Highly compression-tolerant folded carbon nanotube/paper as solid-state supercapacitor electrode

An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the fo...

Full description

Saved in:
Bibliographic Details
Published inMicro & nano letters Vol. 11; no. 10; pp. 586 - 590
Main Authors Song, Yu, Cheng, Xiaoliang, Chen, Haotian, Han, Mengdi, Chen, Xuexian, Huang, Jiahuan, Su, Zongming, Zhang, Haixia
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.10.2016
Subjects
Online AccessGet full text
ISSN1750-0443
1750-0443
DOI10.1049/mnl.2016.0255

Cover

Abstract An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems.
AbstractList An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression‐tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape‐changing, which has great potential to be used in various environments. This compressible solid‐state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression‐tolerant electronics and enlightens a broad field of compressible energy storage and self‐powered systems.
An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm super(2), and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems.
An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression‐tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape‐changing, which has great potential to be used in various environments. This compressible solid‐state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm 2 , and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression‐tolerant electronics and enlightens a broad field of compressible energy storage and self‐powered systems.
An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems.
Author Huang, Jiahuan
Su, Zongming
Chen, Haotian
Zhang, Haixia
Cheng, Xiaoliang
Chen, Xuexian
Song, Yu
Han, Mengdi
Author_xml – sequence: 1
  givenname: Yu
  surname: Song
  fullname: Song, Yu
  organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China
– sequence: 2
  givenname: Xiaoliang
  surname: Cheng
  fullname: Cheng, Xiaoliang
  organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China
– sequence: 3
  givenname: Haotian
  surname: Chen
  fullname: Chen, Haotian
  organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
– sequence: 4
  givenname: Mengdi
  surname: Han
  fullname: Han, Mengdi
  organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China
– sequence: 5
  givenname: Xuexian
  surname: Chen
  fullname: Chen, Xuexian
  organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
– sequence: 6
  givenname: Jiahuan
  surname: Huang
  fullname: Huang, Jiahuan
  organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China
– sequence: 7
  givenname: Zongming
  surname: Su
  fullname: Su, Zongming
  organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China
– sequence: 8
  givenname: Haixia
  surname: Zhang
  fullname: Zhang, Haixia
  email: zhang-alice@pku.edu.cn
  organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
BookMark eNp9kE1P3DAQhq0KpPJ17D2XSu0hyzi2N86RovIhLXCBs-s4E2rktVPbUbX_Hq-WA0LAaUaj553RPIdkzwePhHyjsKDAu9O1d4sG6HIBjRBfyAFtBdTAOdt71X8lhyk9AfC2absD8ufKPv51m8qE9RQxJRt8nYPDqH2uxuAGHCqjYx985bUPee7xdNITxkqnKgVnhzplnbFKcxkaPWljc4gVOjQ5hgGPyf6oXcKTl3pEHi5-359f1au7y-vzs1VtuKBt3TBJKecAI3DT9yBH3gnEgRopNVC-1J3uxcC6gmvTSMGACl5eaDq2xFayI_Jjt3eK4d-MKau1TQad0x7DnBSVQjApaScKWu9QE0NKEUc1RbvWcaMoqK1JVUyqrUm1NVl49oYvP-pcVOWorfswtdyl_luHm89PqJvbs-bXBYBs2xL8uQtazOopzNEXbx8e-f4Oe3O7erV7Gkb2DGuppBM
CitedBy_id crossref_primary_10_1039_C6TA05816G
crossref_primary_10_1002_smll_201702091
crossref_primary_10_1016_j_nanoen_2018_10_045
crossref_primary_10_1155_2017_5910734
crossref_primary_10_1002_slct_202200360
crossref_primary_10_1109_JMEMS_2017_2705130
crossref_primary_10_1016_j_nanoen_2018_08_041
crossref_primary_10_1177_1528083718804208
Cites_doi 10.1016/j.electacta.2015.01.084
10.1021/nn404023v
10.1021/nn404614z
10.1360/N972015-01080
10.1016/j.nanoen.2014.12.009
10.1038/353737a0
10.1016/j.jpowsour.2014.10.166
10.1038/nmat2297
10.1126/science.1124005
10.1002/adma.201502263
10.1109/JPROC.2008.927494
10.1021/nl3045684
10.1002/adma.201204530
10.1002/adfm.201504675
10.1021/nn303530k
10.1002/adma.201400657
10.1109/JPROC.2005.850305
10.1002/adfm.201403629
10.1088/0957‐4484/23/6/065401
10.1039/C5LC00276A
10.1002/adma.201203578
10.1063/1.4914179
10.1126/science.1158736
10.1016/j.nanoen.2014.11.012
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2016 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2016 The Institution of Engineering and Technology
DBID AAYXX
CITATION
7TB
7U5
8FD
F28
FR3
L7M
DOI 10.1049/mnl.2016.0255
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1750-0443
EndPage 590
ExternalDocumentID 10_1049_mnl_2016_0255
MNA2BF00877
Genre shortCommunication
GrantInformation_xml – fundername: Beijing Science & Technology Project
  grantid: Z141100003814003
– fundername: Beijing Natural Science Foundation of China
  grantid: 4141002
– fundername: National Hi-Tech Research and Development Program of China
  grantid: 2013AA041102
– fundername: National Natural Science Foundation of China
  grantid: 61176103
– fundername: Beijing Science & Technology Project
  funderid: Z141100003814003
– fundername: Beijing Natural Science Foundation of China
  funderid: 4141002
– fundername: National Natural Science Foundation of China
  funderid: 61176103
– fundername: National Hi‐Tech Research and Development Program of China
  funderid: 2013AA041102
GroupedDBID -
0R
123
24P
29M
4.4
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
D1I
DU5
EBS
EJD
F5P
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
KB.
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PDBOC
PTHSS
RIE
RIG
RNS
RUI
S0W
UNMZH
UNR
---
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
AEEZP
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IFBGX
IGS
IHR
INH
ITC
MCNEO
OK1
ROL
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
M~E
PHGZM
PHGZT
7TB
7U5
8FD
F28
FR3
L7M
WIN
ID FETCH-LOGICAL-c4517-238114400f04cbb08f495eed1c88a0146a9ab5d39c45ac285301542792936e783
IEDL.DBID IDLOA
ISSN 1750-0443
IngestDate Thu Sep 04 21:29:26 EDT 2025
Sun Jul 06 05:10:48 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Wed Jan 22 16:30:59 EST 2025
Thu May 09 18:26:34 EDT 2019
Tue Jan 05 21:44:33 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords electrochemical electrodes
compression-tolerant electronics
solid-state supercapacitor electrode
capacitance retention
capacitance
C
compressible solid-state supercapacitor
compressible energy storage
electrolytes
maximum specific capacitance
power unit
self-powered systems
carbon nanotubes
stability performance
red light emitting diode
polyvinyl alcohol-phosphoric acid gel electrolyte
highly compression-tolerant folded carbon nanotube-paper
supercapacitors
strain ability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4517-238114400f04cbb08f495eed1c88a0146a9ab5d39c45ac285301542792936e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1855388195
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1855388195
crossref_primary_10_1049_mnl_2016_0255
crossref_citationtrail_10_1049_mnl_2016_0255
iet_journals_10_1049_mnl_2016_0255
wiley_primary_10_1049_mnl_2016_0255_MNA2BF00877
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20161000
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161000
PublicationDecade 2010
PublicationTitle Micro & nano letters
PublicationYear 2016
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Han, M.D.; Zhang, X.S.; Meng, B. (C6) 2013; 7
Miller, J.; Simon, P. (C12) 2008; 321
O'regan, B.; Grfitzeli, M. (C7) 1991; 353
Mailoa, J.P.; Bailie, C.D.; Johlin, E.C. (C8) 2015; 106
Zhang, X.; Han, M.; Wang, R. (C18) 2013; 13
Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K. (C2) 2008; 96
Niedl, R.; Beta, C. (C23) 2015; 15
Song, Y.; Meng, B.; Chen, X.X. (C14) 2016; 61
Simon, P.; Gogotsi, Y. (C11) 2008; 7
Li, Y.; Chen, J.; Huang, L. (C17) 2014; 26
Subramanian, V.; Fréchet, J.; Chang, P. (C24) 2005; 93
Zhang, X.; Han, M.; Meng, B. (C3) 2015; 11
Wang, J.; Wen, Z.; Zi, Y. (C10) 2016; 26
Zhang, Y.; Zhen, Z.; Zhang, Z. (C22) 2015; 157
Wang, Z.L. (C4) 2013; 7
Zhao, Y.; Liu, J.; Hu, Y. (C20) 2013; 25
Cheng, X.; Meng, B.; Zhang, X. (C19) 2015; 12
Meng, B.; Cheng, X.; Zhang, X. (C1); 2014
Niu, Z.; Zhou, W.; Chen, X. (C21) 2015; 27
Sathyamoorthi, S.; Suryanarayanan, V.; Velayutham, D. (C15) 2015; 274
Xiao, X.; Li, T.; Yang, P. (C13) 2012; 6
Kang, Y.J.; Chung, H.; Han, C.H. (C25) 2012; 23
Hu, H.; Zhao, Z.; Wan, W. (C16) 2013; 25
Wang, Z.L.; Song, J. (C5) 2006; 312
Xiao, X.; Zhou, W.; Kim, Y. (C9) 2015; 25
2015; 12
2015; 15
2015; 25
2013; 25
2015; 27
1991; 353
2013; 13
2015; 157
2015; 11
2015; 274
2014; 26
2008; 7
2016; 61
2014
2008; 96
2015; 106
2005; 93
2013; 7
2008; 321
2012; 6
2012; 23
2016; 26
2006; 312
e_1_2_11_13_2
e_1_2_11_12_2
e_1_2_11_11_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_5_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
Meng B. (e_1_2_11_2_2); 2014
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – volume: 312
  start-page: 242
  year: 2006
  end-page: 246
  ident: C5
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
– volume: 26
  start-page: 4789
  year: 2014
  end-page: 4793
  ident: C17
  article-title: Highly compressible macro-porous graphene monoliths via an improved hydrothermal process
  publication-title: Adv. Mater.
– volume: 12
  start-page: 19
  year: 2015
  end-page: 25
  ident: C19
  article-title: Wearable electrode-free triboelectric generator for harvesting biomechanical energy
  publication-title: Nano Energy
– volume: 106
  start-page: 121105
  year: 2015
  ident: C8
  article-title: A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
  publication-title: Appl. Phys. Lett.
– volume: 353
  start-page: 737
  year: 1991
  end-page: 740
  ident: C7
  article-title: A low-cost, high-efficiency solar cell based on dye-sensitized
  publication-title: Nature
– volume: 25
  start-page: 1426
  year: 2015
  end-page: 1433
  ident: C9
  article-title: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-Ion battery
  publication-title: Adv. Funct. Mater.
– volume: 93
  start-page: 1330
  year: 2005
  end-page: 1338
  ident: C24
  article-title: Progress toward development of all-printed RFID tags: materials, processes, and devices
  publication-title: Proc. IEEE
– volume: 15
  start-page: 2452
  year: 2015
  end-page: 2459
  ident: C23
  article-title: Hydrogel-driven paper-based microfluidics
  publication-title: Lab Chip
– volume: 6
  start-page: 9200
  year: 2012
  end-page: 9206
  ident: C13
  article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems
  publication-title: ACS Nano
– volume: 274
  start-page: 1135
  year: 2015
  end-page: 1139
  ident: C15
  article-title: Organo-redox shuttle promoted protic ionic liquid electrolyte for supercapacitor
  publication-title: J. Power Sources
– volume: 25
  start-page: 591
  year: 2013
  end-page: 595
  ident: C20
  article-title: Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes
  publication-title: Adv. Mater.
– volume: 2014
  start-page: 104
  ident: C1
  article-title: Single-friction-surface triboelectric generator with human body conduit
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 1457
  year: 2008
  end-page: 1486
  ident: C2
  article-title: Energy harvesting from human and machine motion for wireless electronic devices
  publication-title: Proc. IEEE
– volume: 13
  start-page: 1168
  year: 2013
  end-page: 1172
  ident: C18
  article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
  publication-title: Nano Lett.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: C11
  article-title: Materials for electrochemical capacitors
  publication-title: Nature Mater.
– volume: 11
  start-page: 304
  year: 2015
  end-page: 322
  ident: C3
  article-title: High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies
  publication-title: Nano Energy
– volume: 7
  start-page: 9533
  year: 2013
  end-page: 9557
  ident: C4
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
– volume: 61
  start-page: 1314
  year: 2016
  end-page: 1322
  ident: C14
  article-title: Fabrication and characterization analysis of flexible porous nitrogen-doped carbon-based supercapacitor electrodes (in Chinese)
  publication-title: Chin. Sci. Bull.
– volume: 321
  start-page: 651
  year: 2008
  end-page: 652
  ident: C12
  article-title: Electrochemical capacitors for energy management
  publication-title: Science
– volume: 26
  start-page: 1070
  year: 2016
  end-page: 1076
  ident: C10
  article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 157
  start-page: 134
  year: 2015
  end-page: 141
  ident: C22
  article-title: In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 2219
  year: 2013
  end-page: 2223
  ident: C16
  article-title: Ultralight and highly compressible graphene aerogels
  publication-title: Adv. Mater.
– volume: 27
  start-page: 6002
  year: 2015
  end-page: 6008
  ident: C21
  article-title: Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge
  publication-title: Adv. Mater.
– volume: 23
  start-page: 65401
  year: 2012
  end-page: 65406
  ident: C25
  article-title: All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes
  publication-title: Nanotechnology
– volume: 7
  start-page: 8554
  year: 2013
  end-page: 8560
  ident: C6
  article-title: r-Shaped hybrid nanogenerator with enhanced piezoelectricity
  publication-title: ACS Nano
– volume: 12
  start-page: 19
  year: 2015
  end-page: 25
  article-title: Wearable electrode‐free triboelectric generator for harvesting biomechanical energy
  publication-title: Nano Energy
– volume: 23
  start-page: 65401
  year: 2012
  end-page: 65406
  article-title: All‐solid‐state flexible supercapacitors based on papers coated with carbon nanotubes and ionic‐liquid‐based gel electrolytes
  publication-title: Nanotechnology
– volume: 353
  start-page: 737
  year: 1991
  end-page: 740
  article-title: A low‐cost, high‐efficiency solar cell based on dye‐sensitized
  publication-title: Nature
– volume: 7
  start-page: 8554
  year: 2013
  end-page: 8560
  article-title: r‐Shaped hybrid nanogenerator with enhanced piezoelectricity
  publication-title: ACS Nano
– volume: 6
  start-page: 9200
  year: 2012
  end-page: 9206
  article-title: Fiber‐based all‐solid‐state flexible supercapacitors for self‐powered systems
  publication-title: ACS Nano
– volume: 13
  start-page: 1168
  year: 2013
  end-page: 1172
  article-title: Frequency‐multiplication high‐output triboelectric nanogenerator for sustainably powering biomedical microsystems
  publication-title: Nano Lett.
– volume: 11
  start-page: 304
  year: 2015
  end-page: 322
  article-title: High performance triboelectric nanogenerators based on large‐scale mass‐fabrication technologies
  publication-title: Nano Energy
– volume: 26
  start-page: 4789
  year: 2014
  end-page: 4793
  article-title: Highly compressible macro‐porous graphene monoliths via an improved hydrothermal process
  publication-title: Adv. Mater.
– volume: 274
  start-page: 1135
  year: 2015
  end-page: 1139
  article-title: Organo‐redox shuttle promoted protic ionic liquid electrolyte for supercapacitor
  publication-title: J. Power Sources
– volume: 96
  start-page: 1457
  year: 2008
  end-page: 1486
  article-title: Energy harvesting from human and machine motion for wireless electronic devices
  publication-title: Proc. IEEE
– volume: 321
  start-page: 651
  year: 2008
  end-page: 652
  article-title: Electrochemical capacitors for energy management
  publication-title: Science
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  article-title: Materials for electrochemical capacitors
  publication-title: Nature Mater.
– volume: 312
  start-page: 242
  year: 2006
  end-page: 246
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
– volume: 27
  start-page: 6002
  year: 2015
  end-page: 6008
  article-title: Highly compressible and all‐solid‐state supercapacitors based on nanostructured composite sponge
  publication-title: Adv. Mater.
– volume: 25
  start-page: 591
  year: 2013
  end-page: 595
  article-title: Highly compression‐tolerant supercapacitor based on polypyrrole‐mediated graphene foam electrodes
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2219
  year: 2013
  end-page: 2223
  article-title: Ultralight and highly compressible graphene aerogels
  publication-title: Adv. Mater.
– volume: 93
  start-page: 1330
  year: 2005
  end-page: 1338
  article-title: Progress toward development of all‐printed RFID tags: materials, processes, and devices
  publication-title: Proc. IEEE
– volume: 26
  start-page: 1070
  year: 2016
  end-page: 1076
  article-title: All‐plastic‐materials based self‐charging power system composed of triboelectric nanogenerators and supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1426
  year: 2015
  end-page: 1433
  article-title: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li‐Ion battery
  publication-title: Adv. Funct. Mater.
– volume: 106
  start-page: 121105
  year: 2015
  article-title: A 2‐terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 1314
  year: 2016
  end-page: 1322
  article-title: Fabrication and characterization analysis of flexible porous nitrogen‐doped carbon‐based supercapacitor electrodes (in Chinese)
  publication-title: Chin. Sci. Bull.
– volume: 15
  start-page: 2452
  year: 2015
  end-page: 2459
  article-title: Hydrogel‐driven paper‐based microfluidics
  publication-title: Lab Chip
– volume: 7
  start-page: 9533
  year: 2013
  end-page: 9557
  article-title: Triboelectric nanogenerators as new energy technology for self‐powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
– volume: 2014
  start-page: 103904
  article-title: Single‐friction‐surface triboelectric generator with human body conduit
  publication-title: Appl. Phys. Lett.
– volume: 157
  start-page: 134
  year: 2015
  end-page: 141
  article-title: In‐situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode
  publication-title: Electrochim. Acta
– ident: e_1_2_11_23_2
  doi: 10.1016/j.electacta.2015.01.084
– ident: e_1_2_11_7_2
  doi: 10.1021/nn404023v
– ident: e_1_2_11_5_2
  doi: 10.1021/nn404614z
– ident: e_1_2_11_15_2
  doi: 10.1360/N972015-01080
– ident: e_1_2_11_20_2
  doi: 10.1016/j.nanoen.2014.12.009
– ident: e_1_2_11_8_2
  doi: 10.1038/353737a0
– ident: e_1_2_11_16_2
  doi: 10.1016/j.jpowsour.2014.10.166
– ident: e_1_2_11_12_2
  doi: 10.1038/nmat2297
– ident: e_1_2_11_6_2
  doi: 10.1126/science.1124005
– ident: e_1_2_11_22_2
  doi: 10.1002/adma.201502263
– ident: e_1_2_11_3_2
  doi: 10.1109/JPROC.2008.927494
– ident: e_1_2_11_19_2
  doi: 10.1021/nl3045684
– ident: e_1_2_11_17_2
  doi: 10.1002/adma.201204530
– ident: e_1_2_11_11_2
  doi: 10.1002/adfm.201504675
– ident: e_1_2_11_14_2
  doi: 10.1021/nn303530k
– ident: e_1_2_11_18_2
  doi: 10.1002/adma.201400657
– ident: e_1_2_11_25_2
  doi: 10.1109/JPROC.2005.850305
– ident: e_1_2_11_10_2
  doi: 10.1002/adfm.201403629
– volume: 2014
  start-page: 103904
  ident: e_1_2_11_2_2
  article-title: Single‐friction‐surface triboelectric generator with human body conduit
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_11_26_2
  doi: 10.1088/0957‐4484/23/6/065401
– ident: e_1_2_11_24_2
  doi: 10.1039/C5LC00276A
– ident: e_1_2_11_21_2
  doi: 10.1002/adma.201203578
– ident: e_1_2_11_9_2
  doi: 10.1063/1.4914179
– ident: e_1_2_11_13_2
  doi: 10.1126/science.1158736
– ident: e_1_2_11_4_2
  doi: 10.1016/j.nanoen.2014.11.012
SSID ssj0047279
Score 2.1107237
Snippet An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor...
An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 586
SubjectTerms Capacitance
capacitance retention
Carbon nanotubes
Compressibility
compressible energy storage
compressible solid‐state supercapacitor
compression‐tolerant electronics
Devices
electrochemical electrodes
Electrodes
electrolytes
Electronics
highly compression‐tolerant folded carbon nanotube‐paper
maximum specific capacitance
polyvinyl alcohol‐phosphoric acid gel electrolyte
power unit
red light emitting diode
self‐powered systems
solid‐state supercapacitor electrode
Special Issue: Selected Papers from The 11th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 2016)
stability performance
strain ability
Supercapacitors
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXOCAeIrxmAJCnCjrI-nS40BMCAHiABK3yklTCWmk09YduPET-I38Euy2A3YAiWvqRFUc53Nr-zNjxxFEgab27bkE6QnZA09BLr0QoaHnB0aakKqRb-_iq0dx_SSfmj6nVAtT80N8_XAjy6juazJw0HUXEnRqUYkvjiIHQXxGXvEiW6LyWurdEIr72VUsEJyTqiJSUg6jiBqSTVygOzd9DpQWn20552_-9For2BmssdXGX-T9WsHrbMG6Dbbyg0Vwk2WUqzF85ZQdXme1uo-397IYWsShkufFMLMZNzDWheMOXFFOte2OYGTHHCYcD99zhhOq0iI-meKwQQQ1aOpj3nTJyewWexxcPlxceU3zBM8IichDUEyBWz_3hdHaVzl-CiEgBkYpIMYYSEDLLEpQHAyphrwpohNMotj2VLTNWq5wdodxH_IwVmEkA8CvSasVKD9P4kREBjWZ6DY7ne1eahpmcWpwMUyrCLdIUtzslDY7pc1us5Mv8VFNqfGb4BGqIm2MavKbUGdO6Pbu5vthOsryNjucqTJF06F4CDhbTHE9JfG6p0Bim3UrHf_9Prh2PzwfEItfb_ffM_bYMo3XiYD7rFWOp_YAHZpSd6pD-wkqGu3l
  priority: 102
  providerName: Wiley-Blackwell
Title Highly compression-tolerant folded carbon nanotube/paper as solid-state supercapacitor electrode
URI http://digital-library.theiet.org/content/journals/10.1049/mnl.2016.0255
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2016.0255
https://www.proquest.com/docview/1855388195
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaa9LIdirbbMHdtoA5DT_Xil2z5mD6CtmiCHhogN0-S5aFAJgeJc9hlv31kbK8NhhS9-UHLAinpI0WKBPgWytBXVL694JK7EU-kK2TB3QChIfF8zXVAp5FH4_hmEt1N-XQH2mqj-dNPqpXhtjtutFtu6pMHFLqN63C_4XFdkAT12_4vSy4EP_5O6nEHdoMk8UQXdm-v7sm8qlflCHE6bXJs_vfRBiZ18Icb6uZLpXWNOsN92GvURTao5XsAO8YewvsXSQQ_wA8K1Zj9ZhQcXge1WrcqZwZBqGJFOctNzrRcqNIyK21ZrZTpz-XcLJhcMhx5T7m7PlXElit8qBE8Nc7yBWsK5OTmI0yG14-XN25TN8HVEUfQIRQmn61XeJFWyhMFWkGIhb4WQlKyGJlKxfMwRXKpSSqkSFEmwTSMTSLCT9C1pTWfgXmyCGIRhNyXaEgaJaTwijROo1CjEFPlwHnLuUw3ScWptsUsWzu3ozRDRmfE6IwY7cDZP_J5nU1jG-FXFEPWynobUW-DaDS-f36ZzfPCgdNWjBnOGnKFSGvKFbYnOK705EN0oL-W7-v9wbYHwcWQEvglR2_p2xd4R9d12N8xdKvFypyg-lKpHnSC6KHXjE-8G_25_gt9R-yC
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtswDCbW7tDtMGxth2Y_mVoUPdWNfyRHPmbDgqxNgh5aoDdBkmWgQCoHiXPYbY-wZ9yTjLSdNjl0wK42JRiiqI8yyY8Ap4lOIkPt2wuhRcBFXwdSFyKIERr6YWSFjakaeTJNR7f88k7cbVTxN_wQjz_cyDLq85oMnH5INxdOTiSZD55CB1F6QW7xDrzk6JtTUl_Mr9dnMUd0zuqSSEFJjDxpWTZxgt7W8C1U2rl31ZbDuem21rgzfAtvWoeRDRoNv4MXzu_D6w0awQPIKVlj9pNReniT1ur__PpdlTOHQFSxopzlLmdWL0zpmde-rFbG9eZ67hZMLxnuvvscB9S1RWy5wscWIdSirS9Y2yYnd4dwO_x-820UtN0TAssFQg9hMUVuwyLk1phQFngXQkSMrJSaKGN0po3IkwzFtSXdkDtFfIJZkrq-TN7Dri-9OwIW6iJOZZyISON10hmpZVhkacYTi6rMTAfO16unbEstTh0uZqoOcfNM4WIrWmxFi92Bs0fxecOp8ZzgCapCtVa1fE6ouyU0mY6fXqp5XnTgeK1KhbZDARHtXbnC-aTA854iiR3o1Tr-9_fg3IP465Bo_Pof_nvEF9gb3UzGavxjevURXpFMkxX4CXarxcp9Ru-mMt16A_8FHMzxWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB7RVEJwqAoUNS0EFyFOXbI_9sZ7TAtRKE3EgaCKi2V7vVKl4I2SzaE3HoFn5EmY2d20zaFIXHfH1srj8TfemfkG4F2ik8hQ-_ZCaBFwMdCB1IUIYoSGQRhZYWOqRp5M0_GMX1yJq7bPKdXCNPwQtz_cyDLq85oMfJEXzX2TE0fmT0-Rgyj9QF7xDuwSUx5u9N3h99mP2eYw5gjPWV0TKSiLkSctzSZO0d-aYAuWdq5dteVx3vdba-AZ7cNe6zGyYaPiZ_DI-efw9B6P4AvIKVtjfsMoP7zJa_V_fv2uyrlDJKpYUc5zlzOrl6b0zGtfVmvj-gu9cEumVwy333WOA-riIrZa42OLGGrR2Jes7ZOTuwOYjT59Ox8HbfuEwHKB2ENgTKHbsAi5NSaUBV6GEBIjK6UmzhidaSPyJENxbUk55E8RoWCWpG4gk5fQ8aV3h8BCXcSpjBMRabxPOiO1DIsszXhiUZeZ6cLpZvWUbbnFqcXFXNUxbp4pXGxFi61osbvw_lZ80ZBqPCT4FlWhWrNaPSTU2xKaTC_vXircNF042ahSofFQRER7V65xPinwwKdQYhf6tY7__T049zA-GxGP3-Dov0e8gcdfP47U5efpl2N4QiJNVuAr6FTLtXuN3k1leu0O_gs1-_JH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+compression%E2%80%90tolerant+folded+carbon+nanotube%2Fpaper+as+solid%E2%80%90state+supercapacitor+electrode&rft.jtitle=Micro+%26+nano+letters&rft.au=Song%2C+Yu&rft.au=Cheng%2C+Xiaoliang&rft.au=Chen%2C+Haotian&rft.au=Han%2C+Mengdi&rft.date=2016-10-01&rft.issn=1750-0443&rft.eissn=1750-0443&rft.volume=11&rft.issue=10&rft.spage=586&rft.epage=590&rft_id=info:doi/10.1049%2Fmnl.2016.0255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_mnl_2016_0255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0443&client=summon