Self‐Healable Multifunctional Electronic Tattoos Based on Silk and Graphene

Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 16
Main Authors Wang, Qi, Ling, Shengjie, Liang, Xiaoping, Wang, Huimin, Lu, Haojie, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 18.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics. A self‐healable silk E‐tattoo, which shows high sensitivity to multistimuli including strain/humidity/temperature, is reported. Customer‐designed E‐tattoos can be facilely prepared through screen printing or direct writing of a graphene/silk fibroin/Ca2+ suspension. Remarkably, the E‐tattoo can be healed with an efficiency of 100% even after being fully fractured within 0.3 s simply by a droplet of water.
AbstractList Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca 2+ (Gr/SF/Ca 2+ ) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca 2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca 2+ E‐tattoo may be a promising candidate material for epidermal electronics.
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics.
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics. A self‐healable silk E‐tattoo, which shows high sensitivity to multistimuli including strain/humidity/temperature, is reported. Customer‐designed E‐tattoos can be facilely prepared through screen printing or direct writing of a graphene/silk fibroin/Ca2+ suspension. Remarkably, the E‐tattoo can be healed with an efficiency of 100% even after being fully fractured within 0.3 s simply by a droplet of water.
Author Wang, Qi
Liang, Xiaoping
Ling, Shengjie
Lu, Haojie
Zhang, Yingying
Wang, Huimin
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Tsinghua University
– sequence: 2
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
  organization: ShanghaiTech University
– sequence: 3
  givenname: Xiaoping
  surname: Liang
  fullname: Liang, Xiaoping
  organization: Tsinghua University
– sequence: 4
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Tsinghua University
– sequence: 5
  givenname: Haojie
  surname: Lu
  fullname: Lu, Haojie
  organization: Tsinghua University
– sequence: 6
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkE1LAzEQhoNUsFavnhc8b02yH9k91toPocVDK3gLs9kJbk03NdkivfkT_I3-ErdUKgjiaebwPu8Mzznp1LZGQq4Y7TNK-Q2Uet3nlGU0S_PkhHRZytIwojzrHHf2dEbOvV9RyoSI4i6ZL9Doz_ePKYKBwmAw35qm0ttaNZWtwQQjg6pxtq5UsISmsdYHt-CxDGwdLCrzEkBdBhMHm2es8YKcajAeL79njzyOR8vhNJw9TO6Hg1mo4oQlYZEVGjTLIhRC5TpjWijIOCszFac5KBXpkmkuClQpRS6wTAUAFpxGVANGUY9cH3o3zr5u0TdyZbeufddLzlsZSZpEtE31DynlrPcOtdy4ag1uJxmVe2Vyr0welbVA_AtQVQN7EY2DyvyN5QfsrTK4--eIHNyN5z_sF8eShPo
CitedBy_id crossref_primary_10_1002_adma_202005910
crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1088_2058_8585_acad8b
crossref_primary_10_1109_JSEN_2024_3360457
crossref_primary_10_1021_acsaelm_0c01017
crossref_primary_10_1016_j_snb_2020_128507
crossref_primary_10_1002_smll_202408199
crossref_primary_10_1002_adma_202411946
crossref_primary_10_1038_s41467_022_34168_x
crossref_primary_10_1021_acsmaterialslett_0c00309
crossref_primary_10_1021_acsami_0c00176
crossref_primary_10_1016_j_jpowsour_2024_235746
crossref_primary_10_1002_adhm_202101292
crossref_primary_10_1002_adsr_202200018
crossref_primary_10_1364_OL_542688
crossref_primary_10_3390_bios13060630
crossref_primary_10_1088_1361_6528_abe6c7
crossref_primary_10_3390_mi12040430
crossref_primary_10_1002_adfm_202001518
crossref_primary_10_1016_j_eurpolymj_2023_112696
crossref_primary_10_1002_smll_202400912
crossref_primary_10_1021_acsami_0c15530
crossref_primary_10_1038_s41528_022_00147_x
crossref_primary_10_1021_acsami_9b23378
crossref_primary_10_1039_C9TB02531F
crossref_primary_10_3390_electronics11050716
crossref_primary_10_1002_advs_201903802
crossref_primary_10_1021_acsbiomaterials_4c00201
crossref_primary_10_1021_acsmaterialslett_3c00397
crossref_primary_10_1038_s41578_024_00728_4
crossref_primary_10_1038_s41467_022_28901_9
crossref_primary_10_1021_acsami_2c15500
crossref_primary_10_1021_acsanm_2c02202
crossref_primary_10_1039_D1AN01257F
crossref_primary_10_3390_bios14110525
crossref_primary_10_1002_aelm_202100368
crossref_primary_10_1038_s41570_023_00486_x
crossref_primary_10_1002_adfm_202010461
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1016_j_bios_2021_113231
crossref_primary_10_1021_acsami_9b13349
crossref_primary_10_3389_fbioe_2021_612669
crossref_primary_10_3389_fchem_2022_881028
crossref_primary_10_1360_SSC_2022_0019
crossref_primary_10_1007_s12274_022_5162_0
crossref_primary_10_1002_adma_202003155
crossref_primary_10_1002_admt_202201917
crossref_primary_10_1016_j_cej_2024_148911
crossref_primary_10_1021_acsnano_1c07388
crossref_primary_10_1039_D2NR00027J
crossref_primary_10_1002_smsc_202300358
crossref_primary_10_1039_D2MH01520J
crossref_primary_10_3389_fbioe_2024_1294238
crossref_primary_10_1002_adma_202500073
crossref_primary_10_1039_C9NR05532K
crossref_primary_10_1016_j_synthmet_2019_116177
crossref_primary_10_1016_j_compscitech_2019_107950
crossref_primary_10_3390_mi12121505
crossref_primary_10_1002_adma_202002180
crossref_primary_10_1080_09243046_2023_2270379
crossref_primary_10_1002_cssc_202400769
crossref_primary_10_1039_D3TA05615E
crossref_primary_10_1088_2399_1984_ace40e
crossref_primary_10_1002_advs_202200560
crossref_primary_10_1007_s12274_023_5423_y
crossref_primary_10_1021_acsnano_1c00085
crossref_primary_10_1016_j_cej_2021_132084
crossref_primary_10_1364_OSAC_383872
crossref_primary_10_1002_admt_202300243
crossref_primary_10_1002_advs_202305702
crossref_primary_10_1002_admt_202000928
crossref_primary_10_1016_j_cej_2022_140443
crossref_primary_10_1360_SSC_2022_0155
crossref_primary_10_1002_smsc_202000080
crossref_primary_10_1016_j_cej_2020_126700
crossref_primary_10_1016_j_cej_2021_130364
crossref_primary_10_1039_D1TC01587G
crossref_primary_10_1021_acsnano_1c06230
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1039_D0MH02065F
crossref_primary_10_1109_JSEN_2022_3157709
crossref_primary_10_1002_admt_202101182
crossref_primary_10_1109_TNANO_2021_3064380
crossref_primary_10_1002_slct_202402076
crossref_primary_10_1016_j_actbio_2022_09_010
crossref_primary_10_1021_acsami_1c09278
crossref_primary_10_1007_s10570_023_05048_4
crossref_primary_10_1016_j_compscitech_2022_109751
crossref_primary_10_1016_j_mattod_2023_03_027
crossref_primary_10_3390_ma13102339
crossref_primary_10_1007_s10854_023_10223_1
crossref_primary_10_1021_acsami_2c00384
crossref_primary_10_1016_j_compscitech_2023_110106
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1021_acsanm_3c05669
crossref_primary_10_3390_polym11111774
crossref_primary_10_1016_j_coco_2021_100837
crossref_primary_10_1080_10589759_2024_2326889
