A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention

A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 7; p. 1824
Main Authors Yang, Guoliang, Wang, Jixiang, Nie, Ziling, Yang, Hao, Yu, Shuaiying
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities. The proposed method has three key components. Firstly, the depthwise separable convolution (DSConv) technique replaces the ordinary convolution, which reduces the computational complexity by generating a large number of feature maps with a small amount of calculation. Secondly, the dual-path attention gate module (DPAG) is designed to improve the model’s detection precision in complex environments by enhancing the network’s ability to distinguish between tomatoes and the background. Thirdly, the feature enhancement module (FEM) is added to highlight the target details, prevent the loss of effective features, and improve detection precision. We built, trained, and tested the tomato dataset, which included 3098 images and 3 classes. The proposed algorithm’s performance was evaluated by comparison with the SSD, faster R-CNN, YOLOv4, YOLOv5, and YOLOv7 algorithms. Precision, recall rate, and mAP (mean average precision) were used for evaluation. The test results show that the improved YOLOv8s network has a lower loss and 93.4% mAP on this dataset. This improvement is a 1.5% increase compared to before the improvement. The precision increased by 2%, and the recall rate increased by 0.8%. Moreover, the proposed algorithm significantly reduced the model size from 22 M to 16 M, while achieving a detection speed of 138.8 FPS, which satisfies the real-time detection requirement. The proposed method strikes a balance between model size and detection precision, enabling it to meet agriculture’s tomato detection requirements. The research model in this paper will provide technical support for a tomato picking robot to ensure the fast and accurate operation of the picking robot.
AbstractList A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The proposed method provides technical support for the automatic harvesting and classification of tomatoes in agricultural production activities. The proposed method has three key components. Firstly, the depthwise separable convolution (DSConv) technique replaces the ordinary convolution, which reduces the computational complexity by generating a large number of feature maps with a small amount of calculation. Secondly, the dual-path attention gate module (DPAG) is designed to improve the model’s detection precision in complex environments by enhancing the network’s ability to distinguish between tomatoes and the background. Thirdly, the feature enhancement module (FEM) is added to highlight the target details, prevent the loss of effective features, and improve detection precision. We built, trained, and tested the tomato dataset, which included 3098 images and 3 classes. The proposed algorithm’s performance was evaluated by comparison with the SSD, faster R-CNN, YOLOv4, YOLOv5, and YOLOv7 algorithms. Precision, recall rate, and mAP (mean average precision) were used for evaluation. The test results show that the improved YOLOv8s network has a lower loss and 93.4% mAP on this dataset. This improvement is a 1.5% increase compared to before the improvement. The precision increased by 2%, and the recall rate increased by 0.8%. Moreover, the proposed algorithm significantly reduced the model size from 22 M to 16 M, while achieving a detection speed of 138.8 FPS, which satisfies the real-time detection requirement. The proposed method strikes a balance between model size and detection precision, enabling it to meet agriculture’s tomato detection requirements. The research model in this paper will provide technical support for a tomato picking robot to ensure the fast and accurate operation of the picking robot.
Audience Academic
Author Yang, Guoliang
Yang, Hao
Wang, Jixiang
Nie, Ziling
Yu, Shuaiying
Author_xml – sequence: 1
  givenname: Guoliang
  orcidid: 0000-0003-0408-1453
  surname: Yang
  fullname: Yang, Guoliang
– sequence: 2
  givenname: Jixiang
  surname: Wang
  fullname: Wang, Jixiang
– sequence: 3
  givenname: Ziling
  surname: Nie
  fullname: Nie, Ziling
– sequence: 4
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
– sequence: 5
  givenname: Shuaiying
  surname: Yu
  fullname: Yu, Shuaiying
BookMark eNp1UU1rGzEUXEIKTdPcexT00ouTp5W0ko6Lmy8w-JIeSg9C1sdaZldKtXJL_n3lOoFiqAR6j2FmxHvzoTmPKbqm-YThmhAJN3rIKabpBRPgWLT0rLlogZMFJZKd_9O_b67meQf1SEwE8IvmR49WYdiW3-7wou_r1fqXQE9p0iWhr644U0KKqB-HlEPZTmiZpk2IIQ7ozumyzw7dxq2Oxk0uFqSjRX0pta2qj807r8fZXb3Wy-bb3e3T8mGxWt8_LvvVwlCGy6LtgEiqBSGUEc82nfBYyo5ZQlqiKWw2zGuGuQXSCuYdtJaD86IDR03bcXLZPB59bdI79ZzDpPOLSjqov0DKg9K5BDM6hYFTKyw3FiwVQAS3DDTjxlAsKlK9vhy9nnP6uXdzUVOYjRtHHV3az6oVgncgOaOV-vmEukv7HOuklUVbCRywrKzrI2vQ9f8QfSpZm3qtm4KpMfpQ8Z4zIQCEPNh2R4HJaZ6z88qEog_7rMIw1hHUIXN1mnkVwonwbRX_lfwBe7GwQw
CitedBy_id crossref_primary_10_1016_j_compag_2024_108728
crossref_primary_10_3390_agronomy14081764
crossref_primary_10_1016_j_compbiomed_2024_109630
crossref_primary_10_3390_app14135524
crossref_primary_10_3390_en17184559
crossref_primary_10_48084_etasr_7064
crossref_primary_10_1016_j_engappai_2024_108700
crossref_primary_10_3233_JIFS_232718
crossref_primary_10_1016_j_atech_2024_100615
crossref_primary_10_1016_j_compag_2024_109531
crossref_primary_10_3390_su17010132
crossref_primary_10_3390_agriculture14050751
crossref_primary_10_1016_j_compag_2024_108961
crossref_primary_10_1016_j_compag_2024_109534
crossref_primary_10_1186_s40537_024_00941_6
crossref_primary_10_1016_j_eja_2023_127076
crossref_primary_10_1186_s10086_024_02139_z
crossref_primary_10_3390_computers13120336
crossref_primary_10_3390_s24154786
crossref_primary_10_3389_fpls_2024_1423338
crossref_primary_10_1016_j_measurement_2024_114975
crossref_primary_10_1007_s00217_024_04516_w
crossref_primary_10_3390_app14167124
crossref_primary_10_1088_1361_6501_ad3a05
crossref_primary_10_1016_j_oceaneng_2024_118233
crossref_primary_10_3390_s24175632
crossref_primary_10_1016_j_dajour_2024_100526
crossref_primary_10_3390_math12071072
crossref_primary_10_3390_app14062575
crossref_primary_10_1177_17483026241309070
crossref_primary_10_3390_f15091486
crossref_primary_10_3390_jmse12050697
crossref_primary_10_1371_journal_pone_0306436
crossref_primary_10_3390_electronics13061046
crossref_primary_10_3390_agriculture14060820
crossref_primary_10_3233_HIS_240023
crossref_primary_10_3390_s24092710
crossref_primary_10_53898_josse2024428
crossref_primary_10_3390_ai6020025
crossref_primary_10_3390_pr12122622
crossref_primary_10_1007_s11554_023_01403_7
crossref_primary_10_3390_agriengineering7010008
crossref_primary_10_1109_TAFE_2024_3445119
crossref_primary_10_3389_fenvs_2024_1412870
crossref_primary_10_1109_ACCESS_2025_3546313
crossref_primary_10_1117_1_JEI_33_1_013050
crossref_primary_10_3390_agronomy14122931
crossref_primary_10_3390_ai5010005
crossref_primary_10_1109_JSEN_2024_3413088
crossref_primary_10_3390_agriengineering6040214
crossref_primary_10_1080_0954898X_2024_2428713
crossref_primary_10_3390_buildings14071929
crossref_primary_10_3390_agronomy14071593
crossref_primary_10_3390_horticulturae11010015
crossref_primary_10_3233_JIFS_238629
crossref_primary_10_3389_fpls_2024_1447855
crossref_primary_10_3390_s24154858
crossref_primary_10_1016_j_aap_2024_107617
crossref_primary_10_1016_j_compag_2024_108852
crossref_primary_10_1109_JSTARS_2024_3469209
crossref_primary_10_1186_s13007_025_01353_0
crossref_primary_10_3389_fnbot_2024_1374385
crossref_primary_10_1016_j_compbiomed_2025_109713
crossref_primary_10_48084_etasr_7262
crossref_primary_10_1016_j_jhydrol_2024_132028
crossref_primary_10_1007_s11760_025_03967_2
crossref_primary_10_3389_fpls_2024_1508258
crossref_primary_10_1016_j_jnlssr_2024_06_003
crossref_primary_10_3390_agriculture14122256
crossref_primary_10_1016_j_fraope_2025_100243
crossref_primary_10_1038_s41598_024_68115_1
crossref_primary_10_1109_ACCESS_2024_3486603
crossref_primary_10_3390_agriculture14071011
crossref_primary_10_3390_jmse12060871
crossref_primary_10_3390_plants13223253
crossref_primary_10_1063_5_0230187
crossref_primary_10_1016_j_compag_2025_110282
crossref_primary_10_3390_agronomy15030582
crossref_primary_10_1016_j_procs_2024_09_392
crossref_primary_10_3390_agronomy13092365
crossref_primary_10_1016_j_compag_2024_109853
crossref_primary_10_3390_plants13172402
crossref_primary_10_1016_j_atech_2025_100806
crossref_primary_10_1016_j_jafr_2025_101840
crossref_primary_10_1016_j_jnca_2025_104134
crossref_primary_10_3390_su17072885
crossref_primary_10_3390_s24206689
crossref_primary_10_3390_s25010104
crossref_primary_10_1007_s13369_024_09419_2
crossref_primary_10_1016_j_scienta_2024_113580
crossref_primary_10_3390_agronomy14081618
crossref_primary_10_1109_JSTARS_2024_3478333
crossref_primary_10_3390_electronics14050876
crossref_primary_10_1109_ACCESS_2023_3336562
crossref_primary_10_1007_s10489_024_05588_7
crossref_primary_10_1109_TIM_2024_3522436
crossref_primary_10_3390_agronomy14081628
crossref_primary_10_3390_agronomy14112650
crossref_primary_10_3390_f15030409
crossref_primary_10_1016_j_aiia_2024_07_001
crossref_primary_10_12677_csa_2024_149186
crossref_primary_10_35633_inmateh_73_50
crossref_primary_10_1080_24751839_2024_2415033
crossref_primary_10_2139_ssrn_4770722
crossref_primary_10_3390_agronomy14123027
crossref_primary_10_3389_fpls_2025_1492110
crossref_primary_10_1038_s41598_025_92445_3
crossref_primary_10_1109_ACCESS_2025_3535624
crossref_primary_10_3390_app14198803
crossref_primary_10_3390_agronomy13082059
crossref_primary_10_1007_s42452_024_05914_1
crossref_primary_10_1007_s11227_025_06936_1
crossref_primary_10_1109_ACCESS_2024_3429283
crossref_primary_10_1007_s11554_024_01505_w
crossref_primary_10_1080_17480272_2024_2428963
crossref_primary_10_3390_agronomy13092418
crossref_primary_10_1016_j_inpa_2024_12_001
crossref_primary_10_3390_jimaging11030069
crossref_primary_10_3390_insects15120974
crossref_primary_10_3390_pr12061211
crossref_primary_10_3390_agronomy14102211
crossref_primary_10_1088_1361_6501_ad71e5
Cites_doi 10.1007/978-3-030-58595-2_27
10.3390/s20072145
10.3390/agronomy13041042
10.1109/CVPR.2018.00813
10.1016/j.procs.2022.01.135
10.3390/s20102984
10.3390/diagnostics11030501
10.3390/agronomy12020356
10.3390/agronomy13051271
10.1007/s00521-021-06029-z
10.1016/j.fusengdes.2022.113141
10.1109/ACCESS.2020.3001349
10.3390/agronomy13020603
10.3390/su15020901
10.1109/CVPR.2018.00745
10.3390/agriculture11111059
10.3389/fpls.2020.571299
10.1007/978-3-030-01234-2_1
10.1079/9781780641935.0000
10.3390/s21103569
10.1007/s11119-019-09662-w
10.1016/j.scienta.2020.109791
10.3126/janr.v3i2.32545
10.1155/2021/9945934
10.1016/j.ifacol.2018.08.183
10.1016/j.patrec.2021.04.022
10.3390/app10175887
10.3390/su15031906
10.1007/s11119-022-09972-6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy13071824
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Agricultural Science Database


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48
A758800894
10_3390_agronomy13071824
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
PMFND
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c451t-260394a833453f5b68f19965d3323a40bb5fa517d03285fe02d70ef860e4c2673
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Wed Aug 27 01:15:54 EDT 2025
Fri Jul 11 10:18:38 EDT 2025
Mon Jun 30 11:22:59 EDT 2025
Tue Jun 10 21:21:35 EDT 2025
Tue Jul 01 03:21:01 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-260394a833453f5b68f19965d3323a40bb5fa517d03285fe02d70ef860e4c2673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0408-1453
OpenAccessLink https://doaj.org/article/1074d8d7cd0d480387d50a57cc418d48
PQID 2842907019
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48
proquest_miscellaneous_2887609754
proquest_journals_2842907019
gale_infotracacademiconefile_A758800894
crossref_citationtrail_10_3390_agronomy13071824
crossref_primary_10_3390_agronomy13071824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Peng (ref_22) 2018; 34
Chu (ref_19) 2021; 147
ref_14
ref_13
ref_12
ref_11
Tiwari (ref_3) 2020; 3
Zhu (ref_17) 2020; 41
ref_32
ref_31
ref_30
Jiang (ref_21) 2022; 199
ref_18
Hu (ref_16) 2020; 8
Zhang (ref_8) 2021; 278
ref_24
Malik (ref_6) 2018; 51
ref_23
Lin (ref_7) 2020; 21
Jiang (ref_15) 2021; 2021
Gai (ref_25) 2021; 35
Afonso (ref_10) 2020; 11
ref_1
ref_2
Bai (ref_5) 2023; 24
Zeng (ref_20) 2022; 179
ref_29
ref_28
ref_27
ref_26
ref_9
ref_4
References_xml – ident: ref_14
  doi: 10.1007/978-3-030-58595-2_27
– ident: ref_23
  doi: 10.3390/s20072145
– ident: ref_26
  doi: 10.3390/agronomy13041042
– ident: ref_31
  doi: 10.1109/CVPR.2018.00813
– volume: 199
  start-page: 1066
  year: 2022
  ident: ref_21
  article-title: A Review of Yolo algorithm developments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.135
– ident: ref_12
  doi: 10.3390/s20102984
– ident: ref_32
  doi: 10.3390/diagnostics11030501
– ident: ref_11
  doi: 10.3390/agronomy12020356
– ident: ref_24
  doi: 10.3390/agronomy13051271
– volume: 35
  start-page: 13895
  year: 2021
  ident: ref_25
  article-title: A detection algorithm for cherry fruits based on the improved YOLO-v4 model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06029-z
– volume: 179
  start-page: 113141
  year: 2022
  ident: ref_20
  article-title: A detection method of Edge Coherent Mode based on improved SSD
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2022.113141
– volume: 8
  start-page: 108335
  year: 2020
  ident: ref_16
  article-title: Detection of PCB surface defects with improved faster-RCNN and feature pyramid network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001349
– ident: ref_27
  doi: 10.3390/agronomy13020603
– ident: ref_28
  doi: 10.3390/su15020901
– ident: ref_29
  doi: 10.1109/CVPR.2018.00745
– ident: ref_18
  doi: 10.3390/agriculture11111059
– volume: 11
  start-page: 571299
  year: 2020
  ident: ref_10
  article-title: Tomato fruit detection and counting in greenhouses using deep learning
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.571299
– ident: ref_30
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_1
  doi: 10.1079/9781780641935.0000
– ident: ref_2
– ident: ref_13
  doi: 10.3390/s21103569
– volume: 21
  start-page: 160
  year: 2020
  ident: ref_7
  article-title: Fruit detection in natural environment using partial shape matching and probabilistic Hough transform
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09662-w
– volume: 278
  start-page: 109791
  year: 2021
  ident: ref_8
  article-title: A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109791
– volume: 41
  start-page: 668
  year: 2020
  ident: ref_17
  article-title: Automatic Identification Technology of Lycium barbarum Flowering Period and Fruit Ripening Period Based on Faster R-CNN
  publication-title: Chin. J. Agrometeorol.
– volume: 3
  start-page: 335
  year: 2020
  ident: ref_3
  article-title: Post-harvest practices and loss assessment in tomato (Solanum lycopersicum L.) in Kathmandu, Nepal
  publication-title: J. Agric. Nat. Resour.
  doi: 10.3126/janr.v3i2.32545
– volume: 34
  start-page: 155
  year: 2018
  ident: ref_22
  article-title: General improved SSD model for picking object recognition of multiple fruits in natural environment
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 2021
  start-page: 9945934
  year: 2021
  ident: ref_15
  article-title: Application of a fast RCNN based on upper and lower layers in face recognition
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/9945934
– volume: 51
  start-page: 431
  year: 2018
  ident: ref_6
  article-title: Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.183
– volume: 147
  start-page: 206
  year: 2021
  ident: ref_19
  article-title: Deep learning-based apple detection using a suppression mask R-CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.04.022
– ident: ref_4
  doi: 10.3390/app10175887
– ident: ref_9
  doi: 10.3390/su15031906
– volume: 24
  start-page: 727
  year: 2023
  ident: ref_5
  article-title: Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09972-6
SSID ssj0000913807
Score 2.630678
Snippet A tomato automatic detection method based on an improved YOLOv8s model is proposed to address the low automation level in tomato harvesting in agriculture. The...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1824
SubjectTerms Agricultural production
Agriculture
agronomy
Algorithms
Analysis
Annotations
automatic
automatic detection
Automation
Cellular telephones
Complexity
Convolution
data collection
Datasets
Deep learning
DPAG
DSConv
Evaluation
Feature maps
FEM
Fruits
Harvest
Harvesting
Machine learning
Modules
Object recognition
Performance evaluation
Picking
Recall
Robots
Support vector machines
Technical services
tomato detection
Tomatoes
YOLOv8s
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxFMsFGQkJMQhWie2E-eEUtiqQqVFqJWKOFh2bG8PJSnbFP4-M4l3EUj06jhO7PGM5-VvAF5zL3xtY5nVzodMSqcyF3Of8cqjelJ6FUu6KPzpqDw4lR_P1FlyuF2ltMqNTBwFte9b8pEvUIwWaMihRvLu8kdGVaMouppKaNyGHRTBWs9gZ2959PnL1stCqJeaV1N8UqB9v7Cr9XhbAGU3iuVC_nUejbD9_xPO44mzfx_uJVWRNRNtH8Ct0D2Eu81qneAywiP41rBDsq5_jQ5O9vX48PinZic9qqE9-xCGMc-qY83FCqcynH9nyP5uLAnBSPfDMdiyOyfCk5OQ2c6zZhimDMjHcLq_PHl_kKVyCVkrVT5kaJmIWlothFQiKlfqSCnGygtRCCu5cypalVeeIPRUDLzwFQ9RlzzItigr8QRmXd-Fp8BqjWIvFnUkdHRdo1YpnA6o6uTKSWXtHBabRTNtwhKnkhYXBm0KWmbz7zLP4e32jcsJR-OGvntEh20_QsAeG_r1yiSGMpRI6rWvWs-91BSE94pbVbWtzDW2zOENUdEQn-KvtTZdN8AJEuKVadBQwt2oa_zc7obQJjHwlfmz3ebwavsYWY_iKbYL_TX1waOE15WSz24e4jncoSr1U5bvLsyG9XV4gbrM4F6mDfsbhRX0Gw
  priority: 102
  providerName: ProQuest
Title A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention
URI https://www.proquest.com/docview/2842907019
https://www.proquest.com/docview/2887609754
https://doaj.org/article/1074d8d7cd0d480387d50a57cc418d48
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqeikHRF9iC0WuVKniEK0T24l9DO0ihChUCCQqDpYd28sBkmoJ9O93xgkrWqlw4Zo4iTPvscffEPKZee61jWWmnQ-ZEE5mLuY-Y5WH8KT0MpZ4UPj7Ubl_Jg7O5fmDVl9YEzbAAw-Em2LBoFe-ajzzQuFmq5fMyqppRK7gClpf8HkPkqlkg3WOSOrDviSHvH5q54t0SgBsNpjjQvzlhxJc__-McvI0e-tkbQwRaT1M7TV5Edo3ZLWeL0aYjPCWXNT0ELPq32lhk_48Pjy-U_S0g_Czo99Cn-qrWlpfzTtI_i-vKai9S60gKMZ88A46ay-R4bg4SG3rad33Q-XjO3K2Nzv9up-NbRKyRsi8zyAj4VpYxbmQPEpXqoilxdJzXnArmHMyWplXHqHzZAys8BULUZUsiKYoK_6erLRdGzYI1QrMXSx0RFR0pSGa5E4FCHFy6YS0dkKm90QzzYghjq0srgzkEkhm8y-ZJ2Rn-cSvAT_jkbG7yIflOES-ThdAHswoD-YpeZiQL8hFg_oJU2vseMwAfhCRrkwNCRJIodLwua17RptRcW8MeOtCM8Son5BPy9ugcriPYtvQ3eIYcCFMV1J8eI4Zb5JX2MN-qAHeIiv94jZ8hEind9vk5e7s6MfJdhLuPxwt_C0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE-xtICRQIhDtE5sJ84BoZRutaXbLUJbqagH48T29tAmZZtS8af4jczksQgkeus1cZxkZjzzjT0PQl4zy21qfBykuXWBELkMch_agCUW4ElspY8xUXh_Fk8OxacjebRGfvW5MBhW2evERlHbqsA98hGo0QgcOUAkH86_B9g1Ck9X-xYarVjsuZ9X4LJdvN_dBv6-iaKd8fzjJOi6CgSFkGEdAIDnqTCKcyG5l3msPEbiSst5xI1geS69kWFisdKc9I5FNmHOq5g5UURxwmHeW2Rd8JhFA7K-NZ59_rLa1cEqm4ol7Xko5ykbmcWyyU4AWwFmIBJ_2b-mTcD_jEFj4Xbuk3sdNKVZK0sPyJorH5K72WLZledwj8hxRqfozV81G6r068H04Iei8wpgb0W3Xd3EdZU0O10A6eqTMwrqJm9aUFDEmjAHHZcnKGi4KUlNaWlW123E5WNyeCOEfEIGZVW6p4SmCtSsj1KP1dhVCiiW58oBtAplLqQxQzLqiaaLrnY5ttA41eDDIJn1v2QeknerJ87buh3XjN1CPqzGYcXt5kK1XOhuAWsMXLXKJoVlVig89LeSGZkUhQgVXBmSt8hFjXoBPq0wXXoD_CBW2NIZOGYg_SqF1232jNadwrjQf8R7SF6tbsNSx_MbU7rqEseA6WJpIsWz66d4SW5P5vtTPd2d7W2QOxHgsjbCeJMM6uWlew44qs5fdMJLybebXi-_AWiaLok
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzF0gJGAiEO0TqxnTgHhFJ2Vy1dthVqpaIegh3b20OblG1KxV_j1zGTxyKQ6K3XxHGS8Ty-GY9nCHnNLLep9nGQGusCIYwMjA9twBIL8CS20sd4UPjzPN4-FJ-O5NEa-dWfhcG0yl4nNoraVgXGyEegRiNw5ACRjHyXFrE_nn44_x5gByncae3babQssut-XoH7dvF-Zwxr_SaKppODj9tB12EgKIQM6wDAPE-FVpwLyb00sfKYlSst5xHXghkjvZZhYrHqnPSORTZhzquYOVFEccJh3ltkPUGvaEDWtybz_S-rCA9W3FQsafdGOU_ZSC-WzUkFsBtgEiLxly1sWgb8zzA01m56n9zrYCrNWr56QNZc-ZDczRbLrlSHe0SOMzpDz_6qCa7Sr3uzvR-KHlQAgSs6dnWT41XS7HQBpKtPziioHtO0o6CIO2EOOilPkOkwQEl1aWlW12325WNyeCOEfEIGZVW6p4SmClSuj1KPldlVCoiWG-UAZoXSCKn1kIx6ouVFV8cc22mc5uDPIJnzf8k8JO9WT5y3NTyuGbuF67Aah9W3mwvVcpF3wpxjEqtVNikss0JhAoCVTMukKESo4MqQvMVVzFFHwKcVujvqAD-I1bbyDJw0kASVwus2-4XOO-Vxkf9h9SF5tboNYo97Obp01SWOATPG0kSKZ9dP8ZLcBjnJZzvz3Q1yJwKI1iYbb5JBvbx0zwFS1eZFx7uUfLtpcfkNfTkyvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+YOLOv8+Tomato+Detection+Algorithm+Combining+Feature+Enhancement+and+Attention&rft.jtitle=Agronomy+%28Basel%29&rft.au=Guoliang+Yang&rft.au=Jixiang+Wang&rft.au=Ziling+Nie&rft.au=Hao+Yang&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=13&rft.issue=7&rft.spage=1824&rft_id=info:doi/10.3390%2Fagronomy13071824&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1074d8d7cd0d480387d50a57cc418d48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon