Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease
PET studies with N-methyl-[(11)C]2-(4':-methylaminophenyl)-6-hydroxybenzothiazole ([(11)C]PIB) have revealed an increased tracer uptake in several brain regions in Alzheimer disease (AD). To employ voxel-based analysis method to identify brain regions with significant increases in [(11)C]PIB up...
Saved in:
Published in | Neurology Vol. 67; no. 9; p. 1575 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
14.11.2006
|
Subjects | |
Online Access | Get more information |
ISSN | 1526-632X |
DOI | 10.1212/01.wnl.0000240117.55680.0a |
Cover
Loading…
Abstract | PET studies with N-methyl-[(11)C]2-(4':-methylaminophenyl)-6-hydroxybenzothiazole ([(11)C]PIB) have revealed an increased tracer uptake in several brain regions in Alzheimer disease (AD).
To employ voxel-based analysis method to identify brain regions with significant increases in [(11)C]PIB uptake in AD vs healthy control subjects, indicative of increased amyloid accumulation in these regions.
We studied 17 patients with AD and 11 control subjects with PET using [(11)C]PIB as tracer. Parametric images were computed by calculating a region-to-cerebellum ratio over 60 to 90 minutes in each voxel. Group differences in [(11)C]PIB uptake were analyzed with statistical parametric mapping (SPM) and automated region-of-interest (ROI) analysis.
SPM showed increased uptake (p < 0.001) in the frontal, parietal, and lateral temporal cortices as well as in the posterior cingulate and the striatum. No significant differences in uptake were found in the primary sensory and motor cortices, primary visual cortex, thalamus, and medial temporal lobe. These results were supported by automated ROI analysis, with most prominent increases in AD subjects in the frontal cortex ([(11)C]PIB uptake 163% of the control mean) and posterior cingulate (146%) followed by the parietal (146%) and temporal (145%) cortices and striatum (133%), as well as small increases in the occipital cortex (117%) and thalamus (115%).
Voxel-based analysis revealed widespread distribution of increased [(11)C]PIB uptake in Alzheimer disease (AD). These findings are in accordance with the distribution and phases of amyloid pathology in AD, previously documented in postmortem studies. |
---|---|
AbstractList | PET studies with N-methyl-[(11)C]2-(4':-methylaminophenyl)-6-hydroxybenzothiazole ([(11)C]PIB) have revealed an increased tracer uptake in several brain regions in Alzheimer disease (AD).
To employ voxel-based analysis method to identify brain regions with significant increases in [(11)C]PIB uptake in AD vs healthy control subjects, indicative of increased amyloid accumulation in these regions.
We studied 17 patients with AD and 11 control subjects with PET using [(11)C]PIB as tracer. Parametric images were computed by calculating a region-to-cerebellum ratio over 60 to 90 minutes in each voxel. Group differences in [(11)C]PIB uptake were analyzed with statistical parametric mapping (SPM) and automated region-of-interest (ROI) analysis.
SPM showed increased uptake (p < 0.001) in the frontal, parietal, and lateral temporal cortices as well as in the posterior cingulate and the striatum. No significant differences in uptake were found in the primary sensory and motor cortices, primary visual cortex, thalamus, and medial temporal lobe. These results were supported by automated ROI analysis, with most prominent increases in AD subjects in the frontal cortex ([(11)C]PIB uptake 163% of the control mean) and posterior cingulate (146%) followed by the parietal (146%) and temporal (145%) cortices and striatum (133%), as well as small increases in the occipital cortex (117%) and thalamus (115%).
Voxel-based analysis revealed widespread distribution of increased [(11)C]PIB uptake in Alzheimer disease (AD). These findings are in accordance with the distribution and phases of amyloid pathology in AD, previously documented in postmortem studies. |
Author | Aalto, S Helin, S Brück, A Viitanen, M Oikonen, V Wilson, I A Kailajärvi, M Scheinin, M Rinne, J O Parkkola, R Kemppainen, N M Någren, K |
Author_xml | – sequence: 1 givenname: N M surname: Kemppainen fullname: Kemppainen, N M organization: Turku PET Centre, University of Turku, Finland – sequence: 2 givenname: S surname: Aalto fullname: Aalto, S – sequence: 3 givenname: I A surname: Wilson fullname: Wilson, I A – sequence: 4 givenname: K surname: Någren fullname: Någren, K – sequence: 5 givenname: S surname: Helin fullname: Helin, S – sequence: 6 givenname: A surname: Brück fullname: Brück, A – sequence: 7 givenname: V surname: Oikonen fullname: Oikonen, V – sequence: 8 givenname: M surname: Kailajärvi fullname: Kailajärvi, M – sequence: 9 givenname: M surname: Scheinin fullname: Scheinin, M – sequence: 10 givenname: M surname: Viitanen fullname: Viitanen, M – sequence: 11 givenname: R surname: Parkkola fullname: Parkkola, R – sequence: 12 givenname: J O surname: Rinne fullname: Rinne, J O |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16971697$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j11LwzAYhYMo7kP_ggTvW983bZrsco6pg8F2MUUQGWnzRqNpO5YNrb_eiXrgcOC5eOAM2HHTNsTYJUKKAsUVYPrRhBQOETkgqlTKQkMK5oj1UYoiKTLx2GODGN8ADkCNTlkPi5H6aZ8tHtpPCklpIlluGhO66CNvHV9OV9zUXWi95cG_mMbyJ8TJ83J2zfebnXkn7hs-Dl-v5GvacusjHSRn7MSZEOn8b4fs_ma6mtwl88XtbDKeJ1UucZegzTNblZXSUIhcWSXJGlGBBk2EugSps8LpEl1mNbhKOZVrSSRt5qQdkRiyi1_vZl_WZNebra_Ntlv_PxPfrYVSQw |
CitedBy_id | crossref_primary_10_3233_JAD_180939 crossref_primary_10_3389_fnagi_2019_00084 crossref_primary_10_1212_WNL_0b013e318225118e crossref_primary_10_1016_j_nicl_2019_102097 crossref_primary_10_1212_WNL_0b013e318212015e crossref_primary_10_1016_j_jalz_2008_04_005 crossref_primary_10_1159_000109754 crossref_primary_10_1021_jacs_7b05937 crossref_primary_10_2967_jnumed_112_110163 crossref_primary_10_1016_j_neurobiolaging_2011_09_006 crossref_primary_10_1016_j_neuropsychologia_2008_03_020 crossref_primary_10_1080_21553769_2015_1044129 crossref_primary_10_1212_WNL_0000000000004827 crossref_primary_10_4061_2011_759780 crossref_primary_10_1016_j_neuroimage_2008_07_053 crossref_primary_10_1073_pnas_0914141107 crossref_primary_10_1097_JGP_0b013e3181c65821 crossref_primary_10_1007_s00401_019_01965_6 crossref_primary_10_1093_brain_awr130 crossref_primary_10_2967_jnumed_108_057984 crossref_primary_10_1007_s11065_009_9118_x crossref_primary_10_1093_brain_awq310 crossref_primary_10_2967_jnumed_111_095927 crossref_primary_10_1002_acn3_51238 crossref_primary_10_3389_fnagi_2022_788567 crossref_primary_10_1097_RLU_0000000000000666 crossref_primary_10_3389_fnagi_2021_614809 crossref_primary_10_1016_j_nicl_2013_05_008 crossref_primary_10_1007_s00259_013_2562_0 crossref_primary_10_1080_13825585_2019_1628916 crossref_primary_10_2967_jnumed_107_049619 crossref_primary_10_1093_brain_awt142 crossref_primary_10_1213_01_ane_0000287658_14763_13 crossref_primary_10_1007_s00415_018_9118_y crossref_primary_10_1097_WCO_0b013e3281a47744 crossref_primary_10_2147_NDT_S268504 crossref_primary_10_1093_brain_awn320 crossref_primary_10_2217_nmt_12_12 crossref_primary_10_1007_s00259_009_1174_1 crossref_primary_10_1016_j_remnie_2013_07_027 crossref_primary_10_1186_1479_7364_4_3_170 crossref_primary_10_1002_ana_21451 crossref_primary_10_1016_j_neubiorev_2010_08_009 crossref_primary_10_1212_01_wnl_0000261919_22630_ea crossref_primary_10_1212_01_wnl_0000260969_94695_56 crossref_primary_10_1212_01_wnl_0000259035_98480_ed crossref_primary_10_1097_RCT_0000000000000123 crossref_primary_10_1016_j_neurobiolaging_2007_03_029 crossref_primary_10_1038_mp_2008_115 crossref_primary_10_1016_j_nbd_2014_05_001 crossref_primary_10_3233_JAD_150190 crossref_primary_10_1007_s00401_013_1185_7 crossref_primary_10_1007_s11307_013_0625_z crossref_primary_10_1016_j_neurobiolaging_2013_08_025 crossref_primary_10_2967_jnumed_108_051946 crossref_primary_10_1159_000530688 crossref_primary_10_1038_s41598_017_16236_1 crossref_primary_10_1016_j_nucmedbio_2012_03_001 crossref_primary_10_1007_s11682_011_9136_1 crossref_primary_10_1212_WNL_0b013e3181bacf1b crossref_primary_10_1007_s12149_018_1236_1 crossref_primary_10_1186_s13195_020_00642_1 crossref_primary_10_2217_fnl_12_39 crossref_primary_10_1016_j_pharma_2008_11_004 crossref_primary_10_1007_s10072_019_03840_4 crossref_primary_10_1159_000506124 crossref_primary_10_1212_WNL_0b013e31821cccad crossref_primary_10_1007_s13167_010_0036_z crossref_primary_10_1016_j_mednuc_2011_02_007 crossref_primary_10_2217_14796708_4_1_23 crossref_primary_10_1016_j_npg_2009_06_001 crossref_primary_10_1016_j_jns_2010_11_012 crossref_primary_10_1016_j_neurobiolaging_2012_03_002 crossref_primary_10_1016_j_pscychresns_2008_07_015 crossref_primary_10_1002_mds_22581 crossref_primary_10_2217_fnl_10_23 crossref_primary_10_1093_brain_awn107 crossref_primary_10_3233_JAD_180645 crossref_primary_10_1007_s00415_012_6428_3 crossref_primary_10_1007_s12149_015_0957_7 crossref_primary_10_1007_s40336_014_0072_0 crossref_primary_10_1196_annals_1379_011 crossref_primary_10_3233_JAD_231013 crossref_primary_10_1002_ana_21212 crossref_primary_10_1021_acs_inorgchem_7b01883 crossref_primary_10_1148_radiol_2503080751 crossref_primary_10_1007_s00259_011_2051_2 crossref_primary_10_1016_j_brainresbull_2011_12_001 crossref_primary_10_1002_gps_4173 crossref_primary_10_1016_S1474_4422_08_70001_2 crossref_primary_10_1212_WNL_0b013e3181b23564 crossref_primary_10_12701_yujm_2018_35_1_1 crossref_primary_10_1016_j_neuroimage_2007_03_004 crossref_primary_10_2967_jnumed_114_153494 crossref_primary_10_1016_j_neuroimage_2008_02_035 crossref_primary_10_1007_s00259_009_1301_z crossref_primary_10_1016_j_nicl_2014_02_001 crossref_primary_10_1117_1_JMI_4_2_024006 crossref_primary_10_6009_jjrt_2017_JSRT_73_4_298 crossref_primary_10_1186_s13550_019_0561_2 crossref_primary_10_1371_journal_pone_0084777 crossref_primary_10_1517_17530059_1_3_337 crossref_primary_10_3233_JAD_200840 crossref_primary_10_2967_jnumed_107_049932 crossref_primary_10_1007_s12603_009_0101_2 crossref_primary_10_1016_j_remn_2013_06_012 crossref_primary_10_1002_gps_1630 crossref_primary_10_1016_j_cpet_2009_12_003 crossref_primary_10_1016_j_neurobiolaging_2011_01_003 crossref_primary_10_1016_j_neuroimage_2008_07_022 crossref_primary_10_1097_MNM_0b013e32833019f3 crossref_primary_10_1007_s00259_007_0700_2 crossref_primary_10_1177_197140090802100603 crossref_primary_10_1007_s00259_011_1960_4 crossref_primary_10_1093_brain_awr044 crossref_primary_10_1093_braincomms_fcac016 crossref_primary_10_2967_jnumed_110_087031 crossref_primary_10_1016_j_neurol_2012_07_005 crossref_primary_10_1186_s13550_024_01181_8 crossref_primary_10_1007_s00259_008_0935_6 crossref_primary_10_1002_gps_4235 crossref_primary_10_1021_jm070025 crossref_primary_10_1016_j_neurobiolaging_2010_06_015 crossref_primary_10_3389_fphar_2016_00088 crossref_primary_10_1016_j_cger_2013_07_006 crossref_primary_10_1007_s00115_010_2951_6 crossref_primary_10_1038_nrneurol_2009_217 crossref_primary_10_2217_fnl_14_13 crossref_primary_10_1007_s00259_010_1382_8 crossref_primary_10_1093_brain_awv278 crossref_primary_10_1017_S0959259812000160 crossref_primary_10_1212_WNL_0b013e3181a2e896 crossref_primary_10_3389_fnhum_2017_00643 crossref_primary_10_1007_s00259_013_2350_x crossref_primary_10_2967_jnumed_108_058529 crossref_primary_10_1016_j_arcmed_2012_11_009 crossref_primary_10_1016_j_parkreldis_2010_08_021 crossref_primary_10_1212_01_wnl_0000257671_88772_f1 crossref_primary_10_1212_01_wnl_0000265815_38958_b6 crossref_primary_10_4061_2011_481903 crossref_primary_10_1007_s12149_018_1258_8 crossref_primary_10_1111_ejn_12633 crossref_primary_10_1001_jamanetworkopen_2020_27472 crossref_primary_10_1007_s00259_013_2415_x crossref_primary_10_1016_j_nbd_2008_10_003 crossref_primary_10_3390_cancers16010010 crossref_primary_10_1016_j_neuropsychologia_2017_04_002 crossref_primary_10_1016_S1474_4422_07_70178_3 crossref_primary_10_1259_bjr_97295129 crossref_primary_10_1007_s12149_020_01513_3 crossref_primary_10_1016_j_neuroscience_2010_03_044 crossref_primary_10_3233_JAD_170092 crossref_primary_10_1093_brain_awm336 crossref_primary_10_1093_brain_awp326 crossref_primary_10_3988_jcn_2009_5_4_153 crossref_primary_10_1002_ana_23797 crossref_primary_10_1093_gerona_glab130 crossref_primary_10_1016_j_neurobiolaging_2021_08_016 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1212/01.wnl.0000240117.55680.0a |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1526-632X |
ExternalDocumentID | 16971697 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ .XZ .Z2 01R 0R~ 123 1J1 1KJ 354 3PY 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 77Y AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAWTL AAXQO AAYEP AAYOK ABBLC ABIVO ABJNI ABOCM ABVCZ ABXYN ABZZY ACCJW ACDDN ACGFS ACIJW ACILI ACLDA ACOAL ACWRI ACXJB ACZKN ADGGA ADNKB AE6 AEBDS AENEX AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHOMT AHQNM AHQVU AHVBC AIJEX AJCLO AKCTQ AKULP AKWKN ALMA_UNASSIGNED_HOLDINGS AMJPA AMKUR AMNEI AOHHW BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FW0 GQDEL HZ~ H~9 IKYAY IN~ J5H JF7 KD2 KMI L-C L7B N4W N9A NEJ NPM N~7 N~B O9- OAG OAH OBH ODMTH OHH OHYEH OL1 OLB OLH OLU OLV OLY OLZ OPX OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P2P RLZ RXW SJN TEORI V2I VVN W3M WH7 WOQ WOW X7M XJT XOL XSW XXN XYM XYN YBU YCJ YFH ZKB ~9M |
ID | FETCH-LOGICAL-c451t-1d43dcbc7806247d75eda2c0808ee18b05836f8b1f3d80fc7f7485ee5d3f5d9e2 |
IngestDate | Thu Apr 03 06:58:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-1d43dcbc7806247d75eda2c0808ee18b05836f8b1f3d80fc7f7485ee5d3f5d9e2 |
PMID | 16971697 |
ParticipantIDs | pubmed_primary_16971697 |
PublicationCentury | 2000 |
PublicationDate | 2006-11-14 |
PublicationDateYYYYMMDD | 2006-11-14 |
PublicationDate_xml | – month: 11 year: 2006 text: 2006-11-14 day: 14 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurology |
PublicationTitleAlternate | Neurology |
PublicationYear | 2006 |
SSID | ssj0015279 |
Score | 2.3299315 |
Snippet | PET studies with N-methyl-[(11)C]2-(4':-methylaminophenyl)-6-hydroxybenzothiazole ([(11)C]PIB) have revealed an increased tracer uptake in several brain... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1575 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - physiopathology Amyloid beta-Peptides - metabolism Benzothiazoles - pharmacokinetics Brain - diagnostic imaging Brain - metabolism Brain - physiopathology Brain Mapping - methods Carbon Radioisotopes Cerebral Cortex - diagnostic imaging Cerebral Cortex - metabolism Cerebral Cortex - physiopathology Corpus Striatum - diagnostic imaging Corpus Striatum - metabolism Corpus Striatum - physiopathology Female Humans Image Processing, Computer-Assisted - methods Ligands Male Middle Aged Positron-Emission Tomography - methods Predictive Value of Tests Up-Regulation - physiology |
Title | Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16971697 |
Volume | 67 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELYoSIgL4v1GPtDTykscP-Ict6WopWrpYYsqIVQ5sV0Wstmo2grUX8_4sZtloQi4WFGsWJbny9gznvkGoVeOZ06V3BLL64pwW1JSMmGIYFJlhpdZbrxD_-BQ7h7zdyfipA8rCtkl82pYX_42r-R_pArvQK4-S_YfJLscFF7AM8gXWpAwtH8l4w-z77YhfiPyhKs9u8jRznigp2CKT8ygmZx53_im2KJ0e1O8OdrbGlx0c_01sIWMmsvPdjL1ZcJXbmq-LCidLs5_8rrv22nXaTiXxiSt3pM60k0ox9Q7UnsayL3eXXoYruXF2XkcYH_N5eDD3qLZb5OazCWRLBRCX-rRWFYj4aVcUYpUxOIov2hr2DZDBsLwW9sEIkk4XlBaDD0rWjbM9OpHsPLdNMiRSk97FaN6_9y7xqS96NpAG2BT-CKp3rOTbpxEXpSJlBam9frqSXma2TTQmikSjiTjO-h2siXwKALjLrpm23vo5kGKlriP3q_gAy_wgWcOAz5wwgeO-MAfAR2fABs4YgNPWrzEBk7YeICO3-6Mt3dJKqBBai7onFDDmamrulCZzHlhCmGNzj23vLKWqioTikmnKuqYUZmrC1dwJawVhjlhSps_RNfbWWsfI6ydDzbOqTYl4zmVylaaOQ7GrpA1Y-IJehSX4rSLLCmni0V6emXPM3SrR9dzdMPBb2lfwBlvXr0MwvkBrWZIkw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-based+analysis+of+PET+amyloid+ligand+%5B11C%5DPIB+uptake+in+Alzheimer+disease&rft.jtitle=Neurology&rft.au=Kemppainen%2C+N+M&rft.au=Aalto%2C+S&rft.au=Wilson%2C+I+A&rft.au=N%C3%A5gren%2C+K&rft.date=2006-11-14&rft.eissn=1526-632X&rft.volume=67&rft.issue=9&rft.spage=1575&rft_id=info:doi/10.1212%2F01.wnl.0000240117.55680.0a&rft_id=info%3Apmid%2F16971697&rft_id=info%3Apmid%2F16971697&rft.externalDocID=16971697 |