Biometric Authentication from Photic Stimulated EEG Records

Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to...

Full description

Saved in:
Bibliographic Details
Published inApplied artificial intelligence Vol. 35; no. 15; pp. 1407 - 1419
Main Authors Kasim, Ömer, Tosun, Mustafa
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 15.12.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1-49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems.
AbstractList Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1–49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems.
Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1–49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems.
Author Kasim, Ömer
Tosun, Mustafa
Author_xml – sequence: 1
  givenname: Ömer
  orcidid: 0000-0003-4021-5412
  surname: Kasim
  fullname: Kasim, Ömer
  email: omer.kasim@dpu.edu.tr, omerksm@gmail.com
  organization: Kutahya Dumlupinar University
– sequence: 2
  givenname: Mustafa
  surname: Tosun
  fullname: Tosun, Mustafa
  organization: Kutahya Dumlupinar University
BookMark eNqFkEtLAzEUhYMoWB8_QRhwPTV3Jk_c-KDWgqCo-5DmYVNmJppJkf57p7ZuXOjqwrnnHA7fEdrvYucQOgM8BizwBRailhTIuMIVjEEKYAzvodHw5CWjhO6j0cZTbkyH6Kjvlxhj4BxG6PImxNblFExxvcoL1-VgdA6xK3yKbfG0iINQvOTQrhqdnS0mk2nx7ExMtj9BB143vTvd3WP0ejd5vb0vHx6ns9vrh9IQCrkEKizV2DPh5gZLX3NLK7BAwAtDPaZSWgmWY2bEnDPGBdTMWDbXlEEN9TGabWtt1Ev1nkKr01pFHdS3ENOb0mlY2TgFvhKSMsIrzog1RErNuGRzCVRy7ezQdb7tek_xY-X6rJZxlbphvaoYIZyLmuDBdbl1mRT7PjmvTMjfVHLSoVGA1Qa8-gGvNuDVDvyQpr_SP5v_y11tc6HzMbX6M6bGqqzXTUw-6c6EXtV_V3wBLoGY7g
CitedBy_id crossref_primary_10_3389_fphys_2024_1325784
crossref_primary_10_3390_s22197154
crossref_primary_10_46387_bjesr_1336892
crossref_primary_10_1016_j_dsp_2025_105042
crossref_primary_10_1016_j_eswa_2024_124218
crossref_primary_10_1007_s11042_023_17114_x
Cites_doi 10.1109/KST.2019.8687819
10.1016/j.measurement.2015.07.008
10.1016/j.cose.2020.101788
10.1145/2617756
10.1109/INDIN41052.2019.8972231
10.1109/INVENTIVE.2016.7824888
10.1109/IEMCON.2016.7746325
10.1109/CW49994.2020.00050
10.1109/TCSVT.2003.818349
10.1007/s10044-016-0569-4
10.1109/EMBC.2015.7318985
10.1109/ACCESS.2019.2950366
10.1088/1741-2560/12/5/056019
10.1145/3230632
10.1016/j.cogsys.2018.11.002
10.1109/ICASSDA.2018.8477604
10.1016/j.eswa.2016.06.006
10.1016/j.neucom.2018.09.071
10.1016/j.eswa.2019.01.080
10.1109/FBIE.2009.5405787
10.1016/j.cogsys.2019.01.007
10.1007/978-3-642-15314-3_14
10.3934/medsci.2017.3.274
10.1016/j.cose.2016.06.001
10.1016/j.inffus.2021.01.004
10.1038/s41598-018-23696-6
10.1111/ejn.14642
ContentType Journal Article
Copyright 2021 Taylor & Francis 2021
2021 Taylor & Francis
Copyright_xml – notice: 2021 Taylor & Francis 2021
– notice: 2021 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1080/08839514.2021.1981660
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
EndPage 1419
ExternalDocumentID oai_doaj_org_article_1f28956472764dc499a6796b91597aed
10_1080_08839514_2021_1981660
1981660
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0YH
23M
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ACUHS
ADCVX
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGMYJ
AHQJS
AIJEM
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
S-T
SNACF
TFL
TFT
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
ZL0
~S~
AAFWJ
AAYXX
ADMLS
AIYEW
CITATION
TDBHL
7SC
8FD
JQ2
L7M
L~C
L~D
GROUPED_DOAJ
ID FETCH-LOGICAL-c451t-158d5a0f68ebc09f37d521d141f8c5f0599d91d706c8b76678136cd6ba561313
IEDL.DBID DOA
ISSN 0883-9514
IngestDate Wed Aug 27 01:30:20 EDT 2025
Sun Jun 29 15:58:02 EDT 2025
Tue Jul 01 02:04:00 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Wed Dec 25 09:05:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-158d5a0f68ebc09f37d521d141f8c5f0599d91d706c8b76678136cd6ba561313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4021-5412
OpenAccessLink https://doaj.org/article/1f28956472764dc499a6796b91597aed
PQID 2644778340
PQPubID 53050
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_08839514_2021_1981660
doaj_primary_oai_doaj_org_article_1f28956472764dc499a6796b91597aed
crossref_citationtrail_10_1080_08839514_2021_1981660
proquest_journals_2644778340
crossref_primary_10_1080_08839514_2021_1981660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0011
cit0012
cit0031
cit0010
Yang G. C. (cit0028) 2020; 16
cit0032
cit0030
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0022
cit0001
cit0023
cit0020
cit0021
Fallani F. D. V. (cit0009) 2011
cit0008
cit0006
cit0007
cit0029
cit0004
cit0026
cit0005
Kaiser J. F. (cit0014) 1974
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0022
  doi: 10.1109/KST.2019.8687819
– start-page: 20
  volume-title: Proc. IEEE International Symposium on Circuits & Systems
  year: 1974
  ident: cit0014
– ident: cit0007
  doi: 10.1016/j.measurement.2015.07.008
– ident: cit0002
  doi: 10.1016/j.cose.2020.101788
– ident: cit0018
  doi: 10.1145/2617756
– ident: cit0020
  doi: 10.1109/INDIN41052.2019.8972231
– ident: cit0024
  doi: 10.1109/INVENTIVE.2016.7824888
– ident: cit0013
  doi: 10.1109/IEMCON.2016.7746325
– volume: 16
  start-page: 1034
  issue: 5
  year: 2020
  ident: cit0028
  publication-title: Journal of Information Processing Systems
– ident: cit0027
  doi: 10.1109/CW49994.2020.00050
– ident: cit0012
  doi: 10.1109/TCSVT.2003.818349
– ident: cit0029
  doi: 10.1007/s10044-016-0569-4
– ident: cit0017
  doi: 10.1109/EMBC.2015.7318985
– ident: cit0031
  doi: 10.1109/ACCESS.2019.2950366
– ident: cit0008
  doi: 10.1088/1741-2560/12/5/056019
– ident: cit0010
  doi: 10.1145/3230632
– ident: cit0006
  doi: 10.1016/j.cogsys.2018.11.002
– start-page: 2331
  volume-title: International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2011
  ident: cit0009
– ident: cit0021
  doi: 10.1109/ICASSDA.2018.8477604
– ident: cit0023
  doi: 10.1016/j.eswa.2016.06.006
– ident: cit0015
  doi: 10.1016/j.neucom.2018.09.071
– ident: cit0003
– ident: cit0025
  doi: 10.1016/j.eswa.2019.01.080
– ident: cit0011
  doi: 10.1109/FBIE.2009.5405787
– ident: cit0005
– ident: cit0016
  doi: 10.1016/j.cogsys.2019.01.007
– ident: cit0032
  doi: 10.1007/978-3-642-15314-3_14
– ident: cit0030
  doi: 10.3934/medsci.2017.3.274
– ident: cit0001
  doi: 10.1016/j.cose.2016.06.001
– ident: cit0004
  doi: 10.1016/j.inffus.2021.01.004
– ident: cit0026
  doi: 10.1038/s41598-018-23696-6
– ident: cit0019
  doi: 10.1111/ejn.14642
SSID ssj0001771
Score 2.3124003
Snippet Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1407
SubjectTerms 1D-CNN algorithm
Algorithms
Artificial neural networks
Authentication
Biometrics
Brain
EEG-based authentication
Electroencephalography
Fraud
Machine learning
periodogram estimation method using Kaiser Window
photic stimulation
Power spectral density
Stimuli
subjects with ADHD
Visual signals
Title Biometric Authentication from Photic Stimulated EEG Records
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2021.1981660
https://www.proquest.com/docview/2644778340
https://doaj.org/article/1f28956472764dc499a6796b91597aed
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gJy68EYMx5cC1o1lerTgxtDEhMSExpN2iNmkEEmyIlf-P3aZjgsMuXK1WjRw79ufGnwm5VCq1QmU6EiyTESa8UcbzIko9_nPre2urXpiHiRo_i_uZnK2N-sI7YTU9cK24K-YBEkgkOddKOAsJeoaljzyFOKyzwuHpCzGvAVPhDGa6glrgQjyCHEI0vTvIqg0yFAE27LMeYG5W81P-RKWKvP8Xdemfo7qKP6N9shsSR3pTL_iAbBXzQ7LXDGWgwUePyPUAG-qRd59i-QsvA9VVOYqdJPTxZQEC-lS-vuPgrsLR4fCO1iB0eUymo-H0dhyFCQmRFZKVEZOJk1nsVVLkNgb9agfh2DHBfGKlR-4VlzKnY2WTXCsITIwr61SeIW5g_IS05ot5cUqoizMF2YKVinOhbZGAryvnfZpzDwFLtIloFGRsYA_HIRZvhjUko0GvBvVqgl7bpLd67aOmz9j0wgC1v3oY2a8rAdiECTZhNtlEm6Tre2fKqvjh60klhm9YQKfZaBPceWkwa9Q4kiQ--4_1nZMd_CTeimGyQ1rl51dxAblNmXfJNo8n3cqYvwHOe-uE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWChPEWhgAfWhLh-JWKiqFCgVEgUic1K7BgQ0KI2Xfj1-PKoShFiYHVyVvy4Z-6-Q-hYiEgzEUuPkZh7YPB6MU1SL7Lwz61ltc5rYW77ovvArh_541wtDKRVgg9tC6CIXFYDc0MwukqJO3GcQZ1lACGRFvGd20yEcG77Mo-EhC4GNOjPpDGRudMFJB7QVFU8v03zTT_lMP4LIKY_hHauiS7qSFdrKBJQXv1plvj6cwHe8X-LXEdrpaGKz4qbtYGW0uEmqldNIHApE7bQaRsK-AHnH0O4DZKPiigghsoVfPc8cgP4Pnt5h0ZhqcGdziUunN7JNhpcdAbnXa_syOBpxknmER4aHgdWhGmiA3ee0jj1bwgjNtTcAtaLiYiRgdBhIoVThIQKbUQSg59C6A6qDUfDdBdhE8TCWSeaC0qZ1GnoZIsw1kYJtU5BsgZi1TEoXaKVQ9OMN0UqUNNyfxTsjyr3p4H8GdlHAdfxF0Ebznj2MqBt5wOj8ZMqmVcR69xSDkD7UjCjnZMYQ_gtiZwtKOPUNFA0f0NUlgdbbNEZRdE_PqBZXSdVio-JAitVQguUYO8fUx-hle7gtqd6V_2bfbQKjyARh_AmqmXjaXrgzKksOcz55Qt7rAw9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAXyirK6gPXhJh4ScSJpWWvKlEkblZsx4CAtqLhwtfjSZyKRagHrk7GipdZM_MGoT3OU015JgJKMhaAwRtkscqD1MI_twOrdVkLc9Pl53f08p7V2YRjn1YJPrStgCJKWQ3MPTK2zojbd4wRO8MAIiIHJHReM-Hcee2zHMDDoYoj6k6EMRGlzwUkAdDURTx_TfNNPZUo_j8wTH_J7FIRdZpI1Uuo8k-ew_dChfrjB7rjv9a4iBa8mYqPqnu1hGbywTJq1i0gsJcIK-jwGMr3AeUfQ7ANUo-qGCCGuhXcexy6AXxbPL1Cm7Dc4Hb7DFcu73gV9Tvt_sl54PsxBJoyUgSEJYZlkeVJrnTkTlMYp_wNocQmmllAejEpMSLiOlGCOzVIYq4NVxl4KSReQ43BcJCvI2yijDvbRDMex1ToPHGShRtrUxVbpx5pC9H6FKT2WOXQMuNFkhrS1O-PhP2Rfn9aKJyQjSqwjmkEx3DEk5cBa7scGL49SM-6kljnlDKA2RecGu1cxAyCbyp1lqDIctNC6dcLIosy1GKrvigynvIBW_Vtkl54jCXYqAIaoEQb_5h6F831Tjvy-qJ7tYnm4Qlk4RC2hRrF23u-7WypQu2U3PIJDeoK4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+Authentication+from+Photic+Stimulated+EEG+Records&rft.jtitle=Applied+artificial+intelligence&rft.au=Kasim%2C+%C3%96mer&rft.au=Tosun%2C+Mustafa&rft.date=2021-12-15&rft.pub=Taylor+%26+Francis&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=35&rft.issue=15&rft.spage=1407&rft.epage=1419&rft_id=info:doi/10.1080%2F08839514.2021.1981660&rft.externalDocID=1981660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon