Self‐Healable Multifunctional Electronic Tattoos Based on Silk and Graphene
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
18.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics.
A self‐healable silk E‐tattoo, which shows high sensitivity to multistimuli including strain/humidity/temperature, is reported. Customer‐designed E‐tattoos can be facilely prepared through screen printing or direct writing of a graphene/silk fibroin/Ca2+ suspension. Remarkably, the E‐tattoo can be healed with an efficiency of 100% even after being fully fractured within 0.3 s simply by a droplet of water. |
---|---|
AbstractList | Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca
2+
(Gr/SF/Ca
2+
) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca
2+
suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca
2+
E‐tattoo may be a promising candidate material for epidermal electronics. Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics. Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics. A self‐healable silk E‐tattoo, which shows high sensitivity to multistimuli including strain/humidity/temperature, is reported. Customer‐designed E‐tattoos can be facilely prepared through screen printing or direct writing of a graphene/silk fibroin/Ca2+ suspension. Remarkably, the E‐tattoo can be healed with an efficiency of 100% even after being fully fractured within 0.3 s simply by a droplet of water. |
Author | Wang, Qi Liang, Xiaoping Ling, Shengjie Lu, Haojie Zhang, Yingying Wang, Huimin |
Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi organization: Tsinghua University – sequence: 2 givenname: Shengjie surname: Ling fullname: Ling, Shengjie organization: ShanghaiTech University – sequence: 3 givenname: Xiaoping surname: Liang fullname: Liang, Xiaoping organization: Tsinghua University – sequence: 4 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Tsinghua University – sequence: 5 givenname: Haojie surname: Lu fullname: Lu, Haojie organization: Tsinghua University – sequence: 6 givenname: Yingying orcidid: 0000-0002-8448-3059 surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkE1LAzEQhoNUsFavnhc8b02yH9k91toPocVDK3gLs9kJbk03NdkivfkT_I3-ErdUKgjiaebwPu8Mzznp1LZGQq4Y7TNK-Q2Uet3nlGU0S_PkhHRZytIwojzrHHf2dEbOvV9RyoSI4i6ZL9Doz_ePKYKBwmAw35qm0ttaNZWtwQQjg6pxtq5UsISmsdYHt-CxDGwdLCrzEkBdBhMHm2es8YKcajAeL79njzyOR8vhNJw9TO6Hg1mo4oQlYZEVGjTLIhRC5TpjWijIOCszFac5KBXpkmkuClQpRS6wTAUAFpxGVANGUY9cH3o3zr5u0TdyZbeufddLzlsZSZpEtE31DynlrPcOtdy4ag1uJxmVe2Vyr0welbVA_AtQVQN7EY2DyvyN5QfsrTK4--eIHNyN5z_sF8eShPo |
CitedBy_id | crossref_primary_10_1002_adma_202005910 crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1088_2058_8585_acad8b crossref_primary_10_1109_JSEN_2024_3360457 crossref_primary_10_1021_acsaelm_0c01017 crossref_primary_10_1016_j_snb_2020_128507 crossref_primary_10_1002_smll_202408199 crossref_primary_10_1002_adma_202411946 crossref_primary_10_1038_s41467_022_34168_x crossref_primary_10_1021_acsmaterialslett_0c00309 crossref_primary_10_1021_acsami_0c00176 crossref_primary_10_1016_j_jpowsour_2024_235746 crossref_primary_10_1002_adhm_202101292 crossref_primary_10_1002_adsr_202200018 crossref_primary_10_1364_OL_542688 crossref_primary_10_3390_bios13060630 crossref_primary_10_1088_1361_6528_abe6c7 crossref_primary_10_3390_mi12040430 crossref_primary_10_1002_adfm_202001518 crossref_primary_10_1016_j_eurpolymj_2023_112696 crossref_primary_10_1002_smll_202400912 crossref_primary_10_1021_acsami_0c15530 crossref_primary_10_1038_s41528_022_00147_x crossref_primary_10_1021_acsami_9b23378 crossref_primary_10_1039_C9TB02531F crossref_primary_10_3390_electronics11050716 crossref_primary_10_1002_advs_201903802 crossref_primary_10_1021_acsbiomaterials_4c00201 crossref_primary_10_1021_acsmaterialslett_3c00397 crossref_primary_10_1038_s41578_024_00728_4 crossref_primary_10_1038_s41467_022_28901_9 crossref_primary_10_1021_acsami_2c15500 crossref_primary_10_1021_acsanm_2c02202 crossref_primary_10_1039_D1AN01257F crossref_primary_10_3390_bios14110525 crossref_primary_10_1002_aelm_202100368 crossref_primary_10_1038_s41570_023_00486_x crossref_primary_10_1002_adfm_202010461 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1016_j_bios_2021_113231 crossref_primary_10_1021_acsami_9b13349 crossref_primary_10_3389_fbioe_2021_612669 crossref_primary_10_3389_fchem_2022_881028 crossref_primary_10_1360_SSC_2022_0019 crossref_primary_10_1007_s12274_022_5162_0 crossref_primary_10_1002_adma_202003155 crossref_primary_10_1002_admt_202201917 crossref_primary_10_1016_j_cej_2024_148911 crossref_primary_10_1021_acsnano_1c07388 crossref_primary_10_1039_D2NR00027J crossref_primary_10_1002_smsc_202300358 crossref_primary_10_1039_D2MH01520J crossref_primary_10_3389_fbioe_2024_1294238 crossref_primary_10_1002_adma_202500073 crossref_primary_10_1039_C9NR05532K crossref_primary_10_1016_j_synthmet_2019_116177 crossref_primary_10_1016_j_compscitech_2019_107950 crossref_primary_10_3390_mi12121505 crossref_primary_10_1002_adma_202002180 crossref_primary_10_1080_09243046_2023_2270379 crossref_primary_10_1002_cssc_202400769 crossref_primary_10_1039_D3TA05615E crossref_primary_10_1088_2399_1984_ace40e crossref_primary_10_1002_advs_202200560 crossref_primary_10_1007_s12274_023_5423_y crossref_primary_10_1021_acsnano_1c00085 crossref_primary_10_1016_j_cej_2021_132084 crossref_primary_10_1364_OSAC_383872 crossref_primary_10_1002_admt_202300243 crossref_primary_10_1002_advs_202305702 crossref_primary_10_1002_admt_202000928 crossref_primary_10_1016_j_cej_2022_140443 crossref_primary_10_1360_SSC_2022_0155 crossref_primary_10_1002_smsc_202000080 crossref_primary_10_1016_j_cej_2020_126700 crossref_primary_10_1016_j_cej_2021_130364 crossref_primary_10_1039_D1TC01587G crossref_primary_10_1021_acsnano_1c06230 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1039_D0MH02065F crossref_primary_10_1109_JSEN_2022_3157709 crossref_primary_10_1002_admt_202101182 crossref_primary_10_1109_TNANO_2021_3064380 crossref_primary_10_1002_slct_202402076 crossref_primary_10_1016_j_actbio_2022_09_010 crossref_primary_10_1021_acsami_1c09278 crossref_primary_10_1007_s10570_023_05048_4 crossref_primary_10_1016_j_compscitech_2022_109751 crossref_primary_10_1016_j_mattod_2023_03_027 crossref_primary_10_3390_ma13102339 crossref_primary_10_1007_s10854_023_10223_1 crossref_primary_10_1021_acsami_2c00384 crossref_primary_10_1016_j_compscitech_2023_110106 crossref_primary_10_1007_s40820_024_01423_3 crossref_primary_10_1021_acsanm_3c05669 crossref_primary_10_3390_polym11111774 crossref_primary_10_1016_j_coco_2021_100837 crossref_primary_10_1080_10589759_2024_2326889 crossref_primary_10_1021_acs_biomac_2c00766 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1021_acsnano_2c09851 crossref_primary_10_1088_1361_6463_acaf38 crossref_primary_10_1021_acs_accounts_9b00333 crossref_primary_10_1149_1945_7111_ab697c crossref_primary_10_1002_admt_202201503 crossref_primary_10_3390_app12094526 crossref_primary_10_1016_j_jece_2025_115788 crossref_primary_10_1002_aelm_202001084 crossref_primary_10_1002_adfm_202104288 crossref_primary_10_1021_acsabm_4c00138 crossref_primary_10_1002_smll_202103734 crossref_primary_10_1016_j_cej_2023_142734 crossref_primary_10_1002_adfm_202400789 crossref_primary_10_1021_acssuschemeng_9b05968 crossref_primary_10_1016_j_cej_2021_133782 crossref_primary_10_1039_D0AN02292F crossref_primary_10_1002_adfm_202000398 crossref_primary_10_1021_acsabm_0c01139 crossref_primary_10_1021_acsmaterialslett_4c01748 crossref_primary_10_1021_acsnano_9b09802 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_3390_nano9070950 crossref_primary_10_1016_j_matdes_2022_110971 crossref_primary_10_1016_j_compositesb_2024_111346 crossref_primary_10_1002_adma_202207447 crossref_primary_10_1016_j_nanoen_2020_105337 crossref_primary_10_1021_acsbiomaterials_1c00699 crossref_primary_10_1002_adfm_202107570 crossref_primary_10_1021_accountsmr_2c00213 crossref_primary_10_1016_j_cej_2022_136788 crossref_primary_10_1007_s40843_021_1693_5 crossref_primary_10_1002_admt_201900183 crossref_primary_10_1002_adma_202304157 crossref_primary_10_1002_adma_202100047 crossref_primary_10_1002_smm2_1068 crossref_primary_10_1021_acsnano_2c05159 crossref_primary_10_1039_D0NR08032B crossref_primary_10_1002_adma_201905767 crossref_primary_10_1021_acsami_3c07913 crossref_primary_10_1002_admt_202000430 crossref_primary_10_1016_j_compscitech_2025_111083 crossref_primary_10_1021_acsnano_0c05932 crossref_primary_10_1021_acs_chemrev_3c00823 crossref_primary_10_3390_bios13030393 crossref_primary_10_1002_advs_202402582 crossref_primary_10_1016_j_compositesa_2023_107572 crossref_primary_10_1002_advs_202305697 crossref_primary_10_1002_adfm_202310599 crossref_primary_10_1002_adfm_201907109 crossref_primary_10_1002_adfm_202305328 crossref_primary_10_1007_s10854_020_04278_7 crossref_primary_10_1021_acssuschemeng_2c06508 crossref_primary_10_1002_advs_202405988 crossref_primary_10_3390_ma15051661 crossref_primary_10_1016_j_cej_2023_145534 crossref_primary_10_1149_2_0241914jes crossref_primary_10_1021_acsmaterialslett_0c00160 crossref_primary_10_1002_adfm_202309359 crossref_primary_10_1002_smtd_202201340 crossref_primary_10_1016_j_nanoen_2023_108569 crossref_primary_10_1039_D3RA05730E crossref_primary_10_3390_bios13121025 crossref_primary_10_3390_biomimetics8060500 crossref_primary_10_1021_acsabm_0c00807 crossref_primary_10_1021_acsami_2c03565 crossref_primary_10_1021_acsami_3c03659 crossref_primary_10_1016_j_sintl_2022_100183 crossref_primary_10_1021_acsami_0c09045 crossref_primary_10_1002_adma_202001496 crossref_primary_10_1002_adsr_202300009 crossref_primary_10_1002_adfm_202213560 crossref_primary_10_1016_j_biomaterials_2023_122075 crossref_primary_10_1002_SMMD_20230004 crossref_primary_10_1007_s40843_023_2849_6 crossref_primary_10_1038_s41467_022_33133_y crossref_primary_10_1002_adfm_202007661 crossref_primary_10_1002_adma_202313228 crossref_primary_10_1007_s12204_024_2711_6 crossref_primary_10_1016_j_nanoms_2021_07_008 crossref_primary_10_1038_s41378_024_00838_7 crossref_primary_10_1039_D1TC03589D crossref_primary_10_1038_s41528_022_00181_9 crossref_primary_10_1063_5_0060344 crossref_primary_10_1109_JSEN_2023_3254139 crossref_primary_10_1016_j_isci_2022_103945 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1039_D2TB02596E crossref_primary_10_1016_j_isci_2022_103940 crossref_primary_10_1021_acs_chemrev_9b00416 crossref_primary_10_1002_aelm_202000451 crossref_primary_10_1021_acsami_1c08175 crossref_primary_10_3390_mi12091091 crossref_primary_10_1038_s41528_024_00335_x crossref_primary_10_1002_admi_202000814 crossref_primary_10_1016_j_nanoen_2022_107630 crossref_primary_10_1016_j_surfin_2025_106042 crossref_primary_10_1021_acsaelm_4c02190 crossref_primary_10_1016_j_cej_2023_142477 crossref_primary_10_1039_C9TA11084D crossref_primary_10_1002_adfm_202214479 crossref_primary_10_1021_acsapm_1c01111 crossref_primary_10_1021_acs_chemrev_3c00626 crossref_primary_10_7498_aps_69_20200818 crossref_primary_10_1016_j_cej_2024_157336 crossref_primary_10_1007_s11432_023_3760_8 crossref_primary_10_1002_adhm_202301811 crossref_primary_10_1002_adma_201901408 crossref_primary_10_1021_acs_biomac_2c00802 crossref_primary_10_1002_aelm_202300082 crossref_primary_10_1016_j_cej_2023_143797 crossref_primary_10_1002_advs_202102596 crossref_primary_10_1021_acsapm_9b01198 crossref_primary_10_1039_D4ME00122B crossref_primary_10_34133_2022_9814767 crossref_primary_10_1038_s41528_022_00140_4 crossref_primary_10_1007_s40843_021_1701_7 crossref_primary_10_1021_acsami_0c18161 crossref_primary_10_1002_inf2_12545 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1039_D3NR01347B crossref_primary_10_1002_app_52928 crossref_primary_10_18178_ijimt_2022_13_1_913 crossref_primary_10_1021_acsanm_0c00046 crossref_primary_10_1149_1945_7111_adaa29 crossref_primary_10_1515_psr_2024_0076 crossref_primary_10_1002_adma_202211202 crossref_primary_10_3390_ma14164757 crossref_primary_10_1007_s40820_022_00911_8 crossref_primary_10_1039_C9NR10779G crossref_primary_10_14504_ajr_8_S2_11 crossref_primary_10_1016_j_cej_2023_147109 crossref_primary_10_1016_j_carbpol_2024_122788 crossref_primary_10_1002_mame_202000287 crossref_primary_10_1002_adma_201906994 crossref_primary_10_3390_s20164484 crossref_primary_10_1038_s41378_021_00261_2 crossref_primary_10_1039_D4SU00459K crossref_primary_10_1021_acsami_0c17669 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1021_acsmaterialslett_1c00618 crossref_primary_10_1039_D1TA00631B crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1002_adfm_202002853 crossref_primary_10_1016_j_nanoen_2020_105187 crossref_primary_10_1088_1361_6528_ac137e crossref_primary_10_1016_j_sna_2025_116424 crossref_primary_10_1002_advs_202001938 crossref_primary_10_1002_adhm_202100646 crossref_primary_10_1002_adfm_202208362 crossref_primary_10_1021_acsami_2c09576 crossref_primary_10_1002_adhm_202403637 crossref_primary_10_1016_j_mtsust_2024_100975 crossref_primary_10_1039_D3RA08471J crossref_primary_10_1002_aisy_202100280 crossref_primary_10_1002_adhm_202404296 crossref_primary_10_1002_adma_202102500 crossref_primary_10_1016_j_cej_2021_131999 crossref_primary_10_1063_5_0059204 crossref_primary_10_1063_5_0220516 |
Cites_doi | 10.1002/adma.201803189 10.1002/adma.201304742 10.1126/science.1226325 10.1038/s41467-017-00613-5 10.1002/anie.201504136 10.1016/j.progpolymsci.2014.03.001 10.1002/adma.201606411 10.1021/ja070788m 10.1021/acs.nanolett.8b03085 10.1002/adfm.201500094 10.1038/nmat1934 10.1038/s41467-018-03456-w 10.1002/adfm.201404357 10.1002/adma.201603878 10.1021/acs.chemrev.7b00088 10.1021/acsnano.8b03943 10.1038/nature20102 10.1021/nl072090c 10.1039/C6RA19468K 10.1021/acsnano.7b04898 10.1021/acssensors.6b00356 10.1002/adfm.201303874 10.1016/j.carbpol.2016.05.088 10.1021/nn404889b 10.1038/ncomms4132 10.1021/nl803698b 10.1002/adfm.201700591 10.1038/ncomms8149 10.1002/adfm.201705291 10.1039/C8TC00238J 10.1021/acs.nanolett.6b03597 10.1021/acsnano.7b07613 10.1002/adma.201800129 10.1002/adma.201504104 10.1039/C6TA01441K 10.1002/adma.201500140 10.1021/acs.nanolett.5b03069 10.1002/adma.201703098 10.1073/pnas.042681599 10.1039/C4RA05381H 10.1039/b901620a 10.1002/adfm.201605657 10.1016/0160-9327(86)90049-9 10.1016/j.mser.2018.01.002 10.1021/ja953943i 10.1126/science.1158877 10.1021/acsnano.7b02182 10.1002/adma.201606151 10.1002/adma.201204426 10.1093/aje/kws342 10.1002/adma.201702076 10.1038/nnano.2012.192 10.1038/srep41566 10.1002/adma.201404069 10.1021/acsami.5b10247 10.1039/C4RA16449K 10.1039/c2cc32839a 10.1038/nprot.2011.379 10.1002/adma.201504276 10.1021/jacs.5b01601 10.1039/C6LC00519E 10.1002/adma.201505739 10.1021/acsnano.5b00599 10.1002/aenm.201700890 10.1021/nl8033637 10.1109/10.83591 10.1002/adma.201300179 10.1038/ncomms1767 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201808695 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201808695 ADFM201808695 |
Genre | article |
GrantInformation_xml | – fundername: National Key Basic Research and Development Program funderid: 2016YFA0200103 – fundername: National Natural Science Foundation of China funderid: 51672153; 51422204 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4515-b8bfaf183e77c9f81f7ca821d8c469acc3fd1f27bec60e27ed67aaeb2030fae33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:39:19 EDT 2025 Tue Jul 01 04:11:57 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Wed Aug 20 07:26:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4515-b8bfaf183e77c9f81f7ca821d8c469acc3fd1f27bec60e27ed67aaeb2030fae33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8448-3059 |
PQID | 2210056530 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2210056530 crossref_primary_10_1002_adfm_201808695 crossref_citationtrail_10_1002_adfm_201808695 wiley_primary_10_1002_adfm_201808695_ADFM201808695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 18, 2019 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: April 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2013; 25 2018; 125 2002; 99 2014; 26 2014; 24 2013; 7 2017; 117 2018; 6 2018; 9 2014; 5 2014; 4 2015; 137 2007; 6 2007; 7 2018; 30 2009; 19 2012; 337 2009; 324 2016; 151 2015; 15 2018; 28 2015; 6 2007; 129 1991; 38 2015; 5 1986; 10 2017; 27 2015; 54 2017; 29 2015; 9 2016; 16 2011; 6 2016; 4 2018; 18 2016; 6 2015; 25 2016; 1 2012; 3 2015; 27 2016; 539 2017; 11 2013; 177 2009; 9 2012; 48 2014; 39 2018; 12 2016; 28 2012; 7 2016; 8 1996; 118 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 539 start-page: 411 year: 2016 publication-title: Nature – volume: 177 start-page: 1006 year: 2013 publication-title: Am. J. Epidemiol. – volume: 29 start-page: 1606411 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 1705291 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 763 year: 2012 publication-title: Nat. Commun. – volume: 12 start-page: 2346 year: 2018 publication-title: ACS Nano – volume: 99 start-page: 5596 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 1800129 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 1370 year: 2015 publication-title: Adv. Mater. – volume: 39 start-page: 1934 year: 2014 publication-title: Prog. Polym. Sci. – volume: 9 start-page: 1787 year: 2009 publication-title: Nano Lett. – volume: 25 start-page: 2395 year: 2015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 11860 year: 2018 publication-title: ACS Nano – volume: 16 start-page: 6695 year: 2016 publication-title: Nano Lett. – volume: 27 start-page: 2722 year: 2015 publication-title: Adv. Mater. – volume: 18 start-page: 7085 year: 2018 publication-title: Nano Lett. – volume: 129 start-page: 6070 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 6276 year: 2015 publication-title: Nano Lett. – volume: 7 start-page: 825 year: 2012 publication-title: Nat. Nanotechnol. – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 8 start-page: 11548 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 35149 year: 2014 publication-title: RSC Adv. – volume: 118 start-page: 5752 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3499 year: 2007 publication-title: Nano Lett. – volume: 16 start-page: 2459 year: 2016 publication-title: Lab Chip – volume: 9 start-page: 1472 year: 2009 publication-title: Nano Lett. – volume: 25 start-page: 1598 year: 2015 publication-title: Adv. Funct. Mater. – volume: 117 start-page: 12942 year: 2017 publication-title: Chem. Rev. – volume: 6 start-page: 87044 year: 2016 publication-title: RSC Adv. – volume: 27 start-page: 1605657 year: 2017 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 6794 year: 2012 publication-title: Chem. Commun. – volume: 7 start-page: 41566 year: 2017 publication-title: Sci. Rep. – volume: 38 start-page: 785 year: 1991 publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 5929 year: 2015 publication-title: ACS Nano – volume: 26 start-page: 2022 year: 2014 publication-title: Adv. Mater. – volume: 337 start-page: 1640 year: 2012 publication-title: Science – volume: 25 start-page: 2301 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 4549 year: 2018 publication-title: J. Mater. Chem. C – volume: 6 start-page: 581 year: 2007 publication-title: Nat. Mater. – volume: 28 start-page: 10257 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 7149 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 37 year: 1986 publication-title: Endeavour – volume: 54 start-page: 10188 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 4250 year: 2016 publication-title: Adv. Mater. – volume: 137 start-page: 4846 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1387 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 1702076 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 9614 year: 2017 publication-title: ACS Nano – volume: 25 start-page: 2773 year: 2013 publication-title: Adv. Mater. – volume: 29 start-page: 1703098 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 11166 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protoc. – volume: 7 start-page: 1700890 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 138 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 8769 year: 2016 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1803189 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 7634 year: 2017 publication-title: ACS Nano – volume: 24 start-page: 3299 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1134 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 151 start-page: 335 year: 2016 publication-title: Carbohydr. Polym. – volume: 27 start-page: 1700591 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 13261 year: 2015 publication-title: RSC Adv. – volume: 29 start-page: 1606151 year: 2017 publication-title: Adv. Mater. – volume: 125 start-page: 1 year: 2018 publication-title: Mater. Sci. Eng., R – volume: 19 start-page: 5751 year: 2009 publication-title: J. Mater. Chem. – volume: 28 start-page: 2601 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 1011 year: 2016 publication-title: ACS Sens. – ident: e_1_2_7_19_1 doi: 10.1002/adma.201803189 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201304742 – ident: e_1_2_7_12_1 doi: 10.1126/science.1226325 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-017-00613-5 – ident: e_1_2_7_56_1 doi: 10.1002/anie.201504136 – ident: e_1_2_7_22_1 doi: 10.1016/j.progpolymsci.2014.03.001 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201606411 – ident: e_1_2_7_36_1 doi: 10.1021/ja070788m – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.8b03085 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201500094 – ident: e_1_2_7_62_1 doi: 10.1038/nmat1934 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-018-03456-w – ident: e_1_2_7_64_1 doi: 10.1002/adfm.201404357 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201603878 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.7b00088 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.8b03943 – ident: e_1_2_7_59_1 doi: 10.1038/nature20102 – ident: e_1_2_7_42_1 doi: 10.1021/nl072090c – ident: e_1_2_7_52_1 doi: 10.1039/C6RA19468K – ident: e_1_2_7_2_1 doi: 10.1021/acsnano.7b04898 – ident: e_1_2_7_9_1 doi: 10.1021/acssensors.6b00356 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201303874 – ident: e_1_2_7_48_1 doi: 10.1016/j.carbpol.2016.05.088 – ident: e_1_2_7_32_1 doi: 10.1021/nn404889b – ident: e_1_2_7_6_1 doi: 10.1038/ncomms4132 – ident: e_1_2_7_43_1 doi: 10.1021/nl803698b – ident: e_1_2_7_49_1 doi: 10.1002/adfm.201700591 – ident: e_1_2_7_1_1 doi: 10.1038/ncomms8149 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201705291 – ident: e_1_2_7_35_1 doi: 10.1039/C8TC00238J – ident: e_1_2_7_24_1 doi: 10.1021/acs.nanolett.6b03597 – ident: e_1_2_7_21_1 doi: 10.1021/acsnano.7b07613 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201800129 – ident: e_1_2_7_53_1 doi: 10.1002/adma.201504104 – ident: e_1_2_7_50_1 doi: 10.1039/C6TA01441K – ident: e_1_2_7_63_1 doi: 10.1002/adma.201500140 – ident: e_1_2_7_51_1 doi: 10.1021/acs.nanolett.5b03069 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201703098 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.042681599 – ident: e_1_2_7_54_1 doi: 10.1039/C4RA05381H – ident: e_1_2_7_46_1 doi: 10.1039/b901620a – ident: e_1_2_7_67_1 doi: 10.1002/adfm.201605657 – ident: e_1_2_7_44_1 doi: 10.1016/0160-9327(86)90049-9 – ident: e_1_2_7_16_1 doi: 10.1016/j.mser.2018.01.002 – ident: e_1_2_7_39_1 doi: 10.1021/ja953943i – ident: e_1_2_7_18_1 doi: 10.1126/science.1158877 – ident: e_1_2_7_8_1 doi: 10.1021/acsnano.7b02182 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201606151 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201204426 – ident: e_1_2_7_66_1 doi: 10.1093/aje/kws342 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201702076 – ident: e_1_2_7_58_1 doi: 10.1038/nnano.2012.192 – ident: e_1_2_7_61_1 doi: 10.1038/srep41566 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201404069 – ident: e_1_2_7_38_1 doi: 10.1021/acsami.5b10247 – ident: e_1_2_7_60_1 doi: 10.1039/C4RA16449K – ident: e_1_2_7_7_1 doi: 10.1039/c2cc32839a – ident: e_1_2_7_68_1 doi: 10.1038/nprot.2011.379 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201504276 – ident: e_1_2_7_57_1 doi: 10.1021/jacs.5b01601 – ident: e_1_2_7_17_1 doi: 10.1039/C6LC00519E – ident: e_1_2_7_20_1 doi: 10.1002/adma.201505739 – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.5b00599 – ident: e_1_2_7_47_1 doi: 10.1002/aenm.201700890 – ident: e_1_2_7_37_1 doi: 10.1021/nl8033637 – ident: e_1_2_7_65_1 doi: 10.1109/10.83591 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201300179 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms1767 |
SSID | ssj0017734 |
Score | 2.6705692 |
Snippet | Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Calcium ions Electrocardiography electronic tattoos Electronics epidermal electronics flexible sensors Graphene Healing Humidity Materials science Materials selection self‐healing Sensitivity Silk fibroin Strain analysis Tattoos Temperature sensors Water damage |
Title | Self‐Healable Multifunctional Electronic Tattoos Based on Silk and Graphene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201808695 https://www.proquest.com/docview/2210056530 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjSiUygMSU9o4L6djoS0VIgy0lbpF13YsoVYJounCxCfwjXwJdl5tkRASbIlkW4mvr--xfc8xQle2cFyHc2pIcH3DsYVnAPWkYQKVHmVmZNmajRw8esOJcz91p2ss_lwfotpw056RzdfawYEt2ivRUBBSM8mJr0B5R7PMdcKWRkVPlX4UoTQ_VvaITvAi01K10bTam9U3o9IKaq4D1iziDPYRlN-aJ5rMWsuUtfjbNxnH__zMAdor4Cju5uPnEG1F8RHaXRMpPEbBKJrLz_cPTVjSPCuccXZ1PMy3EXG_ukkHjyFNk2SBb1RsFDiJ8eh5PsMQC3ynhbHVvHqCJoP--HZoFJcwGNxRWMdgPpMgleNHlPKO9ImkHHyLCJ-rlTVwbktBpEXVWPCUZWkkPAqg1utq9pAQ2fYpqsVJHJ0hLJmCS55gTGoc4QNwsJlDwJSWEMJldWSURgh5oVCuL8qYh7m2shXqbgqrbqqj66r8S67N8WPJRmnTsPDRRWip1a6Cf65t1pGVGeeXVsJubxBUb-d_qXSBdtRzdhxF_Aaqpa_L6FKhmpQ10Xa3FzyMmtkI_gIEifLE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hOEAPUB4VC7T1AcQpEDsPhwMH2mVZHssBFmlvqZ8SYpVFbBCCEz-Bv9K_0p_QX9JxsgkPCSEhcegxkRPZnhnP57HnG4DVQIdRqBT3rIgSLwx07AkeW88X3MZc-oYFLhu5cxy3z8KDXtQbg99VLkzJD1EH3JxlFOu1M3AXkN58ZA0V2rpUcpogKt-q7lUemtsb3LUNt_ebKOI1xlq73Z9tb1RYwFMh-m9PJtIKi8psOFdbNqGWK5EwqhOFu0WhVGA1tYzj-GLsLTc65kLgHhQtwgrjYqC46k-4MuKOrr95UjNWUc7Lg-yYuitltFfxRPps83l_n_vBR3D7FCIXPq41A3-q2SmvtlxsXOdyQ929II78r6bvM0yPEDfZKU1kFsZMNgefnvAwzkPn1PTt3_sHl5PlUslIkZbsXH4ZKSW7dbEg0hV5PhgMyQ90_5oMMnJ63r8gItNkz3F_o-tYgLMPGc8XGM8GmVkEYiUiwlhLaR1USoRQIpAhFb5lWutINsCrpJ6qEQm7qwXST0v6aJY6saS1WBqwXre_LOlHXm25UilROlqGhinDDT0i3CjwG8AKbXjjL-lOs9Wpn5be89F3mGx3O0fp0f7x4TJM4fvi9I0mKzCeX12brwjicvmtMBsCvz5a0f4BP0RS_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hKiF6aHm06rY8fKDqKRA7iZ099AAsy6uLEA9pb6mfUsUqi7pBVTnxE_pT-lf6F_gljJNNeEgICYlDj4mcyPbMeL6xPd8ArEQmTmKtReBkkgZxZHggBXdBKIXjQoWWRT4buXfAd07jvX7Sn4C_dS5MxQ_RbLh5yyjXa2_g58at3ZKGSuN8JjlNEZS362uV-_b3LwzaRl93Oyjhz4x1t042d4JxXYFAx-i-A5UqJx3qshVCt11KndAyZdSkGoNFqXXkDHVM4PA4dlZYw4WUGIKiQThp_RYoLvqvYh62fbGIzlFDWEWFqM6xOfU3ymi_pokM2dr9_t53g7fY9i5CLl1c9y38qyenutlytnpRqFV9-YA38n-avRl4M8bbZL0ykFmYsPkcvL7DwjgPvWM7cNdXf3xGlk8kI2VSsnf41T4p2WpKBZETWRTD4YhsoPM3ZJiT4x-DMyJzQ7Y98zc6jndw-iLjeQ-T-TC3H4A4hXiQG6WcB0qplFpGKqYydMwYk6gWBLXQMz2mYPeVQAZZRR7NMi-WrBFLC7407c8r8pFHWy7UOpSNF6FRxjCcR3ybRGELWKkMT_wlW-90e83Tx-d8tAxTh51u9m33YP8TTOPr8uiNpgswWfy8sIuI4Aq1VBoNge8vrWc34itRqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healable+Multifunctional+Electronic+Tattoos+Based+on+Silk+and+Graphene&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Qi&rft.au=Ling%2C+Shengjie&rft.au=Liang%2C+Xiaoping&rft.au=Wang%2C+Huimin&rft.date=2019-04-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.201808695&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |