The promise and the challenges of cryo‐electron tomography
Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in...
Saved in:
Published in | FEBS letters Vol. 594; no. 20; pp. 3243 - 3261 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo‐electron tomography (Cryo‐ET) combines the power of 3D molecular‐level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or ‘molecular sociology’ of cells and to discover the unexpected. Here, we review state‐of‐the‐art Cryo‐ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo‐ET. |
---|---|
AbstractList | Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This ‘divide and conquer’ approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed
in situ
, ideally in unperturbed cellular environments. Cryo‐electron tomography (Cryo‐ET) combines the power of 3D molecular‐level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or ‘molecular sociology’ of cells and to discover the unexpected. Here, we review state‐of‐the‐art Cryo‐ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo‐ET. Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET. Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET. |
Author | Turk, Martin Baumeister, Wolfgang |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-8680-2060 surname: Turk fullname: Turk, Martin organization: Max Planck Institute of Biochemistry – sequence: 2 givenname: Wolfgang orcidid: 0000-0001-8154-8809 surname: Baumeister fullname: Baumeister, Wolfgang email: baumeist@biochem.mpg.de organization: Max Planck Institute of Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33020915$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkL1OwzAURi1URH9gZkMZWdLasZ3YEgtULSBVYimz5Th2G5TExU6FuvEIPCNPgktKBwaYrGudc_35G4JeYxsNwCWCYwRhMkEswzEmKRsjzAk7AYPjTQ8MIEQkphnHfTD0_gWGmSF-BvoYwwRyRAfgZrnW0cbZuvQ6kk0RtWFWa1lVullpH1kTKbezn-8futKqdbaJWlvblZOb9e4cnBpZeX1xOEfgeT5bTh_ixdP94_R2EStCEYsJNxgbiJXSGYWcUskMLzLE85yqFNOUGWSyDGeEqSJPFaMFJ0bBguQsxMzxCFx3e0PQ1632rQhxla4q2Wi79SIhhLGwmbCAXh3QbV7rQmxcWUu3Ez8_DsCkA5Sz3jttjgiCYt-p2Dco9g2K706DQX8ZqmxlW9qmdbKs_vDSznsrK7377xkxn90lnfgFizaImA |
CitedBy_id | crossref_primary_10_1038_s41591_024_03400_0 crossref_primary_10_1093_micmic_ozad067_541 crossref_primary_10_1073_pnas_2108738118 crossref_primary_10_1126_science_abm8295 crossref_primary_10_1016_j_mtphys_2024_101417 crossref_primary_10_1002_pro_4538 crossref_primary_10_1107_S2059798324001840 crossref_primary_10_3389_fncel_2024_1379976 crossref_primary_10_1016_j_molcel_2021_12_016 crossref_primary_10_1016_j_conb_2022_102595 crossref_primary_10_1038_s41592_021_01133_3 crossref_primary_10_1091_mbc_E22_03_0092 crossref_primary_10_3390_biom13050866 crossref_primary_10_1016_j_jcis_2024_06_011 crossref_primary_10_7554_eLife_72817 crossref_primary_10_1016_j_sbi_2022_102488 crossref_primary_10_1109_TMI_2024_3398401 crossref_primary_10_3390_biology11050662 crossref_primary_10_1016_j_sbi_2023_102765 crossref_primary_10_1016_j_jsb_2022_107880 crossref_primary_10_1016_j_jbc_2021_100559 crossref_primary_10_3390_ijms25179725 crossref_primary_10_1016_j_jbc_2021_100555 crossref_primary_10_1016_j_jmro_2022_100044 crossref_primary_10_3788_CJL230469 crossref_primary_10_3390_biom12101425 crossref_primary_10_1038_s42003_025_07586_y crossref_primary_10_1016_j_pnmrs_2022_11_001 crossref_primary_10_1093_plphys_kiac175 crossref_primary_10_1016_j_jmb_2021_167176 crossref_primary_10_1016_j_jsb_2021_107801 crossref_primary_10_3389_fmolb_2024_1390858 crossref_primary_10_1126_sciadv_adk6285 crossref_primary_10_1016_j_jbior_2021_100847 crossref_primary_10_32607_actanaturae_27483 crossref_primary_10_1016_j_cmpb_2022_107017 crossref_primary_10_1038_s41467_024_47839_8 crossref_primary_10_1091_mbc_E24_01_0042 crossref_primary_10_1007_s11227_022_04607_z crossref_primary_10_1016_j_sbi_2023_102653 crossref_primary_10_1016_j_str_2025_01_020 crossref_primary_10_1042_BST20240629 crossref_primary_10_1111_febs_15710 crossref_primary_10_1016_j_str_2021_04_010 crossref_primary_10_1038_s41592_023_01999_5 crossref_primary_10_1016_j_ejcb_2022_151224 crossref_primary_10_1016_j_coviro_2023_101338 crossref_primary_10_1038_s41592_024_02477_2 crossref_primary_10_3390_biomimetics7020066 crossref_primary_10_1016_j_jsb_2021_107778 crossref_primary_10_1016_j_cell_2024_01_005 crossref_primary_10_1038_s43246_022_00267_x crossref_primary_10_1038_s41594_021_00650_1 crossref_primary_10_1016_j_isci_2023_105965 crossref_primary_10_1017_S1431927622005256 crossref_primary_10_1038_s41592_022_01448_9 crossref_primary_10_1042_BST20241510 crossref_primary_10_1093_micmic_ozad067_445 crossref_primary_10_1111_tra_12957 crossref_primary_10_1371_journal_pcbi_1012180 crossref_primary_10_1038_s41467_023_36112_z crossref_primary_10_1016_j_sbi_2023_102620 crossref_primary_10_1021_acs_chemrev_1c00937 crossref_primary_10_1038_s41596_021_00640_z crossref_primary_10_1016_j_pnmrs_2022_04_002 crossref_primary_10_1111_febs_16910 crossref_primary_10_1038_s41592_023_02000_z crossref_primary_10_1016_j_str_2024_01_015 crossref_primary_10_1042_BST20210450 crossref_primary_10_1016_j_molcel_2020_11_043 crossref_primary_10_1042_BST20190963 crossref_primary_10_1098_rsta_2022_0350 crossref_primary_10_1016_j_jcis_2022_03_102 crossref_primary_10_1016_j_jmb_2023_168361 crossref_primary_10_1038_s41592_024_02210_z crossref_primary_10_1093_micmic_ozad067_715 crossref_primary_10_1016_j_molcel_2021_12_027 crossref_primary_10_1016_j_tcb_2022_01_011 crossref_primary_10_1016_j_molcel_2021_12_024 crossref_primary_10_1093_jxb_erae088 crossref_primary_10_1002_VIW_20240042 crossref_primary_10_1093_jb_mvad102 crossref_primary_10_1210_endrev_bnac033 crossref_primary_10_1016_j_ultramic_2022_113511 crossref_primary_10_3390_biology10060466 crossref_primary_10_3389_fmolb_2023_1252529 crossref_primary_10_1016_j_ultramic_2022_113510 crossref_primary_10_1016_j_tibs_2021_08_005 crossref_primary_10_1038_s41569_022_00677_x crossref_primary_10_1016_j_micron_2024_103774 crossref_primary_10_1016_j_chempr_2023_05_009 crossref_primary_10_1016_j_jsb_2023_107959 crossref_primary_10_1042_EBC20220168 crossref_primary_10_1016_j_heliyon_2024_e27949 crossref_primary_10_1038_s41467_024_51159_2 crossref_primary_10_1016_j_jplph_2021_153431 crossref_primary_10_1021_acs_jctc_3c00224 crossref_primary_10_1039_D2FD00076H crossref_primary_10_1016_j_bpr_2024_100168 crossref_primary_10_1038_s41596_021_00648_5 crossref_primary_10_1038_s44318_024_00216_z crossref_primary_10_3390_ijms22126177 crossref_primary_10_1021_acs_chemrev_1c00837 crossref_primary_10_1002_adfm_202313705 crossref_primary_10_1016_j_sbi_2022_102444 crossref_primary_10_1038_s41467_022_35409_9 crossref_primary_10_1016_j_bbamem_2022_184068 crossref_primary_10_1017_S1431927621011144 crossref_primary_10_7554_eLife_82891 crossref_primary_10_1016_j_str_2021_05_012 crossref_primary_10_1093_ismejo_wrae154 crossref_primary_10_1093_mam_ozae122 crossref_primary_10_1242_jcs_259234 crossref_primary_10_1002_mds_28755 crossref_primary_10_1016_j_cels_2021_05_014 crossref_primary_10_1016_j_pnmrs_2022_09_001 crossref_primary_10_1093_plcell_koae169 crossref_primary_10_1016_j_jmb_2023_168068 crossref_primary_10_1109_TCI_2022_3194719 crossref_primary_10_1021_acsami_3c02956 crossref_primary_10_1109_TVCG_2022_3230445 crossref_primary_10_1038_s41592_024_02403_6 crossref_primary_10_3390_app15020565 crossref_primary_10_1017_S2633903X22000046 crossref_primary_10_1093_bioinformatics_btae368 crossref_primary_10_1038_s41596_024_01071_2 crossref_primary_10_1093_plphys_kiab449 crossref_primary_10_1111_jmi_13391 crossref_primary_10_1038_s41592_024_02479_0 crossref_primary_10_1073_pnas_2403136121 crossref_primary_10_1146_annurev_biochem_052521_033250 crossref_primary_10_4103_ATN_ATN_D_24_00009 crossref_primary_10_1039_D2MH00574C crossref_primary_10_3389_fmolb_2021_830304 crossref_primary_10_1137_23M1611567 crossref_primary_10_1016_j_bbagrm_2022_194851 crossref_primary_10_1038_s41467_024_51438_y crossref_primary_10_1042_EBC20230084 crossref_primary_10_1242_jcs_259089 crossref_primary_10_1016_j_cell_2024_09_013 crossref_primary_10_1016_j_bpj_2023_04_006 crossref_primary_10_1146_annurev_biochem_052521_042909 crossref_primary_10_1016_j_jmb_2023_168051 crossref_primary_10_1007_s13199_022_00859_8 crossref_primary_10_1371_journal_pbio_3002447 crossref_primary_10_1016_j_ceb_2024_102356 crossref_primary_10_1016_j_sbi_2022_102392 crossref_primary_10_1083_jcb_202204093 crossref_primary_10_1016_j_sbi_2023_102547 crossref_primary_10_1371_journal_pone_0313812 crossref_primary_10_1007_s00441_024_03878_7 crossref_primary_10_1021_acs_chemrev_3c00494 crossref_primary_10_1002_piuz_202301669 crossref_primary_10_1093_jmicro_dfac053 crossref_primary_10_1093_jmicro_dfad024 crossref_primary_10_1016_j_rbmo_2024_104346 crossref_primary_10_1016_j_jsb_2021_107742 crossref_primary_10_1038_s41467_022_33483_7 crossref_primary_10_1016_j_str_2020_10_004 crossref_primary_10_1016_j_cmpb_2022_107039 crossref_primary_10_1016_j_yjsbx_2022_100065 crossref_primary_10_1016_j_ddtec_2020_12_003 crossref_primary_10_1016_j_crmeth_2025_101004 crossref_primary_10_1093_mam_ozae044_376 crossref_primary_10_1021_acs_jpcb_3c08026 crossref_primary_10_1186_s13024_021_00480_1 crossref_primary_10_1016_j_jbior_2022_100923 crossref_primary_10_1093_micmic_ozad067_519 crossref_primary_10_1146_annurev_biochem_032620_110705 crossref_primary_10_1016_j_slasd_2025_100209 crossref_primary_10_1073_pnas_2321515121 crossref_primary_10_1016_j_bbrc_2022_09_030 crossref_primary_10_1016_j_crmeth_2022_100170 crossref_primary_10_1016_j_jsb_2023_108000 crossref_primary_10_1177_25152564231162495 crossref_primary_10_1371_journal_ppat_1010629 crossref_primary_10_1016_j_jbc_2021_100741 |
Cites_doi | 10.1073/pnas.0409178102 10.7554/eLife.32493 10.1038/s41564-019-0603-6 10.1038/s42003-019-0748-0 10.1016/j.jsb.2006.07.014 10.1016/S0092-8674(00)80922-8 10.1016/j.str.2019.01.005 10.1073/pnas.1523234113 10.1073/pnas.172520299 10.7554/eLife.39514 10.1126/science.1128618 10.1126/sciadv.aba8381 10.1016/j.bpj.2015.10.053 10.1080/19336918.2016.1173803 10.1016/S1047-8477(03)00069-8 10.1038/nature01513 10.1038/s41586-020-2665-2 10.1038/nrmicro.2016.7 10.1107/S2059798317003369 10.1038/nature24490 10.1038/ncomms14516 10.7554/eLife.26691 10.1017/S0033583500004297 10.1073/pnas.1418377111 10.1038/nrm1861 10.1038/217130a0 10.1016/0304-3991(84)90057-3 10.1016/j.cell.2018.03.014 10.1016/j.str.2019.05.009 10.1016/j.jsb.2005.01.003 10.1016/j.jsb.2016.04.004 10.1016/j.jsb.2015.11.006 10.1038/nature15381 10.7554/eLife.23006 10.1073/pnas.1621129114 10.1038/s41598-019-55766-8 10.1016/j.cell.2015.03.049 10.1073/pnas.1716305114 10.1146/annurev.biochem.73.011303.074112 10.1016/j.jsb.2011.05.011 10.1038/s41422-020-0320-y 10.1126/science.abb3758 10.1126/science.1090284 10.1038/msb.2011.82 10.1016/S0006-3495(95)80314-0 10.7554/eLife.52286 10.1038/nmeth.2115 10.1073/pnas.1811580115 10.1016/j.jsb.2019.09.006 10.1016/j.jsb.2008.02.008 10.1038/s41598-018-37728-8 10.1016/j.febslet.2004.10.102 10.1371/journal.ppat.1006377 10.1126/science.1104808 10.1016/j.jsb.2018.12.008 10.1038/s41592-019-0591-8 10.1016/j.cub.2006.11.022 10.7554/eLife.06980 10.1073/pnas.68.9.2236 10.1007/s11340-019-00528-w 10.1126/science.aah4972 10.1016/j.jsb.2020.107488 10.1073/pnas.1905641117 10.1006/jsbi.1998.4014 10.1016/j.jsb.2009.08.002 10.1016/j.str.2014.08.007 10.1126/sciadv.aaz4137 10.1007/978-1-4757-2163-8_5 10.1146/annurev-cellbio-100913-013325 10.1201/9780429258763 10.1038/nmeth.4405 10.1016/0304-3991(92)90016-D 10.1038/s41467-019-08991-8 10.1006/jsbi.2001.4406 10.1126/science.abd5223 10.1016/j.tcb.2016.08.006 10.15252/embj.2018100886 10.1016/0304-3991(93)90217-L 10.1038/s41592-018-0167-z 10.1007/978-3-319-68997-5_4 10.1016/j.jsb.2017.07.007 10.1073/pnas.230282097 10.1016/j.jsb.2010.08.005 10.1038/s41467-020-14535-2 10.1093/bioinformatics/btr207 10.1128/JB.00901-15 10.1109/JRPROC.1949.232969 10.1016/j.jsb.2012.02.003 10.1016/j.jsb.2011.08.012 10.1016/j.jsb.2014.02.015 10.1016/j.sbi.2017.06.006 10.1038/s41592-019-0630-5 10.1016/j.jsb.2003.09.010 10.1038/s41586-018-0526-z 10.1038/nmeth.1390 10.1016/j.jsb.2018.02.001 10.1109/ISBI.2019.8759519 10.1016/j.jsb.2016.06.016 10.1016/j.jsb.2008.05.003 10.1016/j.jsb.2015.01.011 10.1016/j.jsb.2015.04.016 10.1126/science.1221443 10.1073/pnas.1201333109 10.1073/pnas.1810690116 10.1107/S205225252000408X 10.1016/j.cell.2020.08.004 10.1016/j.jsb.2013.12.001 10.1186/1752-0509-6-S1-S18 10.1016/j.ultramic.2006.02.004 10.1073/pnas.1120559109 10.1038/nmeth1014 10.1016/j.jsb.2019.03.002 10.1016/j.jsb.2010.02.011 10.1016/j.jsb.2015.10.003 10.1126/science.1261197 10.1016/j.yjsbx.2019.100013 10.1006/jsbi.1997.3933 10.1016/j.jsb.2011.12.003 10.1038/s41594-020-0497-2 10.1073/pnas.1903642116 10.1016/j.str.2009.10.009 10.1073/pnas.0813131106 10.1126/science.aaf9620 10.1016/j.jsb.2016.07.011 10.1111/j.1365-2818.2007.01794.x 10.1016/0304-3991(95)00078-X 10.1016/j.jsb.2007.07.006 10.1093/emboj/20.20.5636 10.1016/S0304-3991(01)00088-2 10.1038/s41598-019-55413-2 10.1083/jcb.201304193 10.1016/j.jmb.2017.07.004 10.1126/science.aad8857 10.1016/j.jsb.2007.07.011 10.1016/j.jsb.2017.12.015 10.1126/science.aan7904 10.1016/0304-3991(92)90235-C 10.1016/j.jsb.2011.02.009 10.1126/science.aar7899 10.1016/j.jsb.2016.06.007 10.1016/j.jsb.2014.09.010 10.1016/j.cell.2019.12.006 10.7554/eLife.42747 10.1088/1757-899X/580/1/012014 10.1091/mbc.E18-05-0331 10.1128/jb.174.20.6527-6538.1992 10.1088/1367-2630/12/7/073011 10.1038/nprot.2016.124 10.1038/s41592-019-0675-5 10.1016/j.cell.2017.12.030 10.1017/S1431927612001225 10.1038/s41592-019-0552-2 10.1038/nature26003 10.1128/mBio.00973-19 10.1515/zna-1947-11-1204 10.1016/j.ultramic.2019.02.007 10.1083/jcb.201201120 10.1073/pnas.1701367114 10.1006/jsbi.1999.4204 10.1038/s41467-018-07882-8 10.1016/j.ultramic.2013.10.016 10.1126/science.aab1121 10.1126/science.aaz5357 10.1038/s41592-019-0497-5 10.1007/978-3-642-72815-0_8 |
ContentType | Journal Article |
Copyright | 2020 Federation of European Biochemical Societies 2020 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2020 Federation of European Biochemical Societies – notice: 2020 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/1873-3468.13948 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 3261 |
ExternalDocumentID | 33020915 10_1002_1873_3468_13948 FEB213948 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4518-49f33f03cce750955a8f9d719bb5c63568f1f773748cdb6c85d94fc0d4b8209b3 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 16:55:22 EDT 2025 Mon Jul 21 06:09:37 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 02:46:51 EDT 2025 Wed Jan 22 16:31:39 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | cellular structural biology image processing workflow sample preparation workflows cryo-electron tomography structural biology in situ correlative light-electron microscopy |
Language | English |
License | 2020 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4518-49f33f03cce750955a8f9d719bb5c63568f1f773748cdb6c85d94fc0d4b8209b3 |
Notes | Edited by John Briggs ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8154-8809 0000-0001-8680-2060 |
OpenAccessLink | https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.13948 |
PMID | 33020915 |
PQID | 2448850948 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2448850948 pubmed_primary_33020915 crossref_primary_10_1002_1873_3468_13948 crossref_citationtrail_10_1002_1873_3468_13948 wiley_primary_10_1002_1873_3468_13948_FEB213948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2020 |
References | 2010; 12 2018; 561 2007; 227 2019; 10 2005; 579 2018; 202 2002; 99 2019; 17 2020; 17 2019; 203 2019; 16 2012; 18 2019; 208 2020; 11 2019; 205 2019; 206 2017; 551 2014; 22 2014; 137 2017; 73 2018; 7 2001; 135 2018; 173 2018; 172 2005; 102 2000; 129 2000; 97 1987 2005; 74 2019; 27 1998; 92 2007; 4 1992; 46 2020; 210 1992; 40 2009; 17 2007; 17 2019; 8 2018; 29 2019; 9 2019; 4 1993; 49 2007; 160 1947; 2 2016; 10 2019; 38 2015; 526 1992 2019; 580 2004; 306 2016; 14 2011; 7 2012; 109 2016; 11 2017; 429 2007; 157 1968; 217 2012; 198 2015; 192 2015; 190 2020; 30 2018; 115 1988; 21 2010; 172 2014; 30 2016; 26 2006; 106 2018; 15 1996; 116 2009; 106 2017; 6 2017; 8 2018; 360 2015; 347 2015; 189 2019; 59 2017; 46 2020; 369 2013; 202 2020; 367 2017; 197 2015; 349 2017; 199 2001; 88 2017; 114 2017; 357 2020; 7 2020; 6 1995; 60 2020; 4 2012; 177 2020; 3 2012; 178 1995; 68 2020; 370 1984; 13 2020; 9 2016; 113 2016; 354 2019; 116 2016; 353 2016; 198 2009; 168 2016; 110 1998; 122 2016; 193 2011; 27 2012; 336 2016; 351 2016; 195 1949; 37 2015; 161 2005; 150 2015; 4 2012 2010 1971; 68 2020; 180 2020; 182 2006; 7 2007 2011; 174 2006; 313 2011; 173 2014; 111 2008; 164 2008; 162 2008; 161 2011; 175 1992; 174 2017; 14 2020 1997; 120 2017; 13 2018; 555 2019 2020; 117 2018 2016 2009; 6 2003; 302 2012; 6 2003; 422 2014; 188 2014; 185 2014; 186 2003; 144 2003; 142 2012; 9 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 Rigort A (e_1_2_8_28_1) 2012 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 McDonald K (e_1_2_8_22_1) 2010 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_24_1 e_1_2_8_47_1 Wan W (e_1_2_8_54_1) 2016 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 Glaeser RM (e_1_2_8_37_1) 2016 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 Förster F (e_1_2_8_161_1) 2007 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 173 start-page: 11 year: 2018 end-page: 19 article-title: Opportunities and challenges in building a spatiotemporal multi‐scale model of the human pancreatic β cell publication-title: Cell – volume: 197 start-page: 191 year: 2017 end-page: 198 article-title: Implementation of a cryo‐electron tomography tilt‐scheme optimized for high resolution subtomogram averaging publication-title: J Struct Biol – volume: 369 start-page: 554 year: 2020 end-page: 557 article-title: In‐cell architecture of an actively transcribing‐translating expressome publication-title: Science – volume: 168 start-page: 305 year: 2009 end-page: 312 article-title: Contrast transfer function correction applied to cryo‐electron tomography and sub‐tomogram averaging publication-title: J Struct Biol – volume: 59 start-page: 1113 year: 2019 end-page: 1125 article-title: On the application of Xe+ Plasma FIB for micro‐fabrication of small‐scale tensile specimens publication-title: Exp Mech – volume: 195 start-page: 100 year: 2016 end-page: 112 article-title: ICON: 3D reconstruction with ‘missing‐information’ restoration in biological electron tomography publication-title: J Struct Biol – volume: 10 start-page: e00973 issue: 4 year: 2019 end-page: 19 article-title: In situ conformational changes of the serine chemoreceptor in different signaling states publication-title: MBio – volume: 46 start-page: 87 year: 2017 end-page: 94 article-title: Expanding the boundaries of cryo‐EM with phase plates publication-title: Curr Opin Struct Biol – volume: 9 start-page: 1 year: 2019 end-page: 10 article-title: In situ microfluidic cryofixation for cryo focused ion beam milling and cryo electron tomography publication-title: Sci Rep – volume: 11 start-page: 1 year: 2020 end-page: 9 article-title: Benchmarking tomographic acquisition schemes for high‐resolution structural biology publication-title: Nat Commun – volume: 579 start-page: 933 year: 2005 end-page: 937 article-title: From proteomic inventory to architecture publication-title: FEBS Lett – volume: 199 start-page: 187 year: 2017 end-page: 195 article-title: Efficient 3D‐CTF correction for cryo‐electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å publication-title: J Struct Biol – volume: 73 start-page: 478 year: 2017 end-page: 487 article-title: The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services publication-title: Acta Crystallogr Struct Biol – volume: 8 year: 2019 article-title: Protein denaturation at the air‐water interface and how to prevent it publication-title: eLife – volume: 336 start-page: 1451 year: 2012 end-page: 1454 article-title: The structures of COPI‐coated vesicles reveal alternate coatomer conformations and interactions publication-title: Science – volume: 68 start-page: 1416 year: 1995 end-page: 1422 article-title: Three‐dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography publication-title: Biophys J – volume: 185 start-page: 309 year: 2014 end-page: 316 article-title: Iterative reconstruction of cryo‐electron tomograms using nonuniform fast Fourier transforms publication-title: J Struct Biol – volume: 37 start-page: 10 year: 1949 end-page: 21 article-title: Communication in the presence of noise publication-title: Proc IRE – volume: 14 start-page: 983 year: 2017 end-page: 985 article-title: Convolutional neural networks for automated annotation of cellular cryo‐electron tomograms publication-title: Nat Methods – volume: 172 start-page: 696 year: 2018 end-page: 705 article-title: In situ structure of neuronal C9orf72 Poly‐GA aggregates reveals proteasome recruitment publication-title: Cell – volume: 27 start-page: i69 year: 2011 end-page: i76 article-title: Template‐free detection of macromolecular complexes in cryo electron tomograms publication-title: Bioinformatics – volume: 17 start-page: 209 year: 2020 end-page: 216 article-title: Template‐free detection and classification of membrane‐bound complexes in cryo‐electron tomograms publication-title: Nat Methods – volume: 9 start-page: 1 year: 2019 end-page: 11 article-title: Correlative cryo super‐resolution light and electron microscopy on mammalian cells using fluorescent proteins publication-title: Sci Rep – volume: 117 start-page: 1069 year: 2020 end-page: 1080 article-title: Direct visualization of degradation microcompartments at the ER membrane publication-title: Proc Natl Acad Sci USA – volume: 190 start-page: 279 year: 2015 end-page: 290 article-title: Single particle tomography in EMAN2 publication-title: J Struct Biol – volume: 7 start-page: 225 year: 2006 end-page: 230 article-title: A visual approach to proteomics publication-title: Nat Rev Mol Cell Biol – volume: 6 start-page: 817 year: 2009 end-page: 823 article-title: Visual proteomics of the human pathogen publication-title: Nat Methods – volume: 347 start-page: 439 year: 2015 end-page: 442 article-title: A molecular census of 26S proteasomes in intact neurons publication-title: Science – volume: 38 year: 2019 article-title: In situ and high‐resolution cryo‐EM structure of a bacterial type VI secretion system membrane complex publication-title: EMBO J – volume: 210 year: 2020 article-title: Automated cryo‐lamella preparation for high‐throughput in‐situ structural biology publication-title: J Struct Biol – volume: 208 year: 2019 article-title: Mind the gap: micro‐expansion joints drastically decrease the bending of FIB‐milled cryo‐lamellae publication-title: J Struct Biol – volume: 349 start-page: 195 year: 2015 end-page: 198 article-title: A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly publication-title: Science – volume: 9 year: 2020 article-title: Fully automated, sequential focused ion beam milling for cryo‐electron tomography publication-title: eLife – volume: 4 year: 2020 article-title: A Monte Carlo framework for missing wedge restoration and noise removal in cryo‐electron tomography publication-title: J Struct Biol X – volume: 202 start-page: 407 year: 2013 end-page: 419 article-title: Cryo‐electron tomography: the challenge of doing structural biology in situ publication-title: J Cell Biol – volume: 102 start-page: 4729 year: 2005 end-page: 4734 article-title: Retrovirus envelope protein complex structure in situ studied by cryo‐electron tomography publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1528 year: 2014 end-page: 1537 article-title: Autofocused 3D classification of cryoelectron subtomograms publication-title: Structure – volume: 4 year: 2015 article-title: Measuring the optimal exposure for single particle cryo‐EM using a 2.6 Å reconstruction of rotavirus VP6 publication-title: eLife – volume: 202 start-page: 150 year: 2018 end-page: 160 article-title: A convolutional autoencoder approach for mining features in cellular electron cryo‐tomograms and weakly supervised coarse segmentation publication-title: J Struct Biol – volume: 9 start-page: 853 year: 2012 end-page: 854 article-title: Prevention of overfitting in cryo‐EM structure determination publication-title: Nat Methods – volume: 40 start-page: 71 year: 1992 end-page: 87 article-title: Towards automatic electron tomography publication-title: Ultramicroscopy – volume: 113 start-page: 4176 year: 2016 end-page: 4181 article-title: Two distinct trimeric conformations of natively membrane‐anchored full‐length herpes simplex virus 1 glycoprotein B publication-title: Proc Natl Acad Sci USA – volume: 162 start-page: 436 year: 2008 end-page: 450 article-title: Classification and 3D averaging with missing wedge correction in biological electron tomography publication-title: J Struct Biol – volume: 198 start-page: 913 year: 2012 end-page: 925 article-title: Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme publication-title: J Cell Biol – volume: 561 start-page: 561 year: 2018 end-page: 564 article-title: Structure of the membrane‐assembled retromer coat determined by cryo‐electron tomography publication-title: Nature – volume: 197 start-page: 114 year: 2017 end-page: 122 article-title: Three‐dimensional CTF correction improves the resolution of electron tomograms publication-title: J Struct Biol – volume: 161 start-page: 450 year: 2015 end-page: 457 article-title: Single‐particle Cryo‐EM at crystallographic resolution publication-title: Cell – volume: 4 start-page: 215 year: 2007 end-page: 217 article-title: Focused‐ion‐beam thinning of frozen‐hydrated biological specimens for cryo‐electron microscopy publication-title: Nat Methods – volume: 6 year: 2017 article-title: 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments publication-title: eLife – volume: 137 start-page: 20 year: 2014 end-page: 29 article-title: A cylindrical specimen holder for electron cryo‐tomography publication-title: Ultramicroscopy – volume: 3 start-page: 24 year: 2020 article-title: Structure and dynamics of the chemotaxis core signaling complex by cryo‐electron tomography and molecular simulations publication-title: Commun Biol – volume: 74 start-page: 833 year: 2005 end-page: 865 article-title: Structural studies by electron tomography: from cells to molecules publication-title: Annu Rev Biochem – volume: 17 start-page: 1563 year: 2009 end-page: 1572 article-title: Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization publication-title: Structure – volume: 174 start-page: 494 year: 2011 end-page: 504 article-title: Classification of electron sub‐tomograms with neural networks and its application to template‐matching publication-title: J Struct Biol – volume: 551 start-page: 394 year: 2017 end-page: 397 article-title: Structure and assembly of the Ebola virus nucleocapsid publication-title: Nature – volume: 172 start-page: 169 year: 2010 end-page: 179 article-title: Micromachining tools and correlative approaches for cellular cryo‐electron tomography publication-title: J Struct Biol – volume: 16 start-page: 757 year: 2019 end-page: 762 article-title: A cryo‐FIB lift‐out technique enables molecular‐resolution cryo‐ET within native tissue publication-title: Nat Methods – year: 2020 article-title: Structures and distributions of SARS‐CoV‐2 spike proteins on intact virions publication-title: Nature – volume: 14 start-page: 205 year: 2016 end-page: 220 article-title: A new view into prokaryotic cell biology from electron cryotomography publication-title: Nat Rev Microbiol – volume: 6 year: 2017 article-title: Using the Volta phase plate with defocus for cryo‐EM single particle analysis publication-title: eLife – volume: 202 start-page: 200 year: 2018 end-page: 209 article-title: Cryo‐tomography tilt‐series alignment with consideration of the beam‐induced sample motion publication-title: J Struct Biol – volume: 4 start-page: 2101 year: 2019 end-page: 2108 article-title: structure of the Legionella type II secretion system by electron cryotomography publication-title: Nat Microbiol – volume: 302 start-page: 1396 year: 2003 end-page: 1398 article-title: Three‐dimensional structure of herpes simplex virus from Cryo‐electron tomography publication-title: Science – volume: 109 start-page: 4449 year: 2012 end-page: 4454 article-title: Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 679 year: 2019 end-page: 691 article-title: De novo visual proteomics in single cells through pattern mining publication-title: Structure – year: 2016 – volume: 370 start-page: 203 issue: 6513 year: 2020 end-page: 208 article-title: In situ structural analysis of SARS‐CoV‐2 spike reveals flexibility mediated by three hinges publication-title: Science – volume: 351 start-page: 969 year: 2016 end-page: 972 article-title: Visualizing the molecular sociology at the HeLa cell nuclear periphery publication-title: Science – volume: 120 start-page: 276 year: 1997 end-page: 308 article-title: Perspectives of molecular and cellular electron tomography publication-title: J Struct Biol – volume: 555 start-page: 475 year: 2018 end-page: 482 article-title: Integrative structure and functional anatomy of a nuclear pore complex publication-title: Nature – volume: 17 start-page: 50 year: 2019 end-page: 54 article-title: Tailoring cryo‐electron microscopy grids by photo‐micropatterning for in‐cell structural studies publication-title: Nat Methods – volume: 182 start-page: 1508 year: 2020 end-page: 1518 article-title: The in situ structure of Parkinson’s disease‐linked LRRK2 publication-title: Cell – volume: 111 start-page: 15635 year: 2014 end-page: 15640 article-title: Volta potential phase plate for in‐focus phase contrast transmission electron microscopy publication-title: Proc Natl Acad Sci USA – volume: 188 start-page: 107 year: 2014 end-page: 115 article-title: Super‐sampling SART with ordered subsets publication-title: J Struct Biol – volume: 367 year: 2020 article-title: Correlative three‐dimensional super‐resolution and block‐face electron microscopy of whole vitreously frozen cells publication-title: Science – volume: 160 start-page: 135 year: 2007 end-page: 145 article-title: Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo‐electron tomography publication-title: J Struct Biol – volume: 10 start-page: 1 year: 2019 end-page: 11 article-title: Single particle cryo‐EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution publication-title: Nat Commun – volume: 422 start-page: 216 year: 2003 end-page: 225 article-title: From words to literature in structural proteomics publication-title: Nature – volume: 189 start-page: 195 year: 2015 end-page: 206 article-title: Progressive stochastic reconstruction technique (PSRT) for cryo electron tomography publication-title: J Struct Biol – volume: 180 start-page: 348 year: 2020 end-page: 358 article-title: In Situ structure of an intact lipopolysaccharide‐bound bacterial surface layer publication-title: Cell – volume: 16 start-page: 1016 year: 2019 end-page: 1020 article-title: Laser phase plate for transmission electron microscopy publication-title: Nat Methods – volume: 173 start-page: 77 year: 2011 end-page: 85 article-title: Maximum likelihood based classification of electron tomographic data publication-title: J Struct Biol – volume: 193 start-page: 33 year: 2016 end-page: 44 article-title: Ultrastable gold substrates: properties of a support for high‐resolution electron cryomicroscopy of biological specimens publication-title: J Struct Biol – start-page: 671 year: 2010 end-page: 693 – start-page: 19 year: 2016 end-page: 50 – volume: 142 start-page: 334 year: 2003 end-page: 347 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J Struct Biol – volume: 46 start-page: 207 year: 1992 end-page: 227 article-title: Automated microscopy for electron tomography publication-title: Ultramicroscopy – volume: 6 year: 2017 article-title: The structure of the COPI coat determined within the cell publication-title: eLife – volume: 144 start-page: 152 year: 2003 end-page: 161 article-title: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo‐tomograms publication-title: J Struct Biol – volume: 354 start-page: 1434 year: 2016 end-page: 1437 article-title: The structure and flexibility of conical HIV‐1 capsids determined within intact virions publication-title: Science – volume: 313 start-page: 944 year: 2006 end-page: 948 article-title: The molecular architecture of axonemes revealed by cryoelectron tomography publication-title: Science – volume: 92 start-page: 291 year: 1998 end-page: 294 article-title: The cell as a collection of protein machines: preparing the next generation of molecular biologists publication-title: Cell – volume: 7 year: 2018 article-title: Visualization of the type III secretion mediated Salmonella–host cell interface using cryo‐electron tomography publication-title: eLife – volume: 97 start-page: 14245 year: 2000 end-page: 14250 article-title: Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms publication-title: Proc Natl Acad Sci USA – volume: 122 start-page: 328 year: 1998 end-page: 339 article-title: A maximum‐likelihood approach to single‐particle image refinement publication-title: J Struct Biol – volume: 186 start-page: 49 year: 2014 end-page: 61 article-title: Robust membrane detection based on tensor voting for electron tomography publication-title: J Struct Biol – volume: 175 start-page: 288 year: 2011 end-page: 299 article-title: Clustering and variance maps for cryo‐electron tomography using wedge‐masked differences publication-title: J Struct Biol – volume: 114 start-page: 1305 year: 2017 end-page: 1310 article-title: Structural insights into the functional cycle of the ATPase module of the 26S proteasome publication-title: Proc Natl Acad Sci USA – start-page: 329 year: 2016 end-page: 367 – volume: 116 start-page: 71 year: 1996 end-page: 76 article-title: Computer visualization of three‐dimensional image data using IMOD publication-title: J Struct Biol – volume: 116 start-page: 16866 year: 2019 end-page: 16871 article-title: Liquid‐crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 39 year: 2014 end-page: 58 article-title: Liquid‐liquid phase separation in biology publication-title: Annu Rev Cell Dev Biol – volume: 429 start-page: 2611 year: 2017 end-page: 2618 article-title: Revisiting the structure of hemoglobin and myoglobin with cryo‐electron microscopy publication-title: J Mol Biol – volume: 106 start-page: 587 year: 2006 end-page: 596 article-title: CTF determination and correction in electron cryotomography publication-title: Ultramicroscopy – volume: 357 start-page: 713 year: 2017 end-page: 717 article-title: In situ architecture, function, and evolution of a contractile injection system publication-title: Science – volume: 227 start-page: 98 year: 2007 end-page: 109 article-title: Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching publication-title: J Microsc – volume: 13 start-page: 57 year: 1984 end-page: 70 article-title: Three‐dimensional reconstruction of imperfect two‐dimensional crystals publication-title: Ultramicroscopy – volume: 11 start-page: 2054 year: 2016 end-page: 2065 article-title: Resolving macromolecular structures from electron cryo‐tomography data using subtomogram averaging in RELION publication-title: Nat Protoc – volume: 18 start-page: 676 year: 2012 end-page: 683 article-title: Operation of TEAM I in a user environment at NCEM publication-title: Microsc Microanal – volume: 7 start-page: 566 year: 2020 end-page: 574 article-title: Fast and accurate defocus modulation for improved tunability of cryo‐EM experiments publication-title: IUCrJ – volume: 13 year: 2017 article-title: Assembly, maturation and three‐dimensional helical structure of the teratogenic rubella virus publication-title: PLOS Pathog – volume: 135 start-page: 239 year: 2001 end-page: 250 article-title: Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion publication-title: J Struct Biol – year: 2020 article-title: Molecular mechanism for rotational switching of the bacterial flagellar motor publication-title: Nat Struct Mol Biol – volume: 161 start-page: 276 year: 2008 end-page: 286 article-title: Classification of cryo‐electron sub‐tomograms using constrained correlation publication-title: J Struct Biol – volume: 99 start-page: 14153 year: 2002 end-page: 14158 article-title: Identification of macromolecular complexes in cryoelectron tomograms of phantom cells publication-title: Proc Natl Acad Sci USA – start-page: 91 year: 1992 end-page: 115 – volume: 192 start-page: 270 year: 2015 end-page: 278 article-title: Automated batch fiducial‐less tilt‐series alignment in Appion using Protomo publication-title: J Struct Biol – volume: 115 start-page: E11751 year: 2018 end-page: E11760 article-title: Structure and architecture of immature and mature murine leukemia virus capsids publication-title: Proc Natl Acad Sci USA – volume: 49 start-page: 109 year: 1993 end-page: 120 article-title: Towards automatic electron tomography II. Implementation of autofocus and low‐dose procedures publication-title: Ultramicroscopy – volume: 110 start-page: 860 year: 2016 end-page: 869 article-title: Site‐specific cryo‐focused ion beam sample preparation guided by 3D correlative microscopy publication-title: Biophys J – volume: 68 start-page: 2236 year: 1971 end-page: 2240 article-title: Three‐dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of fourier transforms publication-title: Proc Natl Acad Sci USA – volume: 360 start-page: 215 year: 2018 end-page: 219 article-title: Structural basis for coupling protein transport and N‐glycosylation at the mammalian endoplasmic reticulum publication-title: Science – volume: 526 start-page: 140 year: 2015 end-page: 143 article-title: In situ structural analysis of the human nuclear pore complex publication-title: Nature – volume: 6 year: 2020 article-title: A helical inner scaffold provides a structural basis for centriole cohesion publication-title: Sci Adv – volume: 217 start-page: 130 year: 1968 end-page: 134 article-title: Reconstruction of three dimensional structures from electron micrographs publication-title: Nature – volume: 580 year: 2019 article-title: Rich multi‐dimensional correlative imaging publication-title: IOP Conf Ser Mater Sci Eng – volume: 205 start-page: 163 year: 2019 end-page: 169 article-title: Rapid tilt‐series acquisition for electron cryotomography publication-title: J Struct Biol – volume: 177 start-page: 630 year: 2012 end-page: 637 article-title: Beam‐induced motion of vitrified specimen on holey carbon film publication-title: J Struct Biol – volume: 60 start-page: 393 year: 1995 end-page: 410 article-title: Double‐tilt electron tomography publication-title: Ultramicroscopy – volume: 2 start-page: 615 year: 1947 end-page: 633 article-title: Über die Kontraste von Atomen im Elektronenmikroskop publication-title: Z Für Naturforschung A – volume: 10 start-page: 1032 year: 2019 article-title: High‐resolution structure determination of sub‐100 kDa complexes using conventional cryo‐EM publication-title: Nat Commun – volume: 21 start-page: 129 year: 1988 end-page: 228 article-title: Cryo‐electron microscopy of vitrified specimens publication-title: Q Rev Biophys – volume: 12 year: 2010 article-title: Design of an electron microscope phase plate using a focused continuous‐wave laser publication-title: New J Phys – volume: 15 start-page: 955 year: 2018 end-page: 961 article-title: emClarity: software for high‐resolution cryo‐electron tomography and subtomogram averaging publication-title: Nat Methods – volume: 157 start-page: 126 year: 2007 end-page: 137 article-title: 3D reconstruction and processing of volumetric data in cryo‐electron tomography publication-title: J Struct Biol – volume: 114 start-page: 4412 year: 2017 end-page: 4417 article-title: In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes publication-title: Proc Natl Acad Sci USA – volume: 306 start-page: 1387 year: 2004 end-page: 1390 article-title: Nuclear pore complex structure and dynamics revealed by cryoelectron tomography publication-title: Science – volume: 8 start-page: 1 year: 2017 end-page: 9 article-title: Dissecting the molecular organization of the translocon‐associated protein complex publication-title: Nat Commun – volume: 17 start-page: 79 year: 2007 end-page: 84 article-title: Organization of actin networks in intact filopodia publication-title: Curr Biol – volume: 9 start-page: 1 year: 2019 end-page: 10 article-title: AutoCLEM: an automated workflow for correlative live‐cell fluorescence microscopy and cryo‐electron tomography publication-title: Sci Rep – volume: 6 start-page: S18 year: 2012 article-title: High precision alignment of cryo‐electron subtomograms through gradient‐based parallel optimization publication-title: BMC Syst Biol – volume: 109 start-page: 1380 year: 2012 end-page: 1387 article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach publication-title: Proc Natl Acad Sci USA – volume: 29 start-page: 2450 year: 2018 end-page: 2457 article-title: The in situ structures of mono‐, di‐, and trinucleosomes in human heterochromatin publication-title: Mol Biol Cell – volume: 129 start-page: 48 year: 2000 end-page: 56 article-title: Cryo‐electron tomography of neurospora mitochondria publication-title: J Struct Biol – volume: 7 start-page: 549 year: 2011 article-title: The quantitative proteome of a human cell line publication-title: Mol Syst Biol – start-page: 741 year: 2007 end-page: 767 – volume: 26 start-page: 825 year: 2016 end-page: 837 article-title: Cryo‐electron tomography: can it reveal the molecular sociology of cells in atomic detail? publication-title: Trends Cell Biol – volume: 116 start-page: 4804 year: 2019 end-page: 4809 article-title: Cryo‐SOFI enabling low‐dose super‐resolution correlative light and electron cryo‐microscopy publication-title: Proc Natl Acad Sci USA – volume: 206 start-page: 183 year: 2019 end-page: 192 article-title: MBIR: a cryo‐ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information publication-title: J Struct Biol – start-page: 502 year: 2019 end-page: 506 – start-page: 175 year: 1987 end-page: 191 – start-page: 259 year: 2012 end-page: 281 – volume: 197 start-page: 102 year: 2017 end-page: 113 article-title: Automated tilt series alignment and tomographic reconstruction in IMOD publication-title: J Struct Biol – volume: 27 start-page: 1211 year: 2019 end-page: 1223 article-title: The architecture of traveling actin waves revealed by cryo‐electron tomography publication-title: Structure – volume: 150 start-page: 109 year: 2005 end-page: 121 article-title: Cutting artefacts and cutting process in vitreous sections for cryo‐electron microscopy publication-title: J Struct Biol – volume: 174 start-page: 6527 year: 1992 end-page: 6538 article-title: The S‐layer of : three‐dimensional image reconstruction and structure analysis by electron microscopy publication-title: J Bacteriol – volume: 198 start-page: 1186 year: 2016 end-page: 1195 article-title: Minicells, back in fashion publication-title: J Bacteriol – volume: 106 start-page: 3125 year: 2009 end-page: 3130 article-title: Interferometric fluorescent super‐resolution microscopy resolves 3D cellular ultrastructure publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 13726 year: 2017 end-page: 13731 article-title: Proteasomes tether to two distinct sites at the nuclear pore complex publication-title: Proc Natl Acad Sci USA – volume: 164 start-page: 161 year: 2008 end-page: 165 article-title: A visualization and segmentation toolbox for electron microscopy publication-title: J Struct Biol – volume: 353 start-page: 506 year: 2016 end-page: 508 article-title: An atomic model of HIV‐1 capsid‐SP1 reveals structures regulating assembly and maturation publication-title: Science – volume: 10 start-page: 568 year: 2016 end-page: 575 article-title: Toward correlating structure and mechanics of platelets publication-title: Cell Adhes Migr – volume: 177 start-page: 135 year: 2012 end-page: 144 article-title: Automated segmentation of electron tomograms for a quantitative description of actin filament networks publication-title: J Struct Biol – volume: 178 start-page: 177 year: 2012 end-page: 188 article-title: PyTom: a python‐based toolbox for localization of macromolecules in cryo‐electron tomograms and subtomogram analysis publication-title: J Struct Biol – volume: 203 start-page: 125 year: 2019 end-page: 131 article-title: The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules publication-title: Ultramicroscopy – start-page: 95 year: 2018 end-page: 116 – volume: 6 year: 2020 article-title: Architecture of the AP2/clathrin coat on the membranes of clathrin‐coated vesicles publication-title: Sci Adv – volume: 88 start-page: 243 year: 2001 end-page: 252 article-title: Transmission electron microscopy with Zernike phase plate publication-title: Ultramicroscopy – volume: 30 start-page: 532 year: 2020 end-page: 540 article-title: Molecular architecture of the luminal ring of the nuclear pore complex publication-title: Cell Res – volume: 16 start-page: 1161 year: 2019 end-page: 1168 article-title: A complete data processing workflow for cryo‐ET and subtomogram averaging publication-title: Nat Methods – start-page: 329 volume-title: Methods in Enzymology year: 2016 ident: e_1_2_8_54_1 – ident: e_1_2_8_93_1 doi: 10.1073/pnas.0409178102 – ident: e_1_2_8_108_1 doi: 10.7554/eLife.32493 – ident: e_1_2_8_117_1 doi: 10.1038/s41564-019-0603-6 – ident: e_1_2_8_119_1 doi: 10.1038/s42003-019-0748-0 – ident: e_1_2_8_90_1 doi: 10.1016/j.jsb.2006.07.014 – ident: e_1_2_8_4_1 doi: 10.1016/S0092-8674(00)80922-8 – ident: e_1_2_8_74_1 doi: 10.1016/j.str.2019.01.005 – ident: e_1_2_8_96_1 doi: 10.1073/pnas.1523234113 – start-page: 671 volume-title: Methods in Cell Biology year: 2010 ident: e_1_2_8_22_1 – ident: e_1_2_8_68_1 doi: 10.1073/pnas.172520299 – ident: e_1_2_8_116_1 doi: 10.7554/eLife.39514 – ident: e_1_2_8_15_1 doi: 10.1126/science.1128618 – ident: e_1_2_8_110_1 doi: 10.1126/sciadv.aba8381 – ident: e_1_2_8_136_1 doi: 10.1016/j.bpj.2015.10.053 – ident: e_1_2_8_112_1 doi: 10.1080/19336918.2016.1173803 – ident: e_1_2_8_47_1 doi: 10.1016/S1047-8477(03)00069-8 – ident: e_1_2_8_3_1 doi: 10.1038/nature01513 – start-page: 259 volume-title: Methods in Cell Biology year: 2012 ident: e_1_2_8_28_1 – ident: e_1_2_8_98_1 doi: 10.1038/s41586-020-2665-2 – ident: e_1_2_8_18_1 doi: 10.1038/nrmicro.2016.7 – ident: e_1_2_8_86_1 doi: 10.1107/S2059798317003369 – ident: e_1_2_8_11_1 doi: 10.1038/nature24490 – ident: e_1_2_8_103_1 doi: 10.1038/ncomms14516 – ident: e_1_2_8_107_1 doi: 10.7554/eLife.26691 – ident: e_1_2_8_21_1 doi: 10.1017/S0033583500004297 – ident: e_1_2_8_153_1 doi: 10.1073/pnas.1418377111 – ident: e_1_2_8_146_1 doi: 10.1038/nrm1861 – ident: e_1_2_8_124_1 doi: 10.1038/217130a0 – ident: e_1_2_8_34_1 doi: 10.1016/0304-3991(84)90057-3 – ident: e_1_2_8_145_1 doi: 10.1016/j.cell.2018.03.014 – ident: e_1_2_8_158_1 doi: 10.1016/j.str.2019.05.009 – ident: e_1_2_8_24_1 doi: 10.1016/j.jsb.2005.01.003 – ident: e_1_2_8_56_1 doi: 10.1016/j.jsb.2016.04.004 – ident: e_1_2_8_139_1 doi: 10.1016/j.jsb.2015.11.006 – ident: e_1_2_8_100_1 doi: 10.1038/nature15381 – ident: e_1_2_8_154_1 doi: 10.7554/eLife.23006 – ident: e_1_2_8_127_1 doi: 10.1073/pnas.1621129114 – ident: e_1_2_8_137_1 doi: 10.1038/s41598-019-55766-8 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2015.03.049 – ident: e_1_2_8_65_1 doi: 10.1073/pnas.1716305114 – ident: e_1_2_8_38_1 doi: 10.1146/annurev.biochem.73.011303.074112 – ident: e_1_2_8_89_1 doi: 10.1016/j.jsb.2011.05.011 – ident: e_1_2_8_101_1 doi: 10.1038/s41422-020-0320-y – ident: e_1_2_8_102_1 doi: 10.1126/science.abb3758 – ident: e_1_2_8_10_1 doi: 10.1126/science.1090284 – ident: e_1_2_8_144_1 doi: 10.1038/msb.2011.82 – ident: e_1_2_8_131_1 doi: 10.1016/S0006-3495(95)80314-0 – ident: e_1_2_8_132_1 doi: 10.7554/eLife.52286 – ident: e_1_2_8_75_1 doi: 10.1038/nmeth.2115 – ident: e_1_2_8_94_1 doi: 10.1073/pnas.1811580115 – ident: e_1_2_8_138_1 doi: 10.1016/j.jsb.2019.09.006 – ident: e_1_2_8_78_1 doi: 10.1016/j.jsb.2008.02.008 – ident: e_1_2_8_141_1 doi: 10.1038/s41598-018-37728-8 – ident: e_1_2_8_2_1 doi: 10.1016/j.febslet.2004.10.102 – ident: e_1_2_8_95_1 doi: 10.1371/journal.ppat.1006377 – ident: e_1_2_8_99_1 doi: 10.1126/science.1104808 – ident: e_1_2_8_142_1 doi: 10.1016/j.jsb.2018.12.008 – ident: e_1_2_8_45_1 doi: 10.1038/s41592-019-0591-8 – ident: e_1_2_8_16_1 doi: 10.1016/j.cub.2006.11.022 – ident: e_1_2_8_42_1 doi: 10.7554/eLife.06980 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.68.9.2236 – ident: e_1_2_8_133_1 doi: 10.1007/s11340-019-00528-w – ident: e_1_2_8_12_1 doi: 10.1126/science.aah4972 – ident: e_1_2_8_134_1 doi: 10.1016/j.jsb.2020.107488 – ident: e_1_2_8_66_1 doi: 10.1073/pnas.1905641117 – ident: e_1_2_8_76_1 doi: 10.1006/jsbi.1998.4014 – ident: e_1_2_8_49_1 doi: 10.1016/j.jsb.2009.08.002 – ident: e_1_2_8_83_1 doi: 10.1016/j.str.2014.08.007 – ident: e_1_2_8_114_1 doi: 10.1126/sciadv.aaz4137 – ident: e_1_2_8_52_1 doi: 10.1007/978-1-4757-2163-8_5 – ident: e_1_2_8_169_1 doi: 10.1146/annurev-cellbio-100913-013325 – ident: e_1_2_8_5_1 doi: 10.1201/9780429258763 – ident: e_1_2_8_71_1 doi: 10.1038/nmeth.4405 – ident: e_1_2_8_130_1 doi: 10.1016/0304-3991(92)90016-D – ident: e_1_2_8_148_1 doi: 10.1038/s41467-019-08991-8 – ident: e_1_2_8_60_1 doi: 10.1006/jsbi.2001.4406 – ident: e_1_2_8_97_1 doi: 10.1126/science.abd5223 – ident: e_1_2_8_6_1 doi: 10.1016/j.tcb.2016.08.006 – ident: e_1_2_8_118_1 doi: 10.15252/embj.2018100886 – ident: e_1_2_8_129_1 doi: 10.1016/0304-3991(93)90217-L – ident: e_1_2_8_88_1 doi: 10.1038/s41592-018-0167-z – ident: e_1_2_8_167_1 doi: 10.1007/978-3-319-68997-5_4 – ident: e_1_2_8_51_1 doi: 10.1016/j.jsb.2017.07.007 – ident: e_1_2_8_67_1 doi: 10.1073/pnas.230282097 – ident: e_1_2_8_81_1 doi: 10.1016/j.jsb.2010.08.005 – ident: e_1_2_8_36_1 doi: 10.1038/s41467-020-14535-2 – start-page: 19 volume-title: Methods in Enzymology year: 2016 ident: e_1_2_8_37_1 – ident: e_1_2_8_147_1 doi: 10.1093/bioinformatics/btr207 – ident: e_1_2_8_19_1 doi: 10.1128/JB.00901-15 – ident: e_1_2_8_40_1 doi: 10.1109/JRPROC.1949.232969 – ident: e_1_2_8_41_1 doi: 10.1016/j.jsb.2012.02.003 – ident: e_1_2_8_62_1 doi: 10.1016/j.jsb.2011.08.012 – ident: e_1_2_8_63_1 doi: 10.1016/j.jsb.2014.02.015 – ident: e_1_2_8_152_1 doi: 10.1016/j.sbi.2017.06.006 – ident: e_1_2_8_20_1 doi: 10.1038/s41592-019-0630-5 – ident: e_1_2_8_61_1 doi: 10.1016/j.jsb.2003.09.010 – ident: e_1_2_8_109_1 doi: 10.1038/s41586-018-0526-z – ident: e_1_2_8_149_1 doi: 10.1038/nmeth.1390 – ident: e_1_2_8_43_1 doi: 10.1016/j.jsb.2018.02.001 – ident: e_1_2_8_64_1 doi: 10.1109/ISBI.2019.8759519 – ident: e_1_2_8_50_1 doi: 10.1016/j.jsb.2016.06.016 – ident: e_1_2_8_70_1 doi: 10.1016/j.jsb.2008.05.003 – ident: e_1_2_8_59_1 doi: 10.1016/j.jsb.2015.01.011 – ident: e_1_2_8_87_1 doi: 10.1016/j.jsb.2015.04.016 – ident: e_1_2_8_105_1 doi: 10.1126/science.1221443 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1201333109 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.1810690116 – ident: e_1_2_8_166_1 doi: 10.1107/S205225252000408X – ident: e_1_2_8_113_1 doi: 10.1016/j.cell.2020.08.004 – ident: e_1_2_8_57_1 doi: 10.1016/j.jsb.2013.12.001 – ident: e_1_2_8_79_1 doi: 10.1186/1752-0509-6-S1-S18 – ident: e_1_2_8_48_1 doi: 10.1016/j.ultramic.2006.02.004 – ident: e_1_2_8_170_1 doi: 10.1073/pnas.1120559109 – ident: e_1_2_8_26_1 doi: 10.1038/nmeth1014 – ident: e_1_2_8_55_1 doi: 10.1016/j.jsb.2019.03.002 – ident: e_1_2_8_29_1 doi: 10.1016/j.jsb.2010.02.011 – ident: e_1_2_8_46_1 doi: 10.1016/j.jsb.2015.10.003 – ident: e_1_2_8_84_1 doi: 10.1126/science.1261197 – ident: e_1_2_8_162_1 doi: 10.1016/j.yjsbx.2019.100013 – ident: e_1_2_8_165_1 doi: 10.1006/jsbi.1997.3933 – ident: e_1_2_8_91_1 doi: 10.1016/j.jsb.2011.12.003 – ident: e_1_2_8_121_1 doi: 10.1038/s41594-020-0497-2 – ident: e_1_2_8_168_1 doi: 10.1073/pnas.1903642116 – ident: e_1_2_8_80_1 doi: 10.1016/j.str.2009.10.009 – ident: e_1_2_8_140_1 doi: 10.1073/pnas.0813131106 – ident: e_1_2_8_13_1 doi: 10.1126/science.aaf9620 – ident: e_1_2_8_44_1 doi: 10.1016/j.jsb.2016.07.011 – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-2818.2007.01794.x – ident: e_1_2_8_39_1 doi: 10.1016/0304-3991(95)00078-X – ident: e_1_2_8_77_1 doi: 10.1016/j.jsb.2007.07.006 – ident: e_1_2_8_69_1 doi: 10.1093/emboj/20.20.5636 – ident: e_1_2_8_151_1 doi: 10.1016/S0304-3991(01)00088-2 – ident: e_1_2_8_33_1 doi: 10.1038/s41598-019-55413-2 – ident: e_1_2_8_9_1 doi: 10.1083/jcb.201304193 – ident: e_1_2_8_155_1 doi: 10.1016/j.jmb.2017.07.004 – ident: e_1_2_8_157_1 doi: 10.1126/science.aad8857 – ident: e_1_2_8_30_1 doi: 10.1016/j.jsb.2007.07.011 – ident: e_1_2_8_72_1 doi: 10.1016/j.jsb.2017.12.015 – ident: e_1_2_8_115_1 doi: 10.1126/science.aan7904 – ident: e_1_2_8_128_1 doi: 10.1016/0304-3991(92)90235-C – ident: e_1_2_8_82_1 doi: 10.1016/j.jsb.2011.02.009 – ident: e_1_2_8_104_1 doi: 10.1126/science.aar7899 – ident: e_1_2_8_35_1 doi: 10.1016/j.jsb.2016.06.007 – ident: e_1_2_8_58_1 doi: 10.1016/j.jsb.2014.09.010 – ident: e_1_2_8_122_1 doi: 10.1016/j.cell.2019.12.006 – ident: e_1_2_8_123_1 doi: 10.7554/eLife.42747 – ident: e_1_2_8_135_1 doi: 10.1088/1757-899X/580/1/012014 – ident: e_1_2_8_111_1 doi: 10.1091/mbc.E18-05-0331 – ident: e_1_2_8_125_1 doi: 10.1128/jb.174.20.6527-6538.1992 – ident: e_1_2_8_159_1 doi: 10.1088/1367-2630/12/7/073011 – ident: e_1_2_8_92_1 doi: 10.1038/nprot.2016.124 – ident: e_1_2_8_73_1 doi: 10.1038/s41592-019-0675-5 – ident: e_1_2_8_126_1 doi: 10.1016/j.cell.2017.12.030 – ident: e_1_2_8_143_1 doi: 10.1017/S1431927612001225 – start-page: 741 volume-title: Methods in Cell Biology year: 2007 ident: e_1_2_8_161_1 – ident: e_1_2_8_160_1 doi: 10.1038/s41592-019-0552-2 – ident: e_1_2_8_171_1 doi: 10.1038/nature26003 – ident: e_1_2_8_120_1 doi: 10.1128/mBio.00973-19 – ident: e_1_2_8_150_1 doi: 10.1515/zna-1947-11-1204 – ident: e_1_2_8_164_1 doi: 10.1016/j.ultramic.2019.02.007 – ident: e_1_2_8_17_1 doi: 10.1083/jcb.201201120 – ident: e_1_2_8_85_1 doi: 10.1073/pnas.1701367114 – ident: e_1_2_8_14_1 doi: 10.1006/jsbi.1999.4204 – ident: e_1_2_8_156_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_8_163_1 doi: 10.1016/j.ultramic.2013.10.016 – ident: e_1_2_8_106_1 doi: 10.1126/science.aab1121 – ident: e_1_2_8_8_1 doi: 10.1126/science.aaz5357 – ident: e_1_2_8_27_1 doi: 10.1038/s41592-019-0497-5 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-642-72815-0_8 |
SSID | ssj0001819 |
Score | 2.6604357 |
SecondaryResourceType | review_article |
Snippet | Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3243 |
SubjectTerms | Animals cellular structural biology Coat Protein Complex I - ultrastructure correlative light‐electron microscopy Cryoelectron Microscopy cryo‐electron tomography Electron Microscope Tomography Humans image processing workflow Imaging, Three-Dimensional Neurons - ultrastructure sample preparation workflows structural biology in situ |
Title | The promise and the challenges of cryo‐electron tomography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13948 https://www.ncbi.nlm.nih.gov/pubmed/33020915 https://www.proquest.com/docview/2448850948 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgE2IvCDZg5UtGQggJpavjuI4lXrppaGKCB-i0vUW2YyOkkqDRPownfgK_kV_CtR07LQyN8RJFqeOo955cHzvX5yL0TBLFRW5spmpVZ4WYyEzyvMy0tFIxzoVQbh3y7bvJ4XHx5pSd9jU2_e6ShRrpbxfuK_kfr8I18KvbJXsFz6ZO4QKcg3_hCB6G4z_7GCIguMqkTEgdq6P4HA19dt6mfIZY8gb45udVpepYpfNg78PLud_ek4j2bBlSqYPaQL_sCRHtU6zpcdLO7UfZjYDdAgLMFmMqWgqKpMgYD4UKRybEwZLTjBah4k0MlCyUI-4QkY9X4h7QMroyhgInJBfG56D3mnofAf8MQpvrStipKbuksR-IwTy5_-062shhtpAP0Mb06P3JURqSgcaEeVD3T6PG0zjf_a37dXryx5xjfQrjOcjsNrrVTR7wNCDhDrpmmi20PW0kOPQcP8c-ndd_J9lCN_bi2c39WNRvG70CyOAOMhgggwEyuIcMbi12kPn5_UcEC-7Bchcdvz6Y7R9mXQGNTBeMlPDqWUrtmGptHDFkTJZW1JwIpZh2woSlJZZzp0CkazXRJatFYfW4LhQQQ6HoPTRo2sbsIGwZqYXUdUGNLJgwiks94dwSQg0x9WSIRtFule7U5V2Rk3kVdLHzyhm6coauvKGH6EW64UsQVvl706fRERWYx33Rko1pl18r4KZl6SQgoc394KHUGaWAdUHYEO16l132lCrB6MGV73iINvs36xEaLM6W5jGQ1YV60kHxFwHkhyw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+promise+and+the+challenges+of+cryo%E2%80%90electron+tomography&rft.jtitle=FEBS+letters&rft.au=Turk%2C+Martin&rft.au=Baumeister%2C+Wolfgang&rft.date=2020-10-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=594&rft.issue=20&rft.spage=3243&rft.epage=3261&rft_id=info:doi/10.1002%2F1873-3468.13948&rft.externalDBID=10.1002%252F1873-3468.13948&rft.externalDocID=FEB213948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |