Highly compression-tolerant folded carbon nanotube/paper as solid-state supercapacitor electrode
An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the fo...
Saved in:
Published in | Micro & nano letters Vol. 11; no. 10; pp. 586 - 590 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1750-0443 1750-0443 |
DOI | 10.1049/mnl.2016.0255 |
Cover
Abstract | An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems. |
---|---|
AbstractList | An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression‐tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape‐changing, which has great potential to be used in various environments. This compressible solid‐state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression‐tolerant electronics and enlightens a broad field of compressible energy storage and self‐powered systems. An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm super(2), and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems. An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression‐tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape‐changing, which has great potential to be used in various environments. This compressible solid‐state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm 2 , and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression‐tolerant electronics and enlightens a broad field of compressible energy storage and self‐powered systems. An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor with polyvinyl alcohol/phosphoric acid gel electrolyte, is designed. It is worth mentioning that both the compression-tolerant ability of the folded structure and the strain ability of the CNT electrode are conducive to achieving the compressible supercapacitor. Such device could withstand pressure and shape-changing, which has great potential to be used in various environments. This compressible solid-state supercapacitor also owns the maximum specific capacitance of 11.07 mF/cm2, and capacitance retention retains more than 90% after 100 cycling times. Furthermore, the stability performance of the device is also discussed which is almost steady under 50% strain state. When two devices are connected in serial and fully charged, this power unit could light up a red light emitting diode continuously even under the compression state. Therefore, this device performs as a promising candidate to be compatible with other compression-tolerant electronics and enlightens a broad field of compressible energy storage and self-powered systems. |
Author | Huang, Jiahuan Su, Zongming Chen, Haotian Zhang, Haixia Cheng, Xiaoliang Chen, Xuexian Song, Yu Han, Mengdi |
Author_xml | – sequence: 1 givenname: Yu surname: Song fullname: Song, Yu organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China – sequence: 2 givenname: Xiaoliang surname: Cheng fullname: Cheng, Xiaoliang organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China – sequence: 3 givenname: Haotian surname: Chen fullname: Chen, Haotian organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China – sequence: 4 givenname: Mengdi surname: Han fullname: Han, Mengdi organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China – sequence: 5 givenname: Xuexian surname: Chen fullname: Chen, Xuexian organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China – sequence: 6 givenname: Jiahuan surname: Huang fullname: Huang, Jiahuan organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China – sequence: 7 givenname: Zongming surname: Su fullname: Su, Zongming organization: 1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, People's Republic of China – sequence: 8 givenname: Haixia surname: Zhang fullname: Zhang, Haixia email: zhang-alice@pku.edu.cn organization: 2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China |
BookMark | eNp9kE1P3DAQhq0KpPJ17D2XSu0hyzi2N86RovIhLXCBs-s4E2rktVPbUbX_Hq-WA0LAaUaj553RPIdkzwePhHyjsKDAu9O1d4sG6HIBjRBfyAFtBdTAOdt71X8lhyk9AfC2absD8ufKPv51m8qE9RQxJRt8nYPDqH2uxuAGHCqjYx985bUPee7xdNITxkqnKgVnhzplnbFKcxkaPWljc4gVOjQ5hgGPyf6oXcKTl3pEHi5-359f1au7y-vzs1VtuKBt3TBJKecAI3DT9yBH3gnEgRopNVC-1J3uxcC6gmvTSMGACl5eaDq2xFayI_Jjt3eK4d-MKau1TQad0x7DnBSVQjApaScKWu9QE0NKEUc1RbvWcaMoqK1JVUyqrUm1NVl49oYvP-pcVOWorfswtdyl_luHm89PqJvbs-bXBYBs2xL8uQtazOopzNEXbx8e-f4Oe3O7erV7Gkb2DGuppBM |
CitedBy_id | crossref_primary_10_1039_C6TA05816G crossref_primary_10_1002_smll_201702091 crossref_primary_10_1016_j_nanoen_2018_10_045 crossref_primary_10_1155_2017_5910734 crossref_primary_10_1002_slct_202200360 crossref_primary_10_1109_JMEMS_2017_2705130 crossref_primary_10_1016_j_nanoen_2018_08_041 crossref_primary_10_1177_1528083718804208 |
Cites_doi | 10.1016/j.electacta.2015.01.084 10.1021/nn404023v 10.1021/nn404614z 10.1360/N972015-01080 10.1016/j.nanoen.2014.12.009 10.1038/353737a0 10.1016/j.jpowsour.2014.10.166 10.1038/nmat2297 10.1126/science.1124005 10.1002/adma.201502263 10.1109/JPROC.2008.927494 10.1021/nl3045684 10.1002/adma.201204530 10.1002/adfm.201504675 10.1021/nn303530k 10.1002/adma.201400657 10.1109/JPROC.2005.850305 10.1002/adfm.201403629 10.1088/0957‐4484/23/6/065401 10.1039/C5LC00276A 10.1002/adma.201203578 10.1063/1.4914179 10.1126/science.1158736 10.1016/j.nanoen.2014.11.012 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2016 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2016 The Institution of Engineering and Technology |
DBID | AAYXX CITATION 7TB 7U5 8FD F28 FR3 L7M |
DOI | 10.1049/mnl.2016.0255 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1750-0443 |
EndPage | 590 |
ExternalDocumentID | 10_1049_mnl_2016_0255 MNA2BF00877 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Beijing Science & Technology Project grantid: Z141100003814003 – fundername: Beijing Natural Science Foundation of China grantid: 4141002 – fundername: National Hi-Tech Research and Development Program of China grantid: 2013AA041102 – fundername: National Natural Science Foundation of China grantid: 61176103 – fundername: Beijing Science & Technology Project funderid: Z141100003814003 – fundername: Beijing Natural Science Foundation of China funderid: 4141002 – fundername: National Natural Science Foundation of China funderid: 61176103 – fundername: National Hi‐Tech Research and Development Program of China funderid: 2013AA041102 |
GroupedDBID | - 0R 123 24P 29M 4.4 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 D1I DU5 EBS EJD F5P HCIFZ HZ IFIPE IPLJI JAVBF KB. L6V LAI LOTEE LXI LXU M43 M7S NADUK NXXTH O9- OCL P2P P62 PDBOC PTHSS RIE RIG RNS RUI S0W UNMZH UNR --- 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR AEEZP AEQDE AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO IFBGX IGS IHR INH ITC MCNEO OK1 ROL AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA M~E PHGZM PHGZT 7TB 7U5 8FD F28 FR3 L7M WIN |
ID | FETCH-LOGICAL-c4517-238114400f04cbb08f495eed1c88a0146a9ab5d39c45ac285301542792936e783 |
IEDL.DBID | IDLOA |
ISSN | 1750-0443 |
IngestDate | Thu Sep 04 21:29:26 EDT 2025 Sun Jul 06 05:10:48 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Wed Jan 22 16:30:59 EST 2025 Thu May 09 18:26:34 EDT 2019 Tue Jan 05 21:44:33 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | electrochemical electrodes compression-tolerant electronics solid-state supercapacitor electrode capacitance retention capacitance C compressible solid-state supercapacitor compressible energy storage electrolytes maximum specific capacitance power unit self-powered systems carbon nanotubes stability performance red light emitting diode polyvinyl alcohol-phosphoric acid gel electrolyte highly compression-tolerant folded carbon nanotube-paper supercapacitors strain ability |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4517-238114400f04cbb08f495eed1c88a0146a9ab5d39c45ac285301542792936e783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1855388195 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1855388195 crossref_primary_10_1049_mnl_2016_0255 crossref_citationtrail_10_1049_mnl_2016_0255 iet_journals_10_1049_mnl_2016_0255 wiley_primary_10_1049_mnl_2016_0255_MNA2BF00877 |
ProviderPackageCode | RUI |
PublicationCentury | 2000 |
PublicationDate | 20161000 October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
PublicationDecade | 2010 |
PublicationTitle | Micro & nano letters |
PublicationYear | 2016 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Han, M.D.; Zhang, X.S.; Meng, B. (C6) 2013; 7 Miller, J.; Simon, P. (C12) 2008; 321 O'regan, B.; Grfitzeli, M. (C7) 1991; 353 Mailoa, J.P.; Bailie, C.D.; Johlin, E.C. (C8) 2015; 106 Zhang, X.; Han, M.; Wang, R. (C18) 2013; 13 Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K. (C2) 2008; 96 Niedl, R.; Beta, C. (C23) 2015; 15 Song, Y.; Meng, B.; Chen, X.X. (C14) 2016; 61 Simon, P.; Gogotsi, Y. (C11) 2008; 7 Li, Y.; Chen, J.; Huang, L. (C17) 2014; 26 Subramanian, V.; Fréchet, J.; Chang, P. (C24) 2005; 93 Zhang, X.; Han, M.; Meng, B. (C3) 2015; 11 Wang, J.; Wen, Z.; Zi, Y. (C10) 2016; 26 Zhang, Y.; Zhen, Z.; Zhang, Z. (C22) 2015; 157 Wang, Z.L. (C4) 2013; 7 Zhao, Y.; Liu, J.; Hu, Y. (C20) 2013; 25 Cheng, X.; Meng, B.; Zhang, X. (C19) 2015; 12 Meng, B.; Cheng, X.; Zhang, X. (C1); 2014 Niu, Z.; Zhou, W.; Chen, X. (C21) 2015; 27 Sathyamoorthi, S.; Suryanarayanan, V.; Velayutham, D. (C15) 2015; 274 Xiao, X.; Li, T.; Yang, P. (C13) 2012; 6 Kang, Y.J.; Chung, H.; Han, C.H. (C25) 2012; 23 Hu, H.; Zhao, Z.; Wan, W. (C16) 2013; 25 Wang, Z.L.; Song, J. (C5) 2006; 312 Xiao, X.; Zhou, W.; Kim, Y. (C9) 2015; 25 2015; 12 2015; 15 2015; 25 2013; 25 2015; 27 1991; 353 2013; 13 2015; 157 2015; 11 2015; 274 2014; 26 2008; 7 2016; 61 2014 2008; 96 2015; 106 2005; 93 2013; 7 2008; 321 2012; 6 2012; 23 2016; 26 2006; 312 e_1_2_11_13_2 e_1_2_11_12_2 e_1_2_11_11_2 e_1_2_11_10_2 e_1_2_11_6_2 e_1_2_11_5_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 Meng B. (e_1_2_11_2_2); 2014 e_1_2_11_20_2 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_19_2 e_1_2_11_18_2 |
References_xml | – volume: 312 start-page: 242 year: 2006 end-page: 246 ident: C5 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science – volume: 26 start-page: 4789 year: 2014 end-page: 4793 ident: C17 article-title: Highly compressible macro-porous graphene monoliths via an improved hydrothermal process publication-title: Adv. Mater. – volume: 12 start-page: 19 year: 2015 end-page: 25 ident: C19 article-title: Wearable electrode-free triboelectric generator for harvesting biomechanical energy publication-title: Nano Energy – volume: 106 start-page: 121105 year: 2015 ident: C8 article-title: A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction publication-title: Appl. Phys. Lett. – volume: 353 start-page: 737 year: 1991 end-page: 740 ident: C7 article-title: A low-cost, high-efficiency solar cell based on dye-sensitized publication-title: Nature – volume: 25 start-page: 1426 year: 2015 end-page: 1433 ident: C9 article-title: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-Ion battery publication-title: Adv. Funct. Mater. – volume: 93 start-page: 1330 year: 2005 end-page: 1338 ident: C24 article-title: Progress toward development of all-printed RFID tags: materials, processes, and devices publication-title: Proc. IEEE – volume: 15 start-page: 2452 year: 2015 end-page: 2459 ident: C23 article-title: Hydrogel-driven paper-based microfluidics publication-title: Lab Chip – volume: 6 start-page: 9200 year: 2012 end-page: 9206 ident: C13 article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems publication-title: ACS Nano – volume: 274 start-page: 1135 year: 2015 end-page: 1139 ident: C15 article-title: Organo-redox shuttle promoted protic ionic liquid electrolyte for supercapacitor publication-title: J. Power Sources – volume: 25 start-page: 591 year: 2013 end-page: 595 ident: C20 article-title: Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes publication-title: Adv. Mater. – volume: 2014 start-page: 104 ident: C1 article-title: Single-friction-surface triboelectric generator with human body conduit publication-title: Appl. Phys. Lett. – volume: 96 start-page: 1457 year: 2008 end-page: 1486 ident: C2 article-title: Energy harvesting from human and machine motion for wireless electronic devices publication-title: Proc. IEEE – volume: 13 start-page: 1168 year: 2013 end-page: 1172 ident: C18 article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: C11 article-title: Materials for electrochemical capacitors publication-title: Nature Mater. – volume: 11 start-page: 304 year: 2015 end-page: 322 ident: C3 article-title: High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies publication-title: Nano Energy – volume: 7 start-page: 9533 year: 2013 end-page: 9557 ident: C4 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano – volume: 61 start-page: 1314 year: 2016 end-page: 1322 ident: C14 article-title: Fabrication and characterization analysis of flexible porous nitrogen-doped carbon-based supercapacitor electrodes (in Chinese) publication-title: Chin. Sci. Bull. – volume: 321 start-page: 651 year: 2008 end-page: 652 ident: C12 article-title: Electrochemical capacitors for energy management publication-title: Science – volume: 26 start-page: 1070 year: 2016 end-page: 1076 ident: C10 article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors publication-title: Adv. Funct. Mater. – volume: 157 start-page: 134 year: 2015 end-page: 141 ident: C22 article-title: In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode publication-title: Electrochim. Acta – volume: 25 start-page: 2219 year: 2013 end-page: 2223 ident: C16 article-title: Ultralight and highly compressible graphene aerogels publication-title: Adv. Mater. – volume: 27 start-page: 6002 year: 2015 end-page: 6008 ident: C21 article-title: Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge publication-title: Adv. Mater. – volume: 23 start-page: 65401 year: 2012 end-page: 65406 ident: C25 article-title: All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes publication-title: Nanotechnology – volume: 7 start-page: 8554 year: 2013 end-page: 8560 ident: C6 article-title: r-Shaped hybrid nanogenerator with enhanced piezoelectricity publication-title: ACS Nano – volume: 12 start-page: 19 year: 2015 end-page: 25 article-title: Wearable electrode‐free triboelectric generator for harvesting biomechanical energy publication-title: Nano Energy – volume: 23 start-page: 65401 year: 2012 end-page: 65406 article-title: All‐solid‐state flexible supercapacitors based on papers coated with carbon nanotubes and ionic‐liquid‐based gel electrolytes publication-title: Nanotechnology – volume: 353 start-page: 737 year: 1991 end-page: 740 article-title: A low‐cost, high‐efficiency solar cell based on dye‐sensitized publication-title: Nature – volume: 7 start-page: 8554 year: 2013 end-page: 8560 article-title: r‐Shaped hybrid nanogenerator with enhanced piezoelectricity publication-title: ACS Nano – volume: 6 start-page: 9200 year: 2012 end-page: 9206 article-title: Fiber‐based all‐solid‐state flexible supercapacitors for self‐powered systems publication-title: ACS Nano – volume: 13 start-page: 1168 year: 2013 end-page: 1172 article-title: Frequency‐multiplication high‐output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. – volume: 11 start-page: 304 year: 2015 end-page: 322 article-title: High performance triboelectric nanogenerators based on large‐scale mass‐fabrication technologies publication-title: Nano Energy – volume: 26 start-page: 4789 year: 2014 end-page: 4793 article-title: Highly compressible macro‐porous graphene monoliths via an improved hydrothermal process publication-title: Adv. Mater. – volume: 274 start-page: 1135 year: 2015 end-page: 1139 article-title: Organo‐redox shuttle promoted protic ionic liquid electrolyte for supercapacitor publication-title: J. Power Sources – volume: 96 start-page: 1457 year: 2008 end-page: 1486 article-title: Energy harvesting from human and machine motion for wireless electronic devices publication-title: Proc. IEEE – volume: 321 start-page: 651 year: 2008 end-page: 652 article-title: Electrochemical capacitors for energy management publication-title: Science – volume: 7 start-page: 845 year: 2008 end-page: 854 article-title: Materials for electrochemical capacitors publication-title: Nature Mater. – volume: 312 start-page: 242 year: 2006 end-page: 246 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science – volume: 27 start-page: 6002 year: 2015 end-page: 6008 article-title: Highly compressible and all‐solid‐state supercapacitors based on nanostructured composite sponge publication-title: Adv. Mater. – volume: 25 start-page: 591 year: 2013 end-page: 595 article-title: Highly compression‐tolerant supercapacitor based on polypyrrole‐mediated graphene foam electrodes publication-title: Adv. Mater. – volume: 25 start-page: 2219 year: 2013 end-page: 2223 article-title: Ultralight and highly compressible graphene aerogels publication-title: Adv. Mater. – volume: 93 start-page: 1330 year: 2005 end-page: 1338 article-title: Progress toward development of all‐printed RFID tags: materials, processes, and devices publication-title: Proc. IEEE – volume: 26 start-page: 1070 year: 2016 end-page: 1076 article-title: All‐plastic‐materials based self‐charging power system composed of triboelectric nanogenerators and supercapacitors publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1426 year: 2015 end-page: 1433 article-title: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li‐Ion battery publication-title: Adv. Funct. Mater. – volume: 106 start-page: 121105 year: 2015 article-title: A 2‐terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction publication-title: Appl. Phys. Lett. – volume: 61 start-page: 1314 year: 2016 end-page: 1322 article-title: Fabrication and characterization analysis of flexible porous nitrogen‐doped carbon‐based supercapacitor electrodes (in Chinese) publication-title: Chin. Sci. Bull. – volume: 15 start-page: 2452 year: 2015 end-page: 2459 article-title: Hydrogel‐driven paper‐based microfluidics publication-title: Lab Chip – volume: 7 start-page: 9533 year: 2013 end-page: 9557 article-title: Triboelectric nanogenerators as new energy technology for self‐powered systems and as active mechanical and chemical sensors publication-title: ACS Nano – volume: 2014 start-page: 103904 article-title: Single‐friction‐surface triboelectric generator with human body conduit publication-title: Appl. Phys. Lett. – volume: 157 start-page: 134 year: 2015 end-page: 141 article-title: In‐situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode publication-title: Electrochim. Acta – ident: e_1_2_11_23_2 doi: 10.1016/j.electacta.2015.01.084 – ident: e_1_2_11_7_2 doi: 10.1021/nn404023v – ident: e_1_2_11_5_2 doi: 10.1021/nn404614z – ident: e_1_2_11_15_2 doi: 10.1360/N972015-01080 – ident: e_1_2_11_20_2 doi: 10.1016/j.nanoen.2014.12.009 – ident: e_1_2_11_8_2 doi: 10.1038/353737a0 – ident: e_1_2_11_16_2 doi: 10.1016/j.jpowsour.2014.10.166 – ident: e_1_2_11_12_2 doi: 10.1038/nmat2297 – ident: e_1_2_11_6_2 doi: 10.1126/science.1124005 – ident: e_1_2_11_22_2 doi: 10.1002/adma.201502263 – ident: e_1_2_11_3_2 doi: 10.1109/JPROC.2008.927494 – ident: e_1_2_11_19_2 doi: 10.1021/nl3045684 – ident: e_1_2_11_17_2 doi: 10.1002/adma.201204530 – ident: e_1_2_11_11_2 doi: 10.1002/adfm.201504675 – ident: e_1_2_11_14_2 doi: 10.1021/nn303530k – ident: e_1_2_11_18_2 doi: 10.1002/adma.201400657 – ident: e_1_2_11_25_2 doi: 10.1109/JPROC.2005.850305 – ident: e_1_2_11_10_2 doi: 10.1002/adfm.201403629 – volume: 2014 start-page: 103904 ident: e_1_2_11_2_2 article-title: Single‐friction‐surface triboelectric generator with human body conduit publication-title: Appl. Phys. Lett. – ident: e_1_2_11_26_2 doi: 10.1088/0957‐4484/23/6/065401 – ident: e_1_2_11_24_2 doi: 10.1039/C5LC00276A – ident: e_1_2_11_21_2 doi: 10.1002/adma.201203578 – ident: e_1_2_11_9_2 doi: 10.1063/1.4914179 – ident: e_1_2_11_13_2 doi: 10.1126/science.1158736 – ident: e_1_2_11_4_2 doi: 10.1016/j.nanoen.2014.11.012 |
SSID | ssj0047279 |
Score | 2.1107237 |
Snippet | An original highly compression-tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid-state supercapacitor... An original highly compression‐tolerant folded carbon nanotube (CNT)/paper electrode, which could be assembled into compressible solid‐state supercapacitor... |
SourceID | proquest crossref wiley iet |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 586 |
SubjectTerms | Capacitance capacitance retention Carbon nanotubes Compressibility compressible energy storage compressible solid‐state supercapacitor compression‐tolerant electronics Devices electrochemical electrodes Electrodes electrolytes Electronics highly compression‐tolerant folded carbon nanotube‐paper maximum specific capacitance polyvinyl alcohol‐phosphoric acid gel electrolyte power unit red light emitting diode self‐powered systems solid‐state supercapacitor electrode Special Issue: Selected Papers from The 11th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 2016) stability performance strain ability Supercapacitors |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXOCAeIrxmAJCnCjrI-nS40BMCAHiABK3yklTCWmk09YduPET-I38Euy2A3YAiWvqRFUc53Nr-zNjxxFEgab27bkE6QnZA09BLr0QoaHnB0aakKqRb-_iq0dx_SSfmj6nVAtT80N8_XAjy6juazJw0HUXEnRqUYkvjiIHQXxGXvEiW6LyWurdEIr72VUsEJyTqiJSUg6jiBqSTVygOzd9DpQWn20552_-9For2BmssdXGX-T9WsHrbMG6Dbbyg0Vwk2WUqzF85ZQdXme1uo-397IYWsShkufFMLMZNzDWheMOXFFOte2OYGTHHCYcD99zhhOq0iI-meKwQQQ1aOpj3nTJyewWexxcPlxceU3zBM8IichDUEyBWz_3hdHaVzl-CiEgBkYpIMYYSEDLLEpQHAyphrwpohNMotj2VLTNWq5wdodxH_IwVmEkA8CvSasVKD9P4kREBjWZ6DY7ne1eahpmcWpwMUyrCLdIUtzslDY7pc1us5Mv8VFNqfGb4BGqIm2MavKbUGdO6Pbu5vthOsryNjucqTJF06F4CDhbTHE9JfG6p0Bim3UrHf_9Prh2PzwfEItfb_ffM_bYMo3XiYD7rFWOp_YAHZpSd6pD-wkqGu3l priority: 102 providerName: Wiley-Blackwell |
Title | Highly compression-tolerant folded carbon nanotube/paper as solid-state supercapacitor electrode |
URI | http://digital-library.theiet.org/content/journals/10.1049/mnl.2016.0255 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2016.0255 https://www.proquest.com/docview/1855388195 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaa9LIdirbbMHdtoA5DT_Xil2z5mD6CtmiCHhogN0-S5aFAJgeJc9hlv31kbK8NhhS9-UHLAinpI0WKBPgWytBXVL694JK7EU-kK2TB3QChIfF8zXVAp5FH4_hmEt1N-XQH2mqj-dNPqpXhtjtutFtu6pMHFLqN63C_4XFdkAT12_4vSy4EP_5O6nEHdoMk8UQXdm-v7sm8qlflCHE6bXJs_vfRBiZ18Icb6uZLpXWNOsN92GvURTao5XsAO8YewvsXSQQ_wA8K1Zj9ZhQcXge1WrcqZwZBqGJFOctNzrRcqNIyK21ZrZTpz-XcLJhcMhx5T7m7PlXElit8qBE8Nc7yBWsK5OTmI0yG14-XN25TN8HVEUfQIRQmn61XeJFWyhMFWkGIhb4WQlKyGJlKxfMwRXKpSSqkSFEmwTSMTSLCT9C1pTWfgXmyCGIRhNyXaEgaJaTwijROo1CjEFPlwHnLuUw3ScWptsUsWzu3ozRDRmfE6IwY7cDZP_J5nU1jG-FXFEPWynobUW-DaDS-f36ZzfPCgdNWjBnOGnKFSGvKFbYnOK705EN0oL-W7-v9wbYHwcWQEvglR2_p2xd4R9d12N8xdKvFypyg-lKpHnSC6KHXjE-8G_25_gt9R-yC |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtswDCbW7tDtMGxth2Y_mVoUPdWNfyRHPmbDgqxNgh5aoDdBkmWgQCoHiXPYbY-wZ9yTjLSdNjl0wK42JRiiqI8yyY8Ap4lOIkPt2wuhRcBFXwdSFyKIERr6YWSFjakaeTJNR7f88k7cbVTxN_wQjz_cyDLq85oMnH5INxdOTiSZD55CB1F6QW7xDrzk6JtTUl_Mr9dnMUd0zuqSSEFJjDxpWTZxgt7W8C1U2rl31ZbDuem21rgzfAtvWoeRDRoNv4MXzu_D6w0awQPIKVlj9pNReniT1ur__PpdlTOHQFSxopzlLmdWL0zpmde-rFbG9eZ67hZMLxnuvvscB9S1RWy5wscWIdSirS9Y2yYnd4dwO_x-820UtN0TAssFQg9hMUVuwyLk1phQFngXQkSMrJSaKGN0po3IkwzFtSXdkDtFfIJZkrq-TN7Dri-9OwIW6iJOZZyISON10hmpZVhkacYTi6rMTAfO16unbEstTh0uZqoOcfNM4WIrWmxFi92Bs0fxecOp8ZzgCapCtVa1fE6ouyU0mY6fXqp5XnTgeK1KhbZDARHtXbnC-aTA854iiR3o1Tr-9_fg3IP465Bo_Pof_nvEF9gb3UzGavxjevURXpFMkxX4CXarxcp9Ru-mMt16A_8FHMzxWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB7RVEJwqAoUNS0EFyFOXbI_9sZ7TAtRKE3EgaCKi2V7vVKl4I2SzaE3HoFn5EmY2d20zaFIXHfH1srj8TfemfkG4F2ik8hQ-_ZCaBFwMdCB1IUIYoSGQRhZYWOqRp5M0_GMX1yJq7bPKdXCNPwQtz_cyDLq85oMfJEXzX2TE0fmT0-Rgyj9QF7xDuwSUx5u9N3h99mP2eYw5gjPWV0TKSiLkSctzSZO0d-aYAuWdq5dteVx3vdba-AZ7cNe6zGyYaPiZ_DI-efw9B6P4AvIKVtjfsMoP7zJa_V_fv2uyrlDJKpYUc5zlzOrl6b0zGtfVmvj-gu9cEumVwy333WOA-riIrZa42OLGGrR2Jes7ZOTuwOYjT59Ox8HbfuEwHKB2ENgTKHbsAi5NSaUBV6GEBIjK6UmzhidaSPyJENxbUk55E8RoWCWpG4gk5fQ8aV3h8BCXcSpjBMRabxPOiO1DIsszXhiUZeZ6cLpZvWUbbnFqcXFXNUxbp4pXGxFi61osbvw_lZ80ZBqPCT4FlWhWrNaPSTU2xKaTC_vXircNF042ahSofFQRER7V65xPinwwKdQYhf6tY7__T049zA-GxGP3-Dov0e8gcdfP47U5efpl2N4QiJNVuAr6FTLtXuN3k1leu0O_gs1-_JH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+compression%E2%80%90tolerant+folded+carbon+nanotube%2Fpaper+as+solid%E2%80%90state+supercapacitor+electrode&rft.jtitle=Micro+%26+nano+letters&rft.au=Song%2C+Yu&rft.au=Cheng%2C+Xiaoliang&rft.au=Chen%2C+Haotian&rft.au=Han%2C+Mengdi&rft.date=2016-10-01&rft.issn=1750-0443&rft.eissn=1750-0443&rft.volume=11&rft.issue=10&rft.spage=586&rft.epage=590&rft_id=info:doi/10.1049%2Fmnl.2016.0255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_mnl_2016_0255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0443&client=summon |