Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analog...
Saved in:
Published in | The Journal of biological chemistry Vol. 297; no. 1; p. 100770 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand. |
---|---|
AbstractList | The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand. The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N 4 -hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand. The RNA-dependent RNA polymerase (RdRp) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target in current drug development efforts for the treatment of coronavirus disease 2019 (COVID-19). Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N -hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified SARS-CoV-2 RdRp complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate (NHC-MP) in the RNA primer strand. When embedded in the template strand, NHC-MP supported formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand. The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand. |
ArticleNumber | 100770 |
Author | Gordon, Calvin J. Götte, Matthias Schinazi, Raymond F. Tchesnokov, Egor P. |
Author_xml | – sequence: 1 givenname: Calvin J. surname: Gordon fullname: Gordon, Calvin J. organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada – sequence: 2 givenname: Egor P. orcidid: 0000-0003-1698-2961 surname: Tchesnokov fullname: Tchesnokov, Egor P. organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada – sequence: 3 givenname: Raymond F. surname: Schinazi fullname: Schinazi, Raymond F. organization: Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA – sequence: 4 givenname: Matthias surname: Götte fullname: Götte, Matthias email: gotte@ualberta.ca organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33989635$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS3Uim4LH4ALypFLlvG_JBYS0mpFC1ILUguIm-U4s61XSRxsZ6V--3q1pQIO9cUezfu9seadkqPRj0jIGwpLCrR6v11uW7tkwGiuoa7hBVlQaHjJJf11RBaQO6VisjkhpzFuIR-h6EtywrlqVMXlgqyufD_Okwtm50IxBT_4hLG4WV3flGv_s2TFMCdziyNGF4udM0W6w-L666pIOEy9SfiKHG9MH_H1431Gfpx_-r7-XF5-u_iyXl2WVkiaSiYppwgozYYK3iq2aY2qamFYwzvoBNiqAWOk7QBUy7A2Arsmv1QrBJPAz8jHg-80twN2FscUTK-n4AYT7rU3Tv_bGd2dvvU73VAKFafZ4N2jQfC_Z4xJDy5a7Hszop-jZpI1tBYcVJa-_XvW05A_e8sCehDY4GMMuHmSUND7bPRW52z0Pht9yCYz9X-Mdckk5_ffdf2z5IcDiXm_O4dBR-twtNi5gDbpzrtn6Ae5RaeA |
CitedBy_id | crossref_primary_10_1016_j_biochi_2022_10_007 crossref_primary_10_1126_science_abn1900 crossref_primary_10_1128_aac_01315_22 crossref_primary_10_1134_S0006297924120149 crossref_primary_10_1016_j_antiviral_2022_105475 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1002_jmv_28863 crossref_primary_10_3390_molecules29235564 crossref_primary_10_1055_a_1807_0168 crossref_primary_10_3389_fmolb_2021_822218 crossref_primary_10_29235_1029_8940_2022_67_4_426_432 crossref_primary_10_3390_v14061345 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1093_jac_dkad309 crossref_primary_10_3390_biology11020215 crossref_primary_10_3390_molecules27134212 crossref_primary_10_1038_s42003_022_04322_8 crossref_primary_10_1039_D4OB00404C crossref_primary_10_3390_ph15070831 crossref_primary_10_1038_s41392_023_01724_w crossref_primary_10_1016_j_apsb_2024_05_026 crossref_primary_10_3390_ijms24108867 crossref_primary_10_1021_acs_oprd_1c00419 crossref_primary_10_3390_metabo13020309 crossref_primary_10_1007_s40265_022_01684_5 crossref_primary_10_1039_D2RA05066H crossref_primary_10_18231_j_ijpca_2022_006 crossref_primary_10_1016_j_heliyon_2024_e30862 crossref_primary_10_2147_DDDT_S356951 crossref_primary_10_3390_biomedicines10112815 crossref_primary_10_3390_biomedicines11092356 crossref_primary_10_3389_fchem_2022_876212 crossref_primary_10_3390_v15061317 crossref_primary_10_1016_j_ebiom_2023_104748 crossref_primary_10_1080_07853890_2022_2031274 crossref_primary_10_1136_bmj_o926 crossref_primary_10_1007_s15010_022_01959_9 crossref_primary_10_3390_v14112560 crossref_primary_10_1021_acs_biomac_2c00271 crossref_primary_10_1111_febs_16587 crossref_primary_10_3390_v16010156 crossref_primary_10_1002_ijc_34442 crossref_primary_10_4110_in_2023_23_e13 crossref_primary_10_1016_j_ceca_2022_102637 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1007_s41061_023_00432_x crossref_primary_10_1016_j_aquaculture_2025_742187 crossref_primary_10_1080_14787210_2022_2082944 crossref_primary_10_3390_v16050708 crossref_primary_10_1016_j_csbj_2022_08_056 crossref_primary_10_1038_s41594_021_00651_0 crossref_primary_10_1128_aac_02404_21 crossref_primary_10_3390_biom13071095 crossref_primary_10_3390_molecules27217522 crossref_primary_10_3390_cells11020253 crossref_primary_10_1038_s41467_022_34839_9 crossref_primary_10_1016_j_mam_2021_101005 crossref_primary_10_1016_j_bmcl_2024_130015 crossref_primary_10_31083_j_fbl2810273 crossref_primary_10_1128_mbio_02493_24 crossref_primary_10_2139_ssrn_4151032 crossref_primary_10_1038_s43856_023_00383_w crossref_primary_10_1021_acssensors_2c00447 crossref_primary_10_1001_jamanetworkopen_2022_7970 crossref_primary_10_3390_ijms25020739 crossref_primary_10_1055_a_2147_3999 crossref_primary_10_1016_j_isci_2023_107786 crossref_primary_10_1016_j_jsps_2022_03_002 crossref_primary_10_1155_2023_1879554 crossref_primary_10_1007_s11845_022_03139_y crossref_primary_10_1016_j_antiviral_2022_105453 crossref_primary_10_1093_nar_gkad1194 crossref_primary_10_2174_2589977514666220527105158 crossref_primary_10_3390_jcm12010034 crossref_primary_10_1186_s42269_022_00753_9 crossref_primary_10_1016_j_isci_2022_105074 crossref_primary_10_1016_j_isci_2024_109597 crossref_primary_10_1126_science_abn0048 crossref_primary_10_1038_s44298_024_00066_w crossref_primary_10_3390_antibiotics12020393 crossref_primary_10_3390_v14040841 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_31665_JFB_2021_16290 crossref_primary_10_7326_M22_0729 crossref_primary_10_1080_17460794_2024_2350923 crossref_primary_10_3390_microorganisms9071479 crossref_primary_10_3390_v15040944 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1002_cmdc_202200399 crossref_primary_10_1016_j_csbj_2023_09_001 crossref_primary_10_1186_s12929_023_00923_5 crossref_primary_10_1016_j_jbc_2024_107755 crossref_primary_10_1016_j_jbc_2024_107514 crossref_primary_10_1007_s00044_021_02841_3 crossref_primary_10_1016_j_coviro_2022_101279 crossref_primary_10_1186_s43141_022_00368_7 crossref_primary_10_1016_j_isci_2023_106037 crossref_primary_10_1093_nsr_nwad161 crossref_primary_10_1186_s12929_022_00847_6 crossref_primary_10_3389_fmolb_2021_823253 crossref_primary_10_1080_07391102_2023_2235012 crossref_primary_10_1073_pnas_2419854122 crossref_primary_10_1093_infdis_jiac477 crossref_primary_10_1111_cts_13602 crossref_primary_10_1016_j_antiviral_2024_106046 crossref_primary_10_2174_1574885518666230124123054 crossref_primary_10_3390_ijms23158606 crossref_primary_10_1093_brain_awab302 crossref_primary_10_3390_v14050961 crossref_primary_10_1016_j_virol_2024_110255 crossref_primary_10_1111_cts_70073 crossref_primary_10_3390_jcm11154464 crossref_primary_10_1016_j_ejmech_2022_114136 crossref_primary_10_1007_s11356_022_22661_1 crossref_primary_10_2174_0113852728268800231031113104 crossref_primary_10_3389_fphar_2022_835136 crossref_primary_10_1038_s41594_021_00657_8 crossref_primary_10_1007_s43440_022_00408_6 crossref_primary_10_1016_j_phrs_2022_106201 crossref_primary_10_1038_s41467_023_40933_3 crossref_primary_10_1080_22297928_2023_2224806 crossref_primary_10_1021_acscentsci_4c00146 crossref_primary_10_1038_s42003_023_04888_x crossref_primary_10_1128_mbio_03347_21 crossref_primary_10_3390_biomedicines10020441 crossref_primary_10_1016_j_dsx_2021_102329 crossref_primary_10_1007_s40121_023_00891_1 crossref_primary_10_1016_j_microc_2023_109297 crossref_primary_10_1038_s41467_024_45641_0 crossref_primary_10_1016_j_bcp_2022_115279 crossref_primary_10_1007_s00604_024_06353_w crossref_primary_10_1089_ipm_10_01_10 crossref_primary_10_33380_2305_2066_2023_12_1_215_226 crossref_primary_10_1056_NEJMoa2116044 crossref_primary_10_3390_ijms241613002 crossref_primary_10_3390_ph15060739 crossref_primary_10_1016_j_smim_2021_101524 crossref_primary_10_3390_v14081790 crossref_primary_10_1039_D4RA00097H crossref_primary_10_1155_2022_4555490 crossref_primary_10_1002_jmv_28011 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_3390_ijms232314654 crossref_primary_10_1016_j_ejps_2021_106012 crossref_primary_10_1080_28378083_2025_2481595 crossref_primary_10_3390_scipharm90020024 crossref_primary_10_1111_fcp_12889 crossref_primary_10_1016_j_antiviral_2023_105716 crossref_primary_10_1016_j_mrrev_2025_108533 crossref_primary_10_1080_17460441_2022_2153828 crossref_primary_10_2478_abmj_2021_0005 crossref_primary_10_1126_sciadv_adl4393 crossref_primary_10_1002_wcms_1622 crossref_primary_10_1002_jmv_27730 crossref_primary_10_1080_13543784_2022_2030310 crossref_primary_10_1039_D2MD00009A crossref_primary_10_1128_aac_01434_24 crossref_primary_10_4236_aid_2023_132019 crossref_primary_10_3389_fimmu_2022_855496 crossref_primary_10_3389_fimmu_2023_1116131 crossref_primary_10_1089_omi_2022_0045 crossref_primary_10_1016_j_jpba_2022_114693 crossref_primary_10_3390_molecules27092918 crossref_primary_10_1126_scitranslmed_abl7430 crossref_primary_10_3390_covid2080078 crossref_primary_10_1002_nbm_4888 crossref_primary_10_1021_acs_analchem_2c02223 crossref_primary_10_3390_pathogens11101209 crossref_primary_10_1128_cmr_00119_23 crossref_primary_10_1016_j_isci_2022_104293 crossref_primary_10_1002_cpt_2895 crossref_primary_10_3390_ph15121512 crossref_primary_10_3390_antibiotics10111294 crossref_primary_10_1016_j_jpba_2023_115499 crossref_primary_10_1128_aac_00953_23 crossref_primary_10_1038_s41580_021_00432_z crossref_primary_10_1016_j_omtn_2023_06_006 crossref_primary_10_1016_j_ijantimicag_2023_106973 crossref_primary_10_1002_slct_202400508 crossref_primary_10_3390_vaccines9111317 crossref_primary_10_1371_journal_ppat_1009929 crossref_primary_10_1007_s43440_022_00388_7 crossref_primary_10_1128_jvi_00671_22 crossref_primary_10_3390_pathogens11060662 crossref_primary_10_61186_umj_33_12_857 crossref_primary_10_1016_j_reprotox_2023_108475 crossref_primary_10_1021_acs_oprd_3c00268 crossref_primary_10_3390_molecules28052332 crossref_primary_10_1038_s41586_023_06649_6 crossref_primary_10_3346_jkms_2021_36_e298 crossref_primary_10_1246_bcsj_20220179 crossref_primary_10_1002_jmv_27517 crossref_primary_10_1016_j_antiviral_2022_105501 crossref_primary_10_3390_v15122316 crossref_primary_10_1182_blood_2022016089 crossref_primary_10_3390_v15061234 crossref_primary_10_1134_S1019331622040256 crossref_primary_10_3390_molecules27238257 crossref_primary_10_1016_j_bioorg_2024_107379 crossref_primary_10_1038_s41392_022_01249_8 crossref_primary_10_1016_j_jbc_2021_100867 crossref_primary_10_1016_j_virol_2022_11_001 crossref_primary_10_1021_acs_joc_3c01580 |
Cites_doi | 10.1074/jbc.RA120.013679 10.1016/0027-5107(80)90053-6 10.1038/s41598-018-22328-3 10.1128/AAC.48.12.4636-4642.2004 10.1038/s41467-020-18463-z 10.1126/scitranslmed.aax5866 10.1038/82191 10.1371/journal.ppat.1004995 10.1128/AAC.02428-20 10.1074/jbc.AC120.013056 10.1371/journal.pntd.0008283 10.1128/AAC.47.1.244-254.2003 10.1038/s41586-021-03312-w 10.1073/pnas.1718806115 10.1128/AAC.02395-16 10.3390/v7122934 10.1371/journal.ppat.1003565 10.3390/v11040326 10.1007/BF00928361 10.1128/AAC.01719-19 10.1074/jbc.AC120.015720 10.3851/IMP2229 10.1128/JVI.01965-17 10.1126/scitranslmed.abb5883 10.1039/D0CP05297C 10.1128/AAC.02666-14 10.1038/s41564-020-00835-2 10.1128/JVI.00291-19 10.1039/D0CC05944G 10.1016/0027-5107(80)90218-3 10.1128/AAC.00766-18 10.1093/infdis/jiab247 10.1038/s41467-021-22580-8 10.1128/JVI.01348-19 10.1038/s41467-020-19055-7 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.jbc.2021.100770 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC8110631 33989635 10_1016_j_jbc_2021_100770 S0021925821005639 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c451t-25131e0e5af143b92fba9674a283d0d40c680aa5cd009b2e7a4ed89b29b442503 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:12:00 EDT 2025 Fri Jul 11 15:27:40 EDT 2025 Thu Apr 03 07:05:43 EDT 2025 Tue Jul 01 04:33:23 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Fri Feb 23 02:43:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Covid-19 mutagen RDV RNA-dependent RNA polymerase drug development NHC NHC-MP coronavirus antiviral agent NHC-TP SARS-CoV-2 nucleoside analogue RdRp Coronavirus |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-25131e0e5af143b92fba9674a283d0d40c680aa5cd009b2e7a4ed89b29b442503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1698-2961 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2021.100770 |
PMID | 33989635 |
PQID | 2528174309 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8110631 proquest_miscellaneous_2528174309 pubmed_primary_33989635 crossref_primary_10_1016_j_jbc_2021_100770 crossref_citationtrail_10_1016_j_jbc_2021_100770 elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Toots, Yoon, Cox, Hart, Sticher, Makhsous, Plesker, Barrena, Reddy, Mitchell, Shean, Bluemling, Kolykhalov, Greninger, Natchus (bib12) 2019; 11 Ferron, Subissi, Silveira De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein, Bricogne, Canard, Imbert (bib25) 2018; 115 Crotty, Maag, Arnold, Zhong, Lau, Hong, Andino, Cameron (bib24) 2000; 6 Deval, Hong, Wang, Taylor, Smith, Fung, Stevens, Liu, Jin, Dyatkina, Prhavc, Stoycheva, Serebryany, Liu, Smith (bib32) 2015; 11 Tchesnokov, Gordon, Woolner, Kocinkova, Perry, Feng, Porter, Gotte (bib37) 2020; 295 Costantini, Whitaker, Barclay, Lee, McBrayer, Schinazi, Vinje (bib7) 2012; 17 Shannon, Selisko, Le, Huchting, Touret, Piorkowski, Fattorini, Ferron, Decroly, Meier, Coutard, Peersen, Canard (bib23) 2020; 11 (bib1) 2020 Vasudevan, Ahlqvist, McGeough, Paymode, Cardoso, Lucas, Dietz, Opatz, Jamison, Gupton, Snead (bib4) 2020; 56 Sheahan, Sims, Zhou, Graham, Pruijssers, Agostini, Leist, Schafer, Dinnon, Stevens, Chappell, Lu, Hughes, George, Hill (bib13) 2020; 12 Urakova, Kuznetsova, Crossman, Sokratian, Guthrie, Kolykhalov, Lockwood, Natchus, Crowley, Painter, Frolova, Frolov (bib9) 2018; 92 Tchesnokov, Bailey-Elkin, Mark, Gotte (bib30) 2020; 14 Janion, Glickman (bib18) 1980; 72 Traut (bib36) 1994; 140 Smith, Blanc, Surdel, Vignuzzi, Denison (bib26) 2013; 9 Gordon, Tchesnokov, Woolner, Perry, Feng, Porter, Gotte (bib2) 2020; 295 Cox, Wolf, Plemper (bib15) 2021; 6 Tchesnokov, Feng, Porter, Gotte (bib29) 2019; 11 (bib3) 2020 Xie, Muruato, Zhang, Lokugamage, Fontes-Garfias, Zou, Liu, Ren, Balakrishnan, Cihlar, Tseng, Makino, Menachery, Bilello, Shi (bib22) 2020; 11 Janion (bib20) 1979; 26 Ehteshami, Tao, Zandi, Hsiao, Jiang, Hammond, Amblard, Russell, Merits, Schinazi (bib11) 2017; 61 Wahl, Gralinski, Johnson, Yao, Kovarova, Dinnon, Liu, Madden, Krzystek, De, White, Gully, Schafer, Zaman, Leist (bib16) 2021; 591 Sticher, Lu, Mitchell, Marlow, Moellering, Bluemling, Guthrie, Natchus, Painter, Kolykhalov (bib27) 2020; 64 Stuyver, Whitaker, McBrayer, Hernandez-Santiago, Lostia, Tharnish, Ramesh, Chu, Jordan, Shi, Rachakonda, Watanabe, Otto, Schinazi (bib5) 2003; 47 Jena (bib35) 2020; 22 Gordon, Tchesnokov, Feng, Porter, Gotte (bib31) 2020; 295 Hernandez-Santiago, Beltran, Stuyver, Chu, Schinazi (bib19) 2004; 48 Tchesnokov, Raeisimakiani, Ngure, Marchant, Gotte (bib28) 2018; 8 Painter, Holman, Bush, Almazedi, Malik, Eraut, Morin, Szewczyk, Painter (bib21) 2021 Yoon, Toots, Lee, Lee, Ludeke, Luczo, Ganti, Cox, Sticher, Edpuganti, Mitchell, Lockwood, Kolykhalov, Greninger, Moore (bib6) 2018; 62 Reynard, Nguyen, Alazard-Dany, Barateau, Cimarelli, Volchkov (bib8) 2015; 7 Sledziewska, Janion (bib17) 1980; 70 Fung, Jin, Dyatkina, Wang, Beigelman, Deval (bib34) 2014; 58 Tvarogova, Madhugiri, Bylapudi, Ferguson, Karl, Ziebuhr (bib33) 2019; 93 Rosenke, Hansen, Schwarz, Feldmann, Haddock, Rosenke, Barbian, Meade-White, Okumura, Leventhal, Hawman, Ricotta, Bosio, Martens, Saturday (bib14) 2021; 12 Zhou, Hill, Sarkar, Tse, Woodburn, Schinazi, Sheahan, Baric, Heise, Swanstrom (bib38) 2021 Agostini, Pruijssers, Chappell, Gribble, Lu, Andres, Bluemling, Lockwood, Sheahan, Sims, Natchus, Saindane, Kolykhalov, Painter, Baric (bib10) 2019; 93 Wahl (10.1016/j.jbc.2021.100770_bib16) 2021; 591 Ferron (10.1016/j.jbc.2021.100770_bib25) 2018; 115 Yoon (10.1016/j.jbc.2021.100770_bib6) 2018; 62 Zhou (10.1016/j.jbc.2021.100770_bib38) 2021 Xie (10.1016/j.jbc.2021.100770_bib22) 2020; 11 Gordon (10.1016/j.jbc.2021.100770_bib2) 2020; 295 Crotty (10.1016/j.jbc.2021.100770_bib24) 2000; 6 Tchesnokov (10.1016/j.jbc.2021.100770_bib28) 2018; 8 Gordon (10.1016/j.jbc.2021.100770_bib31) 2020; 295 Reynard (10.1016/j.jbc.2021.100770_bib8) 2015; 7 Janion (10.1016/j.jbc.2021.100770_bib20) 1979; 26 Painter (10.1016/j.jbc.2021.100770_bib21) 2021 Jena (10.1016/j.jbc.2021.100770_bib35) 2020; 22 Sheahan (10.1016/j.jbc.2021.100770_bib13) 2020; 12 Janion (10.1016/j.jbc.2021.100770_bib18) 1980; 72 Urakova (10.1016/j.jbc.2021.100770_bib9) 2018; 92 Agostini (10.1016/j.jbc.2021.100770_bib10) 2019; 93 Toots (10.1016/j.jbc.2021.100770_bib12) 2019; 11 (10.1016/j.jbc.2021.100770_bib1) 2020 Shannon (10.1016/j.jbc.2021.100770_bib23) 2020; 11 Deval (10.1016/j.jbc.2021.100770_bib32) 2015; 11 Vasudevan (10.1016/j.jbc.2021.100770_bib4) 2020; 56 Smith (10.1016/j.jbc.2021.100770_bib26) 2013; 9 Sledziewska (10.1016/j.jbc.2021.100770_bib17) 1980; 70 Sticher (10.1016/j.jbc.2021.100770_bib27) 2020; 64 Rosenke (10.1016/j.jbc.2021.100770_bib14) 2021; 12 Hernandez-Santiago (10.1016/j.jbc.2021.100770_bib19) 2004; 48 (10.1016/j.jbc.2021.100770_bib3) 2020 Tvarogova (10.1016/j.jbc.2021.100770_bib33) 2019; 93 Fung (10.1016/j.jbc.2021.100770_bib34) 2014; 58 Cox (10.1016/j.jbc.2021.100770_bib15) 2021; 6 Ehteshami (10.1016/j.jbc.2021.100770_bib11) 2017; 61 Costantini (10.1016/j.jbc.2021.100770_bib7) 2012; 17 Tchesnokov (10.1016/j.jbc.2021.100770_bib30) 2020; 14 Tchesnokov (10.1016/j.jbc.2021.100770_bib37) 2020; 295 Tchesnokov (10.1016/j.jbc.2021.100770_bib29) 2019; 11 Stuyver (10.1016/j.jbc.2021.100770_bib5) 2003; 47 Traut (10.1016/j.jbc.2021.100770_bib36) 1994; 140 |
References_xml | – volume: 47 start-page: 244 year: 2003 end-page: 254 ident: bib5 article-title: Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture publication-title: Antimicrob. Agents Chemother. – volume: 9 year: 2013 ident: bib26 article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics publication-title: PLoS Pathog. – volume: 17 start-page: 981 year: 2012 end-page: 991 ident: bib7 article-title: Antiviral activity of nucleoside analogues against norovirus publication-title: Antivir. Ther. – volume: 12 year: 2020 ident: bib13 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice publication-title: Sci. Transl. Med. – volume: 295 start-page: 4773 year: 2020 end-page: 4779 ident: bib31 article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus publication-title: J. Biol. Chem. – volume: 64 year: 2020 ident: bib27 article-title: Analysis of the potential for N (4)-hydroxycytidine to inhibit mitochondrial replication and function publication-title: Antimicrob. Agents Chemother. – volume: 58 start-page: 3636 year: 2014 end-page: 3645 ident: bib34 article-title: Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase publication-title: Antimicrob. Agents Chemother. – volume: 56 start-page: 13363 year: 2020 end-page: 13364 ident: bib4 article-title: A concise route to MK-4482 (EIDD-2801) from cytidine publication-title: Chem. Commun. (Camb.) – volume: 8 start-page: 3970 year: 2018 ident: bib28 article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus publication-title: Sci. Rep. – year: 2020 ident: bib3 article-title: Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Casirivimab and Imdevimab – volume: 93 year: 2019 ident: bib10 article-title: Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance publication-title: J. Virol. – volume: 11 year: 2015 ident: bib32 article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate publication-title: PLoS Pathog. – volume: 61 year: 2017 ident: bib11 article-title: Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of Chikungunya virus publication-title: Antimicrob. Agents Chemother. – year: 2021 ident: bib38 article-title: beta-D-N 4-hydroxycytidine (NHC) inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells publication-title: J Infect Dis – volume: 6 start-page: 11 year: 2021 end-page: 18 ident: bib15 article-title: Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets publication-title: Nat. Microbiol. – volume: 115 start-page: E162 year: 2018 end-page: E171 ident: bib25 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 2295 year: 2021 ident: bib14 article-title: Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model publication-title: Nat. Commun. – volume: 295 start-page: 16156 year: 2020 end-page: 16165 ident: bib37 article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action publication-title: J. Biol. Chem. – volume: 48 start-page: 4636 year: 2004 end-page: 4642 ident: bib19 article-title: Metabolism of the anti-hepatitis C virus nucleoside beta-D-N4-hydroxycytidine in different liver cells publication-title: Antimicrob. Agents Chemother. – volume: 7 start-page: 6233 year: 2015 end-page: 6240 ident: bib8 article-title: Identification of a new ribonucleoside inhibitor of Ebola virus replication publication-title: Viruses – volume: 6 start-page: 1375 year: 2000 end-page: 1379 ident: bib24 article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen publication-title: Nat. Med. – volume: 11 start-page: 326 year: 2019 ident: bib29 article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir publication-title: Viruses – volume: 295 start-page: 6785 year: 2020 end-page: 6797 ident: bib2 article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency publication-title: J. Biol. Chem. – volume: 72 start-page: 43 year: 1980 end-page: 47 ident: bib18 article-title: N-4-Hydroxycytidine - a mutagen specific for at to Gc transitions publication-title: Mutat. Res. – volume: 591 start-page: 451 year: 2021 end-page: 457 ident: bib16 article-title: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801 publication-title: Nature – volume: 62 year: 2018 ident: bib6 article-title: Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses publication-title: Antimicrob. Agents Chemother. – volume: 70 start-page: 11 year: 1980 end-page: 16 ident: bib17 article-title: Mutagenic specificity of N4-hydroxycytidine publication-title: Mutat. Res. – volume: 14 year: 2020 ident: bib30 article-title: Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein publication-title: PLoS Negl. Trop. Dis. – volume: 26 start-page: 171 year: 1979 end-page: 177 ident: bib20 article-title: On the different response of Salmonella typhimurium hisG46 and TA1530 to mutagenic action of base analogues publication-title: Acta Biochim. Pol. – volume: 22 start-page: 28115 year: 2020 end-page: 28122 ident: bib35 article-title: Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19 publication-title: Phys. Chem. Chem. Phys. – year: 2021 ident: bib21 article-title: Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. – volume: 140 start-page: 1 year: 1994 end-page: 22 ident: bib36 article-title: Physiological concentrations of purines and pyrimidines publication-title: Mol. Cell. Biochem. – volume: 93 year: 2019 ident: bib33 article-title: Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3'-terminal adenylyltransferase activity publication-title: J. Virol. – volume: 11 year: 2019 ident: bib12 article-title: Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia publication-title: Sci. Transl. Med. – volume: 92 year: 2018 ident: bib9 article-title: beta-d-N (4)-Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome publication-title: J. Virol. – volume: 11 start-page: 4682 year: 2020 ident: bib23 article-title: Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis publication-title: Nat. Commun. – year: 2020 ident: bib1 article-title: Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Remdesivir (GS-5734TM) – volume: 11 start-page: 5214 year: 2020 ident: bib22 article-title: A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19 publication-title: Nat. Commun. – volume: 295 start-page: 6785 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib2 article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.013679 – volume: 70 start-page: 11 year: 1980 ident: 10.1016/j.jbc.2021.100770_bib17 article-title: Mutagenic specificity of N4-hydroxycytidine publication-title: Mutat. Res. doi: 10.1016/0027-5107(80)90053-6 – volume: 8 start-page: 3970 year: 2018 ident: 10.1016/j.jbc.2021.100770_bib28 article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus publication-title: Sci. Rep. doi: 10.1038/s41598-018-22328-3 – volume: 48 start-page: 4636 year: 2004 ident: 10.1016/j.jbc.2021.100770_bib19 article-title: Metabolism of the anti-hepatitis C virus nucleoside beta-D-N4-hydroxycytidine in different liver cells publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.12.4636-4642.2004 – volume: 11 start-page: 4682 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib23 article-title: Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis publication-title: Nat. Commun. doi: 10.1038/s41467-020-18463-z – volume: 11 year: 2019 ident: 10.1016/j.jbc.2021.100770_bib12 article-title: Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax5866 – volume: 6 start-page: 1375 year: 2000 ident: 10.1016/j.jbc.2021.100770_bib24 article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen publication-title: Nat. Med. doi: 10.1038/82191 – volume: 11 year: 2015 ident: 10.1016/j.jbc.2021.100770_bib32 article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004995 – year: 2021 ident: 10.1016/j.jbc.2021.100770_bib21 article-title: Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02428-20 – volume: 295 start-page: 4773 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib31 article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.013056 – volume: 14 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib30 article-title: Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0008283 – volume: 47 start-page: 244 year: 2003 ident: 10.1016/j.jbc.2021.100770_bib5 article-title: Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.47.1.244-254.2003 – volume: 591 start-page: 451 year: 2021 ident: 10.1016/j.jbc.2021.100770_bib16 article-title: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801 publication-title: Nature doi: 10.1038/s41586-021-03312-w – year: 2020 ident: 10.1016/j.jbc.2021.100770_bib3 – volume: 115 start-page: E162 year: 2018 ident: 10.1016/j.jbc.2021.100770_bib25 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718806115 – volume: 61 year: 2017 ident: 10.1016/j.jbc.2021.100770_bib11 article-title: Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of Chikungunya virus publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02395-16 – volume: 7 start-page: 6233 year: 2015 ident: 10.1016/j.jbc.2021.100770_bib8 article-title: Identification of a new ribonucleoside inhibitor of Ebola virus replication publication-title: Viruses doi: 10.3390/v7122934 – volume: 9 year: 2013 ident: 10.1016/j.jbc.2021.100770_bib26 article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003565 – volume: 11 start-page: 326 year: 2019 ident: 10.1016/j.jbc.2021.100770_bib29 article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir publication-title: Viruses doi: 10.3390/v11040326 – volume: 140 start-page: 1 year: 1994 ident: 10.1016/j.jbc.2021.100770_bib36 article-title: Physiological concentrations of purines and pyrimidines publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00928361 – volume: 64 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib27 article-title: Analysis of the potential for N (4)-hydroxycytidine to inhibit mitochondrial replication and function publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01719-19 – volume: 295 start-page: 16156 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib37 article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.015720 – volume: 17 start-page: 981 year: 2012 ident: 10.1016/j.jbc.2021.100770_bib7 article-title: Antiviral activity of nucleoside analogues against norovirus publication-title: Antivir. Ther. doi: 10.3851/IMP2229 – volume: 92 year: 2018 ident: 10.1016/j.jbc.2021.100770_bib9 article-title: beta-d-N (4)-Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome publication-title: J. Virol. doi: 10.1128/JVI.01965-17 – volume: 12 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib13 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb5883 – volume: 22 start-page: 28115 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib35 article-title: Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05297C – volume: 58 start-page: 3636 year: 2014 ident: 10.1016/j.jbc.2021.100770_bib34 article-title: Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02666-14 – volume: 6 start-page: 11 year: 2021 ident: 10.1016/j.jbc.2021.100770_bib15 article-title: Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-00835-2 – volume: 26 start-page: 171 year: 1979 ident: 10.1016/j.jbc.2021.100770_bib20 article-title: On the different response of Salmonella typhimurium hisG46 and TA1530 to mutagenic action of base analogues publication-title: Acta Biochim. Pol. – volume: 93 year: 2019 ident: 10.1016/j.jbc.2021.100770_bib33 article-title: Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3'-terminal adenylyltransferase activity publication-title: J. Virol. doi: 10.1128/JVI.00291-19 – volume: 56 start-page: 13363 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib4 article-title: A concise route to MK-4482 (EIDD-2801) from cytidine publication-title: Chem. Commun. (Camb.) doi: 10.1039/D0CC05944G – volume: 72 start-page: 43 year: 1980 ident: 10.1016/j.jbc.2021.100770_bib18 article-title: N-4-Hydroxycytidine - a mutagen specific for at to Gc transitions publication-title: Mutat. Res. doi: 10.1016/0027-5107(80)90218-3 – year: 2020 ident: 10.1016/j.jbc.2021.100770_bib1 – volume: 62 year: 2018 ident: 10.1016/j.jbc.2021.100770_bib6 article-title: Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00766-18 – year: 2021 ident: 10.1016/j.jbc.2021.100770_bib38 article-title: beta-D-N 4-hydroxycytidine (NHC) inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells publication-title: J Infect Dis doi: 10.1093/infdis/jiab247 – volume: 12 start-page: 2295 year: 2021 ident: 10.1016/j.jbc.2021.100770_bib14 article-title: Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model publication-title: Nat. Commun. doi: 10.1038/s41467-021-22580-8 – volume: 93 year: 2019 ident: 10.1016/j.jbc.2021.100770_bib10 article-title: Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance publication-title: J. Virol. doi: 10.1128/JVI.01348-19 – volume: 11 start-page: 5214 year: 2020 ident: 10.1016/j.jbc.2021.100770_bib22 article-title: A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19055-7 |
SSID | ssj0000491 |
Score | 2.686894 |
SecondaryResourceType | review_article |
Snippet | The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the... The RNA-dependent RNA polymerase (RdRp) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target in current drug development... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100770 |
SubjectTerms | Accelerated Communication antiviral agent coronavirus Covid-19 drug development mutagen nucleoside analogue RNA-dependent RNA polymerase SARS-CoV-2 |
Title | Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template |
URI | https://dx.doi.org/10.1016/j.jbc.2021.100770 https://www.ncbi.nlm.nih.gov/pubmed/33989635 https://www.proquest.com/docview/2528174309 https://pubmed.ncbi.nlm.nih.gov/PMC8110631 |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8jEZCfFAlMpxnDR5DBVjGtoE7Yb6FjmJAyltgtq00vbXc7bjNO1ggr1EURI30d3V_p3vd3cIvSVCUFe4qS1I4tuMZ64d5BmzYfECZ4yFSaCi56dn_vEFO5l4k07EVGaX1Ek_vfpjXslttArXQK8yS_Y_NNv-KFyAc9AvHEHDcPwnHZ9Ws3IlI-XrYiGZViB2sbTG0WhsD6tvNrXmqxrmC5jNiqW1LrhCmaOzyJIFqWa83qIBbZLEFDzV1Zl0_RDTFK4l64DH2kTr-WxdlNZJv90BkA24yupntVaz7PdqYX1pb44lcZNfKQLBiF_OZe7MUXv3kwzaf_Br3bBPNSIv-Na2BHVaCmuzV2byZbbonJoQQnWx9r7QUy6AQJlPMOnOyVSTdrvGd22u19sO0_40kaUoqaMIH7oLyU4JbRmRduRrwb8FwOeGd9E9Cm6F7Hjx-eumujx4S7rDYvOVJgqu-IA7r_kbjrnup-zSbTv45fwRethoFkfaih6jO6LcRwdRyetqfonfYUUFVjGWfXR_aDR-gKKukWFjZHhjZLhjZBiMDIORYTAybIzsCbo4-ng-PLabvht2yjyntgHyuo4gwuM5oOkkpHnCQ3_AOEDRjGSMpH5AOPfSDAB6QsWAM5EFcBYmDJYA4j5Fe2VViucIB0L4KaODFDxllgc5J34qBUFzEsKgrIeIkWKcNkXpZW-UWWzYh9MYBB9Lwcda8D30vh3yS1dkuelhZlQTN5BSQ8UYrOimYW-MGmMQt4yh8VJUq2VMPRpIJ56EPfRMq7X9CtcNA1jPvB4abCm8fUCWct--UxY_VEn3AFC47zovbve5L9GDzV_wFdqrFyvxGrBynRyqPaZDZea_AcsDvVM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molnupiravir+promotes+SARS-CoV-2+mutagenesis+via+the+RNA+template&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gordon%2C+Calvin+J.&rft.au=Tchesnokov%2C+Egor+P.&rft.au=Schinazi%2C+Raymond+F.&rft.au=G%C3%B6tte%2C+Matthias&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=297&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jbc.2021.100770&rft.externalDocID=S0021925821005639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |