Biometric Authentication from Photic Stimulated EEG Records
Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to...
Saved in:
Published in | Applied artificial intelligence Vol. 35; no. 15; pp. 1407 - 1419 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
15.12.2021
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1-49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems. |
---|---|
AbstractList | Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1–49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems. Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality and robustness of EEG signals against fraud attacks offer potential for highly secure biometric systems. However, more studies are needed to improve collectibility, stability, performance, and acceptability of brain biometrics. EEG signals of healthy subjects were generally used in previous studies. However, adequate studies have not been conducted on subjects who are not mentally healthy. Moreover, EEG signals were usually recorded from healthy subjects at resting, thinking, visual stimulation, and imagery states. In this study, unlike other studies, photic stimuli with EEG data were used for the first time in order to identify both subjects with attention deficit hyperactivity disorder (ADHD) and healthy subjects. In the proposed method, power densities of 1–49 Hz frequencies of EEG segments were obtained by applying periodogram power spectral density estimation method using Kaiser Window to raw EEG data. These values were used for training of 1D Convolutional Neural Network deep learning algorithms. Classification success of the proposed method was measured as 97.17%. These results proved that EEG data obtained from subjects by applying photic stimuli can be used in EEG-based identification systems. |
Author | Kasim, Ömer Tosun, Mustafa |
Author_xml | – sequence: 1 givenname: Ömer orcidid: 0000-0003-4021-5412 surname: Kasim fullname: Kasim, Ömer email: omer.kasim@dpu.edu.tr, omerksm@gmail.com organization: Kutahya Dumlupinar University – sequence: 2 givenname: Mustafa surname: Tosun fullname: Tosun, Mustafa organization: Kutahya Dumlupinar University |
BookMark | eNqFkEtLAzEUhYMoWB8_QRhwPTV3Jk_c-KDWgqCo-5DmYVNmJppJkf57p7ZuXOjqwrnnHA7fEdrvYucQOgM8BizwBRailhTIuMIVjEEKYAzvodHw5CWjhO6j0cZTbkyH6Kjvlxhj4BxG6PImxNblFExxvcoL1-VgdA6xK3yKbfG0iINQvOTQrhqdnS0mk2nx7ExMtj9BB143vTvd3WP0ejd5vb0vHx6ns9vrh9IQCrkEKizV2DPh5gZLX3NLK7BAwAtDPaZSWgmWY2bEnDPGBdTMWDbXlEEN9TGabWtt1Ev1nkKr01pFHdS3ENOb0mlY2TgFvhKSMsIrzog1RErNuGRzCVRy7ezQdb7tek_xY-X6rJZxlbphvaoYIZyLmuDBdbl1mRT7PjmvTMjfVHLSoVGA1Qa8-gGvNuDVDvyQpr_SP5v_y11tc6HzMbX6M6bGqqzXTUw-6c6EXtV_V3wBLoGY7g |
CitedBy_id | crossref_primary_10_3389_fphys_2024_1325784 crossref_primary_10_3390_s22197154 crossref_primary_10_46387_bjesr_1336892 crossref_primary_10_1016_j_dsp_2025_105042 crossref_primary_10_1016_j_eswa_2024_124218 crossref_primary_10_1007_s11042_023_17114_x |
Cites_doi | 10.1109/KST.2019.8687819 10.1016/j.measurement.2015.07.008 10.1016/j.cose.2020.101788 10.1145/2617756 10.1109/INDIN41052.2019.8972231 10.1109/INVENTIVE.2016.7824888 10.1109/IEMCON.2016.7746325 10.1109/CW49994.2020.00050 10.1109/TCSVT.2003.818349 10.1007/s10044-016-0569-4 10.1109/EMBC.2015.7318985 10.1109/ACCESS.2019.2950366 10.1088/1741-2560/12/5/056019 10.1145/3230632 10.1016/j.cogsys.2018.11.002 10.1109/ICASSDA.2018.8477604 10.1016/j.eswa.2016.06.006 10.1016/j.neucom.2018.09.071 10.1016/j.eswa.2019.01.080 10.1109/FBIE.2009.5405787 10.1016/j.cogsys.2019.01.007 10.1007/978-3-642-15314-3_14 10.3934/medsci.2017.3.274 10.1016/j.cose.2016.06.001 10.1016/j.inffus.2021.01.004 10.1038/s41598-018-23696-6 10.1111/ejn.14642 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis 2021 2021 Taylor & Francis |
Copyright_xml | – notice: 2021 Taylor & Francis 2021 – notice: 2021 Taylor & Francis |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1080/08839514.2021.1981660 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1087-6545 |
EndPage | 1419 |
ExternalDocumentID | oai_doaj_org_article_1f28956472764dc499a6796b91597aed 10_1080_08839514_2021_1981660 1981660 |
Genre | Research Article |
GroupedDBID | .4S .7F .DC .QJ 0YH 23M 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACGOD ACNCT ACTIO ACUHS ADCVX ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGMYJ AHQJS AIJEM AJWEG AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EBR EBS EBU ECS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB RIG S-T SNACF TFL TFT TFW TH9 TNC TTHFI TUS TWF UT5 UU3 ZL0 ~S~ AAFWJ AAYXX ADMLS AIYEW CITATION TDBHL 7SC 8FD JQ2 L7M L~C L~D GROUPED_DOAJ |
ID | FETCH-LOGICAL-c451t-158d5a0f68ebc09f37d521d141f8c5f0599d91d706c8b76678136cd6ba561313 |
IEDL.DBID | DOA |
ISSN | 0883-9514 |
IngestDate | Wed Aug 27 01:30:20 EDT 2025 Sun Jun 29 15:58:02 EDT 2025 Tue Jul 01 02:04:00 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Wed Dec 25 09:05:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-158d5a0f68ebc09f37d521d141f8c5f0599d91d706c8b76678136cd6ba561313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4021-5412 |
OpenAccessLink | https://doaj.org/article/1f28956472764dc499a6796b91597aed |
PQID | 2644778340 |
PQPubID | 53050 |
PageCount | 13 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_08839514_2021_1981660 doaj_primary_oai_doaj_org_article_1f28956472764dc499a6796b91597aed crossref_citationtrail_10_1080_08839514_2021_1981660 proquest_journals_2644778340 crossref_primary_10_1080_08839514_2021_1981660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Applied artificial intelligence |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0011 cit0012 cit0031 cit0010 Yang G. C. (cit0028) 2020; 16 cit0032 cit0030 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0022 cit0001 cit0023 cit0020 cit0021 Fallani F. D. V. (cit0009) 2011 cit0008 cit0006 cit0007 cit0029 cit0004 cit0026 cit0005 Kaiser J. F. (cit0014) 1974 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0022 doi: 10.1109/KST.2019.8687819 – start-page: 20 volume-title: Proc. IEEE International Symposium on Circuits & Systems year: 1974 ident: cit0014 – ident: cit0007 doi: 10.1016/j.measurement.2015.07.008 – ident: cit0002 doi: 10.1016/j.cose.2020.101788 – ident: cit0018 doi: 10.1145/2617756 – ident: cit0020 doi: 10.1109/INDIN41052.2019.8972231 – ident: cit0024 doi: 10.1109/INVENTIVE.2016.7824888 – ident: cit0013 doi: 10.1109/IEMCON.2016.7746325 – volume: 16 start-page: 1034 issue: 5 year: 2020 ident: cit0028 publication-title: Journal of Information Processing Systems – ident: cit0027 doi: 10.1109/CW49994.2020.00050 – ident: cit0012 doi: 10.1109/TCSVT.2003.818349 – ident: cit0029 doi: 10.1007/s10044-016-0569-4 – ident: cit0017 doi: 10.1109/EMBC.2015.7318985 – ident: cit0031 doi: 10.1109/ACCESS.2019.2950366 – ident: cit0008 doi: 10.1088/1741-2560/12/5/056019 – ident: cit0010 doi: 10.1145/3230632 – ident: cit0006 doi: 10.1016/j.cogsys.2018.11.002 – start-page: 2331 volume-title: International Conference of the IEEE Engineering in Medicine and Biology Society year: 2011 ident: cit0009 – ident: cit0021 doi: 10.1109/ICASSDA.2018.8477604 – ident: cit0023 doi: 10.1016/j.eswa.2016.06.006 – ident: cit0015 doi: 10.1016/j.neucom.2018.09.071 – ident: cit0003 – ident: cit0025 doi: 10.1016/j.eswa.2019.01.080 – ident: cit0011 doi: 10.1109/FBIE.2009.5405787 – ident: cit0005 – ident: cit0016 doi: 10.1016/j.cogsys.2019.01.007 – ident: cit0032 doi: 10.1007/978-3-642-15314-3_14 – ident: cit0030 doi: 10.3934/medsci.2017.3.274 – ident: cit0001 doi: 10.1016/j.cose.2016.06.001 – ident: cit0004 doi: 10.1016/j.inffus.2021.01.004 – ident: cit0026 doi: 10.1038/s41598-018-23696-6 – ident: cit0019 doi: 10.1111/ejn.14642 |
SSID | ssj0001771 |
Score | 2.3124003 |
Snippet | Studies on brain biometrics have shown that electroencephalogram (EEG) signals encourage more secure authentication. The uniqueness, persistence, universality... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1407 |
SubjectTerms | 1D-CNN algorithm Algorithms Artificial neural networks Authentication Biometrics Brain EEG-based authentication Electroencephalography Fraud Machine learning periodogram estimation method using Kaiser Window photic stimulation Power spectral density Stimuli subjects with ADHD Visual signals |
Title | Biometric Authentication from Photic Stimulated EEG Records |
URI | https://www.tandfonline.com/doi/abs/10.1080/08839514.2021.1981660 https://www.proquest.com/docview/2644778340 https://doaj.org/article/1f28956472764dc499a6796b91597aed |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gJy68EYMx5cC1o1lerTgxtDEhMSExpN2iNmkEEmyIlf-P3aZjgsMuXK1WjRw79ufGnwm5VCq1QmU6EiyTESa8UcbzIko9_nPre2urXpiHiRo_i_uZnK2N-sI7YTU9cK24K-YBEkgkOddKOAsJeoaljzyFOKyzwuHpCzGvAVPhDGa6glrgQjyCHEI0vTvIqg0yFAE27LMeYG5W81P-RKWKvP8Xdemfo7qKP6N9shsSR3pTL_iAbBXzQ7LXDGWgwUePyPUAG-qRd59i-QsvA9VVOYqdJPTxZQEC-lS-vuPgrsLR4fCO1iB0eUymo-H0dhyFCQmRFZKVEZOJk1nsVVLkNgb9agfh2DHBfGKlR-4VlzKnY2WTXCsITIwr61SeIW5g_IS05ot5cUqoizMF2YKVinOhbZGAryvnfZpzDwFLtIloFGRsYA_HIRZvhjUko0GvBvVqgl7bpLd67aOmz9j0wgC1v3oY2a8rAdiECTZhNtlEm6Tre2fKqvjh60klhm9YQKfZaBPceWkwa9Q4kiQ--4_1nZMd_CTeimGyQ1rl51dxAblNmXfJNo8n3cqYvwHOe-uE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWChPEWhgAfWhLh-JWKiqFCgVEgUic1K7BgQ0KI2Xfj1-PKoShFiYHVyVvy4Z-6-Q-hYiEgzEUuPkZh7YPB6MU1SL7Lwz61ltc5rYW77ovvArh_541wtDKRVgg9tC6CIXFYDc0MwukqJO3GcQZ1lACGRFvGd20yEcG77Mo-EhC4GNOjPpDGRudMFJB7QVFU8v03zTT_lMP4LIKY_hHauiS7qSFdrKBJQXv1plvj6cwHe8X-LXEdrpaGKz4qbtYGW0uEmqldNIHApE7bQaRsK-AHnH0O4DZKPiigghsoVfPc8cgP4Pnt5h0ZhqcGdziUunN7JNhpcdAbnXa_syOBpxknmER4aHgdWhGmiA3ee0jj1bwgjNtTcAtaLiYiRgdBhIoVThIQKbUQSg59C6A6qDUfDdBdhE8TCWSeaC0qZ1GnoZIsw1kYJtU5BsgZi1TEoXaKVQ9OMN0UqUNNyfxTsjyr3p4H8GdlHAdfxF0Ebznj2MqBt5wOj8ZMqmVcR69xSDkD7UjCjnZMYQ_gtiZwtKOPUNFA0f0NUlgdbbNEZRdE_PqBZXSdVio-JAitVQguUYO8fUx-hle7gtqd6V_2bfbQKjyARh_AmqmXjaXrgzKksOcz55Qt7rAw9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAXyirK6gPXhJh4ScSJpWWvKlEkblZsx4CAtqLhwtfjSZyKRagHrk7GipdZM_MGoT3OU015JgJKMhaAwRtkscqD1MI_twOrdVkLc9Pl53f08p7V2YRjn1YJPrStgCJKWQ3MPTK2zojbd4wRO8MAIiIHJHReM-Hcee2zHMDDoYoj6k6EMRGlzwUkAdDURTx_TfNNPZUo_j8wTH_J7FIRdZpI1Uuo8k-ew_dChfrjB7rjv9a4iBa8mYqPqnu1hGbywTJq1i0gsJcIK-jwGMr3AeUfQ7ANUo-qGCCGuhXcexy6AXxbPL1Cm7Dc4Hb7DFcu73gV9Tvt_sl54PsxBJoyUgSEJYZlkeVJrnTkTlMYp_wNocQmmllAejEpMSLiOlGCOzVIYq4NVxl4KSReQ43BcJCvI2yijDvbRDMex1ToPHGShRtrUxVbpx5pC9H6FKT2WOXQMuNFkhrS1O-PhP2Rfn9aKJyQjSqwjmkEx3DEk5cBa7scGL49SM-6kljnlDKA2RecGu1cxAyCbyp1lqDIctNC6dcLIosy1GKrvigynvIBW_Vtkl54jCXYqAIaoEQb_5h6F831Tjvy-qJ7tYnm4Qlk4RC2hRrF23u-7WypQu2U3PIJDeoK4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+Authentication+from+Photic+Stimulated+EEG+Records&rft.jtitle=Applied+artificial+intelligence&rft.au=Kasim%2C+%C3%96mer&rft.au=Tosun%2C+Mustafa&rft.date=2021-12-15&rft.pub=Taylor+%26+Francis&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=35&rft.issue=15&rft.spage=1407&rft.epage=1419&rft_id=info:doi/10.1080%2F08839514.2021.1981660&rft.externalDocID=1981660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon |