Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analog...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 297; no. 1; p. 100770
Main Authors Gordon, Calvin J., Tchesnokov, Egor P., Schinazi, Raymond F., Götte, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.
AbstractList The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N 4 -hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5’-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.
The RNA-dependent RNA polymerase (RdRp) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target in current drug development efforts for the treatment of coronavirus disease 2019 (COVID-19). Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N -hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified SARS-CoV-2 RdRp complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate (NHC-MP) in the RNA primer strand. When embedded in the template strand, NHC-MP supported formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.
ArticleNumber 100770
Author Gordon, Calvin J.
Götte, Matthias
Schinazi, Raymond F.
Tchesnokov, Egor P.
Author_xml – sequence: 1
  givenname: Calvin J.
  surname: Gordon
  fullname: Gordon, Calvin J.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
– sequence: 2
  givenname: Egor P.
  orcidid: 0000-0003-1698-2961
  surname: Tchesnokov
  fullname: Tchesnokov, Egor P.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
– sequence: 3
  givenname: Raymond F.
  surname: Schinazi
  fullname: Schinazi, Raymond F.
  organization: Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
– sequence: 4
  givenname: Matthias
  surname: Götte
  fullname: Götte, Matthias
  email: gotte@ualberta.ca
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33989635$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3Uim4LH4ALypFLlvG_JBYS0mpFC1ILUguIm-U4s61XSRxsZ6V--3q1pQIO9cUezfu9seadkqPRj0jIGwpLCrR6v11uW7tkwGiuoa7hBVlQaHjJJf11RBaQO6VisjkhpzFuIR-h6EtywrlqVMXlgqyufD_Okwtm50IxBT_4hLG4WV3flGv_s2TFMCdziyNGF4udM0W6w-L666pIOEy9SfiKHG9MH_H1431Gfpx_-r7-XF5-u_iyXl2WVkiaSiYppwgozYYK3iq2aY2qamFYwzvoBNiqAWOk7QBUy7A2Arsmv1QrBJPAz8jHg-80twN2FscUTK-n4AYT7rU3Tv_bGd2dvvU73VAKFafZ4N2jQfC_Z4xJDy5a7Hszop-jZpI1tBYcVJa-_XvW05A_e8sCehDY4GMMuHmSUND7bPRW52z0Pht9yCYz9X-Mdckk5_ffdf2z5IcDiXm_O4dBR-twtNi5gDbpzrtn6Ae5RaeA
CitedBy_id crossref_primary_10_1016_j_biochi_2022_10_007
crossref_primary_10_1126_science_abn1900
crossref_primary_10_1128_aac_01315_22
crossref_primary_10_1134_S0006297924120149
crossref_primary_10_1016_j_antiviral_2022_105475
crossref_primary_10_1021_acsinfecdis_2c00204
crossref_primary_10_1002_jmv_28863
crossref_primary_10_3390_molecules29235564
crossref_primary_10_1055_a_1807_0168
crossref_primary_10_3389_fmolb_2021_822218
crossref_primary_10_29235_1029_8940_2022_67_4_426_432
crossref_primary_10_3390_v14061345
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1093_jac_dkad309
crossref_primary_10_3390_biology11020215
crossref_primary_10_3390_molecules27134212
crossref_primary_10_1038_s42003_022_04322_8
crossref_primary_10_1039_D4OB00404C
crossref_primary_10_3390_ph15070831
crossref_primary_10_1038_s41392_023_01724_w
crossref_primary_10_1016_j_apsb_2024_05_026
crossref_primary_10_3390_ijms24108867
crossref_primary_10_1021_acs_oprd_1c00419
crossref_primary_10_3390_metabo13020309
crossref_primary_10_1007_s40265_022_01684_5
crossref_primary_10_1039_D2RA05066H
crossref_primary_10_18231_j_ijpca_2022_006
crossref_primary_10_1016_j_heliyon_2024_e30862
crossref_primary_10_2147_DDDT_S356951
crossref_primary_10_3390_biomedicines10112815
crossref_primary_10_3390_biomedicines11092356
crossref_primary_10_3389_fchem_2022_876212
crossref_primary_10_3390_v15061317
crossref_primary_10_1016_j_ebiom_2023_104748
crossref_primary_10_1080_07853890_2022_2031274
crossref_primary_10_1136_bmj_o926
crossref_primary_10_1007_s15010_022_01959_9
crossref_primary_10_3390_v14112560
crossref_primary_10_1021_acs_biomac_2c00271
crossref_primary_10_1111_febs_16587
crossref_primary_10_3390_v16010156
crossref_primary_10_1002_ijc_34442
crossref_primary_10_4110_in_2023_23_e13
crossref_primary_10_1016_j_ceca_2022_102637
crossref_primary_10_1007_s40588_024_00229_6
crossref_primary_10_1007_s41061_023_00432_x
crossref_primary_10_1016_j_aquaculture_2025_742187
crossref_primary_10_1080_14787210_2022_2082944
crossref_primary_10_3390_v16050708
crossref_primary_10_1016_j_csbj_2022_08_056
crossref_primary_10_1038_s41594_021_00651_0
crossref_primary_10_1128_aac_02404_21
crossref_primary_10_3390_biom13071095
crossref_primary_10_3390_molecules27217522
crossref_primary_10_3390_cells11020253
crossref_primary_10_1038_s41467_022_34839_9
crossref_primary_10_1016_j_mam_2021_101005
crossref_primary_10_1016_j_bmcl_2024_130015
crossref_primary_10_31083_j_fbl2810273
crossref_primary_10_1128_mbio_02493_24
crossref_primary_10_2139_ssrn_4151032
crossref_primary_10_1038_s43856_023_00383_w
crossref_primary_10_1021_acssensors_2c00447
crossref_primary_10_1001_jamanetworkopen_2022_7970
crossref_primary_10_3390_ijms25020739
crossref_primary_10_1055_a_2147_3999
crossref_primary_10_1016_j_isci_2023_107786
crossref_primary_10_1016_j_jsps_2022_03_002
crossref_primary_10_1155_2023_1879554
crossref_primary_10_1007_s11845_022_03139_y
crossref_primary_10_1016_j_antiviral_2022_105453
crossref_primary_10_1093_nar_gkad1194
crossref_primary_10_2174_2589977514666220527105158
crossref_primary_10_3390_jcm12010034
crossref_primary_10_1186_s42269_022_00753_9
crossref_primary_10_1016_j_isci_2022_105074
crossref_primary_10_1016_j_isci_2024_109597
crossref_primary_10_1126_science_abn0048
crossref_primary_10_1038_s44298_024_00066_w
crossref_primary_10_3390_antibiotics12020393
crossref_primary_10_3390_v14040841
crossref_primary_10_3390_vaccines13010017
crossref_primary_10_31665_JFB_2021_16290
crossref_primary_10_7326_M22_0729
crossref_primary_10_1080_17460794_2024_2350923
crossref_primary_10_3390_microorganisms9071479
crossref_primary_10_3390_v15040944
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1002_cmdc_202200399
crossref_primary_10_1016_j_csbj_2023_09_001
crossref_primary_10_1186_s12929_023_00923_5
crossref_primary_10_1016_j_jbc_2024_107755
crossref_primary_10_1016_j_jbc_2024_107514
crossref_primary_10_1007_s00044_021_02841_3
crossref_primary_10_1016_j_coviro_2022_101279
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_1016_j_isci_2023_106037
crossref_primary_10_1093_nsr_nwad161
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_3389_fmolb_2021_823253
crossref_primary_10_1080_07391102_2023_2235012
crossref_primary_10_1073_pnas_2419854122
crossref_primary_10_1093_infdis_jiac477
crossref_primary_10_1111_cts_13602
crossref_primary_10_1016_j_antiviral_2024_106046
crossref_primary_10_2174_1574885518666230124123054
crossref_primary_10_3390_ijms23158606
crossref_primary_10_1093_brain_awab302
crossref_primary_10_3390_v14050961
crossref_primary_10_1016_j_virol_2024_110255
crossref_primary_10_1111_cts_70073
crossref_primary_10_3390_jcm11154464
crossref_primary_10_1016_j_ejmech_2022_114136
crossref_primary_10_1007_s11356_022_22661_1
crossref_primary_10_2174_0113852728268800231031113104
crossref_primary_10_3389_fphar_2022_835136
crossref_primary_10_1038_s41594_021_00657_8
crossref_primary_10_1007_s43440_022_00408_6
crossref_primary_10_1016_j_phrs_2022_106201
crossref_primary_10_1038_s41467_023_40933_3
crossref_primary_10_1080_22297928_2023_2224806
crossref_primary_10_1021_acscentsci_4c00146
crossref_primary_10_1038_s42003_023_04888_x
crossref_primary_10_1128_mbio_03347_21
crossref_primary_10_3390_biomedicines10020441
crossref_primary_10_1016_j_dsx_2021_102329
crossref_primary_10_1007_s40121_023_00891_1
crossref_primary_10_1016_j_microc_2023_109297
crossref_primary_10_1038_s41467_024_45641_0
crossref_primary_10_1016_j_bcp_2022_115279
crossref_primary_10_1007_s00604_024_06353_w
crossref_primary_10_1089_ipm_10_01_10
crossref_primary_10_33380_2305_2066_2023_12_1_215_226
crossref_primary_10_1056_NEJMoa2116044
crossref_primary_10_3390_ijms241613002
crossref_primary_10_3390_ph15060739
crossref_primary_10_1016_j_smim_2021_101524
crossref_primary_10_3390_v14081790
crossref_primary_10_1039_D4RA00097H
crossref_primary_10_1155_2022_4555490
crossref_primary_10_1002_jmv_28011
crossref_primary_10_1038_s41573_023_00672_y
crossref_primary_10_3390_ijms232314654
crossref_primary_10_1016_j_ejps_2021_106012
crossref_primary_10_1080_28378083_2025_2481595
crossref_primary_10_3390_scipharm90020024
crossref_primary_10_1111_fcp_12889
crossref_primary_10_1016_j_antiviral_2023_105716
crossref_primary_10_1016_j_mrrev_2025_108533
crossref_primary_10_1080_17460441_2022_2153828
crossref_primary_10_2478_abmj_2021_0005
crossref_primary_10_1126_sciadv_adl4393
crossref_primary_10_1002_wcms_1622
crossref_primary_10_1002_jmv_27730
crossref_primary_10_1080_13543784_2022_2030310
crossref_primary_10_1039_D2MD00009A
crossref_primary_10_1128_aac_01434_24
crossref_primary_10_4236_aid_2023_132019
crossref_primary_10_3389_fimmu_2022_855496
crossref_primary_10_3389_fimmu_2023_1116131
crossref_primary_10_1089_omi_2022_0045
crossref_primary_10_1016_j_jpba_2022_114693
crossref_primary_10_3390_molecules27092918
crossref_primary_10_1126_scitranslmed_abl7430
crossref_primary_10_3390_covid2080078
crossref_primary_10_1002_nbm_4888
crossref_primary_10_1021_acs_analchem_2c02223
crossref_primary_10_3390_pathogens11101209
crossref_primary_10_1128_cmr_00119_23
crossref_primary_10_1016_j_isci_2022_104293
crossref_primary_10_1002_cpt_2895
crossref_primary_10_3390_ph15121512
crossref_primary_10_3390_antibiotics10111294
crossref_primary_10_1016_j_jpba_2023_115499
crossref_primary_10_1128_aac_00953_23
crossref_primary_10_1038_s41580_021_00432_z
crossref_primary_10_1016_j_omtn_2023_06_006
crossref_primary_10_1016_j_ijantimicag_2023_106973
crossref_primary_10_1002_slct_202400508
crossref_primary_10_3390_vaccines9111317
crossref_primary_10_1371_journal_ppat_1009929
crossref_primary_10_1007_s43440_022_00388_7
crossref_primary_10_1128_jvi_00671_22
crossref_primary_10_3390_pathogens11060662
crossref_primary_10_61186_umj_33_12_857
crossref_primary_10_1016_j_reprotox_2023_108475
crossref_primary_10_1021_acs_oprd_3c00268
crossref_primary_10_3390_molecules28052332
crossref_primary_10_1038_s41586_023_06649_6
crossref_primary_10_3346_jkms_2021_36_e298
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1002_jmv_27517
crossref_primary_10_1016_j_antiviral_2022_105501
crossref_primary_10_3390_v15122316
crossref_primary_10_1182_blood_2022016089
crossref_primary_10_3390_v15061234
crossref_primary_10_1134_S1019331622040256
crossref_primary_10_3390_molecules27238257
crossref_primary_10_1016_j_bioorg_2024_107379
crossref_primary_10_1038_s41392_022_01249_8
crossref_primary_10_1016_j_jbc_2021_100867
crossref_primary_10_1016_j_virol_2022_11_001
crossref_primary_10_1021_acs_joc_3c01580
Cites_doi 10.1074/jbc.RA120.013679
10.1016/0027-5107(80)90053-6
10.1038/s41598-018-22328-3
10.1128/AAC.48.12.4636-4642.2004
10.1038/s41467-020-18463-z
10.1126/scitranslmed.aax5866
10.1038/82191
10.1371/journal.ppat.1004995
10.1128/AAC.02428-20
10.1074/jbc.AC120.013056
10.1371/journal.pntd.0008283
10.1128/AAC.47.1.244-254.2003
10.1038/s41586-021-03312-w
10.1073/pnas.1718806115
10.1128/AAC.02395-16
10.3390/v7122934
10.1371/journal.ppat.1003565
10.3390/v11040326
10.1007/BF00928361
10.1128/AAC.01719-19
10.1074/jbc.AC120.015720
10.3851/IMP2229
10.1128/JVI.01965-17
10.1126/scitranslmed.abb5883
10.1039/D0CP05297C
10.1128/AAC.02666-14
10.1038/s41564-020-00835-2
10.1128/JVI.00291-19
10.1039/D0CC05944G
10.1016/0027-5107(80)90218-3
10.1128/AAC.00766-18
10.1093/infdis/jiab247
10.1038/s41467-021-22580-8
10.1128/JVI.01348-19
10.1038/s41467-020-19055-7
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.jbc.2021.100770
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC8110631
33989635
10_1016_j_jbc_2021_100770
S0021925821005639
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-25131e0e5af143b92fba9674a283d0d40c680aa5cd009b2e7a4ed89b29b442503
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:12:00 EDT 2025
Fri Jul 11 15:27:40 EDT 2025
Thu Apr 03 07:05:43 EDT 2025
Tue Jul 01 04:33:23 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 23 02:43:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Covid-19
mutagen
RDV
RNA-dependent RNA polymerase
drug development
NHC
NHC-MP
coronavirus
antiviral agent
NHC-TP
SARS-CoV-2
nucleoside analogue
RdRp
Coronavirus
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-25131e0e5af143b92fba9674a283d0d40c680aa5cd009b2e7a4ed89b29b442503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1698-2961
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2021.100770
PMID 33989635
PQID 2528174309
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8110631
proquest_miscellaneous_2528174309
pubmed_primary_33989635
crossref_primary_10_1016_j_jbc_2021_100770
crossref_citationtrail_10_1016_j_jbc_2021_100770
elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Toots, Yoon, Cox, Hart, Sticher, Makhsous, Plesker, Barrena, Reddy, Mitchell, Shean, Bluemling, Kolykhalov, Greninger, Natchus (bib12) 2019; 11
Ferron, Subissi, Silveira De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein, Bricogne, Canard, Imbert (bib25) 2018; 115
Crotty, Maag, Arnold, Zhong, Lau, Hong, Andino, Cameron (bib24) 2000; 6
Deval, Hong, Wang, Taylor, Smith, Fung, Stevens, Liu, Jin, Dyatkina, Prhavc, Stoycheva, Serebryany, Liu, Smith (bib32) 2015; 11
Tchesnokov, Gordon, Woolner, Kocinkova, Perry, Feng, Porter, Gotte (bib37) 2020; 295
Costantini, Whitaker, Barclay, Lee, McBrayer, Schinazi, Vinje (bib7) 2012; 17
Shannon, Selisko, Le, Huchting, Touret, Piorkowski, Fattorini, Ferron, Decroly, Meier, Coutard, Peersen, Canard (bib23) 2020; 11
(bib1) 2020
Vasudevan, Ahlqvist, McGeough, Paymode, Cardoso, Lucas, Dietz, Opatz, Jamison, Gupton, Snead (bib4) 2020; 56
Sheahan, Sims, Zhou, Graham, Pruijssers, Agostini, Leist, Schafer, Dinnon, Stevens, Chappell, Lu, Hughes, George, Hill (bib13) 2020; 12
Urakova, Kuznetsova, Crossman, Sokratian, Guthrie, Kolykhalov, Lockwood, Natchus, Crowley, Painter, Frolova, Frolov (bib9) 2018; 92
Tchesnokov, Bailey-Elkin, Mark, Gotte (bib30) 2020; 14
Janion, Glickman (bib18) 1980; 72
Traut (bib36) 1994; 140
Smith, Blanc, Surdel, Vignuzzi, Denison (bib26) 2013; 9
Gordon, Tchesnokov, Woolner, Perry, Feng, Porter, Gotte (bib2) 2020; 295
Cox, Wolf, Plemper (bib15) 2021; 6
Tchesnokov, Feng, Porter, Gotte (bib29) 2019; 11
(bib3) 2020
Xie, Muruato, Zhang, Lokugamage, Fontes-Garfias, Zou, Liu, Ren, Balakrishnan, Cihlar, Tseng, Makino, Menachery, Bilello, Shi (bib22) 2020; 11
Janion (bib20) 1979; 26
Ehteshami, Tao, Zandi, Hsiao, Jiang, Hammond, Amblard, Russell, Merits, Schinazi (bib11) 2017; 61
Wahl, Gralinski, Johnson, Yao, Kovarova, Dinnon, Liu, Madden, Krzystek, De, White, Gully, Schafer, Zaman, Leist (bib16) 2021; 591
Sticher, Lu, Mitchell, Marlow, Moellering, Bluemling, Guthrie, Natchus, Painter, Kolykhalov (bib27) 2020; 64
Stuyver, Whitaker, McBrayer, Hernandez-Santiago, Lostia, Tharnish, Ramesh, Chu, Jordan, Shi, Rachakonda, Watanabe, Otto, Schinazi (bib5) 2003; 47
Jena (bib35) 2020; 22
Gordon, Tchesnokov, Feng, Porter, Gotte (bib31) 2020; 295
Hernandez-Santiago, Beltran, Stuyver, Chu, Schinazi (bib19) 2004; 48
Tchesnokov, Raeisimakiani, Ngure, Marchant, Gotte (bib28) 2018; 8
Painter, Holman, Bush, Almazedi, Malik, Eraut, Morin, Szewczyk, Painter (bib21) 2021
Yoon, Toots, Lee, Lee, Ludeke, Luczo, Ganti, Cox, Sticher, Edpuganti, Mitchell, Lockwood, Kolykhalov, Greninger, Moore (bib6) 2018; 62
Reynard, Nguyen, Alazard-Dany, Barateau, Cimarelli, Volchkov (bib8) 2015; 7
Sledziewska, Janion (bib17) 1980; 70
Fung, Jin, Dyatkina, Wang, Beigelman, Deval (bib34) 2014; 58
Tvarogova, Madhugiri, Bylapudi, Ferguson, Karl, Ziebuhr (bib33) 2019; 93
Rosenke, Hansen, Schwarz, Feldmann, Haddock, Rosenke, Barbian, Meade-White, Okumura, Leventhal, Hawman, Ricotta, Bosio, Martens, Saturday (bib14) 2021; 12
Zhou, Hill, Sarkar, Tse, Woodburn, Schinazi, Sheahan, Baric, Heise, Swanstrom (bib38) 2021
Agostini, Pruijssers, Chappell, Gribble, Lu, Andres, Bluemling, Lockwood, Sheahan, Sims, Natchus, Saindane, Kolykhalov, Painter, Baric (bib10) 2019; 93
Wahl (10.1016/j.jbc.2021.100770_bib16) 2021; 591
Ferron (10.1016/j.jbc.2021.100770_bib25) 2018; 115
Yoon (10.1016/j.jbc.2021.100770_bib6) 2018; 62
Zhou (10.1016/j.jbc.2021.100770_bib38) 2021
Xie (10.1016/j.jbc.2021.100770_bib22) 2020; 11
Gordon (10.1016/j.jbc.2021.100770_bib2) 2020; 295
Crotty (10.1016/j.jbc.2021.100770_bib24) 2000; 6
Tchesnokov (10.1016/j.jbc.2021.100770_bib28) 2018; 8
Gordon (10.1016/j.jbc.2021.100770_bib31) 2020; 295
Reynard (10.1016/j.jbc.2021.100770_bib8) 2015; 7
Janion (10.1016/j.jbc.2021.100770_bib20) 1979; 26
Painter (10.1016/j.jbc.2021.100770_bib21) 2021
Jena (10.1016/j.jbc.2021.100770_bib35) 2020; 22
Sheahan (10.1016/j.jbc.2021.100770_bib13) 2020; 12
Janion (10.1016/j.jbc.2021.100770_bib18) 1980; 72
Urakova (10.1016/j.jbc.2021.100770_bib9) 2018; 92
Agostini (10.1016/j.jbc.2021.100770_bib10) 2019; 93
Toots (10.1016/j.jbc.2021.100770_bib12) 2019; 11
(10.1016/j.jbc.2021.100770_bib1) 2020
Shannon (10.1016/j.jbc.2021.100770_bib23) 2020; 11
Deval (10.1016/j.jbc.2021.100770_bib32) 2015; 11
Vasudevan (10.1016/j.jbc.2021.100770_bib4) 2020; 56
Smith (10.1016/j.jbc.2021.100770_bib26) 2013; 9
Sledziewska (10.1016/j.jbc.2021.100770_bib17) 1980; 70
Sticher (10.1016/j.jbc.2021.100770_bib27) 2020; 64
Rosenke (10.1016/j.jbc.2021.100770_bib14) 2021; 12
Hernandez-Santiago (10.1016/j.jbc.2021.100770_bib19) 2004; 48
(10.1016/j.jbc.2021.100770_bib3) 2020
Tvarogova (10.1016/j.jbc.2021.100770_bib33) 2019; 93
Fung (10.1016/j.jbc.2021.100770_bib34) 2014; 58
Cox (10.1016/j.jbc.2021.100770_bib15) 2021; 6
Ehteshami (10.1016/j.jbc.2021.100770_bib11) 2017; 61
Costantini (10.1016/j.jbc.2021.100770_bib7) 2012; 17
Tchesnokov (10.1016/j.jbc.2021.100770_bib30) 2020; 14
Tchesnokov (10.1016/j.jbc.2021.100770_bib37) 2020; 295
Tchesnokov (10.1016/j.jbc.2021.100770_bib29) 2019; 11
Stuyver (10.1016/j.jbc.2021.100770_bib5) 2003; 47
Traut (10.1016/j.jbc.2021.100770_bib36) 1994; 140
References_xml – volume: 47
  start-page: 244
  year: 2003
  end-page: 254
  ident: bib5
  article-title: Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  year: 2013
  ident: bib26
  article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics
  publication-title: PLoS Pathog.
– volume: 17
  start-page: 981
  year: 2012
  end-page: 991
  ident: bib7
  article-title: Antiviral activity of nucleoside analogues against norovirus
  publication-title: Antivir. Ther.
– volume: 12
  year: 2020
  ident: bib13
  article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
  publication-title: Sci. Transl. Med.
– volume: 295
  start-page: 4773
  year: 2020
  end-page: 4779
  ident: bib31
  article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
  publication-title: J. Biol. Chem.
– volume: 64
  year: 2020
  ident: bib27
  article-title: Analysis of the potential for N (4)-hydroxycytidine to inhibit mitochondrial replication and function
  publication-title: Antimicrob. Agents Chemother.
– volume: 58
  start-page: 3636
  year: 2014
  end-page: 3645
  ident: bib34
  article-title: Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase
  publication-title: Antimicrob. Agents Chemother.
– volume: 56
  start-page: 13363
  year: 2020
  end-page: 13364
  ident: bib4
  article-title: A concise route to MK-4482 (EIDD-2801) from cytidine
  publication-title: Chem. Commun. (Camb.)
– volume: 8
  start-page: 3970
  year: 2018
  ident: bib28
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep.
– year: 2020
  ident: bib3
  article-title: Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Casirivimab and Imdevimab
– volume: 93
  year: 2019
  ident: bib10
  article-title: Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance
  publication-title: J. Virol.
– volume: 11
  year: 2015
  ident: bib32
  article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate
  publication-title: PLoS Pathog.
– volume: 61
  year: 2017
  ident: bib11
  article-title: Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of Chikungunya virus
  publication-title: Antimicrob. Agents Chemother.
– year: 2021
  ident: bib38
  article-title: beta-D-N 4-hydroxycytidine (NHC) inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells
  publication-title: J Infect Dis
– volume: 6
  start-page: 11
  year: 2021
  end-page: 18
  ident: bib15
  article-title: Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets
  publication-title: Nat. Microbiol.
– volume: 115
  start-page: E162
  year: 2018
  end-page: E171
  ident: bib25
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 2295
  year: 2021
  ident: bib14
  article-title: Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model
  publication-title: Nat. Commun.
– volume: 295
  start-page: 16156
  year: 2020
  end-page: 16165
  ident: bib37
  article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action
  publication-title: J. Biol. Chem.
– volume: 48
  start-page: 4636
  year: 2004
  end-page: 4642
  ident: bib19
  article-title: Metabolism of the anti-hepatitis C virus nucleoside beta-D-N4-hydroxycytidine in different liver cells
  publication-title: Antimicrob. Agents Chemother.
– volume: 7
  start-page: 6233
  year: 2015
  end-page: 6240
  ident: bib8
  article-title: Identification of a new ribonucleoside inhibitor of Ebola virus replication
  publication-title: Viruses
– volume: 6
  start-page: 1375
  year: 2000
  end-page: 1379
  ident: bib24
  article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen
  publication-title: Nat. Med.
– volume: 11
  start-page: 326
  year: 2019
  ident: bib29
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
– volume: 295
  start-page: 6785
  year: 2020
  end-page: 6797
  ident: bib2
  article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 43
  year: 1980
  end-page: 47
  ident: bib18
  article-title: N-4-Hydroxycytidine - a mutagen specific for at to Gc transitions
  publication-title: Mutat. Res.
– volume: 591
  start-page: 451
  year: 2021
  end-page: 457
  ident: bib16
  article-title: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801
  publication-title: Nature
– volume: 62
  year: 2018
  ident: bib6
  article-title: Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses
  publication-title: Antimicrob. Agents Chemother.
– volume: 70
  start-page: 11
  year: 1980
  end-page: 16
  ident: bib17
  article-title: Mutagenic specificity of N4-hydroxycytidine
  publication-title: Mutat. Res.
– volume: 14
  year: 2020
  ident: bib30
  article-title: Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein
  publication-title: PLoS Negl. Trop. Dis.
– volume: 26
  start-page: 171
  year: 1979
  end-page: 177
  ident: bib20
  article-title: On the different response of Salmonella typhimurium hisG46 and TA1530 to mutagenic action of base analogues
  publication-title: Acta Biochim. Pol.
– volume: 22
  start-page: 28115
  year: 2020
  end-page: 28122
  ident: bib35
  article-title: Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19
  publication-title: Phys. Chem. Chem. Phys.
– year: 2021
  ident: bib21
  article-title: Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2
  publication-title: Antimicrob. Agents Chemother.
– volume: 140
  start-page: 1
  year: 1994
  end-page: 22
  ident: bib36
  article-title: Physiological concentrations of purines and pyrimidines
  publication-title: Mol. Cell. Biochem.
– volume: 93
  year: 2019
  ident: bib33
  article-title: Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3'-terminal adenylyltransferase activity
  publication-title: J. Virol.
– volume: 11
  year: 2019
  ident: bib12
  article-title: Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia
  publication-title: Sci. Transl. Med.
– volume: 92
  year: 2018
  ident: bib9
  article-title: beta-d-N (4)-Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome
  publication-title: J. Virol.
– volume: 11
  start-page: 4682
  year: 2020
  ident: bib23
  article-title: Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis
  publication-title: Nat. Commun.
– year: 2020
  ident: bib1
  article-title: Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Remdesivir (GS-5734TM)
– volume: 11
  start-page: 5214
  year: 2020
  ident: bib22
  article-title: A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19
  publication-title: Nat. Commun.
– volume: 295
  start-page: 6785
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib2
  article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.013679
– volume: 70
  start-page: 11
  year: 1980
  ident: 10.1016/j.jbc.2021.100770_bib17
  article-title: Mutagenic specificity of N4-hydroxycytidine
  publication-title: Mutat. Res.
  doi: 10.1016/0027-5107(80)90053-6
– volume: 8
  start-page: 3970
  year: 2018
  ident: 10.1016/j.jbc.2021.100770_bib28
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22328-3
– volume: 48
  start-page: 4636
  year: 2004
  ident: 10.1016/j.jbc.2021.100770_bib19
  article-title: Metabolism of the anti-hepatitis C virus nucleoside beta-D-N4-hydroxycytidine in different liver cells
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.12.4636-4642.2004
– volume: 11
  start-page: 4682
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib23
  article-title: Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18463-z
– volume: 11
  year: 2019
  ident: 10.1016/j.jbc.2021.100770_bib12
  article-title: Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aax5866
– volume: 6
  start-page: 1375
  year: 2000
  ident: 10.1016/j.jbc.2021.100770_bib24
  article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen
  publication-title: Nat. Med.
  doi: 10.1038/82191
– volume: 11
  year: 2015
  ident: 10.1016/j.jbc.2021.100770_bib32
  article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004995
– year: 2021
  ident: 10.1016/j.jbc.2021.100770_bib21
  article-title: Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02428-20
– volume: 295
  start-page: 4773
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib31
  article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC120.013056
– volume: 14
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib30
  article-title: Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0008283
– volume: 47
  start-page: 244
  year: 2003
  ident: 10.1016/j.jbc.2021.100770_bib5
  article-title: Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.47.1.244-254.2003
– volume: 591
  start-page: 451
  year: 2021
  ident: 10.1016/j.jbc.2021.100770_bib16
  article-title: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801
  publication-title: Nature
  doi: 10.1038/s41586-021-03312-w
– year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib3
– volume: 115
  start-page: E162
  year: 2018
  ident: 10.1016/j.jbc.2021.100770_bib25
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1718806115
– volume: 61
  year: 2017
  ident: 10.1016/j.jbc.2021.100770_bib11
  article-title: Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of Chikungunya virus
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02395-16
– volume: 7
  start-page: 6233
  year: 2015
  ident: 10.1016/j.jbc.2021.100770_bib8
  article-title: Identification of a new ribonucleoside inhibitor of Ebola virus replication
  publication-title: Viruses
  doi: 10.3390/v7122934
– volume: 9
  year: 2013
  ident: 10.1016/j.jbc.2021.100770_bib26
  article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003565
– volume: 11
  start-page: 326
  year: 2019
  ident: 10.1016/j.jbc.2021.100770_bib29
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
  doi: 10.3390/v11040326
– volume: 140
  start-page: 1
  year: 1994
  ident: 10.1016/j.jbc.2021.100770_bib36
  article-title: Physiological concentrations of purines and pyrimidines
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00928361
– volume: 64
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib27
  article-title: Analysis of the potential for N (4)-hydroxycytidine to inhibit mitochondrial replication and function
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01719-19
– volume: 295
  start-page: 16156
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib37
  article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC120.015720
– volume: 17
  start-page: 981
  year: 2012
  ident: 10.1016/j.jbc.2021.100770_bib7
  article-title: Antiviral activity of nucleoside analogues against norovirus
  publication-title: Antivir. Ther.
  doi: 10.3851/IMP2229
– volume: 92
  year: 2018
  ident: 10.1016/j.jbc.2021.100770_bib9
  article-title: beta-d-N (4)-Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome
  publication-title: J. Virol.
  doi: 10.1128/JVI.01965-17
– volume: 12
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib13
  article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb5883
– volume: 22
  start-page: 28115
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib35
  article-title: Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05297C
– volume: 58
  start-page: 3636
  year: 2014
  ident: 10.1016/j.jbc.2021.100770_bib34
  article-title: Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02666-14
– volume: 6
  start-page: 11
  year: 2021
  ident: 10.1016/j.jbc.2021.100770_bib15
  article-title: Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-00835-2
– volume: 26
  start-page: 171
  year: 1979
  ident: 10.1016/j.jbc.2021.100770_bib20
  article-title: On the different response of Salmonella typhimurium hisG46 and TA1530 to mutagenic action of base analogues
  publication-title: Acta Biochim. Pol.
– volume: 93
  year: 2019
  ident: 10.1016/j.jbc.2021.100770_bib33
  article-title: Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3'-terminal adenylyltransferase activity
  publication-title: J. Virol.
  doi: 10.1128/JVI.00291-19
– volume: 56
  start-page: 13363
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib4
  article-title: A concise route to MK-4482 (EIDD-2801) from cytidine
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/D0CC05944G
– volume: 72
  start-page: 43
  year: 1980
  ident: 10.1016/j.jbc.2021.100770_bib18
  article-title: N-4-Hydroxycytidine - a mutagen specific for at to Gc transitions
  publication-title: Mutat. Res.
  doi: 10.1016/0027-5107(80)90218-3
– year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib1
– volume: 62
  year: 2018
  ident: 10.1016/j.jbc.2021.100770_bib6
  article-title: Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00766-18
– year: 2021
  ident: 10.1016/j.jbc.2021.100770_bib38
  article-title: beta-D-N 4-hydroxycytidine (NHC) inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiab247
– volume: 12
  start-page: 2295
  year: 2021
  ident: 10.1016/j.jbc.2021.100770_bib14
  article-title: Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22580-8
– volume: 93
  year: 2019
  ident: 10.1016/j.jbc.2021.100770_bib10
  article-title: Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance
  publication-title: J. Virol.
  doi: 10.1128/JVI.01348-19
– volume: 11
  start-page: 5214
  year: 2020
  ident: 10.1016/j.jbc.2021.100770_bib22
  article-title: A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19055-7
SSID ssj0000491
Score 2.686894
SecondaryResourceType review_article
Snippet The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the...
The RNA-dependent RNA polymerase (RdRp) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target in current drug development...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100770
SubjectTerms Accelerated Communication
antiviral agent
coronavirus
Covid-19
drug development
mutagen
nucleoside analogue
RNA-dependent RNA polymerase
SARS-CoV-2
Title Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template
URI https://dx.doi.org/10.1016/j.jbc.2021.100770
https://www.ncbi.nlm.nih.gov/pubmed/33989635
https://www.proquest.com/docview/2528174309
https://pubmed.ncbi.nlm.nih.gov/PMC8110631
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8jEZCfFAlMpxnDR5DBVjGtoE7Yb6FjmJAyltgtq00vbXc7bjNO1ggr1EURI30d3V_p3vd3cIvSVCUFe4qS1I4tuMZ64d5BmzYfECZ4yFSaCi56dn_vEFO5l4k07EVGaX1Ek_vfpjXslttArXQK8yS_Y_NNv-KFyAc9AvHEHDcPwnHZ9Ws3IlI-XrYiGZViB2sbTG0WhsD6tvNrXmqxrmC5jNiqW1LrhCmaOzyJIFqWa83qIBbZLEFDzV1Zl0_RDTFK4l64DH2kTr-WxdlNZJv90BkA24yupntVaz7PdqYX1pb44lcZNfKQLBiF_OZe7MUXv3kwzaf_Br3bBPNSIv-Na2BHVaCmuzV2byZbbonJoQQnWx9r7QUy6AQJlPMOnOyVSTdrvGd22u19sO0_40kaUoqaMIH7oLyU4JbRmRduRrwb8FwOeGd9E9Cm6F7Hjx-eumujx4S7rDYvOVJgqu-IA7r_kbjrnup-zSbTv45fwRethoFkfaih6jO6LcRwdRyetqfonfYUUFVjGWfXR_aDR-gKKukWFjZHhjZLhjZBiMDIORYTAybIzsCbo4-ng-PLabvht2yjyntgHyuo4gwuM5oOkkpHnCQ3_AOEDRjGSMpH5AOPfSDAB6QsWAM5EFcBYmDJYA4j5Fe2VViucIB0L4KaODFDxllgc5J34qBUFzEsKgrIeIkWKcNkXpZW-UWWzYh9MYBB9Lwcda8D30vh3yS1dkuelhZlQTN5BSQ8UYrOimYW-MGmMQt4yh8VJUq2VMPRpIJ56EPfRMq7X9CtcNA1jPvB4abCm8fUCWct--UxY_VEn3AFC47zovbve5L9GDzV_wFdqrFyvxGrBynRyqPaZDZea_AcsDvVM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molnupiravir+promotes+SARS-CoV-2+mutagenesis+via+the+RNA+template&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gordon%2C+Calvin+J.&rft.au=Tchesnokov%2C+Egor+P.&rft.au=Schinazi%2C+Raymond+F.&rft.au=G%C3%B6tte%2C+Matthias&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=297&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jbc.2021.100770&rft.externalDocID=S0021925821005639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon