Brain metabolite changes in cortical grey and normal‐appearing white matter in clinically early relapsing–remitting multiple sclerosis

While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal‐appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortic...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 125; no. 10; pp. 2342 - 2352
Main Authors Chard, D. T., Griffin, C. M., McLean, M. A., Kapeller, P., Kapoor, R., Thompson, A. J., Miller, D. H.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.10.2002
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal‐appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging (1H‐MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing–remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. 1H‐MRSI voxel tissue contents were estimated using SPM99 tissue and semi‐automatic lesion segmentations of three‐dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline‐containing compounds (Cho); creatine and phosphocreatine (Cr); myo‐inositol (Ins); N‐acetyl‐aspartate plus N‐acetyl‐aspartyl‐glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, 1H‐MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (rs = 0.524, P = 0.009), CGM Glx (rs = 0.580, P = 0.003) and NAWM Ins (rs = –0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing–remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.
AbstractList While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging (1H-MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing-remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. 1H-MRSI voxel tissue contents were estimated using SPM99 tissue and semi-automatic lesion segmentations of three-dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline-containing compounds (Cho); creatine and phosphocreatine (Cr); myo-inositol (Ins); N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, 1H-MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (rs = 0.524, P = 0.009), CGM Glx (rs = 0.580, P = 0.003) and NAWM Ins (rs = -0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing-remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.
While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing-remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. (1)H-MRSI voxel tissue contents were estimated using SPM99 tissue and semi-automatic lesion segmentations of three-dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline-containing compounds (Cho); creatine and phosphocreatine (Cr); myo-inositol (Ins); N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, (1)H-MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (r(s) = 0.524, P = 0.009), CGM Glx (r(s) = 0.580, P = 0.003) and NAWM Ins (r(s) = -0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing-remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing-remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. (1)H-MRSI voxel tissue contents were estimated using SPM99 tissue and semi-automatic lesion segmentations of three-dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline-containing compounds (Cho); creatine and phosphocreatine (Cr); myo-inositol (Ins); N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, (1)H-MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (r(s) = 0.524, P = 0.009), CGM Glx (r(s) = 0.580, P = 0.003) and NAWM Ins (r(s) = -0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing-remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.
While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing-remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. (1)H-MRSI voxel tissue contents were estimated using SPM99 tissue and semi-automatic lesion segmentations of three-dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline-containing compounds (Cho); creatine and phosphocreatine (Cr); myo-inositol (Ins); N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, (1)H-MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (r(s) = 0.524, P = 0.009), CGM Glx (r(s) = 0.580, P = 0.003) and NAWM Ins (r(s) = -0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing-remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.
While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM) and grey matter (GM) are also involved in the disease process. This study investigated multiple sclerosis disease effects on NAWM and cortical GM (CGM) metabolite concentrations, and the relationships between these metabolite concentrations and clinical impairment. Proton magnetic resonance spectroscopic imaging ( Face=+Superscript 1 Face=-Superscript H-MRSI) data acquired using point resolved spectroscopic (PRESS) localization (echo time 30 ms, repetition time 3000 ms, nominal voxel volume 2.3 ml) from 27 relapsing-remitting multiple sclerosis and 29 normal control (NC) subjects were processed using LCModel to estimate metabolite concentrations in millimoles per litre. Face=+Superscript 1 Face=-Superscript H-MRSI voxel tissue contents were estimated using SPM99 tissue and semi-automatic lesion segmentations of three-dimensional fast spoiled gradient recall scans acquired during the same scanning session. NAWM and CGM metabolite concentrations estimated were: choline-containing compounds (Cho); creatine and phosphocreatine (Cr); myo-inositol (Ins); N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (tNAA); and glutamate plus glutamine (Glx). CGM data came from 24 of the multiple sclerosis (mean age 35.2 years, mean disease duration 1.7 years) and 25 of the NC (mean age 34.9 years) subjects. NAWM data came from 25 of the multiple sclerosis (mean age 35.0 years, mean disease duration 1.7 years) and 28 of the NC (mean age 36.7 years) subjects. Metabolite concentrations were compared between multiple sclerosis and NC subjects using multiple (linear) regression models allowing for age, gender, Face=+Superscript 1 Face=-Superscript H-MRSI voxel tissue and CSF contents, and brain parenchymal volume. At a significance level of P < 0.05, CGM Cho, CGM and NAWM tNAA, and CGM Glx were all significantly reduced, and NAWM Ins was significantly elevated. Spearman correlations of multiple sclerosis functional composite scores with tissue metabolite concentrations were significant for the following: CGM Cr (r Face=+Subscript s Face=-Subscript = 0.524, P = 0.009), CGM Glx (r Face=+Subscript s Face=-Subscript = 0.580, P = 0.003) and NAWM Ins (r Face=+Subscript s Face=-Subscript = -0.559, P = 0.004). These results indicate that metabolite changes in NAWM and CGM can be detected early in the clinical course of multiple sclerosis, and that some of these changes relate to clinical status. The correlation of clinical impairment with CGM Cr and Glx but not tNAA suggests that it is more closely associated with neuronal metabolic dysfunction rather than loss in clinically early relapsing-remitting multiple sclerosis. The correlation of clinical impairment with a raised NAWM Ins may indicate that glial proliferation also relates to function at this stage of the disease.
Author Kapeller, P.
Thompson, A. J.
Chard, D. T.
McLean, M. A.
Kapoor, R.
Miller, D. H.
Griffin, C. M.
Author_xml – sequence: 1
  givenname: D. T.
  surname: Chard
  fullname: Chard, D. T.
  organization: NMR Research Unit, Institute of Neurology, University College London, London
– sequence: 2
  givenname: C. M.
  surname: Griffin
  fullname: Griffin, C. M.
  organization: NMR Research Unit, Institute of Neurology, University College London, London
– sequence: 3
  givenname: M. A.
  surname: McLean
  fullname: McLean, M. A.
  organization: MRI Unit, National Society for Epilepsy, Chalfont St Peter, UK and
– sequence: 4
  givenname: P.
  surname: Kapeller
  fullname: Kapeller, P.
  organization: Department of Neurology, Karl‐Franzens University, Graz, Austria
– sequence: 5
  givenname: R.
  surname: Kapoor
  fullname: Kapoor, R.
  organization: NMR Research Unit, Institute of Neurology, University College London, London
– sequence: 6
  givenname: A. J.
  surname: Thompson
  fullname: Thompson, A. J.
  organization: NMR Research Unit, Institute of Neurology, University College London, London
– sequence: 7
  givenname: D. H.
  surname: Miller
  fullname: Miller, D. H.
  organization: NMR Research Unit, Institute of Neurology, University College London, London
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13927747$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12244090$$D View this record in MEDLINE/PubMed
BookMark eNqN0jFv1DAUB3ALFdFrYWNGERJMhNqO41xGqICCToKhCMRivTgvVxfHCbajcltnJiS-YT8JTu-gUiUkFkeOfn_75eUdkD03OCTkIaPPGa2Lo8aDcUdw0XFB75AFE5LmnJVyjywopTJf1iXdJwchnFPKRMHlPbLPOBeC1nRBfryc41mPEZrBmoiZPgO3xpClt3rw0Wiw2drjJgPXZm7wPdiry58wjgjeuHV2cTaneogR_XXIGjeH7CZLIq0eLYwh0avLXx57E-Mc6ycbzWgxC9qiH4IJ98ndDmzAB7vnIfn4-tXp8Um-ev_m7fGLVa5FyWLOpCwqrDpeasQWJQfWCFpI2TbNUqPulqUWdSlaYJoKXoNIu7LmDRWpAcu6OCRPt-eOfvg2YYiqN0GjteBwmIKqOGOy-A_IaclFLUWCj2_B82HyLn2EYqmSoqh5kdCjHZqaHls1etOD36g__yKBJzsAIfWv8-C0CTcunVJVokru2dbp1LbgsbshVM0joa5HQm1HInF-i2sTIZrBxcTsv0L5NmRCxO9_LwD_VcmqqEp18vmLWp5-kPTTu1Uq7TejkM7b
CODEN BRAIAK
CitedBy_id crossref_primary_10_1002_jmri_22102
crossref_primary_10_3389_fneur_2019_01173
crossref_primary_10_1002_jmri_20564
crossref_primary_10_1371_journal_pone_0111598
crossref_primary_10_1177_197140090501800313
crossref_primary_10_1191_1352458503ms958oa
crossref_primary_10_1097_MD_0000000000004101
crossref_primary_10_1007_s00234_009_0512_0
crossref_primary_10_1016_j_neuroimage_2025_121043
crossref_primary_10_1212_01_wnl_0000291557_62706_d3
crossref_primary_10_1371_journal_pone_0011625
crossref_primary_10_1016_j_jns_2005_03_018
crossref_primary_10_1007_s00401_019_01980_7
crossref_primary_10_1016_j_neuroimage_2005_07_053
crossref_primary_10_1148_radiol_2403050569
crossref_primary_10_1002_nbm_1621
crossref_primary_10_3892_etm_2023_12048
crossref_primary_10_1002_hbm_21344
crossref_primary_10_1016_j_ncl_2008_09_012
crossref_primary_10_1016_j_msard_2013_11_003
crossref_primary_10_1016_j_neuroimage_2003_12_008
crossref_primary_10_1002_epd2_20195
crossref_primary_10_1179_1743132813Y_0000000312
crossref_primary_10_1007_s12551_010_0031_6
crossref_primary_10_4061_2011_932351
crossref_primary_10_1177_1352458520918978
crossref_primary_10_1093_braincomms_fcad140
crossref_primary_10_1016_j_jns_2009_01_018
crossref_primary_10_1016_j_jns_2014_01_013
crossref_primary_10_1155_2014_609694
crossref_primary_10_1016_j_jns_2009_01_012
crossref_primary_10_1186_s41983_022_00457_x
crossref_primary_10_3233_JAD_201575
crossref_primary_10_1016_j_jns_2009_01_015
crossref_primary_10_1093_brain_awh467
crossref_primary_10_1002_mrm_21382
crossref_primary_10_1016_j_nic_2016_12_005
crossref_primary_10_1371_journal_pone_0021138
crossref_primary_10_1007_s13246_015_0390_1
crossref_primary_10_2174_0929867326666191014162713
crossref_primary_10_1212_01_wnl_0000237551_26858_39
crossref_primary_10_3174_ajnr_A4252
crossref_primary_10_1002_jmri_23578
crossref_primary_10_1016_j_neuroscience_2015_07_006
crossref_primary_10_1016_j_pneurobio_2011_04_007
crossref_primary_10_1191_1352458503ms938oa
crossref_primary_10_3897_folmed_64_e66002
crossref_primary_10_1177_1352458511404916
crossref_primary_10_1177_1352458514562440
crossref_primary_10_1177_15459683221076461
crossref_primary_10_1080_00325481_2021_1945898
crossref_primary_10_1007_s10334_008_0149_8
crossref_primary_10_1016_j_brainresbull_2005_11_006
crossref_primary_10_1371_journal_pone_0309547
crossref_primary_10_1016_S1474_4422_08_70191_1
crossref_primary_10_1016_j_nic_2012_12_011
crossref_primary_10_1002_mrm_20366
crossref_primary_10_1007_s00415_006_0503_6
crossref_primary_10_1016_S1474_4422_05_70095_8
crossref_primary_10_1007_s00406_005_0565_y
crossref_primary_10_1016_j_jns_2006_08_017
crossref_primary_10_1007_s00415_006_0129_8
crossref_primary_10_1186_1471_2377_4_8
crossref_primary_10_1016_j_nic_2008_06_007
crossref_primary_10_3389_fneur_2023_1172807
crossref_primary_10_1002_jmri_20178
crossref_primary_10_3389_fneur_2022_944791
crossref_primary_10_1111_j_1582_4934_2008_00375_x
crossref_primary_10_1191_1352458504ms1067rr
crossref_primary_10_1080_01616412_2016_1275460
crossref_primary_10_1111_j_1526_4610_2005_05136_x
crossref_primary_10_1186_s40035_019_0178_4
crossref_primary_10_1016_j_jmr_2016_09_005
crossref_primary_10_1007_s00415_004_1506_9
crossref_primary_10_1007_s00234_007_0325_y
crossref_primary_10_1016_j_nic_2008_08_002
crossref_primary_10_1093_brain_awh640
crossref_primary_10_1177_1352458516653666
crossref_primary_10_1212_01_WNL_0000154526_22878_30
crossref_primary_10_1097_01_wco_0000318863_65635_9a
crossref_primary_10_1097_WCO_0b013e328362a864
crossref_primary_10_3389_fneur_2018_00691
crossref_primary_10_2152_jmi_53_199
crossref_primary_10_1016_j_neuroimage_2019_01_027
crossref_primary_10_1002_jmri_25139
crossref_primary_10_1007_s00415_025_12917_4
crossref_primary_10_1007_s00415_005_0847_3
crossref_primary_10_1038_nrneurol_2010_93
crossref_primary_10_1089_ars_2010_3453
crossref_primary_10_1212_01_wnl_0000250267_85698_7a
crossref_primary_10_1016_j_jneumeth_2018_08_008
crossref_primary_10_1016_j_neuroimage_2011_10_053
crossref_primary_10_1177_1352458509103713
crossref_primary_10_1177_1352458508096686
crossref_primary_10_1016_j_nurt_2007_08_001
crossref_primary_10_1186_s12929_017_0323_2
crossref_primary_10_1177_1352458509103714
crossref_primary_10_1007_s00415_006_0474_7
crossref_primary_10_1212_WNL_0b013e318220abd4
crossref_primary_10_1586_ern_09_83
crossref_primary_10_1177_1545968312469835
crossref_primary_10_1016_S1053_8119_03_00409_9
crossref_primary_10_1016_S1474_4422_03_00408_3
crossref_primary_10_1212_01_wnl_0000291010_54692_85
crossref_primary_10_2217_nmt_12_49
crossref_primary_10_1016_j_brainres_2012_04_052
crossref_primary_10_1093_brain_awp278
crossref_primary_10_1007_s10072_010_0369_3
crossref_primary_10_54101_ACEN_2022_4_2
crossref_primary_10_3174_ajnr_A1738
crossref_primary_10_1007_s11910_009_0058_x
crossref_primary_10_1016_j_crad_2018_04_018
crossref_primary_10_1177_1352458517702534
crossref_primary_10_1007_s00415_008_0877_8
crossref_primary_10_1016_j_nic_2013_03_005
crossref_primary_10_3174_ajnr_A0645
crossref_primary_10_1212_01_wnl_0000275227_74893_bd
crossref_primary_10_5507_bp_2018_036
crossref_primary_10_1007_s00415_007_0666_9
crossref_primary_10_1016_j_biopsych_2008_04_007
crossref_primary_10_1111_j_1617_0830_2005_00038_x
crossref_primary_10_1016_j_ejrad_2008_02_033
crossref_primary_10_1007_s00330_005_2839_1
crossref_primary_10_1016_j_mri_2004_01_028
crossref_primary_10_1586_ern_10_155
crossref_primary_10_1002_nbm_1379
crossref_primary_10_1097_RMR_0b013e318033787e
crossref_primary_10_1517_17530059_2_9_1055
crossref_primary_10_1089_ars_2006_8_1987
crossref_primary_10_1016_j_expneurol_2007_11_008
crossref_primary_10_1148_radiol_11101362
crossref_primary_10_1016_j_clinph_2003_11_024
crossref_primary_10_1016_j_pscychresns_2007_12_014
crossref_primary_10_1002_hbm_22229
crossref_primary_10_1007_s00415_005_5004_5
crossref_primary_10_1016_j_brainresbull_2006_03_003
crossref_primary_10_1111_j_1552_6569_2007_00134_x
crossref_primary_10_1002_msj_20247
crossref_primary_10_1016_S0028_3843_14_60027_X
crossref_primary_10_1016_j_neurad_2018_06_002
crossref_primary_10_1177_17562864211066751
crossref_primary_10_1177_197140090501800410
crossref_primary_10_1016_j_jns_2008_12_035
crossref_primary_10_1016_j_neuroimage_2017_01_033
crossref_primary_10_1097_NRL_0b013e31816f27fe
crossref_primary_10_1007_s00415_005_0964_z
crossref_primary_10_1007_s00330_008_0925_x
crossref_primary_10_1111_j_1750_3639_2008_00228_x
crossref_primary_10_1016_j_rcl_2013_11_011
crossref_primary_10_3389_fneur_2022_764690
crossref_primary_10_1002_mrm_27912
crossref_primary_10_1007_s11682_018_9861_9
crossref_primary_10_1186_1471_2377_11_153
crossref_primary_10_1212_01_WNL_0000098880_19793_B6
crossref_primary_10_1371_journal_pone_0172923
crossref_primary_10_4236_wjns_2013_33019
crossref_primary_10_3174_ajnr_A0580
crossref_primary_10_1016_j_neuroimage_2004_10_006
crossref_primary_10_1177_197140090501800406
crossref_primary_10_3389_fimmu_2021_811351
crossref_primary_10_3390_ijms22189753
crossref_primary_10_1179_1743132811Y_0000000059
crossref_primary_10_1586_14737175_7_3_271
crossref_primary_10_1148_radiol_210614
crossref_primary_10_1038_jcbfm_2011_193
crossref_primary_10_1089_neu_2009_0896
crossref_primary_10_1177_1352458506070726
crossref_primary_10_1016_j_ncl_2010_12_011
crossref_primary_10_1016_j_neuroimage_2004_07_046
crossref_primary_10_5124_jkma_2010_53_12_1086
crossref_primary_10_1602_neurorx_1_2_284
crossref_primary_10_1212_WNL_0b013e3181dbb571
crossref_primary_10_1016_j_neuroimage_2011_08_114
crossref_primary_10_1016_j_neuroimage_2013_05_125
crossref_primary_10_1007_s00415_006_6005_8
crossref_primary_10_1111_jon_13032
crossref_primary_10_1002_mrm_20792
crossref_primary_10_1093_brain_awr182
crossref_primary_10_1002_ana_20202
crossref_primary_10_1212_NXI_0000000000000626
crossref_primary_10_3174_ajnr_A0594
crossref_primary_10_1016_j_neuroimage_2015_04_012
crossref_primary_10_2165_11587820_000000000_00000
crossref_primary_10_1177_1352458507088103
crossref_primary_10_3174_ajnr_A2254
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright Oxford University Press(England) Oct 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright Oxford University Press(England) Oct 2002
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1093/brain/awf240
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2352
ExternalDocumentID 545990501
12244090
13927747
10_1093_brain_awf240
ark_67375_HXZ_8TP60WJL_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Multiple Sclerosis Society
  grantid: 491
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSCLL
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
M49
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c451t-16637e7f25ceede62a1b40366dbb8cecf85c4954da1c0429a4495592b04001893
ISSN 0006-8950
1460-2156
IngestDate Fri Jul 11 08:28:53 EDT 2025
Fri Jul 11 06:13:34 EDT 2025
Mon Jun 30 04:39:48 EDT 2025
Fri May 30 10:50:30 EDT 2025
Mon Jul 21 09:15:36 EDT 2025
Tue Jul 01 02:39:56 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Aug 05 16:49:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Human
Nervous system diseases
Relapse
Multiple sclerosis
Pathophysiology
Grey matter
NMR spectrometry
Metabolism
Nuclear magnetic resonance imaging
Inflammatory disease
Central nervous system disease
Medical imagery
Remission
Brain (vertebrata)
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-16637e7f25ceede62a1b40366dbb8cecf85c4954da1c0429a4495592b04001893
Notes Correspondence to: Professor D. H. Miller, NMR Research Unit, Institute of Neurology, Queen Square, London WC1N 3BG, UK E‐mail: d.miller@ion.ucl.ac.uk
local:awf240
istex:8BFEB9F9DD3C9836ABE3EEDF76CFE92AC2884170
ark:/67375/HXZ-8TP60WJL-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/brain/article-pdf/125/10/2342/852111/awf240.pdf
PMID 12244090
PQID 195433923
PQPubID 35133
PageCount 11
ParticipantIDs proquest_miscellaneous_72116389
proquest_miscellaneous_20524964
proquest_journals_195433923
pubmed_primary_12244090
pascalfrancis_primary_13927747
crossref_primary_10_1093_brain_awf240
crossref_citationtrail_10_1093_brain_awf240
istex_primary_ark_67375_HXZ_8TP60WJL_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-10-01
PublicationDateYYYYMMDD 2002-10-01
PublicationDate_xml – month: 10
  year: 2002
  text: 2002-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2002
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
SSID ssj0014326
Score 2.2164476
Snippet While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal‐appearing WM (NAWM)...
While much work has concentrated on focal white matter (WM) lesions in multiple sclerosis, there is growing evidence to suggest that normal-appearing WM (NAWM)...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2342
SubjectTerms 1H‐MRSI = proton magnetic resonance spectroscopic imaging
9HPT = nine hole peg test
Adult
Biological and medical sciences
BP = brain parenchymal
BPF = brain parenchymal fraction
Brain - metabolism
CGM = cortical grey matter
Cho = choline containing compounds
Cohort Studies
Cr = creatine and phosphocreatine
EDSS = expanded disability status scale
Female
FSE = fast spin echo
Glx = glutamate plus glutamine
GM = grey matter
GMF = grey matter fraction
grey matter
Humans
Ins = myo‐inositol
Linear Models
Magnetic Resonance Spectroscopy - statistics & numerical data
Male
Medical sciences
metabolite concentrations
Middle Aged
MSFC = multiple sclerosis functional composite
multiple sclerosis
Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis
Multiple Sclerosis, Relapsing-Remitting - metabolism
NAWM = normal‐appearing white matter
NC = normal control
Neurology
normal‐appearing white matter
PASAT = paced auditory serial addition test
PRESS = point resolved spectroscopic
proton magnetic resonance spectroscopic imaging
Statistics, Nonparametric
TI = total intracranial
tNAA = N‐acetyl‐aspartate plus N‐acetyl‐aspartyl‐glutamate
TWT = timed walk test
WM = white matter
WMF = white matter fraction
Title Brain metabolite changes in cortical grey and normal‐appearing white matter in clinically early relapsing–remitting multiple sclerosis
URI https://api.istex.fr/ark:/67375/HXZ-8TP60WJL-1/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12244090
https://www.proquest.com/docview/195433923
https://www.proquest.com/docview/20524964
https://www.proquest.com/docview/72116389
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKjIS4IHbCwOADcKkyk8VxkiOgKWXoDHPoiIqLZTuONKLTqbqI5QfwE_i9vGdnaaEVyyVqU8eJ-n3xW_wWQp4lZQ56vNR-VqrSZ1rlfl6UzM-5MXEQ6VynmO98csr75-x4lIw6nR8rUUvLhTrQ3zbmlfwPqnAOcMUs2X9AtpkUTsBnwBeOgDAc_wrjV9jfAZtAA5KYS1yl8doQV7AqnZsaDGpXY2mC6unYl9MpsNv6YHELoXtpK2zaS6osyfHXrrF1jzHRZYrOBH9mLi9chHQTgTiHhwERezFf2xe2T7SpTYjzPWRptuJ7wL1-F3bcxmq_sV4kFwrQXQkxGBjnql2RETZ0y1HubM17ETVxcO2KzP0sd8VnD4xbhBkPfFBF-Noq7fKjazoGq4tu7Ap0VQK8_vqbcHCFs9TMulx68nMZsaAVg_XW_-l70TsfDMTwaDS8RnYjMD-sqf72XbM7xWLbxq959iqhAuY_tLMfurnXVJ1dfGu_YOitnAOSpWubst2usfrN8Ba5WRkm9KVj2W3SMZM75PpJFXpxl3y30NKWbLQiG4WzNdkoko0C2vRXslFLNurIZi9pyEYt2egGstGabLQh2z1y3jsavu77VRMPX7MkXPghqLSpScsoQXXM8EiGioHaxAulMm10mSUajHRWyFCjciQZw6KIkULpEoI2fZ_sTK4m5iGhTBcm5iZWUnNWJIlM0yKKQCoVkvFQKY906_9b6KrCPTZaGQsXaRELi45w6HjkeTN66iq7bBn3wkLXDJKzTxgNmSaiP_oosuEZDz4cD0Tokf01bNtZwQYBKyv1yF4NtqhWkbnAiosxDIg98rT5FZZ43LeTE3O1nIsoSCKWc7Z9BLpx0PTwyAPHofbeoKKzIA8e_XH2PXKjfUEfk53FbGmegMK9UPuW_T8BzX3cng
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+metabolite+changes+in+cortical+grey+and+normal-appearing+white+matter+in+clinically+early+relapsing-remitting+multiple+sclerosis&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Chard%2C+D+T&rft.au=Griffin%2C+C+M&rft.au=McLean%2C+MA&rft.au=Kapeller%2C+P&rft.date=2002-10-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=125&rft.issue=10&rft.spage=2342&rft.epage=2342&rft_id=info:doi/10.1093%2Fbrain%2Fawf240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon