Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil

Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition and soil science Vol. 177; no. 6; pp. 920 - 926
Main Authors Zong, Yutong, Chen, Danping, Lu, Shenggao
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2014
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg−1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.
AbstractList Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell-shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg-1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB-, WCB-, and WSB-amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle ([theta]). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar-amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell-shrinkage, tensile strength and surface area density of cracking.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg⁻¹soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.
Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell-shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg super(-1) soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB-, WCB-, and WSB-amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle ( theta ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar-amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell-shrinkage, tensile strength and surface area density of cracking.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg−1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg −1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly ( p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion ( c ) and increased internal friction angle ( θ ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.
Author Zong, Yutong
Lu, Shenggao
Chen, Danping
Author_xml – sequence: 1
  givenname: Yutong
  surname: Zong
  fullname: Zong, Yutong
  organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 2
  givenname: Danping
  surname: Chen
  fullname: Chen, Danping
  organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Shenggao
  surname: Lu
  fullname: Lu, Shenggao
  email: lusg@zju.edu.cn
  organization: Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29034148$$DView record in Pascal Francis
BookMark eNqFkU1vEzEURUeoSLSFLWtLCIlFJzx_jCdeoqqUolC6KKViY3mc58TJxA72hJJ_j6OUClVCXdmLc6707j2qDkIMWFWvKYwoAHu_WPdhxIBygEbJZ9UhbRirmWTioPwFl_W45fCiOsp5AQCCKnZYzS9Wa2MHEh3pfLRzkzKJgeQ77Ps6z5MPSzND0uHc_PIxnZAVFih4a3qSh4RhNsxPiAlTkjfJGYvEJmOXPsx2kbY3W9ySHH3_snruTJ_x1f17XH37eHZ9-qmefD2_OP0wqa1oqKwZcstF2ynGusZ1DltQvBPQdYBNY6dCWioZxbZFZK1zVCqYOjW1RlhggPy4erfPXaf4c4N50CufbbnGBIybrGlLgXHJZfM0KkVpj3JJC_rmEbqImxTKIYViYyVLn7xQb-8pk0tBLplgfdbr5FcmbTVTwAUV48KJPWdTzDmh09YPZvAxDMn4XlPQu0X1blH9sGjRRo-0v8n_FdReuPM9bp-g9eeryeW_br13fR7w94Nr0lLLlreN_n55rm9vrq7Vj9sv-ob_AX0WxRw
CitedBy_id crossref_primary_10_3390_agriculture13122241
crossref_primary_10_1007_s10064_020_01846_3
crossref_primary_10_1007_s11356_021_13338_2
crossref_primary_10_3390_app13169048
crossref_primary_10_2136_sssaj2017_01_0017
crossref_primary_10_1007_s12649_020_01057_7
crossref_primary_10_1061_IJGNAI_GMENG_10072
crossref_primary_10_1007_s44279_024_00033_2
crossref_primary_10_1016_j_still_2016_01_011
crossref_primary_10_1177_1056789520925524
crossref_primary_10_1038_s41598_024_77700_3
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000551
crossref_primary_10_1016_j_earscirev_2021_103586
crossref_primary_10_1080_00103624_2020_1869770
crossref_primary_10_1007_s42729_024_01791_0
crossref_primary_10_1007_s11440_022_01613_6
crossref_primary_10_1002_ird_2916
crossref_primary_10_1007_s12649_020_01172_5
crossref_primary_10_1007_s12517_018_3863_1
crossref_primary_10_1016_j_jenvman_2024_122577
crossref_primary_10_1080_03650340_2023_2172167
crossref_primary_10_1061__ASCE_MT_1943_5533_0003915
crossref_primary_10_1002_ird_3017
crossref_primary_10_1016_j_jenvman_2023_118874
crossref_primary_10_1029_2020GH000311
crossref_primary_10_1007_s11368_020_02573_8
crossref_primary_10_1177_1056789521991194
crossref_primary_10_1007_s40891_021_00333_3
crossref_primary_10_1016_j_geoderma_2020_114182
crossref_primary_10_1061_JMCEE7_MTENG_18823
crossref_primary_10_3390_su15118700
crossref_primary_10_1016_j_jclepro_2024_143981
crossref_primary_10_1016_j_still_2022_105447
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000561
crossref_primary_10_1016_S1002_0160_18_60041_4
crossref_primary_10_1016_j_geoderma_2018_03_021
crossref_primary_10_1007_s40093_019_0265_7
crossref_primary_10_1016_j_scitotenv_2023_164185
crossref_primary_10_3390_su12072599
crossref_primary_10_1680_jgrim_22_00023
crossref_primary_10_1007_s42729_021_00414_2
crossref_primary_10_21597_jist_931246
crossref_primary_10_1002_jpln_201700221
crossref_primary_10_1016_j_still_2020_104798
crossref_primary_10_1007_s12517_020_05622_1
crossref_primary_10_1016_j_still_2021_105057
crossref_primary_10_1016_j_still_2024_106101
crossref_primary_10_1179_1939787915Y_0000000004
crossref_primary_10_1680_jgeot_17_P_040
crossref_primary_10_33409_tbbbd_928758
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_1007_s11356_022_24788_7
crossref_primary_10_1007_s13399_020_00946_0
crossref_primary_10_1016_j_biortech_2018_05_011
crossref_primary_10_1007_s11368_020_02786_x
crossref_primary_10_1007_s10064_022_02651_w
crossref_primary_10_1007_s12046_023_02124_0
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_geoderma_2020_114836
crossref_primary_10_1016_j_apsoil_2016_11_018
crossref_primary_10_1007_s40891_020_00206_1
crossref_primary_10_1007_s10706_020_01549_2
crossref_primary_10_1061__ASCE_EE_1943_7870_0001829
crossref_primary_10_1139_cgj_2024_0180
crossref_primary_10_1016_j_sandf_2017_11_004
crossref_primary_10_1007_s42773_020_00064_0
crossref_primary_10_1016_S1002_0160_17_60313_8
crossref_primary_10_1016_j_catena_2019_104152
crossref_primary_10_1016_j_scitotenv_2019_03_417
crossref_primary_10_1007_s10064_023_03456_1
crossref_primary_10_1016_j_jclepro_2023_140032
crossref_primary_10_1520_ACEM20200102
crossref_primary_10_1080_03650340_2019_1699240
crossref_primary_10_3390_app10134616
crossref_primary_10_1371_journal_pone_0196794
crossref_primary_10_1016_j_ecoleng_2022_106645
crossref_primary_10_1016_j_geoderma_2021_115317
crossref_primary_10_1007_s13399_021_02060_1
crossref_primary_10_1016_j_chemosphere_2022_135774
crossref_primary_10_1007_s11600_020_00423_2
crossref_primary_10_3390_agriculture11040367
crossref_primary_10_1061_IJGNAI_GMENG_9299
crossref_primary_10_1007_s13399_020_00936_2
crossref_primary_10_1016_j_jenvman_2018_08_082
crossref_primary_10_1016_j_jrmge_2025_01_019
crossref_primary_10_3390_agriculture8110171
crossref_primary_10_1007_s11356_017_9509_0
crossref_primary_10_1016_j_jclepro_2018_11_051
crossref_primary_10_1016_j_still_2018_04_006
Cites_doi 10.1016/j.geoderma.2010.05.013
10.2136/sssaj1976.03615995004000050050x
10.1016/j.still.2008.11.004
10.4141/cjss92-036
10.1071/SR07109
10.1016/S0065-2113(10)05002-9
10.1016/j.biombioe.2012.01.033
10.1016/j.geoderma.2013.06.016
10.1097/SS.0b013e3181cb7f46
10.4324/9780203021231
10.1007/s00374-002-0466-4
10.1097/SS.0b013e3182482784
10.1016/j.geoderma.2013.03.003
10.1002/jpln.200625185
10.4141/cjss88-025
10.1097/SS.0b013e3181981d9a
10.1007/s11104-010-0464-5
10.1016/S0016-7061(02)00136-2
10.1002/jpln.201200639
10.1016/j.jrmge.2014.01.003
10.1071/SR9820203
10.1016/0016-7061(71)90012-7
10.1007/s11104-009-0050-x
10.1016/S0167-1987(03)00043-6
10.2136/sssaj2010.0325
10.1016/j.still.2010.03.007
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7T7
8FD
C1K
FR3
P64
SOI
7QH
7UA
F1W
H97
L.G
7S9
L.6
DOI 10.1002/jpln.201300596
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Engineering Research Database
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
EISSN 1522-2624
EndPage 926
ExternalDocumentID 3512166321
29034148
10_1002_jpln_201300596
JPLN201300596
ark_67375_WNG_XVPT9ZXM_V
Genre article
GrantInformation_xml – fundername: National Key Basic Research Support Foundation of China (973)
  funderid: 2011CB100502
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
7ST
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
SOI
7QH
7UA
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-c4516-2e3c347b922b5fbfe7093b40bb0e55cd46c1621e77ee27ff1690df9dca4c020e3
IEDL.DBID DR2
ISSN 1436-8730
IngestDate Fri Jul 11 18:36:06 EDT 2025
Thu Jul 10 19:29:51 EDT 2025
Fri Jul 25 04:22:32 EDT 2025
Wed Apr 02 07:18:33 EDT 2025
Tue Jul 01 00:47:39 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Wed Jan 22 16:21:40 EST 2025
Wed Oct 30 09:56:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Mechanical properties
Cracking
Shear strength
Clay soil
Shrinkage
Biochar
Physical properties
Texture
Tensile strength
Carbonization
soil cracking
swell-shrinkage
Soil science
Behavior
clayey soil
Soil plant relation
Strength
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4516-2e3c347b922b5fbfe7093b40bb0e55cd46c1621e77ee27ff1690df9dca4c020e3
Notes ark:/67375/WNG-XVPT9ZXM-V
ArticleID:JPLN201300596
National Key Basic Research Support Foundation of China (973) - No. 2011CB100502
istex:D2C4FE88A0C4F273AACD35A4A3D37DE4FF587AAE
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1628960043
PQPubID 1016373
PageCount 7
ParticipantIDs proquest_miscellaneous_1710236365
proquest_miscellaneous_1642621361
proquest_journals_1628960043
pascalfrancis_primary_29034148
crossref_citationtrail_10_1002_jpln_201300596
crossref_primary_10_1002_jpln_201300596
wiley_primary_10_1002_jpln_201300596_JPLN201300596
istex_primary_ark_67375_WNG_XVPT9ZXM_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December, 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December, 2014
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Journal of plant nutrition and soil science
PublicationTitleAlternate J. Plant Nutr. Soil Sci
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
– name: Wiley Subscription Services, Inc
References Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M. (2013): Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209-210, 188-197.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A. (2010): Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235-246.
Xiong, Y., Li, Q. K. (1998): Soils of China. Science Press, Beijing, China.
Briggs, C., Breiner, J., Graham, R. (2012): Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Sci. 177, 263-268.
Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014): Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mechan. Geotech. Eng. 6, 133-137.
Glaser, B., Lehmann, J., Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils 35, 219-230.
Hemmat, A., Aghilinategh, N., Rezainejad, Y., Sadeghi, M. (2010): Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Till. Res. 108, 43-50.
Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010): Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158, 443-449.
Schafer, W. M., Singer, M. J. (1976): A new method of measuring shrink-swell potential using soil paste. Soil Sci. Am. J. 40, 805-806.
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007): Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45, 629-634.
Downie, A., Crosky, A., Munroe, P. (2009): Physical Properties of Biochar, in Lehmann, J., Joseph, S. (eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London, UK, pp. 227-249.
Sohi, S. P., Krull, E., Lopez-Capel, E., Bol, R. (2010): A review of biochar and its use and function in soil. Adv. Agron. 105, 47-82.
Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1-18.
Lal, R., Shukla, M. R. (2004): Principles of Soil Physics. Marcel Dekker, New York, NY, USA.
Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012): Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg. 41, 34-43.
Bandyopadhyay, K. K., Mohanty, M., Painuli, D. K., Misra, A. K., Hati, K. M., Mandal, K. G., Ghosh, P. K., Chaudhary, R. S., Acharya, C. L. (2003): InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. Soil Till. Res. 71, 133-142.
De Jong, E., Kozak, L. M., Stonehouse, H. B. (1992): Comparison of shrink-swell indices of some Saskatchewan soils and their relationship to standard soil characteristics. Can. J. Soil Sci. 72, 429-439.
ASTM (1995): ASTM D 4318-Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, West Conshohocken, PA, USA.
Dasog, G. S., Acton, D. F., Mermut, A. R., de Jong, E. (1988): Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68, 251-260.
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. S. (2009): Impact of biochar amendment on fertility of a outheastern Coastal Plain soil. Soil Sci. 174, 105-112.
Sun, F., Lu, S. (2014): Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26-33.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013): Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203, 183-191.
Abid, M., Lal, R. (2009): Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Till. Res. 103, 364-372.
Lloyd, J. E., Collis-George, N. (1982): A torsional shear box for determining the shear strength of agricultural soils. Aust. J. Soil Res. 20, 203-211.
Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., Kruger, C. E. (2011): Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 75, 1402-1413.
Zein el Abadine, A., Robinson, G. H. (1971): A study on cracking in some Vertisol of Sudan. Geoderma 5, 229-241.
Gray, C. W., Albrook, R. (2002): Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 108, 287-299.
Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., van de Giesen, N. (2008): Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171, 591-596.
Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., Ahmedna, M. (2010): Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 175, 10-14.
Cameron, K. C., Buchan, G. D. (2006): Porosity and Pore Size Distribution, in Lal, R. (ed.): Encyclopedia of Soil Science. CRC Press, Boca Raton, FL, USA. pp.1350-1353.
1976; 40
2010; 327
2010; 108
2010; 105
2002; 35
2009
2011; 75
1998
1995
2006
2004
2009; 174
2003; 71
2014; 177
1992; 72
1999
2012; 177
2013; 209‐210
2010; 337
2010; 158
1982; 20
2010; 175
1988; 68
2002; 108
2013; 202‐203
2007; 45
2014; 6
2009; 103
1971; 5
2012; 41
2008; 171
e_1_2_6_10_1
e_1_2_6_31_1
(e_1_2_6_3_1) 1995
e_1_2_6_19_1
Cameron K. C. (e_1_2_6_8_1) 2006
Lal R. (e_1_2_6_18_1) 2004
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_16_1
Downie A. (e_1_2_6_11_1) 2009
e_1_2_6_21_1
e_1_2_6_20_1
Xiong Y. (e_1_2_6_30_1) 1998
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Xiong, Y., Li, Q. K. (1998): Soils of China. Science Press, Beijing, China.
– reference: Bandyopadhyay, K. K., Mohanty, M., Painuli, D. K., Misra, A. K., Hati, K. M., Mandal, K. G., Ghosh, P. K., Chaudhary, R. S., Acharya, C. L. (2003): InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. Soil Till. Res. 71, 133-142.
– reference: Zein el Abadine, A., Robinson, G. H. (1971): A study on cracking in some Vertisol of Sudan. Geoderma 5, 229-241.
– reference: Dasog, G. S., Acton, D. F., Mermut, A. R., de Jong, E. (1988): Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68, 251-260.
– reference: Downie, A., Crosky, A., Munroe, P. (2009): Physical Properties of Biochar, in Lehmann, J., Joseph, S. (eds.): Biochar for Environmental Management: Science and Technology. Earthscan, London, UK, pp. 227-249.
– reference: Lal, R., Shukla, M. R. (2004): Principles of Soil Physics. Marcel Dekker, New York, NY, USA.
– reference: Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013): Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203, 183-191.
– reference: Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A. (2010): Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235-246.
– reference: Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1-18.
– reference: Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012): Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg. 41, 34-43.
– reference: Abid, M., Lal, R. (2009): Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Till. Res. 103, 364-372.
– reference: Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., Ahmedna, M. (2010): Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 175, 10-14.
– reference: Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L. (2010): Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158, 443-449.
– reference: Lloyd, J. E., Collis-George, N. (1982): A torsional shear box for determining the shear strength of agricultural soils. Aust. J. Soil Res. 20, 203-211.
– reference: Briggs, C., Breiner, J., Graham, R. (2012): Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Sci. 177, 263-268.
– reference: Gray, C. W., Albrook, R. (2002): Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 108, 287-299.
– reference: Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., van de Giesen, N. (2008): Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171, 591-596.
– reference: Schafer, W. M., Singer, M. J. (1976): A new method of measuring shrink-swell potential using soil paste. Soil Sci. Am. J. 40, 805-806.
– reference: Hemmat, A., Aghilinategh, N., Rezainejad, Y., Sadeghi, M. (2010): Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Till. Res. 108, 43-50.
– reference: Sun, F., Lu, S. (2014): Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26-33.
– reference: Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014): Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mechan. Geotech. Eng. 6, 133-137.
– reference: Sohi, S. P., Krull, E., Lopez-Capel, E., Bol, R. (2010): A review of biochar and its use and function in soil. Adv. Agron. 105, 47-82.
– reference: De Jong, E., Kozak, L. M., Stonehouse, H. B. (1992): Comparison of shrink-swell indices of some Saskatchewan soils and their relationship to standard soil characteristics. Can. J. Soil Sci. 72, 429-439.
– reference: Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M. (2013): Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209-210, 188-197.
– reference: Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. S. (2009): Impact of biochar amendment on fertility of a outheastern Coastal Plain soil. Soil Sci. 174, 105-112.
– reference: ASTM (1995): ASTM D 4318-Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, West Conshohocken, PA, USA.
– reference: Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007): Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45, 629-634.
– reference: Glaser, B., Lehmann, J., Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils 35, 219-230.
– reference: Cameron, K. C., Buchan, G. D. (2006): Porosity and Pore Size Distribution, in Lal, R. (ed.): Encyclopedia of Soil Science. CRC Press, Boca Raton, FL, USA. pp.1350-1353.
– reference: Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., Kruger, C. E. (2011): Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 75, 1402-1413.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility.
  publication-title: Plant Soil
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  article-title: Hydrologic properties of biochars produced at different temperatures.
  publication-title: Biomass Bioenerg.
– volume: 108
  start-page: 287
  year: 2002
  end-page: 299
  article-title: Relationships between shrinkage indices and soil properties in some New Zealand soils.
  publication-title: Geoderma
– volume: 103
  start-page: 364
  year: 2009
  end-page: 372
  article-title: Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration.
  publication-title: Soil Till. Res.
– volume: 171
  start-page: 591
  year: 2008
  end-page: 596
  article-title: Effects of charcoal production on soil physical properties in Ghana.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 209‐210
  start-page: 188
  year: 2013
  end-page: 197
  article-title: Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol.
  publication-title: Geoderma
– volume: 5
  start-page: 229
  year: 1971
  end-page: 241
  article-title: A study on cracking in some Vertisol of Sudan.
  publication-title: Geoderma
– volume: 202‐203
  start-page: 183
  year: 2013
  end-page: 191
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil.
  publication-title: Geoderma
– volume: 45
  start-page: 629
  year: 2007
  end-page: 634
  article-title: Agronomic values of green waste biochar as a soil amendment.
  publication-title: Aust. J. Soil Res.
– year: 1998
– start-page: 227
  year: 2009
  end-page: 249
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil.
  publication-title: Geoderma
– volume: 71
  start-page: 133
  year: 2003
  end-page: 142
  article-title: InChrW(64258)uence of tillage practices and nutrient management on crack parameters in a Vertisol of central India.
  publication-title: Soil Till. Res.
– volume: 177
  start-page: 263
  year: 2012
  end-page: 268
  article-title: Physical and chemical properties of charcoal: implications for soil modification.
  publication-title: Soil Sci.
– volume: 174
  start-page: 105
  year: 2009
  end-page: 112
  article-title: Impact of biochar amendment on fertility of a outheastern Coastal Plain soil.
  publication-title: Soil Sci.
– year: 2006
– volume: 108
  start-page: 43
  year: 2010
  end-page: 50
  article-title: Long‐term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran.
  publication-title: Soil Till. Res.
– year: 2004
– volume: 20
  start-page: 203
  year: 1982
  end-page: 211
  article-title: A torsional shear box for determining the shear strength of agricultural soils.
  publication-title: Aust. J. Soil Res.
– year: 1995
– volume: 72
  start-page: 429
  year: 1992
  end-page: 439
  article-title: Comparison of shrink–swell indices of some Saskatchewan soils and their relationship to standard soil characteristics.
  publication-title: Can. J. Soil Sci.
– volume: 175
  start-page: 10
  year: 2010
  end-page: 14
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand.
  publication-title: Soil Sci.
– volume: 68
  start-page: 251
  year: 1988
  end-page: 260
  article-title: Shrink–swell potential and cracking in clay soils of Saskatchewan.
  publication-title: Can. J. Soil Sci.
– volume: 6
  start-page: 133
  year: 2014
  end-page: 137
  article-title: Effect of discrete fibre reinforcement on soil tensile strength.
  publication-title: J. Rock Mechan. Geotech. Eng.
– volume: 40
  start-page: 805
  year: 1976
  end-page: 806
  article-title: A new method of measuring shrink–swell potential using soil paste.
  publication-title: Soil Sci. Am. J.
– volume: 75
  start-page: 1402
  year: 2011
  end-page: 1413
  article-title: Influence of contrasting biochar types on five soils at increasing rates of application.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 177
  start-page: 26
  year: 2014
  end-page: 33
  article-title: Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review.
  publication-title: Plant Soil
– volume: 105
  start-page: 47
  year: 2010
  end-page: 82
  article-title: A review of biochar and its use and function in soil.
  publication-title: Adv. Agron.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review.
  publication-title: Biol. Fert. Soils
– year: 1999
– ident: e_1_2_6_17_1
  doi: 10.1016/j.geoderma.2010.05.013
– ident: e_1_2_6_26_1
– ident: e_1_2_6_24_1
  doi: 10.2136/sssaj1976.03615995004000050050x
– ident: e_1_2_6_2_1
  doi: 10.1016/j.still.2008.11.004
– ident: e_1_2_6_12_1
  doi: 10.4141/cjss92-036
– ident: e_1_2_6_9_1
  doi: 10.1071/SR07109
– ident: e_1_2_6_25_1
  doi: 10.1016/S0065-2113(10)05002-9
– ident: e_1_2_6_21_1
  doi: 10.1016/j.biombioe.2012.01.033
– ident: e_1_2_6_16_1
  doi: 10.1016/j.geoderma.2013.06.016
– ident: e_1_2_6_7_1
  doi: 10.1097/SS.0b013e3181cb7f46
– volume-title: Principles of Soil Physics.
  year: 2004
  ident: e_1_2_6_18_1
  doi: 10.4324/9780203021231
– ident: e_1_2_6_13_1
  doi: 10.1007/s00374-002-0466-4
– ident: e_1_2_6_6_1
  doi: 10.1097/SS.0b013e3182482784
– volume-title: Encyclopedia of Soil Science.
  year: 2006
  ident: e_1_2_6_8_1
– ident: e_1_2_6_1_1
  doi: 10.1016/j.geoderma.2013.03.003
– ident: e_1_2_6_23_1
  doi: 10.1002/jpln.200625185
– ident: e_1_2_6_10_1
  doi: 10.4141/cjss88-025
– ident: e_1_2_6_22_1
  doi: 10.1097/SS.0b013e3181981d9a
– ident: e_1_2_6_4_1
  doi: 10.1007/s11104-010-0464-5
– ident: e_1_2_6_14_1
  doi: 10.1016/S0016-7061(02)00136-2
– ident: e_1_2_6_28_1
  doi: 10.1002/jpln.201200639
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jrmge.2014.01.003
– ident: e_1_2_6_20_1
  doi: 10.1071/SR9820203
– volume-title: Soils of China.
  year: 1998
  ident: e_1_2_6_30_1
– ident: e_1_2_6_31_1
  doi: 10.1016/0016-7061(71)90012-7
– volume-title: ASTM D 4318—Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils.
  year: 1995
  ident: e_1_2_6_3_1
– ident: e_1_2_6_29_1
  doi: 10.1007/s11104-009-0050-x
– ident: e_1_2_6_5_1
  doi: 10.1016/S0167-1987(03)00043-6
– start-page: 227
  volume-title: Biochar for Environmental Management: Science and Technology. Earthscan
  year: 2009
  ident: e_1_2_6_11_1
– ident: e_1_2_6_27_1
  doi: 10.2136/sssaj2010.0325
– ident: e_1_2_6_15_1
  doi: 10.1016/j.still.2010.03.007
SSID ssj0004192
Score 2.3917007
Snippet Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key...
Swell-shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 920
SubjectTerms Agronomy. Soil science and plant productions
biochar
Biological and medical sciences
clay soils
clayey soil
cohesion
cracking
extensibility
friction
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
greenhouses
Physical properties
shear strength
Shrinkage
sludge
soil amendments
soil cracking
soil formation
soil physical properties
Soil science
Soil-plant relationships. Soil fertility
Soil-plant relationships. Soil fertility. Fertilization. Amendments
stickiness
surface area
swell-shrinkage
Tensile strength
Triticum aestivum
wastewater
wheat straw
wood chips
Title Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil
URI https://api.istex.fr/ark:/67375/WNG-XVPT9ZXM-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201300596
https://www.proquest.com/docview/1628960043
https://www.proquest.com/docview/1642621361
https://www.proquest.com/docview/1710236365
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQCxIcCixUBEplJASXpk0cO1kfC6KUiq4q1JYVF8vPvpakSnYllhP_gX_IL8GTV7tIgAS3RBlb8mTG_mzPfIPQ8yyzJubMhHLIaEizoQ6VizQwYRItCazwkI28P0p3j-jemI2vZfE3_BD9gRt4Rj1fg4NLVW1dkYaeX06AvxSuYxgHzm0I2AJU9OGKPwquOOv0ImDd9bbcsTZGZGux-cKqtAwK_gJRkrLyinJNhYsFCHodyNYr0c5dJLsxNAEoF5uzqdrUX3-hd_yfQd5DKy1MxduNXd1HN2w-QHe2T8qWqsMO0K2mjOV8gG6-KjzEnD9A5-_qnEtcOKzOCkjoqnCR4woOCH98-16dln7n6ycw3JEDbODPFlKPwVIwpK3kJ9PTDSxzg6tZ6aS2WJdSw3E-dKoncm7nuCrOJg_R0c6bw9e7YVvMIdRQCzgkNtEJzRQnRDGnnM0inigaKRVZxrShqY5TEltvPJZkzsH1nXHcaEm1h7Q2WUVLeZHbRwhLwxzjkjmexNSpiBvftdJGp4nvhZsAhd3PFLplOoeCGxPRcDQTAWoVvVoD9LKXv2w4Pn4r-aK2jV5MlhcQGZcx8XH0VoyPDw75p_G-OA7Q-oLx9A0IjzxuoMMArXXWJNpZoxJeAUO_o4xoEqBn_Wfv73CJI3NbzEAGagh4W4__IAOwMUm9PwSI1Ob1l3GJvYP3o_7t8b80eoJu-2faRPqsoaVpObNPPV6bqvXaJ38CF0o49A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgAwEPfBQQgTGMhOBl2RLHTurHgRjdaKsJdVvFi2U79r5KMiWtRHnif-A_5C_BlzQZRQIkeExytuTLnX2-j98h9CJJTBpylvqyy6hPk672lQ00IGESLQmc8FCNPBjGvQO6N2ZNNiHUwtT4EK3DDTSj2q9BwcEhvXWJGnp2MQEAU4jHMB5fRavQ1ru6VX24RJCCIGdVYAS4u06aG9zGgGwtj186l1aBxZ8hT1KWjlW27nGxZIT-bMpWZ9HOHaSaVdQpKOebs6na1F9-AXj8r2XeRbcXlirerkXrHrpisg66tX1cLNA6TAddrztZzjvo2uvcWZnz--hstyq7xLnF6jSHmq4S5xkuwUf4_eu38qRwl1-3h-EGH2ADfzJQfQzCgqFyJTuenmxgmaW4nBVWaoN1ITV49GFSPZFzM8dlfjp5gA523o7e9PxFPwdfQztgn5hIRzRRnBDFrLImCXikaKBUYBjTKY11GJPQOPkxJLEWInip5amWVDur1kQP0UqWZ-YRwjJllnHJLI9CalXAUze10qmOIzcLTz3kN39T6AXYOfTcmIgappkIYKto2eqhVy39RQ3z8VvKl5VwtGSyOIfkuISJo-E7MT7cH_GP44E49ND6kvS0AwgPnOlAux5aa8RJLDaOUjgGdN2lMqCRh563n53KQxxHZiafAQ20EQijOPwDDViOURzFzEOkkq-_rEvs7feH7dPjfxn0DN3ojQZ90d8dvn-Cbrr3tE78WUMr02JmnjrzbarWKwX9AYdzPQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBQQHHguIQClGQnBp2sSxk_WxUJa2tKsVasuKS-RnX0uySnYllhP_gX_IL8GTZNMuEiDBMcnYkief7bFn5huEXiSJ0SFn2hddRn2adJUvbaCACZMoQWCHh2zk_X68fUh3h2x4KYu_5odoL9xgZlTrNUzwsbYbF6ShZ-MR8JeCO4bx-CpapnHQBVxvfbggkAIfZ5VfBLS7Dsxz2saAbCy2X9iWlkHDXyBMUpROU7YucbFgg162ZKutqHcHifkg6giU8_XpRK6rr7_wO_7PKO-i242dijdrYN1DV0zWQbc2j4uGq8N00PW6juWsg669zp2NObuPznaqpEucWyxPc8joKnGe4RJuCH98-16eFO7o61YwPGcHWMOfDeQeA1Qw5K1kx5OTNSwyjctpYYUyWBVCwX0-dKpGYmZmuMxPRw_QYe_twZttv6nm4CsoBuwTE6mIJpITIpmV1iQBjyQNpAwMY0rTWIUxCY1DjyGJteC_05ZrJahyNq2JHqKlLM_MI4SFZpZxwSyPQmplwLXrWiqt4sj1wrWH_PnPTFVDdQ4VN0ZpTdJMUlBr2qrVQ69a-XFN8vFbyZcVNloxUZxDaFzC0o_9d-nwaHDAPw330yMPrS6Ap21AeOAMB9r10MocTWmzbJSpU0DXHSkDGnnoefvZTXjw4ojM5FOQgSICYRSHf5ABuzGKo5h5iFTw-su40t3BXr99evwvjZ6hG4OtXrq303__BN10r2kd9bOClibF1Dx1tttErlbT8ye--DvH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochars+on+swell%E2%80%93shrinkage+behavior%2C+mechanical+strength%2C+and+surface+cracking+of+clayey+soil&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Zong%2C+Yutong&rft.au=Chen%2C+Danping&rft.au=Lu%2C+Shenggao&rft.date=2014-12-01&rft.issn=1436-8730&rft.volume=177&rft.issue=6+p.920-926&rft.spage=920&rft.epage=926&rft_id=info:doi/10.1002%2Fjpln.201300596&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon