Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors
•A facile and scalable chemical synthesis strategy is proposed.•The NiCo2O4 materials display a high surface area and porosity.•The NiCo2O4 electrode shows a high specific capacitance and rate capability.•The AC-NiCo2O4 capacitor exhibits a high Ragone behavior and high cycling stability. Highly por...
Saved in:
Published in | Electrochimica acta Vol. 107; pp. 494 - 502 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A facile and scalable chemical synthesis strategy is proposed.•The NiCo2O4 materials display a high surface area and porosity.•The NiCo2O4 electrode shows a high specific capacitance and rate capability.•The AC-NiCo2O4 capacitor exhibits a high Ragone behavior and high cycling stability.
Highly porous nickel cobaltite (NiCo2O4) materials have been synthesized via a facile and scalable chemical synthesis route. The obtained NiCo2O4 material displays a typical secondary submicron/micron-sized (0.1–2μm) agglomerate morphology, exhibiting large surface area (190.1m2g−1) and high porosity (1.136cm3g−1). The fabricated NiCo2O4 electrode shows high specific capacitance (351Fg−1 at 1Ag−1) and high-rate capability (82.1% capacitance retention at 8Ag−1), which is superior to many reported NiCo2O4 materials. Further, the assembled AC-NiCo2O4 aqueous hybrid capacitor exhibits high power and energy densities (2805Wkg−1, 6.8Whkg−1 at 8Ag−1) and high cycling stability (15% loss after 5000 cycles at 1.5Ag−1). The high-performance of the NiCo2O4 materials is attributed to their large surface area and highly porous structure which contribute to rich surface electroactive sites and easy ions transport pathways for facile electrochemical reactions. |
---|---|
AbstractList | Highly porous nickel cobaltite (NiCo2O4) materials have been synthesized via a facile and scalable chemical synthesis route. The obtained NiCo2O4 material displays a typical secondary submicron/micron-sized (0.1a2 mu m) agglomerate morphology, exhibiting large surface area (190.1 m2 ga1) and high porosity (1.136 cm3 ga1). The fabricated NiCo2O4 electrode shows high specific capacitance (351 F ga1 at 1 A ga1) and high-rate capability (82.1% capacitance retention at 8 A ga1), which is superior to many reported NiCo2O4 materials. Further, the assembled AC-NiCo2O4 aqueous hybrid capacitor exhibits high power and energy densities (2805 W kga1, 6.8 Wh kga1 at 8 A ga1) and high cycling stability (15% loss after 5000 cycles at 1.5 A ga1). The high-performance of the NiCo2O4 materials is attributed to their large surface area and highly porous structure which contribute to rich surface electroactive sites and easy ions transport pathways for facile electrochemical reactions. •A facile and scalable chemical synthesis strategy is proposed.•The NiCo2O4 materials display a high surface area and porosity.•The NiCo2O4 electrode shows a high specific capacitance and rate capability.•The AC-NiCo2O4 capacitor exhibits a high Ragone behavior and high cycling stability. Highly porous nickel cobaltite (NiCo2O4) materials have been synthesized via a facile and scalable chemical synthesis route. The obtained NiCo2O4 material displays a typical secondary submicron/micron-sized (0.1–2μm) agglomerate morphology, exhibiting large surface area (190.1m2g−1) and high porosity (1.136cm3g−1). The fabricated NiCo2O4 electrode shows high specific capacitance (351Fg−1 at 1Ag−1) and high-rate capability (82.1% capacitance retention at 8Ag−1), which is superior to many reported NiCo2O4 materials. Further, the assembled AC-NiCo2O4 aqueous hybrid capacitor exhibits high power and energy densities (2805Wkg−1, 6.8Whkg−1 at 8Ag−1) and high cycling stability (15% loss after 5000 cycles at 1.5Ag−1). The high-performance of the NiCo2O4 materials is attributed to their large surface area and highly porous structure which contribute to rich surface electroactive sites and easy ions transport pathways for facile electrochemical reactions. |
Author | Ding, Rui Wang, Hongyu Qi, Li Jia, Mingjun |
Author_xml | – sequence: 1 givenname: Rui surname: Ding fullname: Ding, Rui email: dingrui@ciac.jl.cn organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China – sequence: 2 givenname: Li surname: Qi fullname: Qi, Li organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China – sequence: 3 givenname: Mingjun surname: Jia fullname: Jia, Mingjun organization: State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023, PR China – sequence: 4 givenname: Hongyu surname: Wang fullname: Wang, Hongyu email: hongyuwang@ciac.jl.cn organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China |
BookMark | eNqNUcFu3CAQRVUiZZPmG8KxFxywwcaHHlarpq0UJZfcEQvjmJVtXPBW2v5Yfy-z2SaHXloJaQbx3mPmvUtyNsUJCLkRvBBc1Le7AgZwi8VTlFxUBVeFEPIDWQndVKzSqj0jK44vTNa6viCXOe84503d8BX5fWddGIDaydPBpmdg2Vm8ux7GgB3Nh2npIYdMY0f78NwPBzrHFPeZZnBx8jYdaN5vEZ3idHsqLIdf4OlD2MTyUdLRLpCCHTLtYnoVYTMk7Ec7Ofz7xx6Oev1hm4Kn6w17I75uluL7MM7OOO4SU_5IzjsUhOs_9Yo83X152nxj949fv2_W98xJJRYmpHdeA_im1NAI3na-klvX6g6acitbD6B8K1UpgSutZdUKsNZ2qpWuVry6Ip9OsnOKOGVezBiyg2Gw03FkI5SopK5L0SC0OUHRgJwTdGZOYUR3jODmmJTZmfekzDEpw5XBpJD5-S8m7miXEKcl2TD8B3994gMa8TNAMtkFQGd9SIg3PoZ_arwAZ9m8Kw |
CitedBy_id | crossref_primary_10_1039_C9NR09991C crossref_primary_10_1016_j_est_2020_101660 crossref_primary_10_1016_j_jcis_2019_06_070 crossref_primary_10_1016_j_est_2024_112798 crossref_primary_10_1016_j_ceramint_2018_08_257 crossref_primary_10_1016_j_electacta_2014_07_131 crossref_primary_10_1039_D1NJ00268F crossref_primary_10_1016_j_electacta_2022_140139 crossref_primary_10_1039_c4ra01793e crossref_primary_10_1039_C8TA01426D crossref_primary_10_1016_j_jece_2023_109445 crossref_primary_10_1007_s11581_022_04721_1 crossref_primary_10_1002_chem_201703938 crossref_primary_10_1016_j_est_2021_103206 crossref_primary_10_1039_C9TA06438A crossref_primary_10_1021_acs_energyfuels_0c03907 crossref_primary_10_1039_C6CP02228F crossref_primary_10_1016_j_matchemphys_2018_02_039 crossref_primary_10_1016_j_nanoen_2018_12_066 crossref_primary_10_1039_c4nj00280f crossref_primary_10_1016_j_cej_2020_124154 crossref_primary_10_1039_C8RA09081E crossref_primary_10_1039_C7TA07449B crossref_primary_10_1149_2_0401815jes crossref_primary_10_1016_j_est_2025_115441 crossref_primary_10_1016_j_ceramint_2021_08_169 crossref_primary_10_1002_adsu_202400753 crossref_primary_10_1016_j_jallcom_2020_156317 crossref_primary_10_1039_D1CC02488D crossref_primary_10_1002_jccs_202400313 crossref_primary_10_1016_j_jmat_2020_12_007 crossref_primary_10_1039_C9NJ02221J crossref_primary_10_1016_j_electacta_2014_07_123 crossref_primary_10_1016_j_electacta_2018_01_194 crossref_primary_10_1016_j_cej_2019_05_080 crossref_primary_10_1016_j_apsusc_2022_152574 crossref_primary_10_1016_j_mtchem_2022_101350 crossref_primary_10_1021_acsami_0c14478 crossref_primary_10_1016_j_inoche_2025_114210 crossref_primary_10_1021_acsomega_0c00669 crossref_primary_10_1021_acsami_5b03036 crossref_primary_10_1016_j_nanoen_2014_02_002 crossref_primary_10_1016_j_jallcom_2018_09_347 crossref_primary_10_1016_j_electacta_2018_12_176 crossref_primary_10_1016_j_jscs_2018_02_001 crossref_primary_10_1016_j_electacta_2025_145764 crossref_primary_10_3390_nano13091523 crossref_primary_10_1088_2053_1591_ab58f4 crossref_primary_10_1016_j_ssi_2022_116046 crossref_primary_10_1016_j_carbon_2019_06_028 crossref_primary_10_1016_j_diamond_2021_108240 crossref_primary_10_1016_j_jelechem_2021_115612 crossref_primary_10_1016_j_jtice_2020_05_017 crossref_primary_10_3390_ma13214906 crossref_primary_10_1016_j_nanoen_2014_11_013 crossref_primary_10_1039_C4TA05507A crossref_primary_10_1016_j_electacta_2015_06_011 crossref_primary_10_1016_j_cej_2017_03_148 crossref_primary_10_1016_j_jpcs_2018_04_044 crossref_primary_10_1007_s10853_021_05874_6 crossref_primary_10_1007_s42452_020_2668_5 crossref_primary_10_1002_celc_201600661 crossref_primary_10_1149_2_1471702jes crossref_primary_10_1016_j_microc_2018_08_060 crossref_primary_10_1016_j_colsurfa_2024_133247 crossref_primary_10_1039_C9NR03790J crossref_primary_10_1002_smll_202302333 crossref_primary_10_1002_slct_201904167 crossref_primary_10_1039_D1CC00910A crossref_primary_10_1039_C6NR05385H crossref_primary_10_1002_aenm_201601985 crossref_primary_10_1016_j_diamond_2024_111197 crossref_primary_10_1016_j_jpcs_2018_03_004 crossref_primary_10_1002_adsu_202400705 crossref_primary_10_4028_p_N2dUL3 crossref_primary_10_1016_j_ceramint_2019_08_179 crossref_primary_10_1016_j_ultsonch_2019_104736 crossref_primary_10_1039_C9CC04135D crossref_primary_10_1039_C3NR05359H crossref_primary_10_1016_j_electacta_2015_12_077 crossref_primary_10_1039_C7TA00463J crossref_primary_10_1007_s42823_020_00203_4 crossref_primary_10_1016_j_electacta_2020_137156 crossref_primary_10_1016_j_cej_2022_140458 crossref_primary_10_1016_j_apsusc_2017_06_003 crossref_primary_10_2139_ssrn_4143087 crossref_primary_10_1088_1402_4896_ad0fcd crossref_primary_10_1002_aesr_202500011 crossref_primary_10_1016_j_ijhydene_2020_08_177 crossref_primary_10_1016_j_cej_2016_08_086 crossref_primary_10_1016_j_est_2022_105793 crossref_primary_10_1016_j_jallcom_2017_05_039 crossref_primary_10_1016_j_est_2019_01_010 crossref_primary_10_1016_j_jallcom_2019_07_304 crossref_primary_10_2139_ssrn_4002361 crossref_primary_10_1039_C6TA02950G crossref_primary_10_1021_acs_iecr_1c02636 crossref_primary_10_1016_j_jallcom_2024_177957 crossref_primary_10_1016_j_electacta_2013_07_066 crossref_primary_10_1371_journal_pone_0154566 crossref_primary_10_1016_j_jallcom_2016_03_028 crossref_primary_10_1002_asia_201500972 crossref_primary_10_1016_j_colsurfa_2020_125099 crossref_primary_10_1039_C7TA00234C crossref_primary_10_1016_j_cej_2017_05_167 crossref_primary_10_1016_j_apmt_2020_100713 crossref_primary_10_1016_j_jcis_2022_07_020 crossref_primary_10_1016_j_electacta_2016_03_175 crossref_primary_10_1016_j_jcis_2020_04_017 crossref_primary_10_1016_j_jpowsour_2019_04_060 crossref_primary_10_1002_adfm_202107674 crossref_primary_10_1016_j_jpowsour_2016_08_080 crossref_primary_10_1016_j_jpowsour_2018_11_018 crossref_primary_10_1016_j_electacta_2018_01_005 crossref_primary_10_1039_C5DT03394B crossref_primary_10_1016_j_jallcom_2016_11_086 crossref_primary_10_1002_ente_202200931 crossref_primary_10_1016_j_electacta_2020_135636 crossref_primary_10_1039_C5CC08857G crossref_primary_10_1002_chem_201905105 crossref_primary_10_1016_j_ijhydene_2020_08_156 crossref_primary_10_1016_j_jiec_2018_02_001 crossref_primary_10_1021_acsami_5b11367 crossref_primary_10_1039_C8TA00008E crossref_primary_10_1039_C7DT01289F crossref_primary_10_1007_s42247_021_00239_w crossref_primary_10_1007_s11581_015_1428_9 crossref_primary_10_1016_j_apsusc_2017_01_012 crossref_primary_10_1016_j_electacta_2015_12_043 crossref_primary_10_1002_er_7481 crossref_primary_10_1016_j_electacta_2016_07_023 crossref_primary_10_1016_j_matchemphys_2016_07_047 crossref_primary_10_1002_ente_202401761 crossref_primary_10_1007_s10800_022_01792_w crossref_primary_10_1007_s10853_017_1776_0 crossref_primary_10_1039_C4TA02390K crossref_primary_10_1088_2632_959X_abd686 crossref_primary_10_1039_D0NJ02414G crossref_primary_10_1115_1_4050797 crossref_primary_10_1016_j_ensm_2023_02_020 crossref_primary_10_1007_s10854_018_8580_8 crossref_primary_10_1039_C4RA09048A crossref_primary_10_1002_admt_202000793 crossref_primary_10_1016_j_electacta_2018_03_075 crossref_primary_10_1149_1945_7111_ab679d crossref_primary_10_1016_j_cej_2017_06_042 crossref_primary_10_1016_j_cej_2024_150055 crossref_primary_10_1088_1361_6528_ab9c54 crossref_primary_10_1016_j_jelechem_2019_05_031 crossref_primary_10_1016_j_jcis_2022_07_173 crossref_primary_10_1021_acsami_7b08776 crossref_primary_10_1016_j_est_2021_102751 crossref_primary_10_1002_cplu_201600175 crossref_primary_10_1016_j_electacta_2016_06_059 crossref_primary_10_1016_j_jpcs_2023_111467 crossref_primary_10_1016_j_jpcs_2023_111347 crossref_primary_10_1016_j_matchemphys_2015_09_020 crossref_primary_10_1007_s11356_016_7061_y crossref_primary_10_1016_j_ijhydene_2019_04_165 crossref_primary_10_1016_j_electacta_2020_135627 crossref_primary_10_1016_j_est_2021_103150 crossref_primary_10_1016_j_carbon_2017_09_080 crossref_primary_10_1016_j_jpowsour_2015_11_003 crossref_primary_10_1007_s10800_016_1038_x crossref_primary_10_1039_C9TA09638H crossref_primary_10_1016_j_apsusc_2019_03_345 crossref_primary_10_1021_acsaem_4c01216 crossref_primary_10_1002_smll_201602164 crossref_primary_10_1039_C7DT00267J crossref_primary_10_1016_j_carbon_2019_01_078 crossref_primary_10_1016_j_renene_2024_121733 crossref_primary_10_1016_j_cej_2024_153445 crossref_primary_10_1016_j_ceramint_2019_01_149 crossref_primary_10_1016_j_inoche_2021_108996 crossref_primary_10_1016_j_ijhydene_2021_02_077 crossref_primary_10_1016_j_jcis_2024_02_001 crossref_primary_10_1016_j_electacta_2016_11_089 crossref_primary_10_1002_adfm_201701229 crossref_primary_10_1016_j_jpowsour_2015_04_053 crossref_primary_10_1016_j_electacta_2018_02_146 crossref_primary_10_1016_j_jelechem_2023_117206 crossref_primary_10_1016_j_est_2022_105049 crossref_primary_10_1016_j_electacta_2013_12_056 crossref_primary_10_1051_rees_2017002 crossref_primary_10_1016_j_electacta_2015_12_018 crossref_primary_10_1007_s10854_019_02162_7 crossref_primary_10_1039_C7TA05209J crossref_primary_10_1016_j_electacta_2018_06_193 crossref_primary_10_1016_j_jcis_2019_08_094 crossref_primary_10_1021_acsaem_8b01627 crossref_primary_10_1021_acsaem_9b02242 crossref_primary_10_1007_s11664_023_10283_3 crossref_primary_10_1016_j_electacta_2019_06_112 crossref_primary_10_1016_j_electacta_2019_03_227 crossref_primary_10_1016_j_ijhydene_2017_03_117 crossref_primary_10_1016_j_est_2020_102020 crossref_primary_10_1038_am_2015_11 crossref_primary_10_1016_j_matchemphys_2022_126038 crossref_primary_10_1002_pssa_201800595 crossref_primary_10_1007_s10854_024_13804_w crossref_primary_10_1016_j_jcis_2020_11_129 crossref_primary_10_1002_er_6593 crossref_primary_10_1016_j_matchemphys_2022_126718 crossref_primary_10_1016_j_ceramint_2025_01_581 crossref_primary_10_1016_j_electacta_2021_138178 crossref_primary_10_1039_D0RA03771K crossref_primary_10_1016_j_inoche_2024_112402 crossref_primary_10_5796_electrochemistry_20_63004 crossref_primary_10_1016_j_jcis_2017_09_113 crossref_primary_10_1016_j_jiec_2018_03_009 crossref_primary_10_1016_j_ceramint_2018_07_279 crossref_primary_10_1039_C8TA04038A crossref_primary_10_1016_j_colsurfa_2019_124329 crossref_primary_10_1039_C3CY00590A crossref_primary_10_1039_D3NJ00527E crossref_primary_10_3390_nano14010079 crossref_primary_10_1016_j_electacta_2018_08_013 crossref_primary_10_1016_j_electacta_2024_145582 crossref_primary_10_1016_j_cej_2017_01_025 crossref_primary_10_1002_cssc_201700001 crossref_primary_10_1016_j_electacta_2018_07_211 crossref_primary_10_2139_ssrn_4003181 crossref_primary_10_1016_j_jallcom_2018_04_109 crossref_primary_10_1088_2053_1591_ab1707 crossref_primary_10_1016_j_cplett_2020_137809 crossref_primary_10_1186_s11671_017_2180_z crossref_primary_10_1007_s40820_020_0382_x crossref_primary_10_1016_j_apsusc_2020_147521 crossref_primary_10_1088_1361_6528_ab97d6 crossref_primary_10_1021_acsaem_1c02730 crossref_primary_10_1016_j_electacta_2014_06_119 crossref_primary_10_1088_1402_4896_aceac3 crossref_primary_10_1002_er_8406 crossref_primary_10_1016_j_est_2023_109229 crossref_primary_10_1039_C7NR04464J crossref_primary_10_1016_j_ceramint_2020_01_012 crossref_primary_10_1149_2_0371910jes crossref_primary_10_1007_s10853_024_09650_0 crossref_primary_10_1016_j_electacta_2013_10_113 crossref_primary_10_1039_C8NJ00935J crossref_primary_10_1016_j_jallcom_2018_11_249 crossref_primary_10_1021_acssuschemeng_8b01530 crossref_primary_10_1016_j_ensm_2020_08_031 crossref_primary_10_1016_j_jssc_2019_121088 crossref_primary_10_1016_j_fuel_2022_125538 crossref_primary_10_1039_C7TA06437C crossref_primary_10_1016_j_ijhydene_2019_11_153 crossref_primary_10_1016_j_matlet_2016_10_021 crossref_primary_10_1007_s11581_016_1868_x crossref_primary_10_1039_D1NA00329A crossref_primary_10_1166_sam_2023_4556 crossref_primary_10_1016_j_jelechem_2020_114377 crossref_primary_10_1021_acs_iecr_1c05046 crossref_primary_10_1016_j_jallcom_2020_155270 crossref_primary_10_1016_j_electacta_2016_01_042 crossref_primary_10_1016_j_diamond_2023_110281 crossref_primary_10_1002_smll_202403397 crossref_primary_10_1039_D0DT03313H crossref_primary_10_1016_j_jpowsour_2015_12_106 crossref_primary_10_1016_j_jcis_2020_10_086 crossref_primary_10_1016_j_ceramint_2021_02_227 crossref_primary_10_1002_chem_201700568 crossref_primary_10_1016_j_ensm_2022_08_049 crossref_primary_10_1016_j_cej_2017_03_060 crossref_primary_10_1371_journal_pone_0129780 crossref_primary_10_1039_C6DT00436A crossref_primary_10_1021_acs_iecr_8b00467 crossref_primary_10_1016_j_jallcom_2019_153587 crossref_primary_10_2139_ssrn_4148244 crossref_primary_10_1016_j_ceramint_2020_12_247 crossref_primary_10_1016_j_electacta_2015_08_040 crossref_primary_10_1016_j_electacta_2018_05_072 crossref_primary_10_1039_D1TA01156A crossref_primary_10_1002_tcr_202400007 crossref_primary_10_1016_j_est_2022_106580 crossref_primary_10_1016_j_jpowsour_2013_12_092 crossref_primary_10_1016_j_electacta_2024_144588 crossref_primary_10_1016_j_cej_2021_134220 crossref_primary_10_1016_j_diamond_2022_108912 crossref_primary_10_1016_j_jpowsour_2013_09_053 crossref_primary_10_1021_acs_iecr_9b01412 crossref_primary_10_1016_j_diamond_2023_110048 crossref_primary_10_1016_j_est_2023_108820 crossref_primary_10_1016_j_jpowsour_2013_11_063 crossref_primary_10_1016_j_jelechem_2020_114812 |
Cites_doi | 10.1016/j.electacta.2011.12.090 10.1007/s11814-010-0521-z 10.1016/j.electacta.2011.06.101 10.1006/jssc.2000.8749 10.1016/j.jpowsour.2007.07.009 10.1002/adma.200902175 10.1149/2.057208jes 10.1016/j.electacta.2012.07.080 10.1016/S0169-4332(00)00378-0 10.1149/2.001203eel 10.1021/nl802558y 10.1016/0368-2048(94)02238-0 10.1021/cm9007365 10.1021/jp044252o 10.1088/0022-3727/22/8/026 10.1002/adma.200502471 10.1016/j.jpowsour.2006.02.092 10.1002/adfm.200700982 10.1007/s10008-012-1798-0 10.1016/j.jpowsour.2008.10.049 10.1021/la9609128 10.1038/nmat2297 10.1002/smll.201100534 10.1016/j.micromeso.2009.03.012 10.1149/1.1380254 10.1002/adfm.200701383 10.1007/s10800-012-0494-1 10.1002/adma.200903328 10.1039/c2jm15863a 10.1021/cr020730k 10.1039/c2jm32351f 10.1016/S0378-7753(01)00707-8 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2013.05.114 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 502 |
ExternalDocumentID | 10_1016_j_electacta_2013_05_114 S0013468613010372 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADIYS AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c451t-14dcd8eed728e7109fd34bc98fe72b49dee5d94524e05884391eaaaf594c6503 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 11 02:05:42 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 01:52:39 EDT 2025 Fri Feb 23 02:17:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid Nickel cobaltite Chemical deposition Electrochemical capacitors Porous |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-14dcd8eed728e7109fd34bc98fe72b49dee5d94524e05884391eaaaf594c6503 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1513486217 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1513486217 crossref_primary_10_1016_j_electacta_2013_05_114 crossref_citationtrail_10_1016_j_electacta_2013_05_114 elsevier_sciencedirect_doi_10_1016_j_electacta_2013_05_114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130901 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 20130901 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Li, Hou, Yuan, Yang, Zhang (bib0085) 2012; 81 Wei, Chen, Chien, Lu, Hu (bib0040) 2009; 21 Wu, Chen, Ji, Zhou (bib0060) 2011; 56 Roginskaya, Morozova, Lubnin, Ulitina, Lopukhova, Trasatti (bib0105) 1997; 13 Gamby, Taberna, Simon, Fauvarque, Chesneau (bib0130) 2001; 101 Jimenez, Fernandez, Espinos, Gonzalez-Elipe (bib0110) 1995; 71 Khomenko, Raymundo-Pinňero, Béguin (bib0165) 2006; 183 Marco, Gancedo, Gracia (bib0100) 2000; 153 Stoller, Park, Zhu, An, Ruoff (bib0135) 2008; 8 Sugimoto, Iwata, Yokoshima, Murakami, Takasu (bib0160) 2005; 109 Choi, Blomgren, Kumta (bib0125) 2006; 18 Simon, Gogotsi (bib0010) 2008; 7 Du, Pan (bib0150) 2006; 160 Wei, Chen, Chien, Lu, Hu (bib0025) 2010; 22 Liu, Li, Ma, Cheng (bib0005) 2010; 22 Kim, Kim, Joo, Ko, Yi (bib0090) 2009; 122 Wang, Gao, Jiang (bib0035) 2011; 7 Choudhury, Saied, Sullivan, Abbot (bib0095) 1989; 22 Ding, Qi, Wang (bib0080) 2012; 1 Wang, Zhang, Zhang, Yao, Ma (bib0075) 2012; 63 Liu, Li, Huang, Li, Li (bib0030) 2008; 18 Liu, Kong, Lu, Li, Luo, Kang, Li, Walsh (bib0045) 2012; 159 Ding, Qi, Wang (bib0050) 2012; 16 Zhong, Wang, Li, Wang, Ou, Tong (bib0120) 2012; 22 Cui, Lin, Li, Li, Yang, Tao (bib0020) 2008; 18 Wu, Huang, Lin (bib0145) 2009; 186 Huang, Wu, Hu, Li (bib0155) 2007; 172 Yuan, Li, Hou, Yang, Shen, Zhang (bib0070) 2012; 22 Kim, Pugmire, Battaglia, Langell (bib0115) 2000; 165 Kandalkar, Lee, Seo, Lee, Kim (bib0065) 2011; 28 Ding, Qi, Jia, Wang (bib0055) 2012; 42 Di Fabio, Giorgi, Mastragostino, Soavi (bib0140) 2001; 148 Winter, Brodd (bib0015) 2004; 104 Jimenez (10.1016/j.electacta.2013.05.114_bib0110) 1995; 71 Wei (10.1016/j.electacta.2013.05.114_bib0040) 2009; 21 Choudhury (10.1016/j.electacta.2013.05.114_bib0095) 1989; 22 Di Fabio (10.1016/j.electacta.2013.05.114_bib0140) 2001; 148 Liu (10.1016/j.electacta.2013.05.114_bib0005) 2010; 22 Ding (10.1016/j.electacta.2013.05.114_bib0055) 2012; 42 Yuan (10.1016/j.electacta.2013.05.114_bib0070) 2012; 22 Liu (10.1016/j.electacta.2013.05.114_bib0030) 2008; 18 Liu (10.1016/j.electacta.2013.05.114_bib0045) 2012; 159 Wu (10.1016/j.electacta.2013.05.114_bib0145) 2009; 186 Wei (10.1016/j.electacta.2013.05.114_bib0025) 2010; 22 Wu (10.1016/j.electacta.2013.05.114_bib0060) 2011; 56 Kim (10.1016/j.electacta.2013.05.114_bib0090) 2009; 122 Choi (10.1016/j.electacta.2013.05.114_bib0125) 2006; 18 Cui (10.1016/j.electacta.2013.05.114_bib0020) 2008; 18 Wu (10.1016/j.electacta.2013.05.114_bib0085) 2012; 81 Gamby (10.1016/j.electacta.2013.05.114_bib0130) 2001; 101 Zhong (10.1016/j.electacta.2013.05.114_bib0120) 2012; 22 Kim (10.1016/j.electacta.2013.05.114_bib0115) 2000; 165 Ding (10.1016/j.electacta.2013.05.114_bib0050) 2012; 16 Kandalkar (10.1016/j.electacta.2013.05.114_bib0065) 2011; 28 Huang (10.1016/j.electacta.2013.05.114_bib0155) 2007; 172 Winter (10.1016/j.electacta.2013.05.114_bib0015) 2004; 104 Khomenko (10.1016/j.electacta.2013.05.114_bib0165) 2006; 183 Wang (10.1016/j.electacta.2013.05.114_bib0075) 2012; 63 Sugimoto (10.1016/j.electacta.2013.05.114_bib0160) 2005; 109 Marco (10.1016/j.electacta.2013.05.114_bib0100) 2000; 153 Roginskaya (10.1016/j.electacta.2013.05.114_bib0105) 1997; 13 Wang (10.1016/j.electacta.2013.05.114_bib0035) 2011; 7 Simon (10.1016/j.electacta.2013.05.114_bib0010) 2008; 7 Stoller (10.1016/j.electacta.2013.05.114_bib0135) 2008; 8 Du (10.1016/j.electacta.2013.05.114_bib0150) 2006; 160 Ding (10.1016/j.electacta.2013.05.114_bib0080) 2012; 1 |
References_xml | – volume: 160 start-page: 1487 year: 2006 ident: bib0150 article-title: Supercapacitors using carbon nanotubes films by electrophoretic deposition publication-title: Journal of Power Sources – volume: 71 start-page: 61 year: 1995 ident: bib0110 article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide publication-title: Journal of Electron Spectroscopy and Related Phenomena – volume: 7 start-page: 2454 year: 2011 ident: bib0035 article-title: Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors publication-title: Small – volume: 22 start-page: E28 year: 2010 ident: bib0005 article-title: Advanced materials for energy storage publication-title: Advanced Materials – volume: 22 start-page: 5656 year: 2012 ident: bib0120 article-title: Co publication-title: Journal of Materials Chemistry – volume: 56 start-page: 7517 year: 2011 ident: bib0060 article-title: Sol–gel approach for controllable synthesis and electrochemical properties of NiCo publication-title: Electrochimica Acta – volume: 172 start-page: 460 year: 2007 ident: bib0155 article-title: Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors publication-title: Journal of Power Sources – volume: 18 start-page: 1448 year: 2008 ident: bib0030 article-title: Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as li-ion battery electrodes publication-title: Advanced Functional Materials – volume: 122 start-page: 283 year: 2009 ident: bib0090 article-title: Preparation of coral-like porous gold for metal ion detection publication-title: Microporous and Mesoporous Materials – volume: 42 start-page: 1033 year: 2012 ident: bib0055 article-title: Hierarchical porous NiCo publication-title: Journal of Applied Electrochemistry – volume: 22 start-page: 16084 year: 2012 ident: bib0070 article-title: Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors publication-title: Journal of Materials Chemistry – volume: 13 start-page: 4621 year: 1997 ident: bib0105 article-title: Characterization of bulk and surface composition of Co publication-title: Langmuir – volume: 186 start-page: 557 year: 2009 ident: bib0145 article-title: Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors publication-title: Journal of Power Sources – volume: 22 start-page: 1185 year: 1989 ident: bib0095 article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment publication-title: Journal of Physics D: Applied Physics – volume: 63 start-page: 220 year: 2012 ident: bib0075 article-title: Facile and low-cost fabrication of nanostructured NiCo publication-title: Electrochimica Acta – volume: 148 start-page: A845 year: 2001 ident: bib0140 article-title: Carbon-poly (3-methylthiophene) hybrid supercapacitors publication-title: Journal of the Electrochemical Society – volume: 183 start-page: 153 year: 2006 ident: bib0165 article-title: Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium publication-title: Journal of Power Sources – volume: 7 start-page: 845 year: 2008 ident: bib0010 article-title: Materials for electrochemical capacitors publication-title: Nature Materials – volume: 81 start-page: 172 year: 2012 ident: bib0085 article-title: Uniform urchin-like nickel cobaltite microspherical superstructures constructed by one-dimension nanowires and their application for electrochemical capacitors publication-title: Electrochimica Acta – volume: 109 start-page: 7330 year: 2005 ident: bib0160 article-title: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance publication-title: Journal of Physical Chemistry B – volume: 21 start-page: 3228 year: 2009 ident: bib0040 article-title: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route publication-title: Chemisty of Materials – volume: 28 start-page: 1464 year: 2011 ident: bib0065 article-title: Preparation and characterization of the electrodeposited Ni-Co oxide thin films for electrochemical capacitors publication-title: Korean Journal of Chemical Engineering – volume: 8 start-page: 3498 year: 2008 ident: bib0135 article-title: Graphene-based ultracapacitors publication-title: Nano Letters – volume: 104 start-page: 4245 year: 2004 ident: bib0015 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chemical Reviews – volume: 1 start-page: A43 year: 2012 ident: bib0080 article-title: Scalable electrodeposition of cost-effective microsized Nico publication-title: ECS Electrochemistry Letters – volume: 16 start-page: 3621 year: 2012 ident: bib0050 article-title: A facile and cost-effective synthesis of mesoporous NiCo publication-title: Journal of Solid State Electrochemistry – volume: 165 start-page: 70 year: 2000 ident: bib0115 article-title: Analysis of the NiCo publication-title: Applied Surface Science – volume: 18 start-page: 1440 year: 2008 ident: bib0020 article-title: Core–ring structured NiCo publication-title: Advanced Functional Materials – volume: 159 start-page: A1262 year: 2012 ident: bib0045 article-title: A sol-gel process for the synthesis of NiCo publication-title: Journal of the Electrochemical Society – volume: 18 start-page: 1178 year: 2006 ident: bib0125 article-title: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors publication-title: Advanced Materials – volume: 22 start-page: 347 year: 2010 ident: bib0025 article-title: A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process publication-title: Advanced Materials – volume: 153 start-page: 74 year: 2000 ident: bib0100 article-title: Characterization of the nickel cobaltite, NiCo publication-title: Journal of Solid State Chemistry – volume: 101 start-page: 109 year: 2001 ident: bib0130 article-title: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors publication-title: Journal of Power Sources – volume: 63 start-page: 220 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0075 article-title: Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2011.12.090 – volume: 28 start-page: 1464 year: 2011 ident: 10.1016/j.electacta.2013.05.114_bib0065 article-title: Preparation and characterization of the electrodeposited Ni-Co oxide thin films for electrochemical capacitors publication-title: Korean Journal of Chemical Engineering doi: 10.1007/s11814-010-0521-z – volume: 56 start-page: 7517 year: 2011 ident: 10.1016/j.electacta.2013.05.114_bib0060 article-title: Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4crystals as electrode materials for application in supercapacitors publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2011.06.101 – volume: 153 start-page: 74 year: 2000 ident: 10.1016/j.electacta.2013.05.114_bib0100 article-title: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study publication-title: Journal of Solid State Chemistry doi: 10.1006/jssc.2000.8749 – volume: 172 start-page: 460 year: 2007 ident: 10.1016/j.electacta.2013.05.114_bib0155 article-title: Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2007.07.009 – volume: 22 start-page: 347 year: 2010 ident: 10.1016/j.electacta.2013.05.114_bib0025 article-title: A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process publication-title: Advanced Materials doi: 10.1002/adma.200902175 – volume: 159 start-page: A1262 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0045 article-title: A sol-gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors publication-title: Journal of the Electrochemical Society doi: 10.1149/2.057208jes – volume: 81 start-page: 172 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0085 article-title: Uniform urchin-like nickel cobaltite microspherical superstructures constructed by one-dimension nanowires and their application for electrochemical capacitors publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2012.07.080 – volume: 165 start-page: 70 year: 2000 ident: 10.1016/j.electacta.2013.05.114_bib0115 article-title: Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy publication-title: Applied Surface Science doi: 10.1016/S0169-4332(00)00378-0 – volume: 1 start-page: A43 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0080 article-title: Scalable electrodeposition of cost-effective microsized Nico2o4 electrode materials for practical applications in electrochemical capacitors publication-title: ECS Electrochemistry Letters doi: 10.1149/2.001203eel – volume: 8 start-page: 3498 year: 2008 ident: 10.1016/j.electacta.2013.05.114_bib0135 article-title: Graphene-based ultracapacitors publication-title: Nano Letters doi: 10.1021/nl802558y – volume: 71 start-page: 61 year: 1995 ident: 10.1016/j.electacta.2013.05.114_bib0110 article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide publication-title: Journal of Electron Spectroscopy and Related Phenomena doi: 10.1016/0368-2048(94)02238-0 – volume: 21 start-page: 3228 year: 2009 ident: 10.1016/j.electacta.2013.05.114_bib0040 article-title: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route publication-title: Chemisty of Materials doi: 10.1021/cm9007365 – volume: 109 start-page: 7330 year: 2005 ident: 10.1016/j.electacta.2013.05.114_bib0160 article-title: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance publication-title: Journal of Physical Chemistry B doi: 10.1021/jp044252o – volume: 22 start-page: 1185 year: 1989 ident: 10.1016/j.electacta.2013.05.114_bib0095 article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/22/8/026 – volume: 18 start-page: 1178 year: 2006 ident: 10.1016/j.electacta.2013.05.114_bib0125 article-title: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors publication-title: Advanced Materials doi: 10.1002/adma.200502471 – volume: 160 start-page: 1487 year: 2006 ident: 10.1016/j.electacta.2013.05.114_bib0150 article-title: Supercapacitors using carbon nanotubes films by electrophoretic deposition publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2006.02.092 – volume: 18 start-page: 1440 year: 2008 ident: 10.1016/j.electacta.2013.05.114_bib0020 article-title: Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications publication-title: Advanced Functional Materials doi: 10.1002/adfm.200700982 – volume: 16 start-page: 3621 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0050 article-title: A facile and cost-effective synthesis of mesoporous NiCo2O4nanoparticles and their capacitive behavior in electrochemical capacitors publication-title: Journal of Solid State Electrochemistry doi: 10.1007/s10008-012-1798-0 – volume: 186 start-page: 557 year: 2009 ident: 10.1016/j.electacta.2013.05.114_bib0145 article-title: Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2008.10.049 – volume: 13 start-page: 4621 year: 1997 ident: 10.1016/j.electacta.2013.05.114_bib0105 article-title: Characterization of bulk and surface composition of CoxNi1-xOy mixed oxides for electrocatalysis publication-title: Langmuir doi: 10.1021/la9609128 – volume: 183 start-page: 153 year: 2006 ident: 10.1016/j.electacta.2013.05.114_bib0165 article-title: Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium publication-title: Journal of Power Sources – volume: 7 start-page: 845 year: 2008 ident: 10.1016/j.electacta.2013.05.114_bib0010 article-title: Materials for electrochemical capacitors publication-title: Nature Materials doi: 10.1038/nmat2297 – volume: 7 start-page: 2454 year: 2011 ident: 10.1016/j.electacta.2013.05.114_bib0035 article-title: Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors publication-title: Small doi: 10.1002/smll.201100534 – volume: 122 start-page: 283 year: 2009 ident: 10.1016/j.electacta.2013.05.114_bib0090 article-title: Preparation of coral-like porous gold for metal ion detection publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2009.03.012 – volume: 148 start-page: A845 year: 2001 ident: 10.1016/j.electacta.2013.05.114_bib0140 article-title: Carbon-poly (3-methylthiophene) hybrid supercapacitors publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1380254 – volume: 18 start-page: 1448 year: 2008 ident: 10.1016/j.electacta.2013.05.114_bib0030 article-title: Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as li-ion battery electrodes publication-title: Advanced Functional Materials doi: 10.1002/adfm.200701383 – volume: 42 start-page: 1033 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0055 article-title: Hierarchical porous NiCo2O4 nanomaterials with excellent cycling behavior for electrochemical capacitors via a hard-templating route publication-title: Journal of Applied Electrochemistry doi: 10.1007/s10800-012-0494-1 – volume: 22 start-page: E28 year: 2010 ident: 10.1016/j.electacta.2013.05.114_bib0005 article-title: Advanced materials for energy storage publication-title: Advanced Materials doi: 10.1002/adma.200903328 – volume: 22 start-page: 5656 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0120 article-title: Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications publication-title: Journal of Materials Chemistry doi: 10.1039/c2jm15863a – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.electacta.2013.05.114_bib0015 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chemical Reviews doi: 10.1021/cr020730k – volume: 22 start-page: 16084 year: 2012 ident: 10.1016/j.electacta.2013.05.114_bib0070 article-title: Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors publication-title: Journal of Materials Chemistry doi: 10.1039/c2jm32351f – volume: 101 start-page: 109 year: 2001 ident: 10.1016/j.electacta.2013.05.114_bib0130 article-title: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(01)00707-8 |
SSID | ssj0007670 |
Score | 2.5538445 |
Snippet | •A facile and scalable chemical synthesis strategy is proposed.•The NiCo2O4 materials display a high surface area and porosity.•The NiCo2O4 electrode shows a... Highly porous nickel cobaltite (NiCo2O4) materials have been synthesized via a facile and scalable chemical synthesis route. The obtained NiCo2O4 material... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 494 |
SubjectTerms | Agglomeration Capacitance Capacitors Chemical deposition Displays Electrochemical capacitors Electrodes Hybrid Ion transport Nickel cobaltite Porous Surface area Synthesis |
Title | Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors |
URI | https://dx.doi.org/10.1016/j.electacta.2013.05.114 https://www.proquest.com/docview/1513486217 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZW5QAcVlBA2wUqI3E1TWLnxa2KqAqIcilSb5bjh8iqSqqme-ge9m_t39uZPFqKhHpAihQpsh3HM5n5nHwzQ8jHNFfOGOVYZH3BRK44UwCEmZc6kUQuTZzGTwM_FtH8l_i2ClcXJOtjYZBW2dn-1qY31rq7MulWc7IpCozx9bmIEgTAGOyGdliIGLX80_2R5hFHsddXMcDWJxyvptSMggM5XhxTePq--JeH-stWNw5o9oJcdsiRTtvJvSQXthySp1lfsG1Inv-RW_AVeZgpDW88VaWha6R7sxrEYanuMgTQel8C-KuLmlaOYtbi9Z4CGK9ua1rjLtmo7Z7W4C6RsldO2hOriztr6KLIquCnoAB3Ww2mgH2bQdjmGIlAFTwIjvd7j3FhdJqxvmNXfecwGQ0-WxdY-ec1Wc6-LLM566o0MC1Cf8d8YbRJwNXGQWKR2ekMF7kGKds4yEVqrA1NKsJAWA-jYnnqW6WUC1OhAR7yN2RQVqW9ItTpII-hFQ844Jw0ViYPdaBBibgPY-gRiXrBSN1lMMdCGmvZU9Vu5EGiEiUqvRDDrkfEO3TctEk8znf53EtenuijBFdzvvOHXlck6AD-glElrrcEfMXhHYB94PX_3OAteRY0ZTmQ6_aODHbbW_sewNEuHzfaPyZPpl-_zxePUp4Utw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4heoAeqhaoSnktUq9LbO_6xQ1ZRCmQ9BIkbqv1PlRXkR3hcEgP_C3-HjN-BIJUcahkKZLl3Tie2ZlvnW_mI-RHmitnjHIssr5gIlecKQDCzEudSCKXJk7jq4HxJBrdiqu78G6DZH0tDNIqu9jfxvQmWndnBt3THMyLAmt8fS6iBAEwFrtBHP4gYPmijMHZ4wvPI45ir5cxwMvXSF6N1oyCA0leHHt4-r74V4p6E6ybDDT8TD510JFetHf3hWzYcodsZb1i2w75-Kq54C55GioNS56q0tAZ8r1ZDfawVHctAmi9LAH91UVNK0exbfFsSQGNVw81rXGbbNT9ktaQL5GzVw7aD1YXf62hkyKrgl-CAt5tXZgC-G0mYfOXUgSq4IfgfL-XWBhGLzLWD-zkd1Y3oyFp6wKlf_bIdHg5zUask2lgWoT-gvnCaJNAro2DxCK10xkucg1mtnGQi9RYG5pUhIGwHpbF8tS3SikXpkIDPuRfyWZZlfYboU4HeQxX8YAD0EljZfJQBxq8iPswh94nUW8YqbsW5qikMZM9V-2PXFlUokWlF2Ld9T7xVgPnbReP94ec95aXaw4pIde8P_i09xUJPoD_wagSn7cEgMVhEcBG8Pv_fMEJ2RpNxzfy5ufk-oBsB41GBxLfDsnm4v7BHgFSWuTHzUp4BnjBFkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+large-scale+chemical+synthesis+of+highly+porous+secondary+submicron%2Fmicron-sized+NiCo2O4+materials+for+high-performance+aqueous+hybrid+AC-NiCo2O4+electrochemical+capacitors&rft.jtitle=Electrochimica+acta&rft.au=Ding%2C+Rui&rft.au=Qi%2C+Li&rft.au=Jia%2C+Mingjun&rft.au=Wang%2C+Hongyu&rft.date=2013-09-01&rft.issn=0013-4686&rft.volume=107&rft.spage=494&rft.epage=502&rft_id=info:doi/10.1016%2Fj.electacta.2013.05.114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |