Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars...
Saved in:
Published in | Journal of plant nutrition and soil science Vol. 177; no. 6; pp. 920 - 926 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2014
WILEY‐VCH Verlag Wiley-VCH Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg−1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking. |
---|---|
AbstractList | Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell-shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg-1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB-, WCB-, and WSB-amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle ([theta]). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar-amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell-shrinkage, tensile strength and surface area density of cracking. Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg⁻¹soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking. Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell-shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg super(-1) soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB-, WCB-, and WSB-amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle ( theta ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar-amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell-shrinkage, tensile strength and surface area density of cracking. Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg−1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking. Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg −1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly ( p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion ( c ) and increased internal friction angle ( θ ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking. |
Author | Zong, Yutong Lu, Shenggao Chen, Danping |
Author_xml | – sequence: 1 givenname: Yutong surname: Zong fullname: Zong, Yutong organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 2 givenname: Danping surname: Chen fullname: Chen, Danping organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Shenggao surname: Lu fullname: Lu, Shenggao email: lusg@zju.edu.cn organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29034148$$DView record in Pascal Francis |
BookMark | eNqFkU1vEzEURUeoSLSFLWtLCIlFJzx_jCdeoqqUolC6KKViY3mc58TJxA72hJJ_j6OUClVCXdmLc6707j2qDkIMWFWvKYwoAHu_WPdhxIBygEbJZ9UhbRirmWTioPwFl_W45fCiOsp5AQCCKnZYzS9Wa2MHEh3pfLRzkzKJgeQ77Ps6z5MPSzND0uHc_PIxnZAVFih4a3qSh4RhNsxPiAlTkjfJGYvEJmOXPsx2kbY3W9ySHH3_snruTJ_x1f17XH37eHZ9-qmefD2_OP0wqa1oqKwZcstF2ynGusZ1DltQvBPQdYBNY6dCWioZxbZFZK1zVCqYOjW1RlhggPy4erfPXaf4c4N50CufbbnGBIybrGlLgXHJZfM0KkVpj3JJC_rmEbqImxTKIYViYyVLn7xQb-8pk0tBLplgfdbr5FcmbTVTwAUV48KJPWdTzDmh09YPZvAxDMn4XlPQu0X1blH9sGjRRo-0v8n_FdReuPM9bp-g9eeryeW_br13fR7w94Nr0lLLlreN_n55rm9vrq7Vj9sv-ob_AX0WxRw |
CitedBy_id | crossref_primary_10_3390_agriculture13122241 crossref_primary_10_1007_s10064_020_01846_3 crossref_primary_10_1007_s11356_021_13338_2 crossref_primary_10_3390_app13169048 crossref_primary_10_2136_sssaj2017_01_0017 crossref_primary_10_1007_s12649_020_01057_7 crossref_primary_10_1061_IJGNAI_GMENG_10072 crossref_primary_10_1007_s44279_024_00033_2 crossref_primary_10_1016_j_still_2016_01_011 crossref_primary_10_1177_1056789520925524 crossref_primary_10_1038_s41598_024_77700_3 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000551 crossref_primary_10_1016_j_earscirev_2021_103586 crossref_primary_10_1080_00103624_2020_1869770 crossref_primary_10_1007_s42729_024_01791_0 crossref_primary_10_1007_s11440_022_01613_6 crossref_primary_10_1002_ird_2916 crossref_primary_10_1007_s12649_020_01172_5 crossref_primary_10_1007_s12517_018_3863_1 crossref_primary_10_1016_j_jenvman_2024_122577 crossref_primary_10_1080_03650340_2023_2172167 crossref_primary_10_1061__ASCE_MT_1943_5533_0003915 crossref_primary_10_1002_ird_3017 crossref_primary_10_1016_j_jenvman_2023_118874 crossref_primary_10_1029_2020GH000311 crossref_primary_10_1007_s11368_020_02573_8 crossref_primary_10_1177_1056789521991194 crossref_primary_10_1007_s40891_021_00333_3 crossref_primary_10_1016_j_geoderma_2020_114182 crossref_primary_10_1061_JMCEE7_MTENG_18823 crossref_primary_10_3390_su15118700 crossref_primary_10_1016_j_jclepro_2024_143981 crossref_primary_10_1016_j_still_2022_105447 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000561 crossref_primary_10_1016_S1002_0160_18_60041_4 crossref_primary_10_1016_j_geoderma_2018_03_021 crossref_primary_10_1007_s40093_019_0265_7 crossref_primary_10_1016_j_scitotenv_2023_164185 crossref_primary_10_3390_su12072599 crossref_primary_10_1680_jgrim_22_00023 crossref_primary_10_1007_s42729_021_00414_2 crossref_primary_10_21597_jist_931246 crossref_primary_10_1002_jpln_201700221 crossref_primary_10_1016_j_still_2020_104798 crossref_primary_10_1007_s12517_020_05622_1 crossref_primary_10_1016_j_still_2021_105057 crossref_primary_10_1016_j_still_2024_106101 crossref_primary_10_1179_1939787915Y_0000000004 crossref_primary_10_1680_jgeot_17_P_040 crossref_primary_10_33409_tbbbd_928758 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_1007_s11356_022_24788_7 crossref_primary_10_1007_s13399_020_00946_0 crossref_primary_10_1016_j_biortech_2018_05_011 crossref_primary_10_1007_s11368_020_02786_x crossref_primary_10_1007_s10064_022_02651_w crossref_primary_10_1007_s12046_023_02124_0 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_geoderma_2020_114836 crossref_primary_10_1016_j_apsoil_2016_11_018 crossref_primary_10_1007_s40891_020_00206_1 crossref_primary_10_1007_s10706_020_01549_2 crossref_primary_10_1061__ASCE_EE_1943_7870_0001829 crossref_primary_10_1139_cgj_2024_0180 crossref_primary_10_1016_j_sandf_2017_11_004 crossref_primary_10_1007_s42773_020_00064_0 crossref_primary_10_1016_S1002_0160_17_60313_8 crossref_primary_10_1016_j_catena_2019_104152 crossref_primary_10_1016_j_scitotenv_2019_03_417 crossref_primary_10_1007_s10064_023_03456_1 crossref_primary_10_1016_j_jclepro_2023_140032 crossref_primary_10_1520_ACEM20200102 crossref_primary_10_1080_03650340_2019_1699240 crossref_primary_10_3390_app10134616 crossref_primary_10_1371_journal_pone_0196794 crossref_primary_10_1016_j_ecoleng_2022_106645 crossref_primary_10_1016_j_geoderma_2021_115317 crossref_primary_10_1007_s13399_021_02060_1 crossref_primary_10_1016_j_chemosphere_2022_135774 crossref_primary_10_1007_s11600_020_00423_2 crossref_primary_10_3390_agriculture11040367 crossref_primary_10_1061_IJGNAI_GMENG_9299 crossref_primary_10_1007_s13399_020_00936_2 crossref_primary_10_1016_j_jenvman_2018_08_082 crossref_primary_10_1016_j_jrmge_2025_01_019 crossref_primary_10_3390_agriculture8110171 crossref_primary_10_1007_s11356_017_9509_0 crossref_primary_10_1016_j_jclepro_2018_11_051 crossref_primary_10_1016_j_still_2018_04_006 |
Cites_doi | 10.1016/j.geoderma.2010.05.013 10.2136/sssaj1976.03615995004000050050x 10.1016/j.still.2008.11.004 10.4141/cjss92-036 10.1071/SR07109 10.1016/S0065-2113(10)05002-9 10.1016/j.biombioe.2012.01.033 10.1016/j.geoderma.2013.06.016 10.1097/SS.0b013e3181cb7f46 10.4324/9780203021231 10.1007/s00374-002-0466-4 10.1097/SS.0b013e3182482784 10.1016/j.geoderma.2013.03.003 10.1002/jpln.200625185 10.4141/cjss88-025 10.1097/SS.0b013e3181981d9a 10.1007/s11104-010-0464-5 10.1016/S0016-7061(02)00136-2 10.1002/jpln.201200639 10.1016/j.jrmge.2014.01.003 10.1071/SR9820203 10.1016/0016-7061(71)90012-7 10.1007/s11104-009-0050-x 10.1016/S0167-1987(03)00043-6 10.2136/sssaj2010.0325 10.1016/j.still.2010.03.007 |
ContentType | Journal Article |
Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION IQODW 7ST 7T7 8FD C1K FR3 P64 SOI 7QH 7UA F1W H97 L.G 7S9 L.6 |
DOI | 10.1002/jpln.201300596 |
DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Engineering Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Botany |
EISSN | 1522-2624 |
EndPage | 926 |
ExternalDocumentID | 3512166321 29034148 10_1002_jpln_201300596 JPLN201300596 ark_67375_WNG_XVPT9ZXM_V |
Genre | article |
GrantInformation_xml | – fundername: National Key Basic Research Support Foundation of China (973) funderid: 2011CB100502 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW 7ST 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 SOI 7QH 7UA F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c4516-2e3c347b922b5fbfe7093b40bb0e55cd46c1621e77ee27ff1690df9dca4c020e3 |
IEDL.DBID | DR2 |
ISSN | 1436-8730 |
IngestDate | Fri Jul 11 18:36:06 EDT 2025 Thu Jul 10 19:29:51 EDT 2025 Fri Jul 25 04:22:32 EDT 2025 Wed Apr 02 07:18:33 EDT 2025 Tue Jul 01 00:47:39 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Wed Jan 22 16:21:40 EST 2025 Wed Oct 30 09:56:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Mechanical properties Cracking Shear strength Clay soil Shrinkage Biochar Physical properties Texture Tensile strength Carbonization soil cracking swell-shrinkage Soil science Behavior clayey soil Soil plant relation Strength |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4516-2e3c347b922b5fbfe7093b40bb0e55cd46c1621e77ee27ff1690df9dca4c020e3 |
Notes | ark:/67375/WNG-XVPT9ZXM-V ArticleID:JPLN201300596 National Key Basic Research Support Foundation of China (973) - No. 2011CB100502 istex:D2C4FE88A0C4F273AACD35A4A3D37DE4FF587AAE ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1628960043 |
PQPubID | 1016373 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1710236365 proquest_miscellaneous_1642621361 proquest_journals_1628960043 pascalfrancis_primary_29034148 crossref_citationtrail_10_1002_jpln_201300596 crossref_primary_10_1002_jpln_201300596 wiley_primary_10_1002_jpln_201300596_JPLN201300596 istex_primary_ark_67375_WNG_XVPT9ZXM_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December, 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December, 2014 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Journal of plant nutrition and soil science |
PublicationTitleAlternate | J. Plant Nutr. Soil Sci |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH – name: Wiley Subscription Services, Inc |
References | Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M. (2013): Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209-210, 188-197. Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A. (2010): Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235-246. Xiong, Y., Li, Q. K. (1998): Soils of China. Science Press, Beijing, China. Briggs, C., Breiner, J., Graham, R. (2012): Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Sci. 177, 263-268. Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014): Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mechan. Geotech. Eng. 6, 133-137. Glaser, B., Lehmann, J., Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils 35, 219-230. Hemmat, A., Aghilinategh, N., Rezainejad, Y., Sadeghi, M. (2010): Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Till. Res. 108, 43-50. Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010): Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158, 443-449. Schafer, W. M., Singer, M. J. (1976): A new method of measuring shrink-swell potential using soil paste. Soil Sci. Am. J. 40, 805-806. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007): Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45, 629-634. Downie, A., Crosky, A., Munroe, P. (2009): Physical Properties of Biochar, in Lehmann, J., Joseph, S. (eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London, UK, pp. 227-249. Sohi, S. P., Krull, E., Lopez-Capel, E., Bol, R. (2010): A review of biochar and its use and function in soil. Adv. Agron. 105, 47-82. Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1-18. Lal, R., Shukla, M. R. (2004): Principles of Soil Physics. Marcel Dekker, New York, NY, USA. Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012): Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg. 41, 34-43. Bandyopadhyay, K. K., Mohanty, M., Painuli, D. K., Misra, A. K., Hati, K. M., Mandal, K. G., Ghosh, P. K., Chaudhary, R. S., Acharya, C. L. (2003): InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. Soil Till. Res. 71, 133-142. De Jong, E., Kozak, L. M., Stonehouse, H. B. (1992): Comparison of shrink-swell indices of some Saskatchewan soils and their relationship to standard soil characteristics. Can. J. Soil Sci. 72, 429-439. ASTM (1995): ASTM D 4318-Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, West Conshohocken, PA, USA. Dasog, G. S., Acton, D. F., Mermut, A. R., de Jong, E. (1988): Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68, 251-260. Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. S. (2009): Impact of biochar amendment on fertility of a outheastern Coastal Plain soil. Soil Sci. 174, 105-112. Sun, F., Lu, S. (2014): Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26-33. Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013): Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203, 183-191. Abid, M., Lal, R. (2009): Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Till. Res. 103, 364-372. Lloyd, J. E., Collis-George, N. (1982): A torsional shear box for determining the shear strength of agricultural soils. Aust. J. Soil Res. 20, 203-211. Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., Kruger, C. E. (2011): Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 75, 1402-1413. Zein el Abadine, A., Robinson, G. H. (1971): A study on cracking in some Vertisol of Sudan. Geoderma 5, 229-241. Gray, C. W., Albrook, R. (2002): Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 108, 287-299. Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., van de Giesen, N. (2008): Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171, 591-596. Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., Ahmedna, M. (2010): Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 175, 10-14. Cameron, K. C., Buchan, G. D. (2006): Porosity and Pore Size Distribution, in Lal, R. (ed.): Encyclopedia of Soil Science. CRC Press, Boca Raton, FL, USA. pp.1350-1353. 1976; 40 2010; 327 2010; 108 2010; 105 2002; 35 2009 2011; 75 1998 1995 2006 2004 2009; 174 2003; 71 2014; 177 1992; 72 1999 2012; 177 2013; 209‐210 2010; 337 2010; 158 1982; 20 2010; 175 1988; 68 2002; 108 2013; 202‐203 2007; 45 2014; 6 2009; 103 1971; 5 2012; 41 2008; 171 e_1_2_6_10_1 e_1_2_6_31_1 (e_1_2_6_3_1) 1995 e_1_2_6_19_1 Cameron K. C. (e_1_2_6_8_1) 2006 Lal R. (e_1_2_6_18_1) 2004 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_16_1 Downie A. (e_1_2_6_11_1) 2009 e_1_2_6_21_1 e_1_2_6_20_1 Xiong Y. (e_1_2_6_30_1) 1998 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Xiong, Y., Li, Q. K. (1998): Soils of China. Science Press, Beijing, China. – reference: Bandyopadhyay, K. K., Mohanty, M., Painuli, D. K., Misra, A. K., Hati, K. M., Mandal, K. G., Ghosh, P. K., Chaudhary, R. S., Acharya, C. L. (2003): InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. Soil Till. Res. 71, 133-142. – reference: Zein el Abadine, A., Robinson, G. H. (1971): A study on cracking in some Vertisol of Sudan. Geoderma 5, 229-241. – reference: Dasog, G. S., Acton, D. F., Mermut, A. R., de Jong, E. (1988): Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68, 251-260. – reference: Downie, A., Crosky, A., Munroe, P. (2009): Physical Properties of Biochar, in Lehmann, J., Joseph, S. (eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London, UK, pp. 227-249. – reference: Lal, R., Shukla, M. R. (2004): Principles of Soil Physics. Marcel Dekker, New York, NY, USA. – reference: Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013): Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203, 183-191. – reference: Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A. (2010): Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235-246. – reference: Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1-18. – reference: Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012): Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg. 41, 34-43. – reference: Abid, M., Lal, R. (2009): Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Till. Res. 103, 364-372. – reference: Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., Ahmedna, M. (2010): Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 175, 10-14. – reference: Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010): Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158, 443-449. – reference: Lloyd, J. E., Collis-George, N. (1982): A torsional shear box for determining the shear strength of agricultural soils. Aust. J. Soil Res. 20, 203-211. – reference: Briggs, C., Breiner, J., Graham, R. (2012): Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Sci. 177, 263-268. – reference: Gray, C. W., Albrook, R. (2002): Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 108, 287-299. – reference: Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., van de Giesen, N. (2008): Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171, 591-596. – reference: Schafer, W. M., Singer, M. J. (1976): A new method of measuring shrink-swell potential using soil paste. Soil Sci. Am. J. 40, 805-806. – reference: Hemmat, A., Aghilinategh, N., Rezainejad, Y., Sadeghi, M. (2010): Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Till. Res. 108, 43-50. – reference: Sun, F., Lu, S. (2014): Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26-33. – reference: Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014): Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mechan. Geotech. Eng. 6, 133-137. – reference: Sohi, S. P., Krull, E., Lopez-Capel, E., Bol, R. (2010): A review of biochar and its use and function in soil. Adv. Agron. 105, 47-82. – reference: De Jong, E., Kozak, L. M., Stonehouse, H. B. (1992): Comparison of shrink-swell indices of some Saskatchewan soils and their relationship to standard soil characteristics. Can. J. Soil Sci. 72, 429-439. – reference: Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M. (2013): Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209-210, 188-197. – reference: Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. S. (2009): Impact of biochar amendment on fertility of a outheastern Coastal Plain soil. Soil Sci. 174, 105-112. – reference: ASTM (1995): ASTM D 4318-Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, West Conshohocken, PA, USA. – reference: Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007): Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45, 629-634. – reference: Glaser, B., Lehmann, J., Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils 35, 219-230. – reference: Cameron, K. C., Buchan, G. D. (2006): Porosity and Pore Size Distribution, in Lal, R. (ed.): Encyclopedia of Soil Science. CRC Press, Boca Raton, FL, USA. pp.1350-1353. – reference: Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., Kruger, C. E. (2011): Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 75, 1402-1413. – volume: 327 start-page: 235 year: 2010 end-page: 246 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. publication-title: Plant Soil – volume: 41 start-page: 34 year: 2012 end-page: 43 article-title: Hydrologic properties of biochars produced at different temperatures. publication-title: Biomass Bioenerg. – volume: 108 start-page: 287 year: 2002 end-page: 299 article-title: Relationships between shrinkage indices and soil properties in some New Zealand soils. publication-title: Geoderma – volume: 103 start-page: 364 year: 2009 end-page: 372 article-title: Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. publication-title: Soil Till. Res. – volume: 171 start-page: 591 year: 2008 end-page: 596 article-title: Effects of charcoal production on soil physical properties in Ghana. publication-title: J. Plant Nutr. Soil Sci. – volume: 209‐210 start-page: 188 year: 2013 end-page: 197 article-title: Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. publication-title: Geoderma – volume: 5 start-page: 229 year: 1971 end-page: 241 article-title: A study on cracking in some Vertisol of Sudan. publication-title: Geoderma – volume: 202‐203 start-page: 183 year: 2013 end-page: 191 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. publication-title: Geoderma – volume: 45 start-page: 629 year: 2007 end-page: 634 article-title: Agronomic values of green waste biochar as a soil amendment. publication-title: Aust. J. Soil Res. – year: 1998 – start-page: 227 year: 2009 end-page: 249 – volume: 158 start-page: 443 year: 2010 end-page: 449 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. publication-title: Geoderma – volume: 71 start-page: 133 year: 2003 end-page: 142 article-title: InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. publication-title: Soil Till. Res. – volume: 177 start-page: 263 year: 2012 end-page: 268 article-title: Physical and chemical properties of charcoal: implications for soil modification. publication-title: Soil Sci. – volume: 174 start-page: 105 year: 2009 end-page: 112 article-title: Impact of biochar amendment on fertility of a outheastern Coastal Plain soil. publication-title: Soil Sci. – year: 2006 – volume: 108 start-page: 43 year: 2010 end-page: 50 article-title: Long‐term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. publication-title: Soil Till. Res. – year: 2004 – volume: 20 start-page: 203 year: 1982 end-page: 211 article-title: A torsional shear box for determining the shear strength of agricultural soils. publication-title: Aust. J. Soil Res. – year: 1995 – volume: 72 start-page: 429 year: 1992 end-page: 439 article-title: Comparison of shrink–swell indices of some Saskatchewan soils and their relationship to standard soil characteristics. publication-title: Can. J. Soil Sci. – volume: 175 start-page: 10 year: 2010 end-page: 14 article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand. publication-title: Soil Sci. – volume: 68 start-page: 251 year: 1988 end-page: 260 article-title: Shrink–swell potential and cracking in clay soils of Saskatchewan. publication-title: Can. J. Soil Sci. – volume: 6 start-page: 133 year: 2014 end-page: 137 article-title: Effect of discrete fibre reinforcement on soil tensile strength. publication-title: J. Rock Mechan. Geotech. Eng. – volume: 40 start-page: 805 year: 1976 end-page: 806 article-title: A new method of measuring shrink–swell potential using soil paste. publication-title: Soil Sci. Am. J. – volume: 75 start-page: 1402 year: 2011 end-page: 1413 article-title: Influence of contrasting biochar types on five soils at increasing rates of application. publication-title: Soil Sci. Soc. Am. J. – volume: 177 start-page: 26 year: 2014 end-page: 33 article-title: Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. publication-title: J. Plant Nutr. Soil Sci. – volume: 337 start-page: 1 year: 2010 end-page: 18 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. publication-title: Plant Soil – volume: 105 start-page: 47 year: 2010 end-page: 82 article-title: A review of biochar and its use and function in soil. publication-title: Adv. Agron. – volume: 35 start-page: 219 year: 2002 end-page: 230 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. publication-title: Biol. Fert. Soils – year: 1999 – ident: e_1_2_6_17_1 doi: 10.1016/j.geoderma.2010.05.013 – ident: e_1_2_6_26_1 – ident: e_1_2_6_24_1 doi: 10.2136/sssaj1976.03615995004000050050x – ident: e_1_2_6_2_1 doi: 10.1016/j.still.2008.11.004 – ident: e_1_2_6_12_1 doi: 10.4141/cjss92-036 – ident: e_1_2_6_9_1 doi: 10.1071/SR07109 – ident: e_1_2_6_25_1 doi: 10.1016/S0065-2113(10)05002-9 – ident: e_1_2_6_21_1 doi: 10.1016/j.biombioe.2012.01.033 – ident: e_1_2_6_16_1 doi: 10.1016/j.geoderma.2013.06.016 – ident: e_1_2_6_7_1 doi: 10.1097/SS.0b013e3181cb7f46 – volume-title: Principles of Soil Physics. year: 2004 ident: e_1_2_6_18_1 doi: 10.4324/9780203021231 – ident: e_1_2_6_13_1 doi: 10.1007/s00374-002-0466-4 – ident: e_1_2_6_6_1 doi: 10.1097/SS.0b013e3182482784 – volume-title: Encyclopedia of Soil Science. year: 2006 ident: e_1_2_6_8_1 – ident: e_1_2_6_1_1 doi: 10.1016/j.geoderma.2013.03.003 – ident: e_1_2_6_23_1 doi: 10.1002/jpln.200625185 – ident: e_1_2_6_10_1 doi: 10.4141/cjss88-025 – ident: e_1_2_6_22_1 doi: 10.1097/SS.0b013e3181981d9a – ident: e_1_2_6_4_1 doi: 10.1007/s11104-010-0464-5 – ident: e_1_2_6_14_1 doi: 10.1016/S0016-7061(02)00136-2 – ident: e_1_2_6_28_1 doi: 10.1002/jpln.201200639 – ident: e_1_2_6_19_1 doi: 10.1016/j.jrmge.2014.01.003 – ident: e_1_2_6_20_1 doi: 10.1071/SR9820203 – volume-title: Soils of China. year: 1998 ident: e_1_2_6_30_1 – ident: e_1_2_6_31_1 doi: 10.1016/0016-7061(71)90012-7 – volume-title: ASTM D 4318—Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. year: 1995 ident: e_1_2_6_3_1 – ident: e_1_2_6_29_1 doi: 10.1007/s11104-009-0050-x – ident: e_1_2_6_5_1 doi: 10.1016/S0167-1987(03)00043-6 – start-page: 227 volume-title: Biochar for Environmental Management: Science and Technology. Earthscan year: 2009 ident: e_1_2_6_11_1 – ident: e_1_2_6_27_1 doi: 10.2136/sssaj2010.0325 – ident: e_1_2_6_15_1 doi: 10.1016/j.still.2010.03.007 |
SSID | ssj0004192 |
Score | 2.3917007 |
Snippet | Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key... Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 920 |
SubjectTerms | Agronomy. Soil science and plant productions biochar Biological and medical sciences clay soils clayey soil cohesion cracking extensibility friction Fundamental and applied biological sciences. Psychology General agronomy. Plant production greenhouses Physical properties shear strength Shrinkage sludge soil amendments soil cracking soil formation soil physical properties Soil science Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments stickiness surface area swell-shrinkage Tensile strength Triticum aestivum wastewater wheat straw wood chips |
Title | Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil |
URI | https://api.istex.fr/ark:/67375/WNG-XVPT9ZXM-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201300596 https://www.proquest.com/docview/1628960043 https://www.proquest.com/docview/1642621361 https://www.proquest.com/docview/1710236365 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQCxIcCixUBEplJASXpk0cO1kfC6KUiq4q1JYVF8vPvpakSnYllhP_gX_IL8GTV7tIgAS3RBlb8mTG_mzPfIPQ8yyzJubMhHLIaEizoQ6VizQwYRItCazwkI28P0p3j-jemI2vZfE3_BD9gRt4Rj1fg4NLVW1dkYaeX06AvxSuYxgHzm0I2AJU9OGKPwquOOv0ImDd9bbcsTZGZGux-cKqtAwK_gJRkrLyinJNhYsFCHodyNYr0c5dJLsxNAEoF5uzqdrUX3-hd_yfQd5DKy1MxduNXd1HN2w-QHe2T8qWqsMO0K2mjOV8gG6-KjzEnD9A5-_qnEtcOKzOCkjoqnCR4woOCH98-16dln7n6ycw3JEDbODPFlKPwVIwpK3kJ9PTDSxzg6tZ6aS2WJdSw3E-dKoncm7nuCrOJg_R0c6bw9e7YVvMIdRQCzgkNtEJzRQnRDGnnM0inigaKRVZxrShqY5TEltvPJZkzsH1nXHcaEm1h7Q2WUVLeZHbRwhLwxzjkjmexNSpiBvftdJGp4nvhZsAhd3PFLplOoeCGxPRcDQTAWoVvVoD9LKXv2w4Pn4r-aK2jV5MlhcQGZcx8XH0VoyPDw75p_G-OA7Q-oLx9A0IjzxuoMMArXXWJNpZoxJeAUO_o4xoEqBn_Wfv73CJI3NbzEAGagh4W4__IAOwMUm9PwSI1Ob1l3GJvYP3o_7t8b80eoJu-2faRPqsoaVpObNPPV6bqvXaJ38CF0o49A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgAwEPfBQQgTGMhOBl2RLHTurHgRjdaKsJdVvFi2U79r5KMiWtRHnif-A_5C_BlzQZRQIkeExytuTLnX2-j98h9CJJTBpylvqyy6hPk672lQ00IGESLQmc8FCNPBjGvQO6N2ZNNiHUwtT4EK3DDTSj2q9BwcEhvXWJGnp2MQEAU4jHMB5fRavQ1ru6VX24RJCCIGdVYAS4u06aG9zGgGwtj186l1aBxZ8hT1KWjlW27nGxZIT-bMpWZ9HOHaSaVdQpKOebs6na1F9-AXj8r2XeRbcXlirerkXrHrpisg66tX1cLNA6TAddrztZzjvo2uvcWZnz--hstyq7xLnF6jSHmq4S5xkuwUf4_eu38qRwl1-3h-EGH2ADfzJQfQzCgqFyJTuenmxgmaW4nBVWaoN1ITV49GFSPZFzM8dlfjp5gA523o7e9PxFPwdfQztgn5hIRzRRnBDFrLImCXikaKBUYBjTKY11GJPQOPkxJLEWInip5amWVDur1kQP0UqWZ-YRwjJllnHJLI9CalXAUze10qmOIzcLTz3kN39T6AXYOfTcmIgappkIYKto2eqhVy39RQ3z8VvKl5VwtGSyOIfkuISJo-E7MT7cH_GP44E49ND6kvS0AwgPnOlAux5aa8RJLDaOUjgGdN2lMqCRh563n53KQxxHZiafAQ20EQijOPwDDViOURzFzEOkkq-_rEvs7feH7dPjfxn0DN3ojQZ90d8dvn-Cbrr3tE78WUMr02JmnjrzbarWKwX9AYdzPQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBQQHHguIQClGQnBp2sSxk_WxUJa2tKsVasuKS-RnX0uySnYllhP_gX_IL8GTZNMuEiDBMcnYkief7bFn5huEXiSJ0SFn2hddRn2adJUvbaCACZMoQWCHh2zk_X68fUh3h2x4KYu_5odoL9xgZlTrNUzwsbYbF6ShZ-MR8JeCO4bx-CpapnHQBVxvfbggkAIfZ5VfBLS7Dsxz2saAbCy2X9iWlkHDXyBMUpROU7YucbFgg162ZKutqHcHifkg6giU8_XpRK6rr7_wO_7PKO-i242dijdrYN1DV0zWQbc2j4uGq8N00PW6juWsg669zp2NObuPznaqpEucWyxPc8joKnGe4RJuCH98-16eFO7o61YwPGcHWMOfDeQeA1Qw5K1kx5OTNSwyjctpYYUyWBVCwX0-dKpGYmZmuMxPRw_QYe_twZttv6nm4CsoBuwTE6mIJpITIpmV1iQBjyQNpAwMY0rTWIUxCY1DjyGJteC_05ZrJahyNq2JHqKlLM_MI4SFZpZxwSyPQmplwLXrWiqt4sj1wrWH_PnPTFVDdQ4VN0ZpTdJMUlBr2qrVQ69a-XFN8vFbyZcVNloxUZxDaFzC0o_9d-nwaHDAPw330yMPrS6Ap21AeOAMB9r10MocTWmzbJSpU0DXHSkDGnnoefvZTXjw4ojM5FOQgSICYRSHf5ABuzGKo5h5iFTw-su40t3BXr99evwvjZ6hG4OtXrq303__BN10r2kd9bOClibF1Dx1tttErlbT8ye--DvH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochars+on+swell%E2%80%93shrinkage+behavior%2C+mechanical+strength%2C+and+surface+cracking+of+clayey+soil&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Zong%2C+Yutong&rft.au=Chen%2C+Danping&rft.au=Lu%2C+Shenggao&rft.date=2014-12-01&rft.issn=1436-8730&rft.volume=177&rft.issue=6+p.920-926&rft.spage=920&rft.epage=926&rft_id=info:doi/10.1002%2Fjpln.201300596&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon |