdes.2022.113141 10.1109/ACCESS.2020.3001349 10.3390/agronomy13020603 10.3390/su15020901 10.1109/CVPR.2018.00745 10.3390/agriculture11111059 10.3389/fpls.2020.571299 10.1007/978-3-030-01234-2_1 10.1079/9781780641935.0000 10.3390/s21103569 10.1007/s11119-019-09662-w 10.1016/j.scienta.2020.109791 10.3126/janr.v3i2.32545 10.1155/2021/9945934 10.1016/j.ifacol.2018.08.183 10.1016/j.patrec.2021.04.022 10.3390/app10175887 10.3390/su15031906 10.1007/s11119-022-09972-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy13071824 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48 A758800894 10_3390_agronomy13071824 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY PMFND 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c451t-260394a833453f5b68f19965d3323a40bb5fa517d03285fe02d70ef860e4c2673 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:15:54 EDT 2025 Fri Jul 11 10:18:38 EDT 2025 Mon Jun 30 11:22:59 EDT 2025 Tue Jun 10 21:21:35 EDT 2025 Tue Jul 01 03:21:01 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-260394a833453f5b68f19965d3323a40bb5fa517d03285fe02d70ef860e4c2673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0408-1453 |
OpenAccessLink | https://doaj.org/article/1074d8d7cd0d480387d50a57cc418d48 |
PQID | 2842907019 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48 proquest_miscellaneous_2887609754 proquest_journals_2842907019 gale_infotracacademiconefile_A758800894 crossref_citationtrail_10_3390_agronomy13071824 crossref_primary_10_3390_agronomy13071824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Peng (ref_22) 2018; 34 Chu (ref_19) 2021; 147 ref_14 ref_13 ref_12 ref_11 Tiwari (ref_3) 2020; 3 Zhu (ref_17) 2020; 41 ref_32 ref_31 ref_30 Jiang (ref_21) 2022; 199 ref_18 Hu (ref_16) 2020; 8 Zhang (ref_8) 2021; 278 ref_24 Malik (ref_6) 2018; 51 ref_23 Lin (ref_7) 2020; 21 Jiang (ref_15) 2021; 2021 Gai (ref_25) 2021; 35 Afonso (ref_10) 2020; 11 ref_1 ref_2 Bai (ref_5) 2023; 24 Zeng (ref_20) 2022; 179 ref_29 ref_28 ref_27 ref_26 ref_9 ref_4 |
References_xml | – ident: ref_14 doi: 10.1007/978-3-030-58595-2_27 – ident: ref_23 doi: 10.3390/s20072145 – ident: ref_26 doi: 10.3390/agronomy13041042 – ident: ref_31 doi: 10.1109/CVPR.2018.00813 – volume: 199 start-page: 1066 year: 2022 ident: ref_21 article-title: A Review of Yolo algorithm developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 – ident: ref_12 doi: 10.3390/s20102984 – ident: ref_32 doi: 10.3390/diagnostics11030501 – ident: ref_11 doi: 10.3390/agronomy12020356 – ident: ref_24 doi: 10.3390/agronomy13051271 – volume: 35 start-page: 13895 year: 2021 ident: ref_25 article-title: A detection algorithm for cherry fruits based on the improved YOLO-v4 model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06029-z – volume: 179 start-page: 113141 year: 2022 ident: ref_20 article-title: A detection method of Edge Coherent Mode based on improved SSD publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2022.113141 – volume: 8 start-page: 108335 year: 2020 ident: ref_16 article-title: Detection of PCB surface defects with improved faster-RCNN and feature pyramid network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001349 – ident: ref_27 doi: 10.3390/agronomy13020603 – ident: ref_28 doi: 10.3390/su15020901 – ident: ref_29 doi: 10.1109/CVPR.2018.00745 – ident: ref_18 doi: 10.3390/agriculture11111059 – volume: 11 start-page: 571299 year: 2020 ident: ref_10 article-title: Tomato fruit detection and counting in greenhouses using deep learning publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.571299 – ident: ref_30 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_1 doi: 10.1079/9781780641935.0000 – ident: ref_2 – ident: ref_13 doi: 10.3390/s21103569 – volume: 21 start-page: 160 year: 2020 ident: ref_7 article-title: Fruit detection in natural environment using partial shape matching and probabilistic Hough transform publication-title: Precis. Agric. doi: 10.1007/s11119-019-09662-w – volume: 278 start-page: 109791 year: 2021 ident: ref_8 article-title: A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109791 – volume: 41 start-page: 668 year: 2020 ident: ref_17 article-title: Automatic Identification Technology of Lycium barbarum Flowering Period and Fruit Ripening Period Based on Faster R-CNN publication-title: Chin. J. Agrometeorol. – volume: 3 start-page: 335 year: 2020 ident: ref_3 article-title: Post-harvest practices and loss assessment in tomato (Solanum lycopersicum L.) in Kathmandu, Nepal publication-title: J. Agric. Nat. Resour. doi: 10.3126/janr.v3i2.32545 – volume: 34 start-page: 155 year: 2018 ident: ref_22 article-title: General improved SSD model for picking object recognition of multiple fruits in natural environment publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 2021 start-page: 9945934 year: 2021 ident: ref_15 article-title: Application of a fast RCNN based on upper and lower layers in face recognition publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/9945934 – volume: 51 start-page: 431 year: 2018 ident: ref_6 article-title: Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.183 – volume: 147 start-page: 206 year: 2021 ident: ref_19 article-title: Deep learning-based apple detection using a suppression mask R-CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.04.022 – ident: ref_4 doi: 10.3390/app10175887 – ident: ref_9 doi: 10.3390/su15031906 – volume: 24 start-page: 727 year: 2023 ident: ref_5 article-title: Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting publication-title: Precis. Agric. doi: 10.1007/s11119-022-09972-6 |
SSID | ssj0000913807 |
Score | 2.630678 |
Snippet | A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1824 |
SubjectTerms | Agricultural production Agriculture agronomy Algorithms Analysis Annotations automatic automatic detection Automation Cellular telephones Complexity Convolution data collection Datasets Deep learning DPAG DSConv Evaluation Feature maps FEM Fruits Harvest Harvesting Machine learning Modules Object recognition Performance evaluation Picking Recall Robots Support vector machines Technical services tomato detection Tomatoes YOLOv8s |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxFMsFGQkJMQhWie2E-eEUtiqQqVFqJWKOFh2bG8PJSnbFP4-M4l3EUj06jhO7PGM5-VvAF5zL3xtY5nVzodMSqcyF3Of8cqjelJ6FUu6KPzpqDw4lR_P1FlyuF2ltMqNTBwFte9b8pEvUIwWaMihRvLu8kdGVaMouppKaNyGHRTBWs9gZ2959PnL1stCqJeaV1N8UqB9v7Cr9XhbAGU3iuVC_nUejbD9_xPO44mzfx_uJVWRNRNtH8Ct0D2Eu81qneAywiP41rBDsq5_jQ5O9vX48PinZic9qqE9-xCGMc-qY83FCqcynH9nyP5uLAnBSPfDMdiyOyfCk5OQ2c6zZhimDMjHcLq_PHl_kKVyCVkrVT5kaJmIWlothFQiKlfqSCnGygtRCCu5cypalVeeIPRUDLzwFQ9RlzzItigr8QRmXd-Fp8BqjWIvFnUkdHRdo1YpnA6o6uTKSWXtHBabRTNtwhKnkhYXBm0KWmbz7zLP4e32jcsJR-OGvntEh20_QsAeG_r1yiSGMpRI6rWvWs-91BSE94pbVbWtzDW2zOENUdEQn-KvtTZdN8AJEuKVadBQwt2oa_zc7obQJjHwlfmz3ebwavsYWY_iKbYL_TX1waOE15WSz24e4jncoSr1U5bvLsyG9XV4gbrM4F6mDfsbhRX0Gw priority: 102 providerName: ProQuest |
Title | A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention |
URI | https://www.proquest.com/docview/2842907019 https://www.proquest.com/docview/2887609754 https://doaj.org/article/1074d8d7cd0d480387d50a57cc418d48 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqeikHRF9iC0WuVKniEK0T24l9DO0ihChUCCQqDpYd28sBkmoJ9O93xgkrWqlw4Zo4iTPvscffEPKZee61jWWmnQ-ZEE5mLuY-Y5WH8KT0MpZ4UPj7Ubl_Jg7O5fmDVl9YEzbAAw-Em2LBoFe-ajzzQuFmq5fMyqppRK7gClpf8HkPkqlkg3WOSOrDviSHvH5q54t0SgBsNpjjQvzlhxJc__-McvI0e-tkbQwRaT1M7TV5Edo3ZLWeL0aYjPCWXNT0ELPq32lhk_48Pjy-U_S0g_Czo99Cn-qrWlpfzTtI_i-vKai9S60gKMZ88A46ay-R4bg4SG3rad33Q-XjO3K2Nzv9up-NbRKyRsi8zyAj4VpYxbmQPEpXqoilxdJzXnArmHMyWplXHqHzZAys8BULUZUsiKYoK_6erLRdGzYI1QrMXSx0RFR0pSGa5E4FCHFy6YS0dkKm90QzzYghjq0srgzkEkhm8y-ZJ2Rn-cSvAT_jkbG7yIflOES-ThdAHswoD-YpeZiQL8hFg_oJU2vseMwAfhCRrkwNCRJIodLwua17RptRcW8MeOtCM8Son5BPy9ugcriPYtvQ3eIYcCFMV1J8eI4Zb5JX2MN-qAHeIiv94jZ8hEind9vk5e7s6MfJdhLuPxwt_C0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE-xtICRQIhDtE5sJ84BoZRutaXbLUJbqagH48T29tAmZZtS8af4jczksQgkeus1cZxkZjzzjT0PQl4zy21qfBykuXWBELkMch_agCUW4ElspY8xUXh_Fk8OxacjebRGfvW5MBhW2evERlHbqsA98hGo0QgcOUAkH86_B9g1Ck9X-xYarVjsuZ9X4LJdvN_dBv6-iaKd8fzjJOi6CgSFkGEdAIDnqTCKcyG5l3msPEbiSst5xI1geS69kWFisdKc9I5FNmHOq5g5UURxwmHeW2Rd8JhFA7K-NZ59_rLa1cEqm4ol7Xko5ykbmcWyyU4AWwFmIBJ_2b-mTcD_jEFj4Xbuk3sdNKVZK0sPyJorH5K72WLZledwj8hxRqfozV81G6r068H04Iei8wpgb0W3Xd3EdZU0O10A6eqTMwrqJm9aUFDEmjAHHZcnKGi4KUlNaWlW123E5WNyeCOEfEIGZVW6p4SmCtSsj1KP1dhVCiiW58oBtAplLqQxQzLqiaaLrnY5ttA41eDDIJn1v2QeknerJ87buh3XjN1CPqzGYcXt5kK1XOhuAWsMXLXKJoVlVig89LeSGZkUhQgVXBmSt8hFjXoBPq0wXXoD_CBW2NIZOGYg_SqF1232jNadwrjQf8R7SF6tbsNSx_MbU7rqEseA6WJpIsWz66d4SW5P5vtTPd2d7W2QOxHgsjbCeJMM6uWlew44qs5fdMJLybebXi-_AWiaLok |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzF0gJGAiEO0TqxnTgHhFJ2Vy1dthVqpaIegh3b20OblG1KxV_j1zGTxyKQ6K3XxHGS8Ty-GY9nCHnNLLep9nGQGusCIYwMjA9twBIL8CS20sd4UPjzPN4-FJ-O5NEa-dWfhcG0yl4nNoraVgXGyEegRiNw5ACRjHyXFrE_nn44_x5gByncae3babQssut-XoH7dvF-Zwxr_SaKppODj9tB12EgKIQM6wDAPE-FVpwLyb00sfKYlSst5xHXghkjvZZhYrHqnPSORTZhzquYOVFEccJh3ltkPUGvaEDWtybz_S-rCA9W3FQsafdGOU_ZSC-WzUkFsBtgEiLxly1sWgb8zzA01m56n9zrYCrNWr56QNZc-ZDczRbLrlSHe0SOMzpDz_6qCa7Sr3uzvR-KHlQAgSs6dnWT41XS7HQBpKtPziioHtO0o6CIO2EOOilPkOkwQEl1aWlW12325WNyeCOEfEIGZVW6p4SmClSuj1KPldlVCoiWG-UAZoXSCKn1kIx6ouVFV8cc22mc5uDPIJnzf8k8JO9WT5y3NTyuGbuF67Aah9W3mwvVcpF3wpxjEqtVNikss0JhAoCVTMukKESo4MqQvMVVzFFHwKcVujvqAD-I1bbyDJw0kASVwus2-4XOO-Vxkf9h9SF5tboNYo97Obp01SWOATPG0kSKZ9dP8ZLcBjnJZzvz3Q1yJwKI1iYbb5JBvbx0zwFS1eZFx7uUfLtpcfkNfTkyvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+YOLOv8+Tomato+Detection+Algorithm+Combining+Feature+Enhancement+and+Attention&rft.jtitle=Agronomy+%28Basel%29&rft.au=Guoliang+Yang&rft.au=Jixiang+Wang&rft.au=Ziling+Nie&rft.au=Hao+Yang&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=13&rft.issue=7&rft.spage=1824&rft_id=info:doi/10.3390%2Fagronomy13071824&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |