Integrating GWAS with a gene co‐expression network better prioritizes candidate genes associated with root metaxylem phenes in maize

Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pi...

Full description

Saved in:
Bibliographic Details
Published inThe plant genome Vol. 17; no. 3; pp. e20489 - n/a
Main Authors Klein, Stephanie P., Kaeppler, Shawn M., Brown, Kathleen M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Core Ideas Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience. A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes. The best candidates are likely those with relevant functional roles and genes “essential” to network function. Plain Language Summary Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals.
AbstractList Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize ( Zea mays ), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience. A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes. The best candidates are likely those with relevant functional roles and genes “essential” to network function. Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals.
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Abstract Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome‐wide association study (GWAS) of root metaxylem phenes under well‐watered and water‐stress conditions with a gene co‐expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co‐expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well‐watered and water‐stress conditions. We posit that candidate genes that are more essential to network function based on gene co‐expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals. Core Ideas Root metaxylem phenotypes are an under‐explored target for crop improvement for drought resilience. A traditional genome‐wide association study (GWAS) paired with a gene co‐expression network found candidate genes underlying root metaxylem phenes. The best candidates are likely those with relevant functional roles and genes “essential” to network function. Plain Language Summary Drought stress is a primary limitation to global crop production and is projected to worsen in the coming decades. A better understanding of how plants regulate water transport and use may open avenues toward more drought‐tolerant crops. In this study, we demonstrate a new strategy for identifying genes associated with water transport in corn and present several gene candidates that may enhance our understanding of water transport and drought tolerance in corn and other cereals.
Author Brown, Kathleen M.
Kaeppler, Shawn M.
Klein, Stephanie P.
Lynch, Jonathan P.
Author_xml – sequence: 1
  givenname: Stephanie P.
  orcidid: 0000-0003-4450-6057
  surname: Klein
  fullname: Klein, Stephanie P.
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Shawn M.
  orcidid: 0000-0002-5964-1668
  surname: Kaeppler
  fullname: Kaeppler, Shawn M.
  organization: University of Wisconsin
– sequence: 3
  givenname: Kathleen M.
  orcidid: 0000-0002-4960-5292
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: The Pennsylvania State University
– sequence: 4
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39034891$$D View this record in MEDLINE/PubMed
BookMark eNqFksuKFDEYhQsZcS668QEk4EaEHnOrSrIcBm0bBhQccRlSqaQmbVXSJml62pUr1z6jT2K6ahzEha6SP_nO-XM5p9WRD95U1VMEzxGE-FXe9PgcQ8rFg-oECQoXhDB89Mf8uDpNaQ1hzQSnj6pjIiApODqpvq98Nn1U2fkeLD9dfAA7l2-AAr3xBujw89sPc7uJJiUXPPAm70L8DFqTs4lgE12ILruvJgGtfOc6lc2kTEClFLQrdTc7xhAyGE1Wt_vBjGBzM1HOg1EV_ePqoVVDMk_uxrPq45vX15dvF1fvlqvLi6uFpjUSCytYZ2FrW46oZrrjViuIa6QUaxvLG9Ix25YtZClUjVBK1x1qia25YowJRs6q1ezbBbWW5fyjinsZlJPTQoi9VDE7PRhJMKWCa8Qh1BRx3OIOEWgtorzUuCleL2avTQxftiZlObqkzTAob8I2SYJqihpGp7b_QSEnGNWohgV9_he6Dtvoy6MUQywgEwIeqGd31LYdTXd_k98fW4CXM6BjSCkae48gKA-pkYfUyCk1BUYzvHOD2f-DlNfvl3jW_AJy3MSS
Cites_doi 10.1105/tpc.105.031302
10.1126/science.1251423
10.1089/cmb.2008.04TT
10.1038/ncomms12767
10.1016/j.pbi.2008.03.002
10.1002/j.1537‐2197.1995.tb11581.x
10.1016/S0305‐1978(98)00068‐4
10.1186/2193‐9772‐3‐10
10.1093/bioinformatics/bts444
10.1105/tpc.18.00755
10.4161/psb.4.8.9231
10.1038/s41477‐020‐0684‐5
10.1007/s11103‐013‐0033‐4
10.1104/pp.15.00187
10.1038/ng.2725
10.1046/j.1365‐313X.1995.08010037.x
10.1126/science.1204531
10.1242/dev.159202
10.1046/j.1469‐8137.2000.00775.x
10.1104/pp.19.00752
10.1007/978-3-319-24277-4
10.1071/FP05043
10.2136/vzj2017.05.0107
10.1071/AR9890943
10.1371/journal.pone.0156362
10.1104/pp.19.01183
10.1073/pnas.0812346106
10.3389/fpls.2023.1050313
10.1093/nar/gkq310
10.1104/pp.114.249037
10.1007/s00122‐023‐04376‐0
10.1093/jxb/eru162
10.1093/jxb/erz271
10.3835/plantgenome2015.04.0025
10.1002/pld3.130
10.1093/jxb/ers150
10.1007/s11104-015-2554-x
10.1105/tpc.16.00182
10.1186/1471‐2105‐9‐559
10.1016/j.bbagrm.2016.07.016
10.1101/2023.04.24.538142
10.1016/j.fcr.2014.03.017
10.1093/aob/mct069
10.1016/j.tig.2004.04.008
10.1186/s12864‐019‐5992‐7
10.1093/jxb/eraa084
10.1007/978-0-387-79418-1_8
10.1093/bioinformatics/btq430
10.1111/tpj.15560
10.1002/csc2.20241
10.1105/tpc.113.119982
10.1007/s11104‐021‐05010‐y
10.1093/jxb/err139
10.1104/pp.124.2.495
10.1093/jxb/ery048
10.1093/jxb/ers287
10.1016/j.envexpbot.2019.103962
10.1078/1433‐8319‐00017
10.1111/pce.13683
10.1111/j.1365-3040.1994.tb02021.x
10.1016/S1369‐5266(00)00122‐9
10.1007/s004250000412
10.1074/jbc.M111.233494
10.1104/pp.108.130682
10.1104/pp.114.253328
10.1093/pcp/pct198
10.1007/978-3-642-32653-0_3
10.1371/journal.pcbi.0030059
10.1105/tpc.11.2.207
10.1093/nar/gky1046
10.1626/pps.16.1
10.1093/jxb/erv232
10.1104/pp.20.00211
10.2135/cropsci2010.03.0178
10.1186/s12870‐019‐1653‐x
10.1093/jxb/erw243
10.1007/s11738-013-1355-1
10.1038/35075138
10.1534/g3.119.400549
10.3389/fpls.2013.00442
10.2351/1.5096089
10.1104/pp.106.086223
10.1111/nph.15738
10.1007/s00299‐013‐1420‐7
10.1007/s11104‐010‐0623‐8
10.1038/nclimate1633
10.1105/tpc.18.00299
10.1104/pp.17.00500
10.1038/nature22971
10.1111/j.1469‐8137.2010.03593.x
10.1093/jxb/ers111
10.1146/annurev.arplant.47.1.445
10.1199/tab.0166
10.1534/genetics.114.167916
10.1104/pp.114.250449
10.1111/nph.13383
10.3389/fpls.2020.00570
10.1073/pnas.0337628100
10.1007/s11103‐014‐0251‐4
10.3390/agronomy11112335
10.1016/j.fcr.2014.10.009
10.3389/fpls.2013.00355
10.1002/tpg2.20003
10.1093/aob/mcs293
10.1071/FPv41n11_FO
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
– notice: 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOA
DOI 10.1002/tpg2.20489
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE - Academic


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1940-3372
EndPage n/a
ExternalDocumentID oai_doaj_org_article_324498c1800c4182b2d130ff148c4126
39034891
10_1002_tpg2_20489
TPG220489
Genre article
Journal Article
GrantInformation_xml – fundername: Howard G Buffett Foundation
– fundername: Cooperative State Research, Education, and Extension Service
  funderid: 4732
– fundername: National Institute of Food and Agriculture
  funderid: 2017‐67013‐26192
– fundername: Cooperative State Research, Education, and Extension Service
  grantid: 4732
– fundername: National Institute of Food and Agriculture
  grantid: 2017-67013-26192
GroupedDBID .~0
0R~
123
18M
1OC
24P
5VS
6KN
AAHBH
AAHHS
ACAWQ
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
EBS
ECGQY
EJD
FRP
GROUPED_DOAJ
H13
HCIFZ
IAO
IPNFZ
ITC
KQ8
M7P
MV1
M~E
NHAZY
O9-
OK1
PIMPY
RIG
TR2
WIN
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c4519-f97df0bfb814c7cd8fca0251aa7b6f863d7fb14c1f40a69aac5d1b3f58a777973
IEDL.DBID BENPR
ISSN 1940-3372
IngestDate Wed Aug 27 01:08:48 EDT 2025
Fri Jul 11 17:32:07 EDT 2025
Tue Aug 05 10:41:39 EDT 2025
Wed Aug 13 11:05:20 EDT 2025
Mon Jul 21 06:02:06 EDT 2025
Tue Jul 01 02:10:39 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4519-f97df0bfb814c7cd8fca0251aa7b6f863d7fb14c1f40a69aac5d1b3f58a777973
Notes Assigned to Associate Editor Jianming Yu.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4450-6057
0000-0002-5964-1668
0000-0002-4960-5292
0000-0002-7265-9790
OpenAccessLink https://www.proquest.com/docview/3129079900?pq-origsite=%requestingapplication%
PMID 39034891
PQID 3129079900
PQPubID 5069926
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_324498c1800c4182b2d130ff148c4126
proquest_miscellaneous_3154167497
proquest_miscellaneous_3083215150
proquest_journals_3129079900
pubmed_primary_39034891
crossref_primary_10_1002_tpg2_20489
wiley_primary_10_1002_tpg2_20489_TPG220489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Madison
PublicationTitle The plant genome
PublicationTitleAlternate Plant Genome
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1989; 40
2004; 20
2013; 3
2013; 4
2011; 62
2010; 341
2014; 26
2019; 19
2020; 13
2020; 11
2018; 47
2010; 26
2010; 1
2019; 20
2000; 124
2020; 171
2013; 112
2018; 30
2012; 28
2007; 3
2009; 16
2001; 411
2010; 9
2019; 9
2010; 38
2019; 3
2019; 31
1999; 27
2019; 223
1992
1991
2014; 41
1995; 8
2016; 11
2016; 7
2015; 199
2015; 66
2013; 82
2014a; 166
1994; 17
2016; 28
2022; 109
2005; 17
2003; 100
2016; 9
2017; 546
2009; 106
2000; 3
2020; 60
2017; 1860
2008; 9
2000; 211
2014; 65
2015; 171
2020; 6
2014; 3
2013; 16
2013; 11
1999; 11
2023; 136
2005; 32
2020; 43
2014; 165
2014; 55
2012; 64
2011; 286
2012; 63
2011; 333
2019; 70
2023; 14
2012
2015; 168
2021; 466
2013; 45
2015; 167
2018; 145
2020; 182
2020; 183
2009
2017; 174
2015; 207
2008; 11
2018; 69
2014b; 166
2014; 86
1995; 82
2021; 11
2023
2013; 32
2013; 35
2000; 148
2001; 4
2020
2017; 16
2020; 71
2015; 397
2011; 51
1963
2006; 142
2016
2006; 1695
2009; 4
2013
1996; 47
2011; 189
2016; 67
2009; 149
2014; 344
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
Berker R. (e_1_2_9_5_1) 1963
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Csardi G. (e_1_2_9_15_1) 2006; 1695
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
R Core Team (e_1_2_9_78_1) 2020
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
Abd Allah A. A. (e_1_2_9_2_1) 2010; 1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
Zhu J. (e_1_2_9_114_1) 2010; 9
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
IPCC (e_1_2_9_43_1) 2013
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Fehr W. (e_1_2_9_22_1) 1991
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 51
  start-page: 704
  year: 2011
  end-page: 715
  article-title: Genetic diversity of a maize association population with restricted phenology
  publication-title: Crop Science
– start-page: 63
  year: 2012
  end-page: 109
– volume: 62
  start-page: 4239
  year: 2011
  end-page: 4252
  article-title: A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea
  publication-title: Journal of Experimental Botany
– volume: 65
  start-page: 6155
  year: 2014
  end-page: 6166
  article-title: Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement
  publication-title: Journal of Experimental Botany
– volume: 11
  year: 2013
  article-title: Abscisic acid synthesis and response
  publication-title: Arabidopsis Book
– start-page: 145
  year: 2009
  end-page: 160
– volume: 82
  start-page: 39
  year: 2013
  end-page: 50
  article-title: OsSNDP1, a Sec14‐nodulin domain‐containing protein, plays a critical role in root hair elongation in rice
  publication-title: Plant Molecular Biology
– volume: 397
  start-page: 213
  year: 2015
  end-page: 225
  article-title: Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water‐stressed field conditions
  publication-title: Plant and Soil
– volume: 26
  start-page: 2347
  year: 2010
  end-page: 2348
  article-title: Cytoscape web: An interactive web‐based network browser
  publication-title: Bioinformatics
– volume: 1695
  start-page: 1
  year: 2006
  end-page: 9
  article-title: The igraph software package for complex network research
  publication-title: InterJournal, Complex Systems
– volume: 333
  start-page: 616
  year: 2011
  end-page: 620
  article-title: Climate trends and global crop production since 1980
  publication-title: Science
– volume: 86
  start-page: 609
  year: 2014
  end-page: 625
  article-title: Arabidopsis drought‐induced protein Di19‐3 participates in plant response to drought and high salinity stresses
  publication-title: Plant Molecular Biology
– volume: 16
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Root water uptake and ideotypes of the root system: Whole‐plant controls matter
  publication-title: Vadose Zone Journal
– volume: 100
  start-page: 1450
  year: 2003
  end-page: 1455
  article-title: Interactions among three distinct CesA proteins essential for cellulose synthesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 3023
  year: 2019
  end-page: 3033
  article-title: Transcriptome‐wide association supplements genome‐wide association in
  publication-title: G3
– volume: 136
  start-page: 127
  year: 2023
  article-title: Mining genes regulating root system architecture in maize based on data integration analysis
  publication-title: Theoretical and Applied Genetics
– volume: 4
  start-page: 655
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
– volume: 11
  start-page: 207
  year: 1999
  end-page: 221
  article-title: The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C‐5 desaturation step leading to brassinosteroid biosynthesis
  publication-title: The Plant Cell
– volume: 14
  year: 2023
  article-title: Identification of QTN‐by‐environment interactions for yield related traits in maize under multiple abiotic stresses
  publication-title: Frontiers in Plant Science
– volume: 189
  start-page: 909
  year: 2011
  end-page: 922
  article-title: Association genetics of complex traits in plants: Tansley review
  publication-title: The New Phytologist
– volume: 11
  start-page: 301
  year: 2008
  end-page: 307
  article-title: Unique aspects of the grass cell wall
  publication-title: Current Opinion in Plant Biology
– volume: 8
  start-page: 37
  year: 1995
  end-page: 43
  article-title: An root‐specific kinase homolog is induced by dehydration, ABA, and NaCl
  publication-title: The Plant Journal
– volume: 32
  start-page: 867
  year: 2013
  end-page: 883
  article-title: Hormone interactions in xylem development: A matter of signals
  publication-title: Plant Cell Reports
– volume: 63
  start-page: 3485
  year: 2012
  end-page: 3498
  article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 618
  year: 2019
  article-title: Estimation of a significance threshold for genome‐wide associated studies
  publication-title: BMC Genomics
– volume: 67
  start-page: 4545
  year: 2016
  end-page: 4557
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.)
  publication-title: Journal of Experimental Botany
– volume: 1
  start-page: 83
  year: 2010
  end-page: 87
  article-title: The role of root system traits in the drought tolerance of rice ( L.)
  publication-title: International Journal of Agricultural and Biological Sciences
– volume: 546
  start-page: 524
  year: 2017
  end-page: 527
  article-title: Improved maize reference genome with single‐molecule technologies
  publication-title: Nature
– volume: 174
  start-page: 2302
  year: 2017
  end-page: 2315
  article-title: Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit
  publication-title: Plant Physiology
– volume: 3
  start-page: 123
  year: 2014
  end-page: 140
  article-title: Development and application of MIPAR™: A novel software package for two‐ and three‐dimensional microstructural characterization
  publication-title: Integrating Materials and Manufacturing Innovation
– volume: 211
  start-page: 874
  year: 2000
  end-page: 882
  article-title: Abscisic acid and hydraulic conductivity of maize roots: A study using cell‐ and root‐pressure probes
  publication-title: Planta
– volume: 28
  start-page: 2397
  year: 2012
  end-page: 2399
  article-title: GAPIT: Genome association and prediction integrated tool
  publication-title: Bioinformatics
– volume: 1860
  start-page: 53
  year: 2017
  end-page: 63
  article-title: Unraveling gene function in agricultural species using gene co‐expression networks
  publication-title: Biochimica et Biophysica Acta, Gene Regulatory Mechanisms
– volume: 71
  start-page: 3185
  year: 2020
  end-page: 3197
  article-title: Genetic control of root architectural plasticity in maize
  publication-title: Journal of Experimental Botany
– volume: 466
  start-page: 21
  year: 2021
  end-page: 63
  article-title: Root anatomy and soil resource capture
  publication-title: Plant and Soil
– volume: 69
  start-page: 3279
  year: 2018
  end-page: 3292
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
– start-page: 1535
  year: 2013
– volume: 11
  start-page: 2335
  issue: 11
  year: 2021
  article-title: In silico characterization and expression profiles of heat shock transcription factors (HSFs) in maize ( L.)
  publication-title: Agronomy
– volume: 11
  start-page: 570
  year: 2020
  article-title: Coping with water limitation: Hormones that modify plant root xylem development
  publication-title: Frontiers in Plant Science
– volume: 199
  start-page: 379
  year: 2015
  end-page: 398
  article-title: Marker‐based estimation of heritability in immortal populations
  publication-title: Genetics
– year: 2016
– volume: 149
  start-page: 2000
  year: 2009
  end-page: 2012
  article-title: Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans‐scale approach
  publication-title: Plant Physiology
– year: 1992
– volume: 142
  start-page: 1559
  year: 2006
  end-page: 1573
  article-title: Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis
  publication-title: Plant Physiology
– volume: 47
  start-page: 445
  year: 1996
  end-page: 476
  article-title: Structure and biogenesis of the cell walls of grasses
  publication-title: Annual Reviews in Plant Physiology Plant Molecular Biology
– volume: 31
  start-page: 1094
  year: 2019
  end-page: 1112
  article-title: Glycome and proteome components of golgi membranes are common between two angiosperms with distinct cell‐wall structures
  publication-title: The Plant Cell
– volume: 47
  start-page: 1146
  year: 2018
  end-page: 1154
  article-title: MaizeGDB 2018: The maize multi‐genome genetics and genomics database
  publication-title: Nucleic Acids Research
– volume: 3
  start-page: 517
  year: 2000
  end-page: 522
  article-title: Xylogenesis: The birth of a corpse
  publication-title: Current Opinion in Plant Biology
– volume: 148
  start-page: 459
  year: 2000
  end-page: 471
  article-title: Root tissue structure is linked to ecological strategies of grasses
  publication-title: The New Phytologist
– volume: 35
  start-page: 3201
  year: 2013
  end-page: 3211
  article-title: Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress
  publication-title: Acta Physiologiae Plantarum
– volume: 43
  start-page: 692
  year: 2020
  end-page: 711
  article-title: Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley
  publication-title: Plant, Cell & Environment
– volume: 17
  start-page: 1233
  year: 1994
  end-page: 1241
  article-title: Intra‐ and inter‐plant variation in xylem cavitation in
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 943
  year: 1989
  end-page: 950
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain‐yield in rain‐fed environments
  publication-title: Australian Journal of Agricultural Research
– volume: 286
  start-page: 20020
  year: 2011
  end-page: 20030
  article-title: A novel transcription factor, ERD15 (early responsive to dehydration 15), connects endoplasmic reticulum stress with an osmotic stress‐induced cell death signal
  publication-title: The Journal of Biological Chemistry
– volume: 182
  start-page: 977
  year: 2020
  end-page: 991
  article-title: Shared genetic control of root system architecture between and
  publication-title: Plant Physiology
– volume: 166
  start-page: 2166
  year: 2014a
  end-page: 2178
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 167
  start-page: 1389
  year: 2015
  end-page: 1401
  article-title: Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?
  publication-title: Plant Physiology
– volume: 19
  start-page: 45
  year: 2019
  article-title: Genome‐wide association analysis of stalk biomass and anatomical traits in maize
  publication-title: BMC Plant Biology
– volume: 9
  start-page: 559
  year: 2008
  article-title: WGCNA: An R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
– volume: 182
  start-page: 2154
  year: 2020
  end-page: 2165
  article-title: Modification of the expression of the aquaporin ZmPIP2;5 affects water relations and plant growth
  publication-title: Plant Physiology
– volume: 9
  start-page: 31
  year: 2010
  article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.)
  publication-title: Plant, Cell & Environment
– volume: 106
  start-page: 7648
  year: 2009
  end-page: 7653
  article-title: Three related receptor‐like kinases are required for optimal cell elongation in
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 341
  start-page: 75
  year: 2010
  end-page: 87
  article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field
  publication-title: Plant and Soil
– volume: 3
  year: 2007
  article-title: The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics
  publication-title: PLoS Computational Biology
– volume: 70
  start-page: 5327
  year: 2019
  end-page: 5342
  article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms
  publication-title: Journal of Experimental Botany
– volume: 9
  start-page: 1
  year: 2016
  end-page: 16
  article-title: An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development
  publication-title: The Plant Genome
– volume: 223
  start-page: 548
  year: 2019
  end-page: 564
  article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture
  publication-title: The New Phytologist
– volume: 7
  year: 2016
  article-title: Comparative and parallel genome‐wide association studies for metabolic and agronomic traits in cereals
  publication-title: Nature Communciations
– volume: 112
  start-page: 429
  year: 2013
  end-page: 437
  article-title: Root cortical burden influences drought tolerance in maize
  publication-title: Annals of Botany
– volume: 45
  start-page: 1097
  year: 2013
  end-page: 1102
  article-title: Control of root system architecture by increases rice yield under drought conditions
  publication-title: Nature Genetics
– volume: 55
  start-page: 469
  year: 2014
  end-page: 474
  article-title: Emerging functions of nodulin‐like proteins in non‐nodulating plant species
  publication-title: Plant & Cell Physiology
– volume: 30
  start-page: 2922
  year: 2018
  end-page: 2942
  article-title: Integrating coexpression networks with GWAS to prioritize causal genes in maize
  publication-title: The Plant Cell
– volume: 124
  start-page: 495
  year: 2000
  end-page: 498
  article-title: The cellulose synthase superfamily
  publication-title: Plant Physiology
– volume: 64
  start-page: 11
  year: 2012
  end-page: 31
  article-title: Xylem tissue specification, patterning, and differentiation mechanisms
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 227
  year: 2004
  end-page: 231
  article-title: Genomic analysis of essentiality within protein networks
  publication-title: Trends in Genetics
– volume: 168
  start-page: 1603
  year: 2015
  end-page: 1615
  article-title: Reduced lateral root branching density improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 16
  start-page: 169
  year: 2009
  end-page: 180
  article-title: Bottlenecks and hubs in inferred networks are important for virulence in
  publication-title: Journal of Computational Biology
– volume: 28
  start-page: 1769
  year: 2016
  end-page: 1782
  article-title: Growing out of stress: The role of cell‐ and organ‐scale growth control in plant water‐stress responses
  publication-title: The Plant Cell
– volume: 63
  start-page: 4751
  year: 2012
  end-page: 4763
  article-title: Root attributes affecting water uptake of rice ( ) under drought
  publication-title: Journal of Experimental Botany
– volume: 60
  start-page: 2574
  year: 2020
  end-page: 2593
  article-title: Comparative phenomics of annual grain legume root architecture
  publication-title: Crop Science
– volume: 26
  start-page: 121
  year: 2014
  end-page: 135
  article-title: Insights into the maize pan‐genome and pan‐transcriptome
  publication-title: The Plant Cell
– volume: 27
  start-page: 33
  year: 1999
  end-page: 53
  article-title: The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique
  publication-title: Biochemical Systematics and Ecology
– volume: 66
  start-page: 4643
  year: 2015
  end-page: 4652
  article-title: Stem xylem resistance to cavitation is related to xylem structure but not to growth and water‐use efficiency at the within‐population level in L
  publication-title: Journal of Experimental Botany
– volume: 109
  start-page: 415
  year: 2022
  end-page: 431
  article-title: Harnessing root architecture to address global challenges
  publication-title: The Plant Journal
– volume: 3
  year: 2019
  article-title: Multivariate analyses of root phenotype and dynamic transcriptome underscore valuable root traits and water‐deficit responsive gene networks in maize
  publication-title: Plant Direct
– volume: 183
  start-page: 1011
  year: 2020
  end-page: 1025
  article-title: Multiple integrated root phenotypes are associated with improved drought tolerance
  publication-title: Plant Physiology
– volume: 17
  start-page: 2473
  year: 2005
  end-page: 2485
  article-title: The evolutionarily conserved TOUGH protein is required for proper development of
  publication-title: The Plant Cell
– volume: 13
  year: 2020
  article-title: Genetic control of root anatomical plasticity in maize
  publication-title: The Plant Genome
– volume: 6
  start-page: 744
  year: 2020
  end-page: 749
  article-title: Root architecture and hydraulics converge for acclimation to changing water availability
  publication-title: Nature Plants
– volume: 82
  start-page: 1112
  year: 1995
  end-page: 1116
  article-title: Estimating volume flow rates through xylem conduits
  publication-title: American Journal of Botany
– volume: 171
  start-page: 86
  year: 2015
  end-page: 98
  article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.)
  publication-title: Field Crops Research
– volume: 165
  start-page: 15
  year: 2014
  end-page: 24
  article-title: Root hydraulics: The forgotten side of roots in drought adaptation
  publication-title: Field Crops Research
– volume: 145
  year: 2018
  article-title: Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165
  publication-title: Development
– volume: 207
  start-page: 519
  year: 2015
  end-page: 535
  article-title: Xylem development—from the cradle to the grave
  publication-title: The New Phytologist
– volume: 11
  year: 2016
  article-title: Global Synthesis of Drought Effects on Maize and Wheat Production
  publication-title: PloS One
– volume: 31
  year: 2019
  article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique
  publication-title: Journal of Laser Applications
– volume: 16
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Root anatomical traits and their possible contribution to drought tolerance in grain legumes
  publication-title: Plant Production Science
– volume: 41
  start-page: v
  year: 2014
  end-page: vi
  article-title: Developing drought tolerant crops: Hopes and challenges in an exciting journey
  publication-title: Functional Plant Biology
– volume: 344
  start-page: 516
  year: 2014
  end-page: 519
  article-title: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest
  publication-title: Science
– year: 1963
– volume: 4
  start-page: 784
  year: 2009
  end-page: 786
  article-title: A family of receptor‐like kinases are regulated by BES1 and involved in plant growth in
  publication-title: Plant Signaling & Behavior
– volume: 4
  start-page: 442
  year: 2013
  article-title: Root traits contributing to plant productivity under drought
  publication-title: Frontiers in Plant Science
– volume: 171
  year: 2020
  article-title: Yield‐related phenotypic traits of drought resistant maize genotypes
  publication-title: Environmental and Experimental Botany
– year: 2020
– year: 2023
– volume: 166
  start-page: 1943
  year: 2014b
  end-page: 1955
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 4
  start-page: 97
  year: 2001
  end-page: 115
  article-title: Functional and ecological xylem anatomy
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 38
  start-page: W64
  year: 2010
  end-page: W70
  article-title: agriGO: A GO analysis toolkit for the agricultural community
  publication-title: Nucleic Acids Research
– year: 1991
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 32
  start-page: 737
  year: 2005
  end-page: 748
  article-title: Root architectural tradeoffs for water and phosphorus acquisition
  publication-title: Functional Plant Biology
– volume: 411
  start-page: 41
  year: 2001
  end-page: 42
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
– ident: e_1_2_9_7_1
  doi: 10.1105/tpc.105.031302
– ident: e_1_2_9_58_1
  doi: 10.1126/science.1251423
– ident: e_1_2_9_69_1
  doi: 10.1089/cmb.2008.04TT
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms12767
– start-page: 1535
  volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_9_43_1
– ident: e_1_2_9_102_1
  doi: 10.1016/j.pbi.2008.03.002
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: e_1_2_9_78_1
– ident: e_1_2_9_55_1
  doi: 10.1002/j.1537‐2197.1995.tb11581.x
– ident: e_1_2_9_90_1
  doi: 10.1016/S0305‐1978(98)00068‐4
– ident: e_1_2_9_91_1
  doi: 10.1186/2193‐9772‐3‐10
– ident: e_1_2_9_57_1
  doi: 10.1093/bioinformatics/bts444
– volume-title: Principles of cultivar development: Theory and technique
  year: 1991
  ident: e_1_2_9_22_1
– ident: e_1_2_9_71_1
  doi: 10.1105/tpc.18.00755
– ident: e_1_2_9_29_1
  doi: 10.4161/psb.4.8.9231
– volume: 1695
  start-page: 1
  year: 2006
  ident: e_1_2_9_15_1
  article-title: The igraph software package for complex network research
  publication-title: InterJournal, Complex Systems
– ident: e_1_2_9_67_1
  doi: 10.1038/s41477‐020‐0684‐5
– ident: e_1_2_9_40_1
  doi: 10.1007/s11103‐013‐0033‐4
– ident: e_1_2_9_111_1
  doi: 10.1104/pp.15.00187
– ident: e_1_2_9_98_1
  doi: 10.1038/ng.2725
– ident: e_1_2_9_41_1
  doi: 10.1046/j.1365‐313X.1995.08010037.x
– ident: e_1_2_9_59_1
  doi: 10.1126/science.1204531
– ident: e_1_2_9_80_1
  doi: 10.1242/dev.159202
– ident: e_1_2_9_103_1
  doi: 10.1046/j.1469‐8137.2000.00775.x
– ident: e_1_2_9_113_1
  doi: 10.1104/pp.19.00752
– ident: e_1_2_9_106_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_9_37_1
  doi: 10.1071/FP05043
– ident: e_1_2_9_95_1
  doi: 10.2136/vzj2017.05.0107
– ident: e_1_2_9_81_1
  doi: 10.1071/AR9890943
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.pone.0156362
– ident: e_1_2_9_20_1
  doi: 10.1104/pp.19.01183
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.0812346106
– ident: e_1_2_9_105_1
  doi: 10.3389/fpls.2023.1050313
– volume-title: Intégration des équations du mouvement d'un fluide visqueux incompressible: Handbuch der Physik
  year: 1963
  ident: e_1_2_9_5_1
– ident: e_1_2_9_21_1
  doi: 10.1093/nar/gkq310
– ident: e_1_2_9_11_1
  doi: 10.1104/pp.114.249037
– ident: e_1_2_9_34_1
  doi: 10.1007/s00122‐023‐04376‐0
– ident: e_1_2_9_65_1
  doi: 10.1093/jxb/eru162
– ident: e_1_2_9_94_1
  doi: 10.1093/jxb/erz271
– ident: e_1_2_9_93_1
  doi: 10.3835/plantgenome2015.04.0025
– ident: e_1_2_9_112_1
  doi: 10.1002/pld3.130
– ident: e_1_2_9_35_1
  doi: 10.1093/jxb/ers150
– ident: e_1_2_9_56_1
  doi: 10.1007/s11104-015-2554-x
– ident: e_1_2_9_23_1
  doi: 10.1105/tpc.16.00182
– ident: e_1_2_9_54_1
  doi: 10.1186/1471‐2105‐9‐559
– ident: e_1_2_9_86_1
  doi: 10.1016/j.bbagrm.2016.07.016
– ident: e_1_2_9_25_1
  doi: 10.1101/2023.04.24.538142
– ident: e_1_2_9_99_1
  doi: 10.1016/j.fcr.2014.03.017
– ident: e_1_2_9_44_1
  doi: 10.1093/aob/mct069
– ident: e_1_2_9_108_1
  doi: 10.1016/j.tig.2004.04.008
– ident: e_1_2_9_49_1
  doi: 10.1186/s12864‐019‐5992‐7
– ident: e_1_2_9_88_1
  doi: 10.1093/jxb/eraa084
– ident: e_1_2_9_38_1
  doi: 10.1007/978-0-387-79418-1_8
– volume: 9
  start-page: 31
  year: 2010
  ident: e_1_2_9_114_1
  article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
  publication-title: Plant, Cell & Environment
– ident: e_1_2_9_60_1
  doi: 10.1093/bioinformatics/btq430
– ident: e_1_2_9_64_1
  doi: 10.1111/tpj.15560
– ident: e_1_2_9_6_1
  doi: 10.1002/csc2.20241
– ident: e_1_2_9_36_1
  doi: 10.1105/tpc.113.119982
– ident: e_1_2_9_66_1
  doi: 10.1007/s11104‐021‐05010‐y
– ident: e_1_2_9_110_1
  doi: 10.1093/jxb/err139
– ident: e_1_2_9_3_1
– ident: e_1_2_9_82_1
  doi: 10.1104/pp.124.2.495
– ident: e_1_2_9_62_1
  doi: 10.1093/jxb/ery048
– ident: e_1_2_9_89_1
  doi: 10.1093/jxb/ers287
– ident: e_1_2_9_74_1
  doi: 10.1016/j.envexpbot.2019.103962
– ident: e_1_2_9_30_1
  doi: 10.1078/1433‐8319‐00017
– ident: e_1_2_9_72_1
  doi: 10.1111/pce.13683
– ident: e_1_2_9_92_1
  doi: 10.1111/j.1365-3040.1994.tb02021.x
– ident: e_1_2_9_83_1
  doi: 10.1016/S1369‐5266(00)00122‐9
– ident: e_1_2_9_39_1
  doi: 10.1007/s004250000412
– ident: e_1_2_9_4_1
  doi: 10.1074/jbc.M111.233494
– ident: e_1_2_9_73_1
  doi: 10.1104/pp.108.130682
– ident: e_1_2_9_48_1
  doi: 10.1104/pp.114.253328
– ident: e_1_2_9_18_1
  doi: 10.1093/pcp/pct198
– ident: e_1_2_9_101_1
  doi: 10.1007/978-3-642-32653-0_3
– ident: e_1_2_9_109_1
  doi: 10.1371/journal.pcbi.0030059
– ident: e_1_2_9_13_1
  doi: 10.1105/tpc.11.2.207
– ident: e_1_2_9_75_1
  doi: 10.1093/nar/gky1046
– ident: e_1_2_9_76_1
  doi: 10.1626/pps.16.1
– volume: 1
  start-page: 83
  year: 2010
  ident: e_1_2_9_2_1
  article-title: The role of root system traits in the drought tolerance of rice (Oryza sativa L.)
  publication-title: International Journal of Agricultural and Biological Sciences
– ident: e_1_2_9_27_1
  doi: 10.1093/jxb/erv232
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.20.00211
– ident: e_1_2_9_33_1
  doi: 10.2135/cropsci2010.03.0178
– ident: e_1_2_9_68_1
  doi: 10.1186/s12870‐019‐1653‐x
– ident: e_1_2_9_26_1
  doi: 10.1093/jxb/erw243
– ident: e_1_2_9_19_1
  doi: 10.1007/s11738-013-1355-1
– ident: e_1_2_9_45_1
  doi: 10.1038/35075138
– ident: e_1_2_9_52_1
  doi: 10.1534/g3.119.400549
– ident: e_1_2_9_14_1
  doi: 10.3389/fpls.2013.00442
– ident: e_1_2_9_32_1
  doi: 10.2351/1.5096089
– ident: e_1_2_9_50_1
  doi: 10.1104/pp.106.086223
– ident: e_1_2_9_63_1
  doi: 10.1111/nph.15738
– ident: e_1_2_9_70_1
  doi: 10.1007/s00299‐013‐1420‐7
– ident: e_1_2_9_97_1
  doi: 10.1007/s11104‐010‐0623‐8
– ident: e_1_2_9_16_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_9_85_1
  doi: 10.1105/tpc.18.00299
– ident: e_1_2_9_47_1
  doi: 10.1104/pp.17.00500
– ident: e_1_2_9_46_1
  doi: 10.1038/nature22971
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1469‐8137.2010.03593.x
– ident: e_1_2_9_104_1
  doi: 10.1093/jxb/ers111
– ident: e_1_2_9_8_1
  doi: 10.1146/annurev.arplant.47.1.445
– ident: e_1_2_9_24_1
  doi: 10.1199/tab.0166
– ident: e_1_2_9_53_1
  doi: 10.1534/genetics.114.167916
– ident: e_1_2_9_10_1
  doi: 10.1104/pp.114.250449
– ident: e_1_2_9_84_1
  doi: 10.1111/nph.13383
– ident: e_1_2_9_79_1
  doi: 10.3389/fpls.2020.00570
– ident: e_1_2_9_96_1
  doi: 10.1073/pnas.0337628100
– ident: e_1_2_9_77_1
  doi: 10.1007/s11103‐014‐0251‐4
– ident: e_1_2_9_31_1
  doi: 10.3390/agronomy11112335
– ident: e_1_2_9_12_1
  doi: 10.1016/j.fcr.2014.10.009
– ident: e_1_2_9_107_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_9_87_1
  doi: 10.1002/tpg2.20003
– ident: e_1_2_9_61_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_9_100_1
  doi: 10.1071/FPv41n11_FO
SSID ssj0057984
Score 2.310056
Snippet Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the...
Abstract Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e20489
SubjectTerms Abiotic stress
Abscisic acid
Biosynthesis
Cell walls
Cellular stress response
Cereals
Corn
Crops
Drought
Droughts
Gene Expression Regulation, Plant
Gene loci
Gene Regulatory Networks
genes
Genes, Plant
Genetic diversity
Genome-wide association studies
Genome-Wide Association Study
Genomes
Hydraulics
Magnoliopsida
Oxidative stress
Phenotype
Phenotypes
Plant Roots - genetics
Production increases
Rice
Sorghum
Water
water stress
Xylem
Xylem - genetics
Xylem - metabolism
Zea mays
Zea mays - genetics
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA8iHryIurrWjyWLnhaKTZs27VGXVXdBEVbRW0jSRARf-3ivgnry5Nm_0b_EmaTv4cKiF29t80GSSTK_SSe_IWRHA4RmhusYtL-OuRYiVoxlMdrZObeg4X0wmOOT4uic_7nML9-E-kKfsEAPHAZuFxQ-r0rDANgYDmBYpzVsu84BjIf31JNtg86bGFNhD85FVfIpGWm62w2v8NIVx2Dub9SPZ-n_H7T8F6l6VXOwSBZ6jEj3QtuWyIxtlsncfgs47v4LefrdMzyA0qGHF3t_KZ6lUkVhKlhq2pfHZ3vXu7c2tAlu3lT7azt0OLpukcbowY6pwRstaPD7kmOqeknZOtQImLqjA9upu_sbO6DoDAa5rhs6UFB-hZwf_Dr7eRT30RRigxQysatE7RLtdMm4EaYunVFoYCgldOHKIquF05DEHE9UUSll8prpzOWlEkJUIlsls03b2DVCRZVkwhaZhhI8z2utmDJQfZLqOrWGRWR7MshyGEgzZKBHTiWKQnpRRGQfx3-aA4mu_QcQv-zFLz8Sf0Q2J9KT_eobywwP1wTo2SQi36fJsG7wZ4hqbHsLeRKM0QRo7r08gC_xlkYlIvI1zIxpazMYA-gE9PWHnyrvdFSenR6m_mn9M7q8QeZhJfHg6LZJZrvRrd0CZNTpb34RvALDuQpU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9z-uCL-G3nlIg-CWXNR5sWfNnEbQrKwA33FpI0GYPd9nJvB9uefPLZv9G_xHOS3o6BDHxrm5PS5OTk_JKe8wsh7yxAaOakzcH721xapXLDmMhxnV1KDx4-Hgbz9Vu1fyS_HJfHa-TDKhcm8UNMG25oGXG-RgM3drl1TRo6zE8wkUrWzR1yF3NrMaCPy4PVPFyqpk7_lCXMNELxiZyUb13XveGOImv_v6DmTeQaXc_uQ_JgxIx0Oyn5EVnz3WNyb6cHXHf5hPz6PDI-gBOiez-2v1PcW6WGwtDw1PV_fv72F2O4a0e7FPZNbUzjofPFaY-0Rld-SR1muOAGQKy5pGbUnG_TGwFjD3TmB3NxeeZnFIPDQOq0ozMD9Z-So91Phx_38_F0hdwhpUweGtWGwgZbM-mUa-vgDC44jFG2CnUlWhUsFLEgC1M1xriyZVaEsjZKqUaJZ2S96zv_glDVFEL5SlioIcuytYYZB68vuG25dywjb1edrOeJREMnumSuURU6qiIjO9j_kwQSX8cH_eJEj3akAf_JpnYMcK6TsDayvAUvHAKs6uCeVxnZXGlPj9a41AI32xT43SIjb6ZisCP8OWI635-DTIFnNgG6u00G8CZmbTQqI8_TyJi-VkAfQCOgre_jULmlofrwYI_Hq43_EX5J7oMFyRTgtknWh8W5fwWIaLCv48D_C8lqBm4
  priority: 102
  providerName: Wiley-Blackwell
Title Integrating GWAS with a gene co‐expression network better prioritizes candidate genes associated with root metaxylem phenes in maize
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftpg2.20489
https://www.ncbi.nlm.nih.gov/pubmed/39034891
https://www.proquest.com/docview/3129079900
https://www.proquest.com/docview/3083215150
https://www.proquest.com/docview/3154167497
https://doaj.org/article/324498c1800c4182b2d130ff148c4126
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RLQcuiHcDZWUEJ6SoiePEyQl1UR8gUa2gFb1FtmNXldhk2U2llhMnzvxGfgkzjncBCe0tie3I9oxnPo_HMwCvNELo1Agdo_bXsdBSxipNs5j22bmwqOF9MpgPJ8XxmXh_np8Hg9syuFWuZKIX1E1nyEa-l5HBRKLsTN7Mv8aUNYpOV0MKjS3YRhFcliPYnhycTD-uZHEuq3I4VxYobTLJ1wFK-V4_v6CLWIISvP-lknzk_v_BzX_Rq1c_h_fgbsCNbH8g9H24ZdsHcHvSIba7eQg_3oWoD6iI2NHn_U-M7KtMMWQPy0z36_tPex1cXlvWDq7fTPurPGy-uOwotNE3u2SGbrmQEcC3XDIVqGeb4Y-Is3s2s726vvliZ4wcxLDWZctmCts_grPDg9O3x3HIsBAbCisTu0o2LtFOl6kw0jSlM4o2HUpJXbiyyBrpNBalTiSqqJQyeZPqzOWlklJWMnsMo7Zr7Q4wWSWZtEWmsYXI80arVBn8fcJ1w61JI3i5muR6PgTSqIeQybwmUtSeFBFMaP7XNSj4tf_QLS7qsJZqxICiKk2KWNcI3B9p3qAmdg53dvjOiwh2V9Srw4pc1n_4J4IX62JcS3RAolrbXWGdhPI2IcLbVAcxJ93cqGQETwbOWPc2wznAQeBYX3tW2TDQ-nR6xP3T0829fQZ3cN2Iwa1tF0b94so-RxzU6zFscTEdB5Yfe2vCbzlgCMU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLRJcEG8CBYyAC1LUxHHi5IBQF9ru0nZVwVb0FmzHqSqxybKbii4nTpz5JfwofgkzeSwgob31lodt-TGe-caeB8AzjRDaN0K7KP21K7SUrvL9wCU9OxQWJXydDOZgFA2OxNvj8HgNfna-MGRW2fHEmlFnpaEz8s2ADkwk8k7v1fSzS1mj6Ha1S6HRkMWeXXxBlW3-cvgG1_c55zvb49cDt80q4BoKpeLmicxyT-c69oWRJotzowhoKyV1lMdRkMlc4y8_F56KEqVMmPk6yMNYSSkTGWC7l2BdBJHHe7De3x4dvut4fyiTuLnHFsjdAsmXAVH5ZjU9IccvQQnl_xKBdaaA_8Hbf9FyLe52rsO1FqeyrYawbsCaLW7C5X6JWHJxC74P2ygTKPjY7oet94zOc5liSI6WmfLXtx_2vDWxLVjRmJozXbsOsenstKRQSl_tnBnyqqFDh7rmnKmWWmzWtIi4vmITW6nzxSc7YWSQhqVOCzZRWP82HF3I3N-BXlEW9h4wmXiBtFGgsYYIw0wrXxls3uM649b4DjztJjmdNoE70iZEM09pKdJ6KRzo0_wvS1Cw7fpDOTtJ272bIuYUSWx8xNZGoD6meYaSP89Rk8R3Hjmw0a1e2nKAefqHXh14svyNe5cuZFRhyzMs41GeKESUq8ogxiVPkUQ6cLehjGVvA5wDHASO9UVNKisGmo4Pd3n9dH91bx_DlcH4YD_dH472HsBV3LOiManbgF41O7MPEYNV-lFL-Aw-XvRe-w2HlEUS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VFCEuiDdbChgBF6RV9uFd7x4QamjThkIUQav2ttheu6rU7IYkFQ0nTpz5Pfwcfgkz-wggodx6y2Zta23P4xt7HgDPFUJoX3PlovZXLldCuNL3Q5fs7Igb1PBVMZj3w3jvkL89jo7X4GcbC0Nula1MrAR1Xmo6I--GdGAiUHZ6Xdu4RYy2-68nn12qIEU3rW05jZpE9s3iC5pvs1eDbdzrF0HQ3zl4s-c2FQZcTWlVXJuK3HrKqsTnWug8sVoS6JZSqNgmcZgLq_CVb7kn41RKHeW-Cm2USCFEKkIc9wqsC7KKOrDe2xmOPrR6IBJpUt9pc5R0oQiWyVGD7nxyQkFgnIrL_6UOq6oB_4O6_yLnSvX1b8KNBrOyrZrIbsGaKW7D1V6JuHJxB74PmowTqATZ7tHWR0Znu0wyJE3DdPnr2w9z0bjbFqyo3c6ZqsKI2GR6WlJapa9mxjRF2NABRNVzxmRDOSavR0SMP2djM5cXizMzZuSchq1OCzaW2P8uHF7K2t-DTlEW5gEwkXqhMHGosAePolxJX2oc3gtUHhjtO_CsXeRsUifxyOp0zUFGW5FVW-FAj9Z_2YISb1d_lNOTrOHjDPEnTxPtI87WHG0zFeSIAqxFqxKfg9iBzXb3skYazLI_tOvA0-Vr5GO6nJGFKc-xjUc1oxBdrmqDeJeiRlLhwP2aMpZfG-Ia4CRwri8rUlkx0exgtBtUvzZWf-0TuIY8lr0bDPcfwnVkX157121CZz49N48Qjs3V44buGXy6bFb7DYY5SUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+GWAS+with+a+gene+co-expression+network+better+prioritizes+candidate+genes+associated+with+root+metaxylem+phenes+in+maize&rft.jtitle=The+plant+genome&rft.au=Klein%2C+Stephanie+P&rft.au=Kaeppler%2C+Shawn+M&rft.au=Brown%2C+Kathleen+M&rft.au=Lynch%2C+Jonathan+P&rft.date=2024-09-01&rft.eissn=1940-3372&rft.volume=17&rft.issue=3&rft.spage=e20489&rft_id=info:doi/10.1002%2Ftpg2.20489&rft_id=info%3Apmid%2F39034891&rft.externalDocID=39034891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-3372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-3372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-3372&client=summon