crossref_primary_10_1021_acs_biomac_2c00766
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1021_acsnano_2c09851
crossref_primary_10_1088_1361_6463_acaf38
crossref_primary_10_1021_acs_accounts_9b00333
crossref_primary_10_1149_1945_7111_ab697c
crossref_primary_10_1002_admt_202201503
crossref_primary_10_3390_app12094526
crossref_primary_10_1016_j_jece_2025_115788
crossref_primary_10_1002_aelm_202001084
crossref_primary_10_1002_adfm_202104288
crossref_primary_10_1021_acsabm_4c00138
crossref_primary_10_1002_smll_202103734
crossref_primary_10_1016_j_cej_2023_142734
crossref_primary_10_1002_adfm_202400789
crossref_primary_10_1021_acssuschemeng_9b05968
crossref_primary_10_1016_j_cej_2021_133782
crossref_primary_10_1039_D0AN02292F
crossref_primary_10_1002_adfm_202000398
crossref_primary_10_1021_acsabm_0c01139
crossref_primary_10_1021_acsmaterialslett_4c01748
crossref_primary_10_1021_acsnano_9b09802
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_3390_nano9070950
crossref_primary_10_1016_j_matdes_2022_110971
crossref_primary_10_1016_j_compositesb_2024_111346
crossref_primary_10_1002_adma_202207447
crossref_primary_10_1016_j_nanoen_2020_105337
crossref_primary_10_1021_acsbiomaterials_1c00699
crossref_primary_10_1002_adfm_202107570
crossref_primary_10_1021_accountsmr_2c00213
crossref_primary_10_1016_j_cej_2022_136788
crossref_primary_10_1007_s40843_021_1693_5
crossref_primary_10_1002_admt_201900183
crossref_primary_10_1002_adma_202304157
crossref_primary_10_1002_adma_202100047
crossref_primary_10_1002_smm2_1068
crossref_primary_10_1021_acsnano_2c05159
crossref_primary_10_1039_D0NR08032B
crossref_primary_10_1002_adma_201905767
crossref_primary_10_1021_acsami_3c07913
crossref_primary_10_1002_admt_202000430
crossref_primary_10_1016_j_compscitech_2025_111083
crossref_primary_10_1021_acsnano_0c05932
crossref_primary_10_1021_acs_chemrev_3c00823
crossref_primary_10_3390_bios13030393
crossref_primary_10_1002_advs_202402582
crossref_primary_10_1016_j_compositesa_2023_107572
crossref_primary_10_1002_advs_202305697
crossref_primary_10_1002_adfm_202310599
crossref_primary_10_1002_adfm_201907109
crossref_primary_10_1002_adfm_202305328
crossref_primary_10_1007_s10854_020_04278_7
crossref_primary_10_1021_acssuschemeng_2c06508
crossref_primary_10_1002_advs_202405988
crossref_primary_10_3390_ma15051661
crossref_primary_10_1016_j_cej_2023_145534
crossref_primary_10_1149_2_0241914jes
crossref_primary_10_1021_acsmaterialslett_0c00160
crossref_primary_10_1002_adfm_202309359
crossref_primary_10_1002_smtd_202201340
crossref_primary_10_1016_j_nanoen_2023_108569
crossref_primary_10_1039_D3RA05730E
crossref_primary_10_3390_bios13121025
crossref_primary_10_3390_biomimetics8060500
crossref_primary_10_1021_acsabm_0c00807
crossref_primary_10_1021_acsami_2c03565
crossref_primary_10_1021_acsami_3c03659
crossref_primary_10_1016_j_sintl_2022_100183
crossref_primary_10_1021_acsami_0c09045
crossref_primary_10_1002_adma_202001496
crossref_primary_10_1002_adsr_202300009
crossref_primary_10_1002_adfm_202213560
crossref_primary_10_1016_j_biomaterials_2023_122075
crossref_primary_10_1002_SMMD_20230004
crossref_primary_10_1007_s40843_023_2849_6
crossref_primary_10_1038_s41467_022_33133_y
crossref_primary_10_1002_adfm_202007661
crossref_primary_10_1002_adma_202313228
crossref_primary_10_1007_s12204_024_2711_6
crossref_primary_10_1016_j_nanoms_2021_07_008
crossref_primary_10_1038_s41378_024_00838_7
crossref_primary_10_1039_D1TC03589D
crossref_primary_10_1038_s41528_022_00181_9
crossref_primary_10_1063_5_0060344
crossref_primary_10_1109_JSEN_2023_3254139
crossref_primary_10_1016_j_isci_2022_103945
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1039_D2TB02596E
crossref_primary_10_1016_j_isci_2022_103940
crossref_primary_10_1021_acs_chemrev_9b00416
crossref_primary_10_1002_aelm_202000451
crossref_primary_10_1021_acsami_1c08175
crossref_primary_10_3390_mi12091091
crossref_primary_10_1038_s41528_024_00335_x
crossref_primary_10_1002_admi_202000814
crossref_primary_10_1016_j_nanoen_2022_107630
crossref_primary_10_1016_j_surfin_2025_106042
crossref_primary_10_1021_acsaelm_4c02190
crossref_primary_10_1016_j_cej_2023_142477
crossref_primary_10_1039_C9TA11084D
crossref_primary_10_1002_adfm_202214479
crossref_primary_10_1021_acsapm_1c01111
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_7498_aps_69_20200818
crossref_primary_10_1016_j_cej_2024_157336
crossref_primary_10_1007_s11432_023_3760_8
crossref_primary_10_1002_adhm_202301811
crossref_primary_10_1002_adma_201901408
crossref_primary_10_1021_acs_biomac_2c00802
crossref_primary_10_1002_aelm_202300082
crossref_primary_10_1016_j_cej_2023_143797
crossref_primary_10_1002_advs_202102596
crossref_primary_10_1021_acsapm_9b01198
crossref_primary_10_1039_D4ME00122B
crossref_primary_10_34133_2022_9814767
crossref_primary_10_1038_s41528_022_00140_4
crossref_primary_10_1007_s40843_021_1701_7
crossref_primary_10_1021_acsami_0c18161
crossref_primary_10_1002_inf2_12545
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1039_D3NR01347B
crossref_primary_10_1002_app_52928
crossref_primary_10_18178_ijimt_2022_13_1_913
crossref_primary_10_1021_acsanm_0c00046
crossref_primary_10_1149_1945_7111_adaa29
crossref_primary_10_1515_psr_2024_0076
crossref_primary_10_1002_adma_202211202
crossref_primary_10_3390_ma14164757
crossref_primary_10_1007_s40820_022_00911_8
crossref_primary_10_1039_C9NR10779G
crossref_primary_10_14504_ajr_8_S2_11
crossref_primary_10_1016_j_cej_2023_147109
crossref_primary_10_1016_j_carbpol_2024_122788
crossref_primary_10_1002_mame_202000287
crossref_primary_10_1002_adma_201906994
crossref_primary_10_3390_s20164484
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_1039_D4SU00459K
crossref_primary_10_1021_acsami_0c17669
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1021_acsmaterialslett_1c00618
crossref_primary_10_1039_D1TA00631B
crossref_primary_10_1002_rpm_20240018
crossref_primary_10_1002_adfm_202002853
crossref_primary_10_1016_j_nanoen_2020_105187
crossref_primary_10_1088_1361_6528_ac137e
crossref_primary_10_1016_j_sna_2025_116424
crossref_primary_10_1002_advs_202001938
crossref_primary_10_1002_adhm_202100646
crossref_primary_10_1002_adfm_202208362
crossref_primary_10_1021_acsami_2c09576
crossref_primary_10_1002_adhm_202403637
crossref_primary_10_1016_j_mtsust_2024_100975
crossref_primary_10_1039_D3RA08471J
crossref_primary_10_1002_aisy_202100280
crossref_primary_10_1002_adhm_202404296
crossref_primary_10_1002_adma_202102500
crossref_primary_10_1016_j_cej_2021_131999
crossref_primary_10_1063_5_0059204
crossref_primary_10_1063_5_0220516
Cites_doi 10.1002/adma.201803189
10.1002/adma.201304742
10.1126/science.1226325
10.1038/s41467-017-00613-5
10.1002/anie.201504136
10.1016/j.progpolymsci.2014.03.001
10.1002/adma.201606411
10.1021/ja070788m
10.1021/acs.nanolett.8b03085
10.1002/adfm.201500094
10.1038/nmat1934
10.1038/s41467-018-03456-w
10.1002/adfm.201404357
10.1002/adma.201603878
10.1021/acs.chemrev.7b00088
10.1021/acsnano.8b03943
10.1038/nature20102
10.1021/nl072090c
10.1039/C6RA19468K
10.1021/acsnano.7b04898
10.1021/acssensors.6b00356
10.1002/adfm.201303874
10.1016/j.carbpol.2016.05.088
10.1021/nn404889b
10.1038/ncomms4132
10.1021/nl803698b
10.1002/adfm.201700591
10.1038/ncomms8149
10.1002/adfm.201705291
10.1039/C8TC00238J
10.1021/acs.nanolett.6b03597
10.1021/acsnano.7b07613
10.1002/adma.201800129
10.1002/adma.201504104
10.1039/C6TA01441K
10.1002/adma.201500140
10.1021/acs.nanolett.5b03069
10.1002/adma.201703098
10.1073/pnas.042681599
10.1039/C4RA05381H
10.1039/b901620a
10.1002/adfm.201605657
10.1016/0160-9327(86)90049-9
10.1016/j.mser.2018.01.002
10.1021/ja953943i
10.1126/science.1158877
10.1021/acsnano.7b02182
10.1002/adma.201606151
10.1002/adma.201204426
10.1093/aje/kws342
10.1002/adma.201702076
10.1038/nnano.2012.192
10.1038/srep41566
10.1002/adma.201404069
10.1021/acsami.5b10247
10.1039/C4RA16449K
10.1039/c2cc32839a
10.1038/nprot.2011.379
10.1002/adma.201504276
10.1021/jacs.5b01601
10.1039/C6LC00519E
10.1002/adma.201505739
10.1021/acsnano.5b00599
10.1002/aenm.201700890
10.1021/nl8033637
10.1109/10.83591
10.1002/adma.201300179
10.1038/ncomms1767
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201808695
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201808695
ADFM201808695
Genre article
GrantInformation_xml – fundername: National Key Basic Research and Development Program
  funderid: 2016YFA0200103
– fundername: National Natural Science Foundation of China
  funderid: 51672153; 51422204
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4515-b8bfaf183e77c9f81f7ca821d8c469acc3fd1f27bec60e27ed67aaeb2030fae33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:39:19 EDT 2025
Tue Jul 01 04:11:57 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Wed Aug 20 07:26:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4515-b8bfaf183e77c9f81f7ca821d8c469acc3fd1f27bec60e27ed67aaeb2030fae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8448-3059
PQID 2210056530
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2210056530
crossref_primary_10_1002_adfm_201808695
crossref_citationtrail_10_1002_adfm_201808695
wiley_primary_10_1002_adfm_201808695_ADFM201808695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 18, 2019
PublicationDateYYYYMMDD 2019-04-18
PublicationDate_xml – month: 04
  year: 2019
  text: April 18, 2019
  day: 18
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2013; 25
2018; 125
2002; 99
2014; 26
2014; 24
2013; 7
2017; 117
2018; 6
2018; 9
2014; 5
2014; 4
2015; 137
2007; 6
2007; 7
2018; 30
2009; 19
2012; 337
2009; 324
2016; 151
2015; 15
2018; 28
2015; 6
2007; 129
1991; 38
2015; 5
1986; 10
2017; 27
2015; 54
2017; 29
2015; 9
2016; 16
2011; 6
2016; 4
2018; 18
2016; 6
2015; 25
2016; 1
2012; 3
2015; 27
2016; 539
2017; 11
2013; 177
2009; 9
2012; 48
2014; 39
2018; 12
2016; 28
2012; 7
2016; 8
1996; 118
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– volume: 177
  start-page: 1006
  year: 2013
  publication-title: Am. J. Epidemiol.
– volume: 29
  start-page: 1606411
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1705291
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 763
  year: 2012
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2346
  year: 2018
  publication-title: ACS Nano
– volume: 99
  start-page: 5596
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 1800129
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1370
  year: 2015
  publication-title: Adv. Mater.
– volume: 39
  start-page: 1934
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 9
  start-page: 1787
  year: 2009
  publication-title: Nano Lett.
– volume: 25
  start-page: 2395
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 11860
  year: 2018
  publication-title: ACS Nano
– volume: 16
  start-page: 6695
  year: 2016
  publication-title: Nano Lett.
– volume: 27
  start-page: 2722
  year: 2015
  publication-title: Adv. Mater.
– volume: 18
  start-page: 7085
  year: 2018
  publication-title: Nano Lett.
– volume: 129
  start-page: 6070
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 6276
  year: 2015
  publication-title: Nano Lett.
– volume: 7
  start-page: 825
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 11548
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 35149
  year: 2014
  publication-title: RSC Adv.
– volume: 118
  start-page: 5752
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3499
  year: 2007
  publication-title: Nano Lett.
– volume: 16
  start-page: 2459
  year: 2016
  publication-title: Lab Chip
– volume: 9
  start-page: 1472
  year: 2009
  publication-title: Nano Lett.
– volume: 25
  start-page: 1598
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 12942
  year: 2017
  publication-title: Chem. Rev.
– volume: 6
  start-page: 87044
  year: 2016
  publication-title: RSC Adv.
– volume: 27
  start-page: 1605657
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 6794
  year: 2012
  publication-title: Chem. Commun.
– volume: 7
  start-page: 41566
  year: 2017
  publication-title: Sci. Rep.
– volume: 38
  start-page: 785
  year: 1991
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 5929
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 2022
  year: 2014
  publication-title: Adv. Mater.
– volume: 337
  start-page: 1640
  year: 2012
  publication-title: Science
– volume: 25
  start-page: 2301
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4549
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 581
  year: 2007
  publication-title: Nat. Mater.
– volume: 28
  start-page: 10257
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7149
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 37
  year: 1986
  publication-title: Endeavour
– volume: 54
  start-page: 10188
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 4250
  year: 2016
  publication-title: Adv. Mater.
– volume: 137
  start-page: 4846
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1387
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1702076
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 9614
  year: 2017
  publication-title: ACS Nano
– volume: 25
  start-page: 2773
  year: 2013
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1703098
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11166
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 1612
  year: 2011
  publication-title: Nat. Protoc.
– volume: 7
  start-page: 1700890
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 138
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 8769
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1803189
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 7634
  year: 2017
  publication-title: ACS Nano
– volume: 24
  start-page: 3299
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1134
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 151
  start-page: 335
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 27
  start-page: 1700591
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 13261
  year: 2015
  publication-title: RSC Adv.
– volume: 29
  start-page: 1606151
  year: 2017
  publication-title: Adv. Mater.
– volume: 125
  start-page: 1
  year: 2018
  publication-title: Mater. Sci. Eng., R
– volume: 19
  start-page: 5751
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 2601
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1011
  year: 2016
  publication-title: ACS Sens.
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201803189
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201304742
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1226325
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-017-00613-5
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.201504136
– ident: e_1_2_7_22_1
  doi: 10.1016/j.progpolymsci.2014.03.001
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201606411
– ident: e_1_2_7_36_1
  doi: 10.1021/ja070788m
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.8b03085
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201500094
– ident: e_1_2_7_62_1
  doi: 10.1038/nmat1934
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-018-03456-w
– ident: e_1_2_7_64_1
  doi: 10.1002/adfm.201404357
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201603878
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.7b00088
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.8b03943
– ident: e_1_2_7_59_1
  doi: 10.1038/nature20102
– ident: e_1_2_7_42_1
  doi: 10.1021/nl072090c
– ident: e_1_2_7_52_1
  doi: 10.1039/C6RA19468K
– ident: e_1_2_7_2_1
  doi: 10.1021/acsnano.7b04898
– ident: e_1_2_7_9_1
  doi: 10.1021/acssensors.6b00356
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.201303874
– ident: e_1_2_7_48_1
  doi: 10.1016/j.carbpol.2016.05.088
– ident: e_1_2_7_32_1
  doi: 10.1021/nn404889b
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_7_43_1
  doi: 10.1021/nl803698b
– ident: e_1_2_7_49_1
  doi: 10.1002/adfm.201700591
– ident: e_1_2_7_1_1
  doi: 10.1038/ncomms8149
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201705291
– ident: e_1_2_7_35_1
  doi: 10.1039/C8TC00238J
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.nanolett.6b03597
– ident: e_1_2_7_21_1
  doi: 10.1021/acsnano.7b07613
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201800129
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201504104
– ident: e_1_2_7_50_1
  doi: 10.1039/C6TA01441K
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.201500140
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.nanolett.5b03069
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201703098
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.042681599
– ident: e_1_2_7_54_1
  doi: 10.1039/C4RA05381H
– ident: e_1_2_7_46_1
  doi: 10.1039/b901620a
– ident: e_1_2_7_67_1
  doi: 10.1002/adfm.201605657
– ident: e_1_2_7_44_1
  doi: 10.1016/0160-9327(86)90049-9
– ident: e_1_2_7_16_1
  doi: 10.1016/j.mser.2018.01.002
– ident: e_1_2_7_39_1
  doi: 10.1021/ja953943i
– ident: e_1_2_7_18_1
  doi: 10.1126/science.1158877
– ident: e_1_2_7_8_1
  doi: 10.1021/acsnano.7b02182
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201606151
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201204426
– ident: e_1_2_7_66_1
  doi: 10.1093/aje/kws342
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201702076
– ident: e_1_2_7_58_1
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_7_61_1
  doi: 10.1038/srep41566
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201404069
– ident: e_1_2_7_38_1
  doi: 10.1021/acsami.5b10247
– ident: e_1_2_7_60_1
  doi: 10.1039/C4RA16449K
– ident: e_1_2_7_7_1
  doi: 10.1039/c2cc32839a
– ident: e_1_2_7_68_1
  doi: 10.1038/nprot.2011.379
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201504276
– ident: e_1_2_7_57_1
  doi: 10.1021/jacs.5b01601
– ident: e_1_2_7_17_1
  doi: 10.1039/C6LC00519E
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201505739
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.5b00599
– ident: e_1_2_7_47_1
  doi: 10.1002/aenm.201700890
– ident: e_1_2_7_37_1
  doi: 10.1021/nl8033637
– ident: e_1_2_7_65_1
  doi: 10.1109/10.83591
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201300179
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms1767
SSID ssj0017734
Score 2.6705692
Snippet Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Calcium ions
Electrocardiography
electronic tattoos
Electronics
epidermal electronics
flexible sensors
Graphene
Healing
Humidity
Materials science
Materials selection
self‐healing
Sensitivity
Silk fibroin
Strain analysis
Tattoos
Temperature sensors
Water damage
Title Self‐Healable Multifunctional Electronic Tattoos Based on Silk and Graphene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201808695
https://www.proquest.com/docview/2210056530
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjSiUygMSU9o4L6djoS0VIgy0lbpF13YsoVYJounCxCfwjXwJdl5tkRASbIlkW4mvr--xfc8xQle2cFyHc2pIcH3DsYVnAPWkYQKVHmVmZNmajRw8esOJcz91p2ss_lwfotpw056RzdfawYEt2ivRUBBSM8mJr0B5R7PMdcKWRkVPlX4UoTQ_VvaITvAi01K10bTam9U3o9IKaq4D1iziDPYRlN-aJ5rMWsuUtfjbNxnH__zMAdor4Cju5uPnEG1F8RHaXRMpPEbBKJrLz_cPTVjSPCuccXZ1PMy3EXG_ukkHjyFNk2SBb1RsFDiJ8eh5PsMQC3ynhbHVvHqCJoP--HZoFJcwGNxRWMdgPpMgleNHlPKO9ImkHHyLCJ-rlTVwbktBpEXVWPCUZWkkPAqg1utq9pAQ2fYpqsVJHJ0hLJmCS55gTGoc4QNwsJlDwJSWEMJldWSURgh5oVCuL8qYh7m2shXqbgqrbqqj66r8S67N8WPJRmnTsPDRRWip1a6Cf65t1pGVGeeXVsJubxBUb-d_qXSBdtRzdhxF_Aaqpa_L6FKhmpQ10Xa3FzyMmtkI_gIEifLE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hOEAPUB4VC7T1AcQpEDsPhwMH2mVZHssBFmlvqZ8SYpVFbBCCEz-Bv9K_0p_QX9JxsgkPCSEhcegxkRPZnhnP57HnG4DVQIdRqBT3rIgSLwx07AkeW88X3MZc-oYFLhu5cxy3z8KDXtQbg99VLkzJD1EH3JxlFOu1M3AXkN58ZA0V2rpUcpogKt-q7lUemtsb3LUNt_ebKOI1xlq73Z9tb1RYwFMh-m9PJtIKi8psOFdbNqGWK5EwqhOFu0WhVGA1tYzj-GLsLTc65kLgHhQtwgrjYqC46k-4MuKOrr95UjNWUc7Lg-yYuitltFfxRPps83l_n_vBR3D7FCIXPq41A3-q2SmvtlxsXOdyQ929II78r6bvM0yPEDfZKU1kFsZMNgefnvAwzkPn1PTt3_sHl5PlUslIkZbsXH4ZKSW7dbEg0hV5PhgMyQ90_5oMMnJ63r8gItNkz3F_o-tYgLMPGc8XGM8GmVkEYiUiwlhLaR1USoRQIpAhFb5lWutINsCrpJ6qEQm7qwXST0v6aJY6saS1WBqwXre_LOlHXm25UilROlqGhinDDT0i3CjwG8AKbXjjL-lOs9Wpn5be89F3mGx3O0fp0f7x4TJM4fvi9I0mKzCeX12brwjicvmtMBsCvz5a0f4BP0RS_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hKiF6aHm06rY8fKDqKRA7iZ099AAsy6uLEA9pb6mfUsUqi7pBVTnxE_pT-lf6F_gljJNNeEgICYlDj4mcyPbMeL6xPd8ArEQmTmKtReBkkgZxZHggBXdBKIXjQoWWRT4buXfAd07jvX7Sn4C_dS5MxQ_RbLh5yyjXa2_g58at3ZKGSuN8JjlNEZS362uV-_b3LwzaRl93Oyjhz4x1t042d4JxXYFAx-i-A5UqJx3qshVCt11KndAyZdSkGoNFqXXkDHVM4PA4dlZYw4WUGIKiQThp_RYoLvqvYh62fbGIzlFDWEWFqM6xOfU3ymi_pokM2dr9_t53g7fY9i5CLl1c9y38qyenutlytnpRqFV9-YA38n-avRl4M8bbZL0ykFmYsPkcvL7DwjgPvWM7cNdXf3xGlk8kI2VSsnf41T4p2WpKBZETWRTD4YhsoPM3ZJiT4x-DMyJzQ7Y98zc6jndw-iLjeQ-T-TC3H4A4hXiQG6WcB0qplFpGKqYydMwYk6gWBLXQMz2mYPeVQAZZRR7NMi-WrBFLC7407c8r8pFHWy7UOpSNF6FRxjCcR3ybRGELWKkMT_wlW-90e83Tx-d8tAxTh51u9m33YP8TTOPr8uiNpgswWfy8sIuI4Aq1VBoNge8vrWc34itRqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healable+Multifunctional+Electronic+Tattoos+Based+on+Silk+and+Graphene&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Qi&rft.au=Ling%2C+Shengjie&rft.au=Liang%2C+Xiaoping&rft.au=Wang%2C+Huimin&rft.date=2019-04-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.201808695&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon