Integrating GWAS with a gene co‐expression network better prioritizes candidate genes associated with root metaxylem phenes in maize
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pi...
Saved in:
Published in | The plant genome Vol. 17; no. 3; pp. e20489 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.09.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Core Ideas
Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience.
A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes.
The best candidates are likely those with relevant functional roles and genes “essential” to network function.
Plain Language Summary
Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals. |
---|---|
AbstractList | Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (
Zea mays
), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience.
A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes.
The best candidates are likely those with relevant functional roles and genes “essential” to network function.
Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals. Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Abstract Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Core Ideas Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience. A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes. The best candidates are likely those with relevant functional roles and genes “essential” to network function. Plain Language Summary Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals. |
Author | Brown, Kathleen M. Kaeppler, Shawn M. Klein, Stephanie P. Lynch, Jonathan P. |
Author_xml | – sequence: 1 givenname: Stephanie P. orcidid: 0000-0003-4450-6057 surname: Klein fullname: Klein, Stephanie P. organization: The Pennsylvania State University – sequence: 2 givenname: Shawn M. orcidid: 0000-0002-5964-1668 surname: Kaeppler fullname: Kaeppler, Shawn M. organization: University of Wisconsin – sequence: 3 givenname: Kathleen M. orcidid: 0000-0002-4960-5292 surname: Brown fullname: Brown, Kathleen M. organization: The Pennsylvania State University – sequence: 4 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39034891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksuKFDEYhQsZcS668QEk4EaEHnOrSrIcBm0bBhQccRlSqaQmbVXSJml62pUr1z6jT2K6ahzEha6SP_nO-XM5p9WRD95U1VMEzxGE-FXe9PgcQ8rFg-oECQoXhDB89Mf8uDpNaQ1hzQSnj6pjIiApODqpvq98Nn1U2fkeLD9dfAA7l2-AAr3xBujw89sPc7uJJiUXPPAm70L8DFqTs4lgE12ILruvJgGtfOc6lc2kTEClFLQrdTc7xhAyGE1Wt_vBjGBzM1HOg1EV_ePqoVVDMk_uxrPq45vX15dvF1fvlqvLi6uFpjUSCytYZ2FrW46oZrrjViuIa6QUaxvLG9Ix25YtZClUjVBK1x1qia25YowJRs6q1ezbBbWW5fyjinsZlJPTQoi9VDE7PRhJMKWCa8Qh1BRx3OIOEWgtorzUuCleL2avTQxftiZlObqkzTAob8I2SYJqihpGp7b_QSEnGNWohgV9_he6Dtvoy6MUQywgEwIeqGd31LYdTXd_k98fW4CXM6BjSCkae48gKA-pkYfUyCk1BUYzvHOD2f-DlNfvl3jW_AJy3MSS |
Cites_doi | 10.1105/tpc.105.031302 10.1126/science.1251423 10.1089/cmb.2008.04TT 10.1038/ncomms12767 10.1016/j.pbi.2008.03.002 10.1002/j.1537‐2197.1995.tb11581.x 10.1016/S0305‐1978(98)00068‐4 10.1186/2193‐9772‐3‐10 10.1093/bioinformatics/bts444 10.1105/tpc.18.00755 10.4161/psb.4.8.9231 10.1038/s41477‐020‐0684‐5 10.1007/s11103‐013‐0033‐4 10.1104/pp.15.00187 10.1038/ng.2725 10.1046/j.1365‐313X.1995.08010037.x 10.1126/science.1204531 10.1242/dev.159202 10.1046/j.1469‐8137.2000.00775.x 10.1104/pp.19.00752 10.1007/978-3-319-24277-4 10.1071/FP05043 10.2136/vzj2017.05.0107 10.1071/AR9890943 10.1371/journal.pone.0156362 10.1104/pp.19.01183 10.1073/pnas.0812346106 10.3389/fpls.2023.1050313 10.1093/nar/gkq310 10.1104/pp.114.249037 10.1007/s00122‐023‐04376‐0 10.1093/jxb/eru162 10.1093/jxb/erz271 10.3835/plantgenome2015.04.0025 10.1002/pld3.130 10.1093/jxb/ers150 10.1007/s11104-015-2554-x 10.1105/tpc.16.00182 10.1186/1471‐2105‐9‐559 10.1016/j.bbagrm.2016.07.016 10.1101/2023.04.24.538142 10.1016/j.fcr.2014.03.017 10.1093/aob/mct069 10.1016/j.tig.2004.04.008 10.1186/s12864‐019‐5992‐7 10.1093/jxb/eraa084 10.1007/978-0-387-79418-1_8 10.1093/bioinformatics/btq430 10.1111/tpj.15560 10.1002/csc2.20241 10.1105/tpc.113.119982 10.1007/s11104‐021‐05010‐y 10.1093/jxb/err139 10.1104/pp.124.2.495 10.1093/jxb/ery048 10.1093/jxb/ers287 10.1016/j.envexpbot.2019.103962 10.1078/1433‐8319‐00017 10.1111/pce.13683 10.1111/j.1365-3040.1994.tb02021.x 10.1016/S1369‐5266(00)00122‐9 10.1007/s004250000412 10.1074/jbc.M111.233494 10.1104/pp.108.130682 10.1104/pp.114.253328 10.1093/pcp/pct198 10.1007/978-3-642-32653-0_3 10.1371/journal.pcbi.0030059 10.1105/tpc.11.2.207 10.1093/nar/gky1046 10.1626/pps.16.1 10.1093/jxb/erv232 10.1104/pp.20.00211 10.2135/cropsci2010.03.0178 10.1186/s12870‐019‐1653‐x 10.1093/jxb/erw243 10.1007/s11738-013-1355-1 10.1038/35075138 10.1534/g3.119.400549 10.3389/fpls.2013.00442 10.2351/1.5096089 10.1104/pp.106.086223 10.1111/nph.15738 10.1007/s00299‐013‐1420‐7 10.1007/s11104‐010‐0623‐8 10.1038/nclimate1633 10.1105/tpc.18.00299 10.1104/pp.17.00500 10.1038/nature22971 10.1111/j.1469‐8137.2010.03593.x 10.1093/jxb/ers111 10.1146/annurev.arplant.47.1.445 10.1199/tab.0166 10.1534/genetics.114.167916 10.1104/pp.114.250449 10.1111/nph.13383 10.3389/fpls.2020.00570 10.1073/pnas.0337628100 10.1007/s11103‐014‐0251‐4 10.3390/agronomy11112335 10.1016/j.fcr.2014.10.009 10.3389/fpls.2013.00355 10.1002/tpg2.20003 10.1093/aob/mcs293 10.1071/FPv41n11_FO |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Crop Science Society of America. 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Crop Science Society of America. – notice: 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 DOA |
DOI | 10.1002/tpg2.20489 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1940-3372 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_324498c1800c4182b2d130ff148c4126 39034891 10_1002_tpg2_20489 TPG220489 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Howard G Buffett Foundation – fundername: Cooperative State Research, Education, and Extension Service funderid: 4732 – fundername: National Institute of Food and Agriculture funderid: 2017‐67013‐26192 – fundername: Cooperative State Research, Education, and Extension Service grantid: 4732 – fundername: National Institute of Food and Agriculture grantid: 2017-67013-26192 |
GroupedDBID | .~0 0R~ 123 18M 1OC 24P 5VS 6KN AAHBH AAHHS ACAWQ ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BBNVY BCNDV BENPR BHPHI CCPQU CS3 EBS ECGQY EJD FRP GROUPED_DOAJ H13 HCIFZ IAO IPNFZ ITC KQ8 M7P MV1 M~E NHAZY O9- OK1 PIMPY RIG TR2 WIN AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c4519-f97df0bfb814c7cd8fca0251aa7b6f863d7fb14c1f40a69aac5d1b3f58a777973 |
IEDL.DBID | BENPR |
ISSN | 1940-3372 |
IngestDate | Wed Aug 27 01:08:48 EDT 2025 Fri Jul 11 17:32:07 EDT 2025 Tue Aug 05 10:41:39 EDT 2025 Wed Aug 13 11:05:20 EDT 2025 Mon Jul 21 06:02:06 EDT 2025 Tue Jul 01 02:10:39 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4519-f97df0bfb814c7cd8fca0251aa7b6f863d7fb14c1f40a69aac5d1b3f58a777973 |
Notes | Assigned to Associate Editor Jianming Yu. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4450-6057 0000-0002-5964-1668 0000-0002-4960-5292 0000-0002-7265-9790 |
OpenAccessLink | https://www.proquest.com/docview/3129079900?pq-origsite=%requestingapplication% |
PMID | 39034891 |
PQID | 3129079900 |
PQPubID | 5069926 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_324498c1800c4182b2d130ff148c4126 proquest_miscellaneous_3154167497 proquest_miscellaneous_3083215150 proquest_journals_3129079900 pubmed_primary_39034891 crossref_primary_10_1002_tpg2_20489 wiley_primary_10_1002_tpg2_20489_TPG220489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Madison |
PublicationTitle | The plant genome |
PublicationTitleAlternate | Plant Genome |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1989; 40 2004; 20 2013; 3 2013; 4 2011; 62 2010; 341 2014; 26 2019; 19 2020; 13 2020; 11 2018; 47 2010; 26 2010; 1 2019; 20 2000; 124 2020; 171 2013; 112 2018; 30 2012; 28 2007; 3 2009; 16 2001; 411 2010; 9 2019; 9 2010; 38 2019; 3 2019; 31 1999; 27 2019; 223 1992 1991 2014; 41 1995; 8 2016; 11 2016; 7 2015; 199 2015; 66 2013; 82 2014a; 166 1994; 17 2016; 28 2022; 109 2005; 17 2003; 100 2016; 9 2017; 546 2009; 106 2000; 3 2020; 60 2017; 1860 2008; 9 2000; 211 2014; 65 2015; 171 2020; 6 2014; 3 2013; 16 2013; 11 1999; 11 2023; 136 2005; 32 2020; 43 2014; 165 2014; 55 2012; 64 2011; 286 2012; 63 2011; 333 2019; 70 2023; 14 2012 2015; 168 2021; 466 2013; 45 2015; 167 2018; 145 2020; 182 2020; 183 2009 2017; 174 2015; 207 2008; 11 2018; 69 2014b; 166 2014; 86 1995; 82 2021; 11 2023 2013; 32 2013; 35 2000; 148 2001; 4 2020 2017; 16 2020; 71 2015; 397 2011; 51 1963 2006; 142 2016 2006; 1695 2009; 4 2013 1996; 47 2011; 189 2016; 67 2009; 149 2014; 344 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 Berker R. (e_1_2_9_5_1) 1963 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Csardi G. (e_1_2_9_15_1) 2006; 1695 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 R Core Team (e_1_2_9_78_1) 2020 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 Abd Allah A. A. (e_1_2_9_2_1) 2010; 1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 Zhu J. (e_1_2_9_114_1) 2010; 9 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 IPCC (e_1_2_9_43_1) 2013 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Fehr W. (e_1_2_9_22_1) 1991 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 51 start-page: 704 year: 2011 end-page: 715 article-title: Genetic diversity of a maize association population with restricted phenology publication-title: Crop Science – start-page: 63 year: 2012 end-page: 109 – volume: 62 start-page: 4239 year: 2011 end-page: 4252 article-title: A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea publication-title: Journal of Experimental Botany – volume: 65 start-page: 6155 year: 2014 end-page: 6166 article-title: Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement publication-title: Journal of Experimental Botany – volume: 11 year: 2013 article-title: Abscisic acid synthesis and response publication-title: Arabidopsis Book – start-page: 145 year: 2009 end-page: 160 – volume: 82 start-page: 39 year: 2013 end-page: 50 article-title: OsSNDP1, a Sec14‐nodulin domain‐containing protein, plays a critical role in root hair elongation in rice publication-title: Plant Molecular Biology – volume: 397 start-page: 213 year: 2015 end-page: 225 article-title: Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water‐stressed field conditions publication-title: Plant and Soil – volume: 26 start-page: 2347 year: 2010 end-page: 2348 article-title: Cytoscape web: An interactive web‐based network browser publication-title: Bioinformatics – volume: 1695 start-page: 1 year: 2006 end-page: 9 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 333 start-page: 616 year: 2011 end-page: 620 article-title: Climate trends and global crop production since 1980 publication-title: Science – volume: 86 start-page: 609 year: 2014 end-page: 625 article-title: Arabidopsis drought‐induced protein Di19‐3 participates in plant response to drought and high salinity stresses publication-title: Plant Molecular Biology – volume: 16 start-page: 1 year: 2017 end-page: 10 article-title: Root water uptake and ideotypes of the root system: Whole‐plant controls matter publication-title: Vadose Zone Journal – volume: 100 start-page: 1450 year: 2003 end-page: 1455 article-title: Interactions among three distinct CesA proteins essential for cellulose synthesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 3023 year: 2019 end-page: 3033 article-title: Transcriptome‐wide association supplements genome‐wide association in publication-title: G3 – volume: 136 start-page: 127 year: 2023 article-title: Mining genes regulating root system architecture in maize based on data integration analysis publication-title: Theoretical and Applied Genetics – volume: 4 start-page: 655 year: 2013 article-title: Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – volume: 11 start-page: 207 year: 1999 end-page: 221 article-title: The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C‐5 desaturation step leading to brassinosteroid biosynthesis publication-title: The Plant Cell – volume: 14 year: 2023 article-title: Identification of QTN‐by‐environment interactions for yield related traits in maize under multiple abiotic stresses publication-title: Frontiers in Plant Science – volume: 189 start-page: 909 year: 2011 end-page: 922 article-title: Association genetics of complex traits in plants: Tansley review publication-title: The New Phytologist – volume: 11 start-page: 301 year: 2008 end-page: 307 article-title: Unique aspects of the grass cell wall publication-title: Current Opinion in Plant Biology – volume: 8 start-page: 37 year: 1995 end-page: 43 article-title: An root‐specific kinase homolog is induced by dehydration, ABA, and NaCl publication-title: The Plant Journal – volume: 32 start-page: 867 year: 2013 end-page: 883 article-title: Hormone interactions in xylem development: A matter of signals publication-title: Plant Cell Reports – volume: 63 start-page: 3485 year: 2012 end-page: 3498 article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops publication-title: Journal of Experimental Botany – volume: 20 start-page: 618 year: 2019 article-title: Estimation of a significance threshold for genome‐wide associated studies publication-title: BMC Genomics – volume: 67 start-page: 4545 year: 2016 end-page: 4557 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.) publication-title: Journal of Experimental Botany – volume: 1 start-page: 83 year: 2010 end-page: 87 article-title: The role of root system traits in the drought tolerance of rice ( L.) publication-title: International Journal of Agricultural and Biological Sciences – volume: 546 start-page: 524 year: 2017 end-page: 527 article-title: Improved maize reference genome with single‐molecule technologies publication-title: Nature – volume: 174 start-page: 2302 year: 2017 end-page: 2315 article-title: Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit publication-title: Plant Physiology – volume: 3 start-page: 123 year: 2014 end-page: 140 article-title: Development and application of MIPAR™: A novel software package for two‐ and three‐dimensional microstructural characterization publication-title: Integrating Materials and Manufacturing Innovation – volume: 211 start-page: 874 year: 2000 end-page: 882 article-title: Abscisic acid and hydraulic conductivity of maize roots: A study using cell‐ and root‐pressure probes publication-title: Planta – volume: 28 start-page: 2397 year: 2012 end-page: 2399 article-title: GAPIT: Genome association and prediction integrated tool publication-title: Bioinformatics – volume: 1860 start-page: 53 year: 2017 end-page: 63 article-title: Unraveling gene function in agricultural species using gene co‐expression networks publication-title: Biochimica et Biophysica Acta, Gene Regulatory Mechanisms – volume: 71 start-page: 3185 year: 2020 end-page: 3197 article-title: Genetic control of root architectural plasticity in maize publication-title: Journal of Experimental Botany – volume: 466 start-page: 21 year: 2021 end-page: 63 article-title: Root anatomy and soil resource capture publication-title: Plant and Soil – volume: 69 start-page: 3279 year: 2018 end-page: 3292 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany – start-page: 1535 year: 2013 – volume: 11 start-page: 2335 issue: 11 year: 2021 article-title: In silico characterization and expression profiles of heat shock transcription factors (HSFs) in maize ( L.) publication-title: Agronomy – volume: 11 start-page: 570 year: 2020 article-title: Coping with water limitation: Hormones that modify plant root xylem development publication-title: Frontiers in Plant Science – volume: 199 start-page: 379 year: 2015 end-page: 398 article-title: Marker‐based estimation of heritability in immortal populations publication-title: Genetics – year: 2016 – volume: 149 start-page: 2000 year: 2009 end-page: 2012 article-title: Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans‐scale approach publication-title: Plant Physiology – year: 1992 – volume: 142 start-page: 1559 year: 2006 end-page: 1573 article-title: Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis publication-title: Plant Physiology – volume: 47 start-page: 445 year: 1996 end-page: 476 article-title: Structure and biogenesis of the cell walls of grasses publication-title: Annual Reviews in Plant Physiology Plant Molecular Biology – volume: 31 start-page: 1094 year: 2019 end-page: 1112 article-title: Glycome and proteome components of golgi membranes are common between two angiosperms with distinct cell‐wall structures publication-title: The Plant Cell – volume: 47 start-page: 1146 year: 2018 end-page: 1154 article-title: MaizeGDB 2018: The maize multi‐genome genetics and genomics database publication-title: Nucleic Acids Research – volume: 3 start-page: 517 year: 2000 end-page: 522 article-title: Xylogenesis: The birth of a corpse publication-title: Current Opinion in Plant Biology – volume: 148 start-page: 459 year: 2000 end-page: 471 article-title: Root tissue structure is linked to ecological strategies of grasses publication-title: The New Phytologist – volume: 35 start-page: 3201 year: 2013 end-page: 3211 article-title: Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress publication-title: Acta Physiologiae Plantarum – volume: 43 start-page: 692 year: 2020 end-page: 711 article-title: Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley publication-title: Plant, Cell & Environment – volume: 17 start-page: 1233 year: 1994 end-page: 1241 article-title: Intra‐ and inter‐plant variation in xylem cavitation in publication-title: Plant, Cell & Environment – volume: 40 start-page: 943 year: 1989 end-page: 950 article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain‐yield in rain‐fed environments publication-title: Australian Journal of Agricultural Research – volume: 286 start-page: 20020 year: 2011 end-page: 20030 article-title: A novel transcription factor, ERD15 (early responsive to dehydration 15), connects endoplasmic reticulum stress with an osmotic stress‐induced cell death signal publication-title: The Journal of Biological Chemistry – volume: 182 start-page: 977 year: 2020 end-page: 991 article-title: Shared genetic control of root system architecture between and publication-title: Plant Physiology – volume: 166 start-page: 2166 year: 2014a end-page: 2178 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiology – volume: 167 start-page: 1389 year: 2015 end-page: 1401 article-title: Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? publication-title: Plant Physiology – volume: 19 start-page: 45 year: 2019 article-title: Genome‐wide association analysis of stalk biomass and anatomical traits in maize publication-title: BMC Plant Biology – volume: 9 start-page: 559 year: 2008 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinformatics – volume: 182 start-page: 2154 year: 2020 end-page: 2165 article-title: Modification of the expression of the aquaporin ZmPIP2;5 affects water relations and plant growth publication-title: Plant Physiology – volume: 9 start-page: 31 year: 2010 article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.) publication-title: Plant, Cell & Environment – volume: 106 start-page: 7648 year: 2009 end-page: 7653 article-title: Three related receptor‐like kinases are required for optimal cell elongation in publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 341 start-page: 75 year: 2010 end-page: 87 article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field publication-title: Plant and Soil – volume: 3 year: 2007 article-title: The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics publication-title: PLoS Computational Biology – volume: 70 start-page: 5327 year: 2019 end-page: 5342 article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms publication-title: Journal of Experimental Botany – volume: 9 start-page: 1 year: 2016 end-page: 16 article-title: An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development publication-title: The Plant Genome – volume: 223 start-page: 548 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture publication-title: The New Phytologist – volume: 7 year: 2016 article-title: Comparative and parallel genome‐wide association studies for metabolic and agronomic traits in cereals publication-title: Nature Communciations – volume: 112 start-page: 429 year: 2013 end-page: 437 article-title: Root cortical burden influences drought tolerance in maize publication-title: Annals of Botany – volume: 45 start-page: 1097 year: 2013 end-page: 1102 article-title: Control of root system architecture by increases rice yield under drought conditions publication-title: Nature Genetics – volume: 55 start-page: 469 year: 2014 end-page: 474 article-title: Emerging functions of nodulin‐like proteins in non‐nodulating plant species publication-title: Plant & Cell Physiology – volume: 30 start-page: 2922 year: 2018 end-page: 2942 article-title: Integrating coexpression networks with GWAS to prioritize causal genes in maize publication-title: The Plant Cell – volume: 124 start-page: 495 year: 2000 end-page: 498 article-title: The cellulose synthase superfamily publication-title: Plant Physiology – volume: 64 start-page: 11 year: 2012 end-page: 31 article-title: Xylem tissue specification, patterning, and differentiation mechanisms publication-title: Journal of Experimental Botany – volume: 20 start-page: 227 year: 2004 end-page: 231 article-title: Genomic analysis of essentiality within protein networks publication-title: Trends in Genetics – volume: 168 start-page: 1603 year: 2015 end-page: 1615 article-title: Reduced lateral root branching density improves drought tolerance in maize publication-title: Plant Physiology – volume: 16 start-page: 169 year: 2009 end-page: 180 article-title: Bottlenecks and hubs in inferred networks are important for virulence in publication-title: Journal of Computational Biology – volume: 28 start-page: 1769 year: 2016 end-page: 1782 article-title: Growing out of stress: The role of cell‐ and organ‐scale growth control in plant water‐stress responses publication-title: The Plant Cell – volume: 63 start-page: 4751 year: 2012 end-page: 4763 article-title: Root attributes affecting water uptake of rice ( ) under drought publication-title: Journal of Experimental Botany – volume: 60 start-page: 2574 year: 2020 end-page: 2593 article-title: Comparative phenomics of annual grain legume root architecture publication-title: Crop Science – volume: 26 start-page: 121 year: 2014 end-page: 135 article-title: Insights into the maize pan‐genome and pan‐transcriptome publication-title: The Plant Cell – volume: 27 start-page: 33 year: 1999 end-page: 53 article-title: The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique publication-title: Biochemical Systematics and Ecology – volume: 66 start-page: 4643 year: 2015 end-page: 4652 article-title: Stem xylem resistance to cavitation is related to xylem structure but not to growth and water‐use efficiency at the within‐population level in L publication-title: Journal of Experimental Botany – volume: 109 start-page: 415 year: 2022 end-page: 431 article-title: Harnessing root architecture to address global challenges publication-title: The Plant Journal – volume: 3 year: 2019 article-title: Multivariate analyses of root phenotype and dynamic transcriptome underscore valuable root traits and water‐deficit responsive gene networks in maize publication-title: Plant Direct – volume: 183 start-page: 1011 year: 2020 end-page: 1025 article-title: Multiple integrated root phenotypes are associated with improved drought tolerance publication-title: Plant Physiology – volume: 17 start-page: 2473 year: 2005 end-page: 2485 article-title: The evolutionarily conserved TOUGH protein is required for proper development of publication-title: The Plant Cell – volume: 13 year: 2020 article-title: Genetic control of root anatomical plasticity in maize publication-title: The Plant Genome – volume: 6 start-page: 744 year: 2020 end-page: 749 article-title: Root architecture and hydraulics converge for acclimation to changing water availability publication-title: Nature Plants – volume: 82 start-page: 1112 year: 1995 end-page: 1116 article-title: Estimating volume flow rates through xylem conduits publication-title: American Journal of Botany – volume: 171 start-page: 86 year: 2015 end-page: 98 article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.) publication-title: Field Crops Research – volume: 165 start-page: 15 year: 2014 end-page: 24 article-title: Root hydraulics: The forgotten side of roots in drought adaptation publication-title: Field Crops Research – volume: 145 year: 2018 article-title: Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165 publication-title: Development – volume: 207 start-page: 519 year: 2015 end-page: 535 article-title: Xylem development—from the cradle to the grave publication-title: The New Phytologist – volume: 11 year: 2016 article-title: Global Synthesis of Drought Effects on Maize and Wheat Production publication-title: PloS One – volume: 31 year: 2019 article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique publication-title: Journal of Laser Applications – volume: 16 start-page: 1 year: 2013 end-page: 8 article-title: Root anatomical traits and their possible contribution to drought tolerance in grain legumes publication-title: Plant Production Science – volume: 41 start-page: v year: 2014 end-page: vi article-title: Developing drought tolerant crops: Hopes and challenges in an exciting journey publication-title: Functional Plant Biology – volume: 344 start-page: 516 year: 2014 end-page: 519 article-title: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest publication-title: Science – year: 1963 – volume: 4 start-page: 784 year: 2009 end-page: 786 article-title: A family of receptor‐like kinases are regulated by BES1 and involved in plant growth in publication-title: Plant Signaling & Behavior – volume: 4 start-page: 442 year: 2013 article-title: Root traits contributing to plant productivity under drought publication-title: Frontiers in Plant Science – volume: 171 year: 2020 article-title: Yield‐related phenotypic traits of drought resistant maize genotypes publication-title: Environmental and Experimental Botany – year: 2020 – year: 2023 – volume: 166 start-page: 1943 year: 2014b end-page: 1955 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiology – volume: 4 start-page: 97 year: 2001 end-page: 115 article-title: Functional and ecological xylem anatomy publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 38 start-page: W64 year: 2010 end-page: W70 article-title: agriGO: A GO analysis toolkit for the agricultural community publication-title: Nucleic Acids Research – year: 1991 – volume: 3 start-page: 52 year: 2013 end-page: 58 article-title: Increasing drought under global warming in observations and models publication-title: Nature Climate Change – volume: 32 start-page: 737 year: 2005 end-page: 748 article-title: Root architectural tradeoffs for water and phosphorus acquisition publication-title: Functional Plant Biology – volume: 411 start-page: 41 year: 2001 end-page: 42 article-title: Lethality and centrality in protein networks publication-title: Nature – ident: e_1_2_9_7_1 doi: 10.1105/tpc.105.031302 – ident: e_1_2_9_58_1 doi: 10.1126/science.1251423 – ident: e_1_2_9_69_1 doi: 10.1089/cmb.2008.04TT – ident: e_1_2_9_9_1 doi: 10.1038/ncomms12767 – start-page: 1535 volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_9_43_1 – ident: e_1_2_9_102_1 doi: 10.1016/j.pbi.2008.03.002 – volume-title: R: A language and environment for statistical computing year: 2020 ident: e_1_2_9_78_1 – ident: e_1_2_9_55_1 doi: 10.1002/j.1537‐2197.1995.tb11581.x – ident: e_1_2_9_90_1 doi: 10.1016/S0305‐1978(98)00068‐4 – ident: e_1_2_9_91_1 doi: 10.1186/2193‐9772‐3‐10 – ident: e_1_2_9_57_1 doi: 10.1093/bioinformatics/bts444 – volume-title: Principles of cultivar development: Theory and technique year: 1991 ident: e_1_2_9_22_1 – ident: e_1_2_9_71_1 doi: 10.1105/tpc.18.00755 – ident: e_1_2_9_29_1 doi: 10.4161/psb.4.8.9231 – volume: 1695 start-page: 1 year: 2006 ident: e_1_2_9_15_1 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – ident: e_1_2_9_67_1 doi: 10.1038/s41477‐020‐0684‐5 – ident: e_1_2_9_40_1 doi: 10.1007/s11103‐013‐0033‐4 – ident: e_1_2_9_111_1 doi: 10.1104/pp.15.00187 – ident: e_1_2_9_98_1 doi: 10.1038/ng.2725 – ident: e_1_2_9_41_1 doi: 10.1046/j.1365‐313X.1995.08010037.x – ident: e_1_2_9_59_1 doi: 10.1126/science.1204531 – ident: e_1_2_9_80_1 doi: 10.1242/dev.159202 – ident: e_1_2_9_103_1 doi: 10.1046/j.1469‐8137.2000.00775.x – ident: e_1_2_9_113_1 doi: 10.1104/pp.19.00752 – ident: e_1_2_9_106_1 doi: 10.1007/978-3-319-24277-4 – ident: e_1_2_9_37_1 doi: 10.1071/FP05043 – ident: e_1_2_9_95_1 doi: 10.2136/vzj2017.05.0107 – ident: e_1_2_9_81_1 doi: 10.1071/AR9890943 – ident: e_1_2_9_17_1 doi: 10.1371/journal.pone.0156362 – ident: e_1_2_9_20_1 doi: 10.1104/pp.19.01183 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.0812346106 – ident: e_1_2_9_105_1 doi: 10.3389/fpls.2023.1050313 – volume-title: Intégration des équations du mouvement d'un fluide visqueux incompressible: Handbuch der Physik year: 1963 ident: e_1_2_9_5_1 – ident: e_1_2_9_21_1 doi: 10.1093/nar/gkq310 – ident: e_1_2_9_11_1 doi: 10.1104/pp.114.249037 – ident: e_1_2_9_34_1 doi: 10.1007/s00122‐023‐04376‐0 – ident: e_1_2_9_65_1 doi: 10.1093/jxb/eru162 – ident: e_1_2_9_94_1 doi: 10.1093/jxb/erz271 – ident: e_1_2_9_93_1 doi: 10.3835/plantgenome2015.04.0025 – ident: e_1_2_9_112_1 doi: 10.1002/pld3.130 – ident: e_1_2_9_35_1 doi: 10.1093/jxb/ers150 – ident: e_1_2_9_56_1 doi: 10.1007/s11104-015-2554-x – ident: e_1_2_9_23_1 doi: 10.1105/tpc.16.00182 – ident: e_1_2_9_54_1 doi: 10.1186/1471‐2105‐9‐559 – ident: e_1_2_9_86_1 doi: 10.1016/j.bbagrm.2016.07.016 – ident: e_1_2_9_25_1 doi: 10.1101/2023.04.24.538142 – ident: e_1_2_9_99_1 doi: 10.1016/j.fcr.2014.03.017 – ident: e_1_2_9_44_1 doi: 10.1093/aob/mct069 – ident: e_1_2_9_108_1 doi: 10.1016/j.tig.2004.04.008 – ident: e_1_2_9_49_1 doi: 10.1186/s12864‐019‐5992‐7 – ident: e_1_2_9_88_1 doi: 10.1093/jxb/eraa084 – ident: e_1_2_9_38_1 doi: 10.1007/978-0-387-79418-1_8 – volume: 9 start-page: 31 year: 2010 ident: e_1_2_9_114_1 article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) publication-title: Plant, Cell & Environment – ident: e_1_2_9_60_1 doi: 10.1093/bioinformatics/btq430 – ident: e_1_2_9_64_1 doi: 10.1111/tpj.15560 – ident: e_1_2_9_6_1 doi: 10.1002/csc2.20241 – ident: e_1_2_9_36_1 doi: 10.1105/tpc.113.119982 – ident: e_1_2_9_66_1 doi: 10.1007/s11104‐021‐05010‐y – ident: e_1_2_9_110_1 doi: 10.1093/jxb/err139 – ident: e_1_2_9_3_1 – ident: e_1_2_9_82_1 doi: 10.1104/pp.124.2.495 – ident: e_1_2_9_62_1 doi: 10.1093/jxb/ery048 – ident: e_1_2_9_89_1 doi: 10.1093/jxb/ers287 – ident: e_1_2_9_74_1 doi: 10.1016/j.envexpbot.2019.103962 – ident: e_1_2_9_30_1 doi: 10.1078/1433‐8319‐00017 – ident: e_1_2_9_72_1 doi: 10.1111/pce.13683 – ident: e_1_2_9_92_1 doi: 10.1111/j.1365-3040.1994.tb02021.x – ident: e_1_2_9_83_1 doi: 10.1016/S1369‐5266(00)00122‐9 – ident: e_1_2_9_39_1 doi: 10.1007/s004250000412 – ident: e_1_2_9_4_1 doi: 10.1074/jbc.M111.233494 – ident: e_1_2_9_73_1 doi: 10.1104/pp.108.130682 – ident: e_1_2_9_48_1 doi: 10.1104/pp.114.253328 – ident: e_1_2_9_18_1 doi: 10.1093/pcp/pct198 – ident: e_1_2_9_101_1 doi: 10.1007/978-3-642-32653-0_3 – ident: e_1_2_9_109_1 doi: 10.1371/journal.pcbi.0030059 – ident: e_1_2_9_13_1 doi: 10.1105/tpc.11.2.207 – ident: e_1_2_9_75_1 doi: 10.1093/nar/gky1046 – ident: e_1_2_9_76_1 doi: 10.1626/pps.16.1 – volume: 1 start-page: 83 year: 2010 ident: e_1_2_9_2_1 article-title: The role of root system traits in the drought tolerance of rice (Oryza sativa L.) publication-title: International Journal of Agricultural and Biological Sciences – ident: e_1_2_9_27_1 doi: 10.1093/jxb/erv232 – ident: e_1_2_9_51_1 doi: 10.1104/pp.20.00211 – ident: e_1_2_9_33_1 doi: 10.2135/cropsci2010.03.0178 – ident: e_1_2_9_68_1 doi: 10.1186/s12870‐019‐1653‐x – ident: e_1_2_9_26_1 doi: 10.1093/jxb/erw243 – ident: e_1_2_9_19_1 doi: 10.1007/s11738-013-1355-1 – ident: e_1_2_9_45_1 doi: 10.1038/35075138 – ident: e_1_2_9_52_1 doi: 10.1534/g3.119.400549 – ident: e_1_2_9_14_1 doi: 10.3389/fpls.2013.00442 – ident: e_1_2_9_32_1 doi: 10.2351/1.5096089 – ident: e_1_2_9_50_1 doi: 10.1104/pp.106.086223 – ident: e_1_2_9_63_1 doi: 10.1111/nph.15738 – ident: e_1_2_9_70_1 doi: 10.1007/s00299‐013‐1420‐7 – ident: e_1_2_9_97_1 doi: 10.1007/s11104‐010‐0623‐8 – ident: e_1_2_9_16_1 doi: 10.1038/nclimate1633 – ident: e_1_2_9_85_1 doi: 10.1105/tpc.18.00299 – ident: e_1_2_9_47_1 doi: 10.1104/pp.17.00500 – ident: e_1_2_9_46_1 doi: 10.1038/nature22971 – ident: e_1_2_9_42_1 doi: 10.1111/j.1469‐8137.2010.03593.x – ident: e_1_2_9_104_1 doi: 10.1093/jxb/ers111 – ident: e_1_2_9_8_1 doi: 10.1146/annurev.arplant.47.1.445 – ident: e_1_2_9_24_1 doi: 10.1199/tab.0166 – ident: e_1_2_9_53_1 doi: 10.1534/genetics.114.167916 – ident: e_1_2_9_10_1 doi: 10.1104/pp.114.250449 – ident: e_1_2_9_84_1 doi: 10.1111/nph.13383 – ident: e_1_2_9_79_1 doi: 10.3389/fpls.2020.00570 – ident: e_1_2_9_96_1 doi: 10.1073/pnas.0337628100 – ident: e_1_2_9_77_1 doi: 10.1007/s11103‐014‐0251‐4 – ident: e_1_2_9_31_1 doi: 10.3390/agronomy11112335 – ident: e_1_2_9_12_1 doi: 10.1016/j.fcr.2014.10.009 – ident: e_1_2_9_107_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_9_87_1 doi: 10.1002/tpg2.20003 – ident: e_1_2_9_61_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_9_100_1 doi: 10.1071/FPv41n11_FO |
SSID | ssj0057984 |
Score | 2.310056 |
Snippet | Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the... Abstract Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has... |
SourceID | doaj proquest pubmed crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | e20489 |
SubjectTerms | Abiotic stress Abscisic acid Biosynthesis Cell walls Cellular stress response Cereals Corn Crops Drought Droughts Gene Expression Regulation, Plant Gene loci Gene Regulatory Networks genes Genes, Plant Genetic diversity Genome-wide association studies Genome-Wide Association Study Genomes Hydraulics Magnoliopsida Oxidative stress Phenotype Phenotypes Plant Roots - genetics Production increases Rice Sorghum Water water stress Xylem Xylem - genetics Xylem - metabolism Zea mays Zea mays - genetics |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA8iHryIurrWjyWLnhaKTZs27VGXVXdBEVbRW0jSRARf-3ivgnry5Nm_0b_EmaTv4cKiF29t80GSSTK_SSe_IWRHA4RmhusYtL-OuRYiVoxlMdrZObeg4X0wmOOT4uic_7nML9-E-kKfsEAPHAZuFxQ-r0rDANgYDmBYpzVsu84BjIf31JNtg86bGFNhD85FVfIpGWm62w2v8NIVx2Dub9SPZ-n_H7T8F6l6VXOwSBZ6jEj3QtuWyIxtlsncfgs47v4LefrdMzyA0qGHF3t_KZ6lUkVhKlhq2pfHZ3vXu7c2tAlu3lT7azt0OLpukcbowY6pwRstaPD7kmOqeknZOtQImLqjA9upu_sbO6DoDAa5rhs6UFB-hZwf_Dr7eRT30RRigxQysatE7RLtdMm4EaYunVFoYCgldOHKIquF05DEHE9UUSll8prpzOWlEkJUIlsls03b2DVCRZVkwhaZhhI8z2utmDJQfZLqOrWGRWR7MshyGEgzZKBHTiWKQnpRRGQfx3-aA4mu_QcQv-zFLz8Sf0Q2J9KT_eobywwP1wTo2SQi36fJsG7wZ4hqbHsLeRKM0QRo7r08gC_xlkYlIvI1zIxpazMYA-gE9PWHnyrvdFSenR6m_mn9M7q8QeZhJfHg6LZJZrvRrd0CZNTpb34RvALDuQpU priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9z-uCL-G3nlIg-CWXNR5sWfNnEbQrKwA33FpI0GYPd9nJvB9uefPLZv9G_xHOS3o6BDHxrm5PS5OTk_JKe8wsh7yxAaOakzcH721xapXLDmMhxnV1KDx4-Hgbz9Vu1fyS_HJfHa-TDKhcm8UNMG25oGXG-RgM3drl1TRo6zE8wkUrWzR1yF3NrMaCPy4PVPFyqpk7_lCXMNELxiZyUb13XveGOImv_v6DmTeQaXc_uQ_JgxIx0Oyn5EVnz3WNyb6cHXHf5hPz6PDI-gBOiez-2v1PcW6WGwtDw1PV_fv72F2O4a0e7FPZNbUzjofPFaY-0Rld-SR1muOAGQKy5pGbUnG_TGwFjD3TmB3NxeeZnFIPDQOq0ozMD9Z-So91Phx_38_F0hdwhpUweGtWGwgZbM-mUa-vgDC44jFG2CnUlWhUsFLEgC1M1xriyZVaEsjZKqUaJZ2S96zv_glDVFEL5SlioIcuytYYZB68vuG25dywjb1edrOeJREMnumSuURU6qiIjO9j_kwQSX8cH_eJEj3akAf_JpnYMcK6TsDayvAUvHAKs6uCeVxnZXGlPj9a41AI32xT43SIjb6ZisCP8OWI635-DTIFnNgG6u00G8CZmbTQqI8_TyJi-VkAfQCOgre_jULmlofrwYI_Hq43_EX5J7oMFyRTgtknWh8W5fwWIaLCv48D_C8lqBm4 priority: 102 providerName: Wiley-Blackwell |
Title | Integrating GWAS with a gene co‐expression network better prioritizes candidate genes associated with root metaxylem phenes in maize |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftpg2.20489 https://www.ncbi.nlm.nih.gov/pubmed/39034891 https://www.proquest.com/docview/3129079900 https://www.proquest.com/docview/3083215150 https://www.proquest.com/docview/3154167497 https://doaj.org/article/324498c1800c4182b2d130ff148c4126 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RLQcuiHcDZWUEJ6SoiePEyQl1UR8gUa2gFb1FtmNXldhk2U2llhMnzvxGfgkzjncBCe0tie3I9oxnPo_HMwCvNELo1Agdo_bXsdBSxipNs5j22bmwqOF9MpgPJ8XxmXh_np8Hg9syuFWuZKIX1E1nyEa-l5HBRKLsTN7Mv8aUNYpOV0MKjS3YRhFcliPYnhycTD-uZHEuq3I4VxYobTLJ1wFK-V4_v6CLWIISvP-lknzk_v_BzX_Rq1c_h_fgbsCNbH8g9H24ZdsHcHvSIba7eQg_3oWoD6iI2NHn_U-M7KtMMWQPy0z36_tPex1cXlvWDq7fTPurPGy-uOwotNE3u2SGbrmQEcC3XDIVqGeb4Y-Is3s2s726vvliZ4wcxLDWZctmCts_grPDg9O3x3HIsBAbCisTu0o2LtFOl6kw0jSlM4o2HUpJXbiyyBrpNBalTiSqqJQyeZPqzOWlklJWMnsMo7Zr7Q4wWSWZtEWmsYXI80arVBn8fcJ1w61JI3i5muR6PgTSqIeQybwmUtSeFBFMaP7XNSj4tf_QLS7qsJZqxICiKk2KWNcI3B9p3qAmdg53dvjOiwh2V9Srw4pc1n_4J4IX62JcS3RAolrbXWGdhPI2IcLbVAcxJ93cqGQETwbOWPc2wznAQeBYX3tW2TDQ-nR6xP3T0829fQZ3cN2Iwa1tF0b94so-RxzU6zFscTEdB5Yfe2vCbzlgCMU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLRJcEG8CBYyAC1LUxHHi5IBQF9ru0nZVwVb0FmzHqSqxybKbii4nTpz5JfwofgkzeSwgob31lodt-TGe-caeB8AzjRDaN0K7KP21K7SUrvL9wCU9OxQWJXydDOZgFA2OxNvj8HgNfna-MGRW2fHEmlFnpaEz8s2ADkwk8k7v1fSzS1mj6Ha1S6HRkMWeXXxBlW3-cvgG1_c55zvb49cDt80q4BoKpeLmicxyT-c69oWRJotzowhoKyV1lMdRkMlc4y8_F56KEqVMmPk6yMNYSSkTGWC7l2BdBJHHe7De3x4dvut4fyiTuLnHFsjdAsmXAVH5ZjU9IccvQQnl_xKBdaaA_8Hbf9FyLe52rsO1FqeyrYawbsCaLW7C5X6JWHJxC74P2ygTKPjY7oet94zOc5liSI6WmfLXtx_2vDWxLVjRmJozXbsOsenstKRQSl_tnBnyqqFDh7rmnKmWWmzWtIi4vmITW6nzxSc7YWSQhqVOCzZRWP82HF3I3N-BXlEW9h4wmXiBtFGgsYYIw0wrXxls3uM649b4DjztJjmdNoE70iZEM09pKdJ6KRzo0_wvS1Cw7fpDOTtJ272bIuYUSWx8xNZGoD6meYaSP89Rk8R3Hjmw0a1e2nKAefqHXh14svyNe5cuZFRhyzMs41GeKESUq8ogxiVPkUQ6cLehjGVvA5wDHASO9UVNKisGmo4Pd3n9dH91bx_DlcH4YD_dH472HsBV3LOiManbgF41O7MPEYNV-lFL-Aw-XvRe-w2HlEUS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VFCEuiDdbChgBF6RV9uFd7x4QamjThkIUQav2ttheu6rU7IYkFQ0nTpz5Pfwcfgkz-wggodx6y2Zta23P4xt7HgDPFUJoX3PlovZXLldCuNL3Q5fs7Igb1PBVMZj3w3jvkL89jo7X4GcbC0Nula1MrAR1Xmo6I--GdGAiUHZ6Xdu4RYy2-68nn12qIEU3rW05jZpE9s3iC5pvs1eDbdzrF0HQ3zl4s-c2FQZcTWlVXJuK3HrKqsTnWug8sVoS6JZSqNgmcZgLq_CVb7kn41RKHeW-Cm2USCFEKkIc9wqsC7KKOrDe2xmOPrR6IBJpUt9pc5R0oQiWyVGD7nxyQkFgnIrL_6UOq6oB_4O6_yLnSvX1b8KNBrOyrZrIbsGaKW7D1V6JuHJxB74PmowTqATZ7tHWR0Znu0wyJE3DdPnr2w9z0bjbFqyo3c6ZqsKI2GR6WlJapa9mxjRF2NABRNVzxmRDOSavR0SMP2djM5cXizMzZuSchq1OCzaW2P8uHF7K2t-DTlEW5gEwkXqhMHGosAePolxJX2oc3gtUHhjtO_CsXeRsUifxyOp0zUFGW5FVW-FAj9Z_2YISb1d_lNOTrOHjDPEnTxPtI87WHG0zFeSIAqxFqxKfg9iBzXb3skYazLI_tOvA0-Vr5GO6nJGFKc-xjUc1oxBdrmqDeJeiRlLhwP2aMpZfG-Ia4CRwri8rUlkx0exgtBtUvzZWf-0TuIY8lr0bDPcfwnVkX157121CZz49N48Qjs3V44buGXy6bFb7DYY5SUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+GWAS+with+a+gene+co-expression+network+better+prioritizes+candidate+genes+associated+with+root+metaxylem+phenes+in+maize&rft.jtitle=The+plant+genome&rft.au=Klein%2C+Stephanie+P&rft.au=Kaeppler%2C+Shawn+M&rft.au=Brown%2C+Kathleen+M&rft.au=Lynch%2C+Jonathan+P&rft.date=2024-09-01&rft.eissn=1940-3372&rft.volume=17&rft.issue=3&rft.spage=e20489&rft_id=info:doi/10.1002%2Ftpg2.20489&rft_id=info%3Apmid%2F39034891&rft.externalDocID=39034891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-3372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-3372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-3372&client=summon |