The promise and the challenges of cryo‐electron tomography

Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 594; no. 20; pp. 3243 - 3261
Main Authors Turk, Martin, Baumeister, Wolfgang
Format Journal Article
LanguageEnglish
Published England 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo‐electron tomography (Cryo‐ET) combines the power of 3D molecular‐level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or ‘molecular sociology’ of cells and to discover the unexpected. Here, we review state‐of‐the‐art Cryo‐ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo‐ET.
AbstractList Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ , ideally in unperturbed cellular environments. Cryo‐electron tomography (Cryo‐ET) combines the power of 3D molecular‐level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or ‘molecular sociology’ of cells and to discover the unexpected. Here, we review state‐of‐the‐art Cryo‐ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo‐ET.
Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.
Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.
Author Turk, Martin
Baumeister, Wolfgang
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-8680-2060
  surname: Turk
  fullname: Turk, Martin
  organization: Max Planck Institute of Biochemistry
– sequence: 2
  givenname: Wolfgang
  orcidid: 0000-0001-8154-8809
  surname: Baumeister
  fullname: Baumeister, Wolfgang
  email: baumeist@biochem.mpg.de
  organization: Max Planck Institute of Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33020915$$D View this record in MEDLINE/PubMed
BookMark eNqFkL1OwzAURi1URH9gZkMZWdLasZ3YEgtULSBVYimz5Th2G5TExU6FuvEIPCNPgktKBwaYrGudc_35G4JeYxsNwCWCYwRhMkEswzEmKRsjzAk7AYPjTQ8MIEQkphnHfTD0_gWGmSF-BvoYwwRyRAfgZrnW0cbZuvQ6kk0RtWFWa1lVullpH1kTKbezn-8futKqdbaJWlvblZOb9e4cnBpZeX1xOEfgeT5bTh_ixdP94_R2EStCEYsJNxgbiJXSGYWcUskMLzLE85yqFNOUGWSyDGeEqSJPFaMFJ0bBguQsxMzxCFx3e0PQ1632rQhxla4q2Wi79SIhhLGwmbCAXh3QbV7rQmxcWUu3Ez8_DsCkA5Sz3jttjgiCYt-p2Dco9g2K706DQX8ZqmxlW9qmdbKs_vDSznsrK7377xkxn90lnfgFizaImA
CitedBy_id crossref_primary_10_1038_s41591_024_03400_0
crossref_primary_10_1093_micmic_ozad067_541
crossref_primary_10_1073_pnas_2108738118
crossref_primary_10_1126_science_abm8295
crossref_primary_10_1016_j_mtphys_2024_101417
crossref_primary_10_1002_pro_4538
crossref_primary_10_1107_S2059798324001840
crossref_primary_10_3389_fncel_2024_1379976
crossref_primary_10_1016_j_molcel_2021_12_016
crossref_primary_10_1016_j_conb_2022_102595
crossref_primary_10_1038_s41592_021_01133_3
crossref_primary_10_1091_mbc_E22_03_0092
crossref_primary_10_3390_biom13050866
crossref_primary_10_1016_j_jcis_2024_06_011
crossref_primary_10_7554_eLife_72817
crossref_primary_10_1016_j_sbi_2022_102488
crossref_primary_10_1109_TMI_2024_3398401
crossref_primary_10_3390_biology11050662
crossref_primary_10_1016_j_sbi_2023_102765
crossref_primary_10_1016_j_jsb_2022_107880
crossref_primary_10_1016_j_jbc_2021_100559
crossref_primary_10_3390_ijms25179725
crossref_primary_10_1016_j_jbc_2021_100555
crossref_primary_10_1016_j_jmro_2022_100044
crossref_primary_10_3788_CJL230469
crossref_primary_10_3390_biom12101425
crossref_primary_10_1038_s42003_025_07586_y
crossref_primary_10_1016_j_pnmrs_2022_11_001
crossref_primary_10_1093_plphys_kiac175
crossref_primary_10_1016_j_jmb_2021_167176
crossref_primary_10_1016_j_jsb_2021_107801
crossref_primary_10_3389_fmolb_2024_1390858
crossref_primary_10_1126_sciadv_adk6285
crossref_primary_10_1016_j_jbior_2021_100847
crossref_primary_10_32607_actanaturae_27483
crossref_primary_10_1016_j_cmpb_2022_107017
crossref_primary_10_1038_s41467_024_47839_8
crossref_primary_10_1091_mbc_E24_01_0042
crossref_primary_10_1007_s11227_022_04607_z
crossref_primary_10_1016_j_sbi_2023_102653
crossref_primary_10_1016_j_str_2025_01_020
crossref_primary_10_1042_BST20240629
crossref_primary_10_1111_febs_15710
crossref_primary_10_1016_j_str_2021_04_010
crossref_primary_10_1038_s41592_023_01999_5
crossref_primary_10_1016_j_ejcb_2022_151224
crossref_primary_10_1016_j_coviro_2023_101338
crossref_primary_10_1038_s41592_024_02477_2
crossref_primary_10_3390_biomimetics7020066
crossref_primary_10_1016_j_jsb_2021_107778
crossref_primary_10_1016_j_cell_2024_01_005
crossref_primary_10_1038_s43246_022_00267_x
crossref_primary_10_1038_s41594_021_00650_1
crossref_primary_10_1016_j_isci_2023_105965
crossref_primary_10_1017_S1431927622005256
crossref_primary_10_1038_s41592_022_01448_9
crossref_primary_10_1042_BST20241510
crossref_primary_10_1093_micmic_ozad067_445
crossref_primary_10_1111_tra_12957
crossref_primary_10_1371_journal_pcbi_1012180
crossref_primary_10_1038_s41467_023_36112_z
crossref_primary_10_1016_j_sbi_2023_102620
crossref_primary_10_1021_acs_chemrev_1c00937
crossref_primary_10_1038_s41596_021_00640_z
crossref_primary_10_1016_j_pnmrs_2022_04_002
crossref_primary_10_1111_febs_16910
crossref_primary_10_1038_s41592_023_02000_z
crossref_primary_10_1016_j_str_2024_01_015
crossref_primary_10_1042_BST20210450
crossref_primary_10_1016_j_molcel_2020_11_043
crossref_primary_10_1042_BST20190963
crossref_primary_10_1098_rsta_2022_0350
crossref_primary_10_1016_j_jcis_2022_03_102
crossref_primary_10_1016_j_jmb_2023_168361
crossref_primary_10_1038_s41592_024_02210_z
crossref_primary_10_1093_micmic_ozad067_715
crossref_primary_10_1016_j_molcel_2021_12_027
crossref_primary_10_1016_j_tcb_2022_01_011
crossref_primary_10_1016_j_molcel_2021_12_024
crossref_primary_10_1093_jxb_erae088
crossref_primary_10_1002_VIW_20240042
crossref_primary_10_1093_jb_mvad102
crossref_primary_10_1210_endrev_bnac033
crossref_primary_10_1016_j_ultramic_2022_113511
crossref_primary_10_3390_biology10060466
crossref_primary_10_3389_fmolb_2023_1252529
crossref_primary_10_1016_j_ultramic_2022_113510
crossref_primary_10_1016_j_tibs_2021_08_005
crossref_primary_10_1038_s41569_022_00677_x
crossref_primary_10_1016_j_micron_2024_103774
crossref_primary_10_1016_j_chempr_2023_05_009
crossref_primary_10_1016_j_jsb_2023_107959
crossref_primary_10_1042_EBC20220168
crossref_primary_10_1016_j_heliyon_2024_e27949
crossref_primary_10_1038_s41467_024_51159_2
crossref_primary_10_1016_j_jplph_2021_153431
crossref_primary_10_1021_acs_jctc_3c00224
crossref_primary_10_1039_D2FD00076H
crossref_primary_10_1016_j_bpr_2024_100168
crossref_primary_10_1038_s41596_021_00648_5
crossref_primary_10_1038_s44318_024_00216_z
crossref_primary_10_3390_ijms22126177
crossref_primary_10_1021_acs_chemrev_1c00837
crossref_primary_10_1002_adfm_202313705
crossref_primary_10_1016_j_sbi_2022_102444
crossref_primary_10_1038_s41467_022_35409_9
crossref_primary_10_1016_j_bbamem_2022_184068
crossref_primary_10_1017_S1431927621011144
crossref_primary_10_7554_eLife_82891
crossref_primary_10_1016_j_str_2021_05_012
crossref_primary_10_1093_ismejo_wrae154
crossref_primary_10_1093_mam_ozae122
crossref_primary_10_1242_jcs_259234
crossref_primary_10_1002_mds_28755
crossref_primary_10_1016_j_cels_2021_05_014
crossref_primary_10_1016_j_pnmrs_2022_09_001
crossref_primary_10_1093_plcell_koae169
crossref_primary_10_1016_j_jmb_2023_168068
crossref_primary_10_1109_TCI_2022_3194719
crossref_primary_10_1021_acsami_3c02956
crossref_primary_10_1109_TVCG_2022_3230445
crossref_primary_10_1038_s41592_024_02403_6
crossref_primary_10_3390_app15020565
crossref_primary_10_1017_S2633903X22000046
crossref_primary_10_1093_bioinformatics_btae368
crossref_primary_10_1038_s41596_024_01071_2
crossref_primary_10_1093_plphys_kiab449
crossref_primary_10_1111_jmi_13391
crossref_primary_10_1038_s41592_024_02479_0
crossref_primary_10_1073_pnas_2403136121
crossref_primary_10_1146_annurev_biochem_052521_033250
crossref_primary_10_4103_ATN_ATN_D_24_00009
crossref_primary_10_1039_D2MH00574C
crossref_primary_10_3389_fmolb_2021_830304
crossref_primary_10_1137_23M1611567
crossref_primary_10_1016_j_bbagrm_2022_194851
crossref_primary_10_1038_s41467_024_51438_y
crossref_primary_10_1042_EBC20230084
crossref_primary_10_1242_jcs_259089
crossref_primary_10_1016_j_cell_2024_09_013
crossref_primary_10_1016_j_bpj_2023_04_006
crossref_primary_10_1146_annurev_biochem_052521_042909
crossref_primary_10_1016_j_jmb_2023_168051
crossref_primary_10_1007_s13199_022_00859_8
crossref_primary_10_1371_journal_pbio_3002447
crossref_primary_10_1016_j_ceb_2024_102356
crossref_primary_10_1016_j_sbi_2022_102392
crossref_primary_10_1083_jcb_202204093
crossref_primary_10_1016_j_sbi_2023_102547
crossref_primary_10_1371_journal_pone_0313812
crossref_primary_10_1007_s00441_024_03878_7
crossref_primary_10_1021_acs_chemrev_3c00494
crossref_primary_10_1002_piuz_202301669
crossref_primary_10_1093_jmicro_dfac053
crossref_primary_10_1093_jmicro_dfad024
crossref_primary_10_1016_j_rbmo_2024_104346
crossref_primary_10_1016_j_jsb_2021_107742
crossref_primary_10_1038_s41467_022_33483_7
crossref_primary_10_1016_j_str_2020_10_004
crossref_primary_10_1016_j_cmpb_2022_107039
crossref_primary_10_1016_j_yjsbx_2022_100065
crossref_primary_10_1016_j_ddtec_2020_12_003
crossref_primary_10_1016_j_crmeth_2025_101004
crossref_primary_10_1093_mam_ozae044_376
crossref_primary_10_1021_acs_jpcb_3c08026
crossref_primary_10_1186_s13024_021_00480_1
crossref_primary_10_1016_j_jbior_2022_100923
crossref_primary_10_1093_micmic_ozad067_519
crossref_primary_10_1146_annurev_biochem_032620_110705
crossref_primary_10_1016_j_slasd_2025_100209
crossref_primary_10_1073_pnas_2321515121
crossref_primary_10_1016_j_bbrc_2022_09_030
crossref_primary_10_1016_j_crmeth_2022_100170
crossref_primary_10_1016_j_jsb_2023_108000
crossref_primary_10_1177_25152564231162495
crossref_primary_10_1371_journal_ppat_1010629
crossref_primary_10_1016_j_jbc_2021_100741
Cites_doi 10.1073/pnas.0409178102
10.7554/eLife.32493
10.1038/s41564-019-0603-6
10.1038/s42003-019-0748-0
10.1016/j.jsb.2006.07.014
10.1016/S0092-8674(00)80922-8
10.1016/j.str.2019.01.005
10.1073/pnas.1523234113
10.1073/pnas.172520299
10.7554/eLife.39514
10.1126/science.1128618
10.1126/sciadv.aba8381
10.1016/j.bpj.2015.10.053
10.1080/19336918.2016.1173803
10.1016/S1047-8477(03)00069-8
10.1038/nature01513
10.1038/s41586-020-2665-2
10.1038/nrmicro.2016.7
10.1107/S2059798317003369
10.1038/nature24490
10.1038/ncomms14516
10.7554/eLife.26691
10.1017/S0033583500004297
10.1073/pnas.1418377111
10.1038/nrm1861
10.1038/217130a0
10.1016/0304-3991(84)90057-3
10.1016/j.cell.2018.03.014
10.1016/j.str.2019.05.009
10.1016/j.jsb.2005.01.003
10.1016/j.jsb.2016.04.004
10.1016/j.jsb.2015.11.006
10.1038/nature15381
10.7554/eLife.23006
10.1073/pnas.1621129114
10.1038/s41598-019-55766-8
10.1016/j.cell.2015.03.049
10.1073/pnas.1716305114
10.1146/annurev.biochem.73.011303.074112
10.1016/j.jsb.2011.05.011
10.1038/s41422-020-0320-y
10.1126/science.abb3758
10.1126/science.1090284
10.1038/msb.2011.82
10.1016/S0006-3495(95)80314-0
10.7554/eLife.52286
10.1038/nmeth.2115
10.1073/pnas.1811580115
10.1016/j.jsb.2019.09.006
10.1016/j.jsb.2008.02.008
10.1038/s41598-018-37728-8
10.1016/j.febslet.2004.10.102
10.1371/journal.ppat.1006377
10.1126/science.1104808
10.1016/j.jsb.2018.12.008
10.1038/s41592-019-0591-8
10.1016/j.cub.2006.11.022
10.7554/eLife.06980
10.1073/pnas.68.9.2236
10.1007/s11340-019-00528-w
10.1126/science.aah4972
10.1016/j.jsb.2020.107488
10.1073/pnas.1905641117
10.1006/jsbi.1998.4014
10.1016/j.jsb.2009.08.002
10.1016/j.str.2014.08.007
10.1126/sciadv.aaz4137
10.1007/978-1-4757-2163-8_5
10.1146/annurev-cellbio-100913-013325
10.1201/9780429258763
10.1038/nmeth.4405
10.1016/0304-3991(92)90016-D
10.1038/s41467-019-08991-8
10.1006/jsbi.2001.4406
10.1126/science.abd5223
10.1016/j.tcb.2016.08.006
10.15252/embj.2018100886
10.1016/0304-3991(93)90217-L
10.1038/s41592-018-0167-z
10.1007/978-3-319-68997-5_4
10.1016/j.jsb.2017.07.007
10.1073/pnas.230282097
10.1016/j.jsb.2010.08.005
10.1038/s41467-020-14535-2
10.1093/bioinformatics/btr207
10.1128/JB.00901-15
10.1109/JRPROC.1949.232969
10.1016/j.jsb.2012.02.003
10.1016/j.jsb.2011.08.012
10.1016/j.jsb.2014.02.015
10.1016/j.sbi.2017.06.006
10.1038/s41592-019-0630-5
10.1016/j.jsb.2003.09.010
10.1038/s41586-018-0526-z
10.1038/nmeth.1390
10.1016/j.jsb.2018.02.001
10.1109/ISBI.2019.8759519
10.1016/j.jsb.2016.06.016
10.1016/j.jsb.2008.05.003
10.1016/j.jsb.2015.01.011
10.1016/j.jsb.2015.04.016
10.1126/science.1221443
10.1073/pnas.1201333109
10.1073/pnas.1810690116
10.1107/S205225252000408X
10.1016/j.cell.2020.08.004
10.1016/j.jsb.2013.12.001
10.1186/1752-0509-6-S1-S18
10.1016/j.ultramic.2006.02.004
10.1073/pnas.1120559109
10.1038/nmeth1014
10.1016/j.jsb.2019.03.002
10.1016/j.jsb.2010.02.011
10.1016/j.jsb.2015.10.003
10.1126/science.1261197
10.1016/j.yjsbx.2019.100013
10.1006/jsbi.1997.3933
10.1016/j.jsb.2011.12.003
10.1038/s41594-020-0497-2
10.1073/pnas.1903642116
10.1016/j.str.2009.10.009
10.1073/pnas.0813131106
10.1126/science.aaf9620
10.1016/j.jsb.2016.07.011
10.1111/j.1365-2818.2007.01794.x
10.1016/0304-3991(95)00078-X
10.1016/j.jsb.2007.07.006
10.1093/emboj/20.20.5636
10.1016/S0304-3991(01)00088-2
10.1038/s41598-019-55413-2
10.1083/jcb.201304193
10.1016/j.jmb.2017.07.004
10.1126/science.aad8857
10.1016/j.jsb.2007.07.011
10.1016/j.jsb.2017.12.015
10.1126/science.aan7904
10.1016/0304-3991(92)90235-C
10.1016/j.jsb.2011.02.009
10.1126/science.aar7899
10.1016/j.jsb.2016.06.007
10.1016/j.jsb.2014.09.010
10.1016/j.cell.2019.12.006
10.7554/eLife.42747
10.1088/1757-899X/580/1/012014
10.1091/mbc.E18-05-0331
10.1128/jb.174.20.6527-6538.1992
10.1088/1367-2630/12/7/073011
10.1038/nprot.2016.124
10.1038/s41592-019-0675-5
10.1016/j.cell.2017.12.030
10.1017/S1431927612001225
10.1038/s41592-019-0552-2
10.1038/nature26003
10.1128/mBio.00973-19
10.1515/zna-1947-11-1204
10.1016/j.ultramic.2019.02.007
10.1083/jcb.201201120
10.1073/pnas.1701367114
10.1006/jsbi.1999.4204
10.1038/s41467-018-07882-8
10.1016/j.ultramic.2013.10.016
10.1126/science.aab1121
10.1126/science.aaz5357
10.1038/s41592-019-0497-5
10.1007/978-3-642-72815-0_8
ContentType Journal Article
Copyright 2020 Federation of European Biochemical Societies
2020 Federation of European Biochemical Societies.
Copyright_xml – notice: 2020 Federation of European Biochemical Societies
– notice: 2020 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/1873-3468.13948
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 3261
ExternalDocumentID 33020915
10_1002_1873_3468_13948
FEB213948
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4518-49f33f03cce750955a8f9d719bb5c63568f1f773748cdb6c85d94fc0d4b8209b3
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 16:55:22 EDT 2025
Mon Jul 21 06:09:37 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 02:46:51 EDT 2025
Wed Jan 22 16:31:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords cellular structural biology
image processing workflow
sample preparation workflows
cryo-electron tomography
structural biology in situ
correlative light-electron microscopy
Language English
License 2020 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4518-49f33f03cce750955a8f9d719bb5c63568f1f773748cdb6c85d94fc0d4b8209b3
Notes Edited by John Briggs
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8154-8809
0000-0001-8680-2060
OpenAccessLink https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.13948
PMID 33020915
PQID 2448850948
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2448850948
pubmed_primary_33020915
crossref_primary_10_1002_1873_3468_13948
crossref_citationtrail_10_1002_1873_3468_13948
wiley_primary_10_1002_1873_3468_13948_FEB213948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2020
References 2010; 12
2018; 561
2007; 227
2019; 10
2005; 579
2018; 202
2002; 99
2019; 17
2020; 17
2019; 203
2019; 16
2012; 18
2019; 208
2020; 11
2019; 205
2019; 206
2017; 551
2014; 22
2014; 137
2017; 73
2018; 7
2001; 135
2018; 173
2018; 172
2005; 102
2000; 129
2000; 97
1987
2005; 74
2019; 27
1998; 92
2007; 4
1992; 46
2020; 210
1992; 40
2009; 17
2007; 17
2019; 8
2018; 29
2019; 9
2019; 4
1993; 49
2007; 160
1947; 2
2016; 10
2019; 38
2015; 526
1992
2019; 580
2004; 306
2016; 14
2011; 7
2012; 109
2016; 11
2017; 429
2007; 157
1968; 217
2012; 198
2015; 192
2015; 190
2020; 30
2018; 115
1988; 21
2010; 172
2014; 30
2016; 26
2006; 106
2018; 15
1996; 116
2009; 106
2017; 6
2017; 8
2018; 360
2015; 347
2015; 189
2019; 59
2017; 46
2020; 369
2013; 202
2020; 367
2017; 197
2015; 349
2017; 199
2001; 88
2017; 114
2017; 357
2020; 7
2020; 6
1995; 60
2020; 4
2012; 177
2020; 3
2012; 178
1995; 68
2020; 370
1984; 13
2020; 9
2016; 113
2016; 354
2019; 116
2016; 353
2016; 198
2009; 168
2016; 110
1998; 122
2016; 193
2011; 27
2012; 336
2016; 351
2016; 195
1949; 37
2015; 161
2005; 150
2015; 4
2012
2010
1971; 68
2020; 180
2020; 182
2006; 7
2007
2011; 174
2006; 313
2011; 173
2014; 111
2008; 164
2008; 162
2008; 161
2011; 175
1992; 174
2017; 14
2020
1997; 120
2017; 13
2018; 555
2019
2020; 117
2018
2016
2009; 6
2003; 302
2012; 6
2003; 422
2014; 188
2014; 185
2014; 186
2003; 144
2003; 142
2012; 9
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
Rigort A (e_1_2_8_28_1) 2012
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
McDonald K (e_1_2_8_22_1) 2010
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_24_1
e_1_2_8_47_1
Wan W (e_1_2_8_54_1) 2016
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
Glaeser RM (e_1_2_8_37_1) 2016
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
Förster F (e_1_2_8_161_1) 2007
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 173
  start-page: 11
  year: 2018
  end-page: 19
  article-title: Opportunities and challenges in building a spatiotemporal multi‐scale model of the human pancreatic β cell
  publication-title: Cell
– volume: 197
  start-page: 191
  year: 2017
  end-page: 198
  article-title: Implementation of a cryo‐electron tomography tilt‐scheme optimized for high resolution subtomogram averaging
  publication-title: J Struct Biol
– volume: 369
  start-page: 554
  year: 2020
  end-page: 557
  article-title: In‐cell architecture of an actively transcribing‐translating expressome
  publication-title: Science
– volume: 168
  start-page: 305
  year: 2009
  end-page: 312
  article-title: Contrast transfer function correction applied to cryo‐electron tomography and sub‐tomogram averaging
  publication-title: J Struct Biol
– volume: 59
  start-page: 1113
  year: 2019
  end-page: 1125
  article-title: On the application of Xe+ Plasma FIB for micro‐fabrication of small‐scale tensile specimens
  publication-title: Exp Mech
– volume: 195
  start-page: 100
  year: 2016
  end-page: 112
  article-title: ICON: 3D reconstruction with ‘missing‐information’ restoration in biological electron tomography
  publication-title: J Struct Biol
– volume: 10
  start-page: e00973
  issue: 4
  year: 2019
  end-page: 19
  article-title: In situ conformational changes of the serine chemoreceptor in different signaling states
  publication-title: MBio
– volume: 46
  start-page: 87
  year: 2017
  end-page: 94
  article-title: Expanding the boundaries of cryo‐EM with phase plates
  publication-title: Curr Opin Struct Biol
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  article-title: In situ microfluidic cryofixation for cryo focused ion beam milling and cryo electron tomography
  publication-title: Sci Rep
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Benchmarking tomographic acquisition schemes for high‐resolution structural biology
  publication-title: Nat Commun
– volume: 579
  start-page: 933
  year: 2005
  end-page: 937
  article-title: From proteomic inventory to architecture
  publication-title: FEBS Lett
– volume: 199
  start-page: 187
  year: 2017
  end-page: 195
  article-title: Efficient 3D‐CTF correction for cryo‐electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å
  publication-title: J Struct Biol
– volume: 73
  start-page: 478
  year: 2017
  end-page: 487
  article-title: The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services
  publication-title: Acta Crystallogr Struct Biol
– volume: 8
  year: 2019
  article-title: Protein denaturation at the air‐water interface and how to prevent it
  publication-title: eLife
– volume: 336
  start-page: 1451
  year: 2012
  end-page: 1454
  article-title: The structures of COPI‐coated vesicles reveal alternate coatomer conformations and interactions
  publication-title: Science
– volume: 68
  start-page: 1416
  year: 1995
  end-page: 1422
  article-title: Three‐dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography
  publication-title: Biophys J
– volume: 185
  start-page: 309
  year: 2014
  end-page: 316
  article-title: Iterative reconstruction of cryo‐electron tomograms using nonuniform fast Fourier transforms
  publication-title: J Struct Biol
– volume: 37
  start-page: 10
  year: 1949
  end-page: 21
  article-title: Communication in the presence of noise
  publication-title: Proc IRE
– volume: 14
  start-page: 983
  year: 2017
  end-page: 985
  article-title: Convolutional neural networks for automated annotation of cellular cryo‐electron tomograms
  publication-title: Nat Methods
– volume: 172
  start-page: 696
  year: 2018
  end-page: 705
  article-title: In situ structure of neuronal C9orf72 Poly‐GA aggregates reveals proteasome recruitment
  publication-title: Cell
– volume: 27
  start-page: i69
  year: 2011
  end-page: i76
  article-title: Template‐free detection of macromolecular complexes in cryo electron tomograms
  publication-title: Bioinformatics
– volume: 17
  start-page: 209
  year: 2020
  end-page: 216
  article-title: Template‐free detection and classification of membrane‐bound complexes in cryo‐electron tomograms
  publication-title: Nat Methods
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Correlative cryo super‐resolution light and electron microscopy on mammalian cells using fluorescent proteins
  publication-title: Sci Rep
– volume: 117
  start-page: 1069
  year: 2020
  end-page: 1080
  article-title: Direct visualization of degradation microcompartments at the ER membrane
  publication-title: Proc Natl Acad Sci USA
– volume: 190
  start-page: 279
  year: 2015
  end-page: 290
  article-title: Single particle tomography in EMAN2
  publication-title: J Struct Biol
– volume: 7
  start-page: 225
  year: 2006
  end-page: 230
  article-title: A visual approach to proteomics
  publication-title: Nat Rev Mol Cell Biol
– volume: 6
  start-page: 817
  year: 2009
  end-page: 823
  article-title: Visual proteomics of the human pathogen
  publication-title: Nat Methods
– volume: 347
  start-page: 439
  year: 2015
  end-page: 442
  article-title: A molecular census of 26S proteasomes in intact neurons
  publication-title: Science
– volume: 38
  year: 2019
  article-title: In situ and high‐resolution cryo‐EM structure of a bacterial type VI secretion system membrane complex
  publication-title: EMBO J
– volume: 210
  year: 2020
  article-title: Automated cryo‐lamella preparation for high‐throughput in‐situ structural biology
  publication-title: J Struct Biol
– volume: 208
  year: 2019
  article-title: Mind the gap: micro‐expansion joints drastically decrease the bending of FIB‐milled cryo‐lamellae
  publication-title: J Struct Biol
– volume: 349
  start-page: 195
  year: 2015
  end-page: 198
  article-title: A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly
  publication-title: Science
– volume: 9
  year: 2020
  article-title: Fully automated, sequential focused ion beam milling for cryo‐electron tomography
  publication-title: eLife
– volume: 4
  year: 2020
  article-title: A Monte Carlo framework for missing wedge restoration and noise removal in cryo‐electron tomography
  publication-title: J Struct Biol X
– volume: 202
  start-page: 407
  year: 2013
  end-page: 419
  article-title: Cryo‐electron tomography: the challenge of doing structural biology in situ
  publication-title: J Cell Biol
– volume: 102
  start-page: 4729
  year: 2005
  end-page: 4734
  article-title: Retrovirus envelope protein complex structure in situ studied by cryo‐electron tomography
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1528
  year: 2014
  end-page: 1537
  article-title: Autofocused 3D classification of cryoelectron subtomograms
  publication-title: Structure
– volume: 4
  year: 2015
  article-title: Measuring the optimal exposure for single particle cryo‐EM using a 2.6 Å reconstruction of rotavirus VP6
  publication-title: eLife
– volume: 202
  start-page: 150
  year: 2018
  end-page: 160
  article-title: A convolutional autoencoder approach for mining features in cellular electron cryo‐tomograms and weakly supervised coarse segmentation
  publication-title: J Struct Biol
– volume: 9
  start-page: 853
  year: 2012
  end-page: 854
  article-title: Prevention of overfitting in cryo‐EM structure determination
  publication-title: Nat Methods
– volume: 40
  start-page: 71
  year: 1992
  end-page: 87
  article-title: Towards automatic electron tomography
  publication-title: Ultramicroscopy
– volume: 113
  start-page: 4176
  year: 2016
  end-page: 4181
  article-title: Two distinct trimeric conformations of natively membrane‐anchored full‐length herpes simplex virus 1 glycoprotein B
  publication-title: Proc Natl Acad Sci USA
– volume: 162
  start-page: 436
  year: 2008
  end-page: 450
  article-title: Classification and 3D averaging with missing wedge correction in biological electron tomography
  publication-title: J Struct Biol
– volume: 198
  start-page: 913
  year: 2012
  end-page: 925
  article-title: Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme
  publication-title: J Cell Biol
– volume: 561
  start-page: 561
  year: 2018
  end-page: 564
  article-title: Structure of the membrane‐assembled retromer coat determined by cryo‐electron tomography
  publication-title: Nature
– volume: 197
  start-page: 114
  year: 2017
  end-page: 122
  article-title: Three‐dimensional CTF correction improves the resolution of electron tomograms
  publication-title: J Struct Biol
– volume: 161
  start-page: 450
  year: 2015
  end-page: 457
  article-title: Single‐particle Cryo‐EM at crystallographic resolution
  publication-title: Cell
– volume: 4
  start-page: 215
  year: 2007
  end-page: 217
  article-title: Focused‐ion‐beam thinning of frozen‐hydrated biological specimens for cryo‐electron microscopy
  publication-title: Nat Methods
– volume: 6
  year: 2017
  article-title: 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments
  publication-title: eLife
– volume: 137
  start-page: 20
  year: 2014
  end-page: 29
  article-title: A cylindrical specimen holder for electron cryo‐tomography
  publication-title: Ultramicroscopy
– volume: 3
  start-page: 24
  year: 2020
  article-title: Structure and dynamics of the chemotaxis core signaling complex by cryo‐electron tomography and molecular simulations
  publication-title: Commun Biol
– volume: 74
  start-page: 833
  year: 2005
  end-page: 865
  article-title: Structural studies by electron tomography: from cells to molecules
  publication-title: Annu Rev Biochem
– volume: 17
  start-page: 1563
  year: 2009
  end-page: 1572
  article-title: Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization
  publication-title: Structure
– volume: 174
  start-page: 494
  year: 2011
  end-page: 504
  article-title: Classification of electron sub‐tomograms with neural networks and its application to template‐matching
  publication-title: J Struct Biol
– volume: 551
  start-page: 394
  year: 2017
  end-page: 397
  article-title: Structure and assembly of the Ebola virus nucleocapsid
  publication-title: Nature
– volume: 172
  start-page: 169
  year: 2010
  end-page: 179
  article-title: Micromachining tools and correlative approaches for cellular cryo‐electron tomography
  publication-title: J Struct Biol
– volume: 16
  start-page: 757
  year: 2019
  end-page: 762
  article-title: A cryo‐FIB lift‐out technique enables molecular‐resolution cryo‐ET within native tissue
  publication-title: Nat Methods
– year: 2020
  article-title: Structures and distributions of SARS‐CoV‐2 spike proteins on intact virions
  publication-title: Nature
– volume: 14
  start-page: 205
  year: 2016
  end-page: 220
  article-title: A new view into prokaryotic cell biology from electron cryotomography
  publication-title: Nat Rev Microbiol
– volume: 6
  year: 2017
  article-title: Using the Volta phase plate with defocus for cryo‐EM single particle analysis
  publication-title: eLife
– volume: 202
  start-page: 200
  year: 2018
  end-page: 209
  article-title: Cryo‐tomography tilt‐series alignment with consideration of the beam‐induced sample motion
  publication-title: J Struct Biol
– volume: 4
  start-page: 2101
  year: 2019
  end-page: 2108
  article-title: structure of the Legionella type II secretion system by electron cryotomography
  publication-title: Nat Microbiol
– volume: 302
  start-page: 1396
  year: 2003
  end-page: 1398
  article-title: Three‐dimensional structure of herpes simplex virus from Cryo‐electron tomography
  publication-title: Science
– volume: 109
  start-page: 4449
  year: 2012
  end-page: 4454
  article-title: Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 679
  year: 2019
  end-page: 691
  article-title: De novo visual proteomics in single cells through pattern mining
  publication-title: Structure
– year: 2016
– volume: 370
  start-page: 203
  issue: 6513
  year: 2020
  end-page: 208
  article-title: In situ structural analysis of SARS‐CoV‐2 spike reveals flexibility mediated by three hinges
  publication-title: Science
– volume: 351
  start-page: 969
  year: 2016
  end-page: 972
  article-title: Visualizing the molecular sociology at the HeLa cell nuclear periphery
  publication-title: Science
– volume: 120
  start-page: 276
  year: 1997
  end-page: 308
  article-title: Perspectives of molecular and cellular electron tomography
  publication-title: J Struct Biol
– volume: 555
  start-page: 475
  year: 2018
  end-page: 482
  article-title: Integrative structure and functional anatomy of a nuclear pore complex
  publication-title: Nature
– volume: 17
  start-page: 50
  year: 2019
  end-page: 54
  article-title: Tailoring cryo‐electron microscopy grids by photo‐micropatterning for in‐cell structural studies
  publication-title: Nat Methods
– volume: 182
  start-page: 1508
  year: 2020
  end-page: 1518
  article-title: The in situ structure of Parkinson’s disease‐linked LRRK2
  publication-title: Cell
– volume: 111
  start-page: 15635
  year: 2014
  end-page: 15640
  article-title: Volta potential phase plate for in‐focus phase contrast transmission electron microscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 188
  start-page: 107
  year: 2014
  end-page: 115
  article-title: Super‐sampling SART with ordered subsets
  publication-title: J Struct Biol
– volume: 367
  year: 2020
  article-title: Correlative three‐dimensional super‐resolution and block‐face electron microscopy of whole vitreously frozen cells
  publication-title: Science
– volume: 160
  start-page: 135
  year: 2007
  end-page: 145
  article-title: Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo‐electron tomography
  publication-title: J Struct Biol
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Single particle cryo‐EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution
  publication-title: Nat Commun
– volume: 422
  start-page: 216
  year: 2003
  end-page: 225
  article-title: From words to literature in structural proteomics
  publication-title: Nature
– volume: 189
  start-page: 195
  year: 2015
  end-page: 206
  article-title: Progressive stochastic reconstruction technique (PSRT) for cryo electron tomography
  publication-title: J Struct Biol
– volume: 180
  start-page: 348
  year: 2020
  end-page: 358
  article-title: In Situ structure of an intact lipopolysaccharide‐bound bacterial surface layer
  publication-title: Cell
– volume: 16
  start-page: 1016
  year: 2019
  end-page: 1020
  article-title: Laser phase plate for transmission electron microscopy
  publication-title: Nat Methods
– volume: 173
  start-page: 77
  year: 2011
  end-page: 85
  article-title: Maximum likelihood based classification of electron tomographic data
  publication-title: J Struct Biol
– volume: 193
  start-page: 33
  year: 2016
  end-page: 44
  article-title: Ultrastable gold substrates: properties of a support for high‐resolution electron cryomicroscopy of biological specimens
  publication-title: J Struct Biol
– start-page: 671
  year: 2010
  end-page: 693
– start-page: 19
  year: 2016
  end-page: 50
– volume: 142
  start-page: 334
  year: 2003
  end-page: 347
  article-title: Accurate determination of local defocus and specimen tilt in electron microscopy
  publication-title: J Struct Biol
– volume: 46
  start-page: 207
  year: 1992
  end-page: 227
  article-title: Automated microscopy for electron tomography
  publication-title: Ultramicroscopy
– volume: 6
  year: 2017
  article-title: The structure of the COPI coat determined within the cell
  publication-title: eLife
– volume: 144
  start-page: 152
  year: 2003
  end-page: 161
  article-title: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo‐tomograms
  publication-title: J Struct Biol
– volume: 354
  start-page: 1434
  year: 2016
  end-page: 1437
  article-title: The structure and flexibility of conical HIV‐1 capsids determined within intact virions
  publication-title: Science
– volume: 313
  start-page: 944
  year: 2006
  end-page: 948
  article-title: The molecular architecture of axonemes revealed by cryoelectron tomography
  publication-title: Science
– volume: 92
  start-page: 291
  year: 1998
  end-page: 294
  article-title: The cell as a collection of protein machines: preparing the next generation of molecular biologists
  publication-title: Cell
– volume: 7
  year: 2018
  article-title: Visualization of the type III secretion mediated Salmonella–host cell interface using cryo‐electron tomography
  publication-title: eLife
– volume: 97
  start-page: 14245
  year: 2000
  end-page: 14250
  article-title: Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms
  publication-title: Proc Natl Acad Sci USA
– volume: 122
  start-page: 328
  year: 1998
  end-page: 339
  article-title: A maximum‐likelihood approach to single‐particle image refinement
  publication-title: J Struct Biol
– volume: 186
  start-page: 49
  year: 2014
  end-page: 61
  article-title: Robust membrane detection based on tensor voting for electron tomography
  publication-title: J Struct Biol
– volume: 175
  start-page: 288
  year: 2011
  end-page: 299
  article-title: Clustering and variance maps for cryo‐electron tomography using wedge‐masked differences
  publication-title: J Struct Biol
– volume: 114
  start-page: 1305
  year: 2017
  end-page: 1310
  article-title: Structural insights into the functional cycle of the ATPase module of the 26S proteasome
  publication-title: Proc Natl Acad Sci USA
– start-page: 329
  year: 2016
  end-page: 367
– volume: 116
  start-page: 71
  year: 1996
  end-page: 76
  article-title: Computer visualization of three‐dimensional image data using IMOD
  publication-title: J Struct Biol
– volume: 116
  start-page: 16866
  year: 2019
  end-page: 16871
  article-title: Liquid‐crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  article-title: Liquid‐liquid phase separation in biology
  publication-title: Annu Rev Cell Dev Biol
– volume: 429
  start-page: 2611
  year: 2017
  end-page: 2618
  article-title: Revisiting the structure of hemoglobin and myoglobin with cryo‐electron microscopy
  publication-title: J Mol Biol
– volume: 106
  start-page: 587
  year: 2006
  end-page: 596
  article-title: CTF determination and correction in electron cryotomography
  publication-title: Ultramicroscopy
– volume: 357
  start-page: 713
  year: 2017
  end-page: 717
  article-title: In situ architecture, function, and evolution of a contractile injection system
  publication-title: Science
– volume: 227
  start-page: 98
  year: 2007
  end-page: 109
  article-title: Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching
  publication-title: J Microsc
– volume: 13
  start-page: 57
  year: 1984
  end-page: 70
  article-title: Three‐dimensional reconstruction of imperfect two‐dimensional crystals
  publication-title: Ultramicroscopy
– volume: 11
  start-page: 2054
  year: 2016
  end-page: 2065
  article-title: Resolving macromolecular structures from electron cryo‐tomography data using subtomogram averaging in RELION
  publication-title: Nat Protoc
– volume: 18
  start-page: 676
  year: 2012
  end-page: 683
  article-title: Operation of TEAM I in a user environment at NCEM
  publication-title: Microsc Microanal
– volume: 7
  start-page: 566
  year: 2020
  end-page: 574
  article-title: Fast and accurate defocus modulation for improved tunability of cryo‐EM experiments
  publication-title: IUCrJ
– volume: 13
  year: 2017
  article-title: Assembly, maturation and three‐dimensional helical structure of the teratogenic rubella virus
  publication-title: PLOS Pathog
– volume: 135
  start-page: 239
  year: 2001
  end-page: 250
  article-title: Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion
  publication-title: J Struct Biol
– year: 2020
  article-title: Molecular mechanism for rotational switching of the bacterial flagellar motor
  publication-title: Nat Struct Mol Biol
– volume: 161
  start-page: 276
  year: 2008
  end-page: 286
  article-title: Classification of cryo‐electron sub‐tomograms using constrained correlation
  publication-title: J Struct Biol
– volume: 99
  start-page: 14153
  year: 2002
  end-page: 14158
  article-title: Identification of macromolecular complexes in cryoelectron tomograms of phantom cells
  publication-title: Proc Natl Acad Sci USA
– start-page: 91
  year: 1992
  end-page: 115
– volume: 192
  start-page: 270
  year: 2015
  end-page: 278
  article-title: Automated batch fiducial‐less tilt‐series alignment in Appion using Protomo
  publication-title: J Struct Biol
– volume: 115
  start-page: E11751
  year: 2018
  end-page: E11760
  article-title: Structure and architecture of immature and mature murine leukemia virus capsids
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 109
  year: 1993
  end-page: 120
  article-title: Towards automatic electron tomography II. Implementation of autofocus and low‐dose procedures
  publication-title: Ultramicroscopy
– volume: 110
  start-page: 860
  year: 2016
  end-page: 869
  article-title: Site‐specific cryo‐focused ion beam sample preparation guided by 3D correlative microscopy
  publication-title: Biophys J
– volume: 68
  start-page: 2236
  year: 1971
  end-page: 2240
  article-title: Three‐dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of fourier transforms
  publication-title: Proc Natl Acad Sci USA
– volume: 360
  start-page: 215
  year: 2018
  end-page: 219
  article-title: Structural basis for coupling protein transport and N‐glycosylation at the mammalian endoplasmic reticulum
  publication-title: Science
– volume: 526
  start-page: 140
  year: 2015
  end-page: 143
  article-title: In situ structural analysis of the human nuclear pore complex
  publication-title: Nature
– volume: 6
  year: 2020
  article-title: A helical inner scaffold provides a structural basis for centriole cohesion
  publication-title: Sci Adv
– volume: 217
  start-page: 130
  year: 1968
  end-page: 134
  article-title: Reconstruction of three dimensional structures from electron micrographs
  publication-title: Nature
– volume: 580
  year: 2019
  article-title: Rich multi‐dimensional correlative imaging
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 205
  start-page: 163
  year: 2019
  end-page: 169
  article-title: Rapid tilt‐series acquisition for electron cryotomography
  publication-title: J Struct Biol
– volume: 177
  start-page: 630
  year: 2012
  end-page: 637
  article-title: Beam‐induced motion of vitrified specimen on holey carbon film
  publication-title: J Struct Biol
– volume: 60
  start-page: 393
  year: 1995
  end-page: 410
  article-title: Double‐tilt electron tomography
  publication-title: Ultramicroscopy
– volume: 2
  start-page: 615
  year: 1947
  end-page: 633
  article-title: Über die Kontraste von Atomen im Elektronenmikroskop
  publication-title: Z Für Naturforschung A
– volume: 10
  start-page: 1032
  year: 2019
  article-title: High‐resolution structure determination of sub‐100 kDa complexes using conventional cryo‐EM
  publication-title: Nat Commun
– volume: 21
  start-page: 129
  year: 1988
  end-page: 228
  article-title: Cryo‐electron microscopy of vitrified specimens
  publication-title: Q Rev Biophys
– volume: 12
  year: 2010
  article-title: Design of an electron microscope phase plate using a focused continuous‐wave laser
  publication-title: New J Phys
– volume: 15
  start-page: 955
  year: 2018
  end-page: 961
  article-title: emClarity: software for high‐resolution cryo‐electron tomography and subtomogram averaging
  publication-title: Nat Methods
– volume: 157
  start-page: 126
  year: 2007
  end-page: 137
  article-title: 3D reconstruction and processing of volumetric data in cryo‐electron tomography
  publication-title: J Struct Biol
– volume: 114
  start-page: 4412
  year: 2017
  end-page: 4417
  article-title: In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes
  publication-title: Proc Natl Acad Sci USA
– volume: 306
  start-page: 1387
  year: 2004
  end-page: 1390
  article-title: Nuclear pore complex structure and dynamics revealed by cryoelectron tomography
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Dissecting the molecular organization of the translocon‐associated protein complex
  publication-title: Nat Commun
– volume: 17
  start-page: 79
  year: 2007
  end-page: 84
  article-title: Organization of actin networks in intact filopodia
  publication-title: Curr Biol
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  article-title: AutoCLEM: an automated workflow for correlative live‐cell fluorescence microscopy and cryo‐electron tomography
  publication-title: Sci Rep
– volume: 6
  start-page: S18
  year: 2012
  article-title: High precision alignment of cryo‐electron subtomograms through gradient‐based parallel optimization
  publication-title: BMC Syst Biol
– volume: 109
  start-page: 1380
  year: 2012
  end-page: 1387
  article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 2450
  year: 2018
  end-page: 2457
  article-title: The in situ structures of mono‐, di‐, and trinucleosomes in human heterochromatin
  publication-title: Mol Biol Cell
– volume: 129
  start-page: 48
  year: 2000
  end-page: 56
  article-title: Cryo‐electron tomography of neurospora mitochondria
  publication-title: J Struct Biol
– volume: 7
  start-page: 549
  year: 2011
  article-title: The quantitative proteome of a human cell line
  publication-title: Mol Syst Biol
– start-page: 741
  year: 2007
  end-page: 767
– volume: 26
  start-page: 825
  year: 2016
  end-page: 837
  article-title: Cryo‐electron tomography: can it reveal the molecular sociology of cells in atomic detail?
  publication-title: Trends Cell Biol
– volume: 116
  start-page: 4804
  year: 2019
  end-page: 4809
  article-title: Cryo‐SOFI enabling low‐dose super‐resolution correlative light and electron cryo‐microscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 206
  start-page: 183
  year: 2019
  end-page: 192
  article-title: MBIR: a cryo‐ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information
  publication-title: J Struct Biol
– start-page: 502
  year: 2019
  end-page: 506
– start-page: 175
  year: 1987
  end-page: 191
– start-page: 259
  year: 2012
  end-page: 281
– volume: 197
  start-page: 102
  year: 2017
  end-page: 113
  article-title: Automated tilt series alignment and tomographic reconstruction in IMOD
  publication-title: J Struct Biol
– volume: 27
  start-page: 1211
  year: 2019
  end-page: 1223
  article-title: The architecture of traveling actin waves revealed by cryo‐electron tomography
  publication-title: Structure
– volume: 150
  start-page: 109
  year: 2005
  end-page: 121
  article-title: Cutting artefacts and cutting process in vitreous sections for cryo‐electron microscopy
  publication-title: J Struct Biol
– volume: 174
  start-page: 6527
  year: 1992
  end-page: 6538
  article-title: The S‐layer of : three‐dimensional image reconstruction and structure analysis by electron microscopy
  publication-title: J Bacteriol
– volume: 198
  start-page: 1186
  year: 2016
  end-page: 1195
  article-title: Minicells, back in fashion
  publication-title: J Bacteriol
– volume: 106
  start-page: 3125
  year: 2009
  end-page: 3130
  article-title: Interferometric fluorescent super‐resolution microscopy resolves 3D cellular ultrastructure
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 13726
  year: 2017
  end-page: 13731
  article-title: Proteasomes tether to two distinct sites at the nuclear pore complex
  publication-title: Proc Natl Acad Sci USA
– volume: 164
  start-page: 161
  year: 2008
  end-page: 165
  article-title: A visualization and segmentation toolbox for electron microscopy
  publication-title: J Struct Biol
– volume: 353
  start-page: 506
  year: 2016
  end-page: 508
  article-title: An atomic model of HIV‐1 capsid‐SP1 reveals structures regulating assembly and maturation
  publication-title: Science
– volume: 10
  start-page: 568
  year: 2016
  end-page: 575
  article-title: Toward correlating structure and mechanics of platelets
  publication-title: Cell Adhes Migr
– volume: 177
  start-page: 135
  year: 2012
  end-page: 144
  article-title: Automated segmentation of electron tomograms for a quantitative description of actin filament networks
  publication-title: J Struct Biol
– volume: 178
  start-page: 177
  year: 2012
  end-page: 188
  article-title: PyTom: a python‐based toolbox for localization of macromolecules in cryo‐electron tomograms and subtomogram analysis
  publication-title: J Struct Biol
– volume: 203
  start-page: 125
  year: 2019
  end-page: 131
  article-title: The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules
  publication-title: Ultramicroscopy
– start-page: 95
  year: 2018
  end-page: 116
– volume: 6
  year: 2020
  article-title: Architecture of the AP2/clathrin coat on the membranes of clathrin‐coated vesicles
  publication-title: Sci Adv
– volume: 88
  start-page: 243
  year: 2001
  end-page: 252
  article-title: Transmission electron microscopy with Zernike phase plate
  publication-title: Ultramicroscopy
– volume: 30
  start-page: 532
  year: 2020
  end-page: 540
  article-title: Molecular architecture of the luminal ring of the nuclear pore complex
  publication-title: Cell Res
– volume: 16
  start-page: 1161
  year: 2019
  end-page: 1168
  article-title: A complete data processing workflow for cryo‐ET and subtomogram averaging
  publication-title: Nat Methods
– start-page: 329
  volume-title: Methods in Enzymology
  year: 2016
  ident: e_1_2_8_54_1
– ident: e_1_2_8_93_1
  doi: 10.1073/pnas.0409178102
– ident: e_1_2_8_108_1
  doi: 10.7554/eLife.32493
– ident: e_1_2_8_117_1
  doi: 10.1038/s41564-019-0603-6
– ident: e_1_2_8_119_1
  doi: 10.1038/s42003-019-0748-0
– ident: e_1_2_8_90_1
  doi: 10.1016/j.jsb.2006.07.014
– ident: e_1_2_8_4_1
  doi: 10.1016/S0092-8674(00)80922-8
– ident: e_1_2_8_74_1
  doi: 10.1016/j.str.2019.01.005
– ident: e_1_2_8_96_1
  doi: 10.1073/pnas.1523234113
– start-page: 671
  volume-title: Methods in Cell Biology
  year: 2010
  ident: e_1_2_8_22_1
– ident: e_1_2_8_68_1
  doi: 10.1073/pnas.172520299
– ident: e_1_2_8_116_1
  doi: 10.7554/eLife.39514
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1128618
– ident: e_1_2_8_110_1
  doi: 10.1126/sciadv.aba8381
– ident: e_1_2_8_136_1
  doi: 10.1016/j.bpj.2015.10.053
– ident: e_1_2_8_112_1
  doi: 10.1080/19336918.2016.1173803
– ident: e_1_2_8_47_1
  doi: 10.1016/S1047-8477(03)00069-8
– ident: e_1_2_8_3_1
  doi: 10.1038/nature01513
– start-page: 259
  volume-title: Methods in Cell Biology
  year: 2012
  ident: e_1_2_8_28_1
– ident: e_1_2_8_98_1
  doi: 10.1038/s41586-020-2665-2
– ident: e_1_2_8_18_1
  doi: 10.1038/nrmicro.2016.7
– ident: e_1_2_8_86_1
  doi: 10.1107/S2059798317003369
– ident: e_1_2_8_11_1
  doi: 10.1038/nature24490
– ident: e_1_2_8_103_1
  doi: 10.1038/ncomms14516
– ident: e_1_2_8_107_1
  doi: 10.7554/eLife.26691
– ident: e_1_2_8_21_1
  doi: 10.1017/S0033583500004297
– ident: e_1_2_8_153_1
  doi: 10.1073/pnas.1418377111
– ident: e_1_2_8_146_1
  doi: 10.1038/nrm1861
– ident: e_1_2_8_124_1
  doi: 10.1038/217130a0
– ident: e_1_2_8_34_1
  doi: 10.1016/0304-3991(84)90057-3
– ident: e_1_2_8_145_1
  doi: 10.1016/j.cell.2018.03.014
– ident: e_1_2_8_158_1
  doi: 10.1016/j.str.2019.05.009
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jsb.2005.01.003
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jsb.2016.04.004
– ident: e_1_2_8_139_1
  doi: 10.1016/j.jsb.2015.11.006
– ident: e_1_2_8_100_1
  doi: 10.1038/nature15381
– ident: e_1_2_8_154_1
  doi: 10.7554/eLife.23006
– ident: e_1_2_8_127_1
  doi: 10.1073/pnas.1621129114
– ident: e_1_2_8_137_1
  doi: 10.1038/s41598-019-55766-8
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2015.03.049
– ident: e_1_2_8_65_1
  doi: 10.1073/pnas.1716305114
– ident: e_1_2_8_38_1
  doi: 10.1146/annurev.biochem.73.011303.074112
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jsb.2011.05.011
– ident: e_1_2_8_101_1
  doi: 10.1038/s41422-020-0320-y
– ident: e_1_2_8_102_1
  doi: 10.1126/science.abb3758
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1090284
– ident: e_1_2_8_144_1
  doi: 10.1038/msb.2011.82
– ident: e_1_2_8_131_1
  doi: 10.1016/S0006-3495(95)80314-0
– ident: e_1_2_8_132_1
  doi: 10.7554/eLife.52286
– ident: e_1_2_8_75_1
  doi: 10.1038/nmeth.2115
– ident: e_1_2_8_94_1
  doi: 10.1073/pnas.1811580115
– ident: e_1_2_8_138_1
  doi: 10.1016/j.jsb.2019.09.006
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jsb.2008.02.008
– ident: e_1_2_8_141_1
  doi: 10.1038/s41598-018-37728-8
– ident: e_1_2_8_2_1
  doi: 10.1016/j.febslet.2004.10.102
– ident: e_1_2_8_95_1
  doi: 10.1371/journal.ppat.1006377
– ident: e_1_2_8_99_1
  doi: 10.1126/science.1104808
– ident: e_1_2_8_142_1
  doi: 10.1016/j.jsb.2018.12.008
– ident: e_1_2_8_45_1
  doi: 10.1038/s41592-019-0591-8
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cub.2006.11.022
– ident: e_1_2_8_42_1
  doi: 10.7554/eLife.06980
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.68.9.2236
– ident: e_1_2_8_133_1
  doi: 10.1007/s11340-019-00528-w
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aah4972
– ident: e_1_2_8_134_1
  doi: 10.1016/j.jsb.2020.107488
– ident: e_1_2_8_66_1
  doi: 10.1073/pnas.1905641117
– ident: e_1_2_8_76_1
  doi: 10.1006/jsbi.1998.4014
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jsb.2009.08.002
– ident: e_1_2_8_83_1
  doi: 10.1016/j.str.2014.08.007
– ident: e_1_2_8_114_1
  doi: 10.1126/sciadv.aaz4137
– ident: e_1_2_8_52_1
  doi: 10.1007/978-1-4757-2163-8_5
– ident: e_1_2_8_169_1
  doi: 10.1146/annurev-cellbio-100913-013325
– ident: e_1_2_8_5_1
  doi: 10.1201/9780429258763
– ident: e_1_2_8_71_1
  doi: 10.1038/nmeth.4405
– ident: e_1_2_8_130_1
  doi: 10.1016/0304-3991(92)90016-D
– ident: e_1_2_8_148_1
  doi: 10.1038/s41467-019-08991-8
– ident: e_1_2_8_60_1
  doi: 10.1006/jsbi.2001.4406
– ident: e_1_2_8_97_1
  doi: 10.1126/science.abd5223
– ident: e_1_2_8_6_1
  doi: 10.1016/j.tcb.2016.08.006
– ident: e_1_2_8_118_1
  doi: 10.15252/embj.2018100886
– ident: e_1_2_8_129_1
  doi: 10.1016/0304-3991(93)90217-L
– ident: e_1_2_8_88_1
  doi: 10.1038/s41592-018-0167-z
– ident: e_1_2_8_167_1
  doi: 10.1007/978-3-319-68997-5_4
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jsb.2017.07.007
– ident: e_1_2_8_67_1
  doi: 10.1073/pnas.230282097
– ident: e_1_2_8_81_1
  doi: 10.1016/j.jsb.2010.08.005
– ident: e_1_2_8_36_1
  doi: 10.1038/s41467-020-14535-2
– start-page: 19
  volume-title: Methods in Enzymology
  year: 2016
  ident: e_1_2_8_37_1
– ident: e_1_2_8_147_1
  doi: 10.1093/bioinformatics/btr207
– ident: e_1_2_8_19_1
  doi: 10.1128/JB.00901-15
– ident: e_1_2_8_40_1
  doi: 10.1109/JRPROC.1949.232969
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jsb.2012.02.003
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jsb.2011.08.012
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jsb.2014.02.015
– ident: e_1_2_8_152_1
  doi: 10.1016/j.sbi.2017.06.006
– ident: e_1_2_8_20_1
  doi: 10.1038/s41592-019-0630-5
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jsb.2003.09.010
– ident: e_1_2_8_109_1
  doi: 10.1038/s41586-018-0526-z
– ident: e_1_2_8_149_1
  doi: 10.1038/nmeth.1390
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jsb.2018.02.001
– ident: e_1_2_8_64_1
  doi: 10.1109/ISBI.2019.8759519
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jsb.2016.06.016
– ident: e_1_2_8_70_1
  doi: 10.1016/j.jsb.2008.05.003
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jsb.2015.01.011
– ident: e_1_2_8_87_1
  doi: 10.1016/j.jsb.2015.04.016
– ident: e_1_2_8_105_1
  doi: 10.1126/science.1221443
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1201333109
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.1810690116
– ident: e_1_2_8_166_1
  doi: 10.1107/S205225252000408X
– ident: e_1_2_8_113_1
  doi: 10.1016/j.cell.2020.08.004
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jsb.2013.12.001
– ident: e_1_2_8_79_1
  doi: 10.1186/1752-0509-6-S1-S18
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ultramic.2006.02.004
– ident: e_1_2_8_170_1
  doi: 10.1073/pnas.1120559109
– ident: e_1_2_8_26_1
  doi: 10.1038/nmeth1014
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jsb.2019.03.002
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jsb.2010.02.011
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jsb.2015.10.003
– ident: e_1_2_8_84_1
  doi: 10.1126/science.1261197
– ident: e_1_2_8_162_1
  doi: 10.1016/j.yjsbx.2019.100013
– ident: e_1_2_8_165_1
  doi: 10.1006/jsbi.1997.3933
– ident: e_1_2_8_91_1
  doi: 10.1016/j.jsb.2011.12.003
– ident: e_1_2_8_121_1
  doi: 10.1038/s41594-020-0497-2
– ident: e_1_2_8_168_1
  doi: 10.1073/pnas.1903642116
– ident: e_1_2_8_80_1
  doi: 10.1016/j.str.2009.10.009
– ident: e_1_2_8_140_1
  doi: 10.1073/pnas.0813131106
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aaf9620
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jsb.2016.07.011
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365-2818.2007.01794.x
– ident: e_1_2_8_39_1
  doi: 10.1016/0304-3991(95)00078-X
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jsb.2007.07.006
– ident: e_1_2_8_69_1
  doi: 10.1093/emboj/20.20.5636
– ident: e_1_2_8_151_1
  doi: 10.1016/S0304-3991(01)00088-2
– ident: e_1_2_8_33_1
  doi: 10.1038/s41598-019-55413-2
– ident: e_1_2_8_9_1
  doi: 10.1083/jcb.201304193
– ident: e_1_2_8_155_1
  doi: 10.1016/j.jmb.2017.07.004
– ident: e_1_2_8_157_1
  doi: 10.1126/science.aad8857
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jsb.2007.07.011
– ident: e_1_2_8_72_1
  doi: 10.1016/j.jsb.2017.12.015
– ident: e_1_2_8_115_1
  doi: 10.1126/science.aan7904
– ident: e_1_2_8_128_1
  doi: 10.1016/0304-3991(92)90235-C
– ident: e_1_2_8_82_1
  doi: 10.1016/j.jsb.2011.02.009
– ident: e_1_2_8_104_1
  doi: 10.1126/science.aar7899
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jsb.2016.06.007
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jsb.2014.09.010
– ident: e_1_2_8_122_1
  doi: 10.1016/j.cell.2019.12.006
– ident: e_1_2_8_123_1
  doi: 10.7554/eLife.42747
– ident: e_1_2_8_135_1
  doi: 10.1088/1757-899X/580/1/012014
– ident: e_1_2_8_111_1
  doi: 10.1091/mbc.E18-05-0331
– ident: e_1_2_8_125_1
  doi: 10.1128/jb.174.20.6527-6538.1992
– ident: e_1_2_8_159_1
  doi: 10.1088/1367-2630/12/7/073011
– ident: e_1_2_8_92_1
  doi: 10.1038/nprot.2016.124
– ident: e_1_2_8_73_1
  doi: 10.1038/s41592-019-0675-5
– ident: e_1_2_8_126_1
  doi: 10.1016/j.cell.2017.12.030
– ident: e_1_2_8_143_1
  doi: 10.1017/S1431927612001225
– start-page: 741
  volume-title: Methods in Cell Biology
  year: 2007
  ident: e_1_2_8_161_1
– ident: e_1_2_8_160_1
  doi: 10.1038/s41592-019-0552-2
– ident: e_1_2_8_171_1
  doi: 10.1038/nature26003
– ident: e_1_2_8_120_1
  doi: 10.1128/mBio.00973-19
– ident: e_1_2_8_150_1
  doi: 10.1515/zna-1947-11-1204
– ident: e_1_2_8_164_1
  doi: 10.1016/j.ultramic.2019.02.007
– ident: e_1_2_8_17_1
  doi: 10.1083/jcb.201201120
– ident: e_1_2_8_85_1
  doi: 10.1073/pnas.1701367114
– ident: e_1_2_8_14_1
  doi: 10.1006/jsbi.1999.4204
– ident: e_1_2_8_156_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_8_163_1
  doi: 10.1016/j.ultramic.2013.10.016
– ident: e_1_2_8_106_1
  doi: 10.1126/science.aab1121
– ident: e_1_2_8_8_1
  doi: 10.1126/science.aaz5357
– ident: e_1_2_8_27_1
  doi: 10.1038/s41592-019-0497-5
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-642-72815-0_8
SSID ssj0001819
Score 2.6604357
SecondaryResourceType review_article
Snippet Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3243
SubjectTerms Animals
cellular structural biology
Coat Protein Complex I - ultrastructure
correlative light‐electron microscopy
Cryoelectron Microscopy
cryo‐electron tomography
Electron Microscope Tomography
Humans
image processing workflow
Imaging, Three-Dimensional
Neurons - ultrastructure
sample preparation workflows
structural biology in situ
Title The promise and the challenges of cryo‐electron tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13948
https://www.ncbi.nlm.nih.gov/pubmed/33020915
https://www.proquest.com/docview/2448850948
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgE2IvCDZg5UtGQggJpavjuI4lXrppaGKCB-i0vUW2YyOkkqDRPownfgK_kV_CtR07LQyN8RJFqeOo955cHzvX5yL0TBLFRW5spmpVZ4WYyEzyvMy0tFIxzoVQbh3y7bvJ4XHx5pSd9jU2_e6ShRrpbxfuK_kfr8I18KvbJXsFz6ZO4QKcg3_hCB6G4z_7GCIguMqkTEgdq6P4HA19dt6mfIZY8gb45udVpepYpfNg78PLud_ek4j2bBlSqYPaQL_sCRHtU6zpcdLO7UfZjYDdAgLMFmMqWgqKpMgYD4UKRybEwZLTjBah4k0MlCyUI-4QkY9X4h7QMroyhgInJBfG56D3mnofAf8MQpvrStipKbuksR-IwTy5_-062shhtpAP0Mb06P3JURqSgcaEeVD3T6PG0zjf_a37dXryx5xjfQrjOcjsNrrVTR7wNCDhDrpmmi20PW0kOPQcP8c-ndd_J9lCN_bi2c39WNRvG70CyOAOMhgggwEyuIcMbi12kPn5_UcEC-7Bchcdvz6Y7R9mXQGNTBeMlPDqWUrtmGptHDFkTJZW1JwIpZh2woSlJZZzp0CkazXRJatFYfW4LhQQQ6HoPTRo2sbsIGwZqYXUdUGNLJgwiks94dwSQg0x9WSIRtFule7U5V2Rk3kVdLHzyhm6coauvKGH6EW64UsQVvl706fRERWYx33Rko1pl18r4KZl6SQgoc394KHUGaWAdUHYEO16l132lCrB6MGV73iINvs36xEaLM6W5jGQ1YV60kHxFwHkhyw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+promise+and+the+challenges+of+cryo%E2%80%90electron+tomography&rft.jtitle=FEBS+letters&rft.au=Turk%2C+Martin&rft.au=Baumeister%2C+Wolfgang&rft.date=2020-10-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=594&rft.issue=20&rft.spage=3243&rft.epage=3261&rft_id=info:doi/10.1002%2F1873-3468.13948&rft.externalDBID=10.1002%252F1873-3468.13948&rft.externalDocID=FEB213948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon